• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Photonic network design based on reference circuits
 
  • Details
  • Full
Options
1997
Conference Paper
Title

Photonic network design based on reference circuits

Abstract
The objectives of this presentation are to clarify specific terms like transparency and transverse compatibility, and then to derive guidelines as a first approach to an engineered photonic network. These guidelines are applied to the planning of a core network with 8 and 16 wavelength channels per link and verified by first numerical results. Complementary to a layered network architecture, our methodology is based on the use of a specific reference configuration. Degradation effects like amplifier noise, chromatic and polarization-mode dispersion, nonlinear self-phase modulation are covered as well as node crosstalk and the impact of optical frequency misalignments. Based on ITU-T recommendations, a classification of ranges of bit-rates and other preliminary specifications, our method allows us to assemble a general photonic network from its elements in a bottom-up scheme. As a result, we show that photonic networks can exhibit transparent optical paths, ranging from 400 to several thousands of kilometres. A number of 16 wavelength channels at individual bit-rates of up to 10 Gbit/s traversing a couple of crossconnecting nodes can be implemented, taking into account present-day optical components like amplifiers, standard fibres, multiplexers and demultiplexers, fibre switches as well as dispersion-compensating techniques. The potential benefits of such networks are to be seen in their inherent high capacity and in a high degree of flexibility, supporting various applications. Considering the results obtained so far, it can be concluded that a country of the size of Germany could be covered by a transparent photonic network.
Author(s)
Bachus, E.-J.
Eiselt, M.
Habel, K.
Langer, K.-D.
Scheuing, E.-U.
Tischer, F.-C.
Mainwork
Optical Network Design and Modelling 1997  
Conference
Working Conference on Optical Network Design and Modelling 1997  
Language
English
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Keyword(s)
  • multiplexing equipment

  • optical crosstalk

  • optical fibre dispersion

  • optical fibre networks

  • optical fibre polarisation

  • optical modulation

  • optical noise

  • optical switches

  • phase modulation

  • wavelength division multiplexing

  • photonic network design

  • reference circuits

  • transparency

  • transverse compatibility

  • core network planning

  • wavelength channels

  • amplifier noise

  • chromatic dispersion

  • polarization-mode dispersion

  • nonlinear self-phase modulation

  • node crosstalk

  • optical frequency misalignments

  • itu-t

  • crossconnecting nodes

  • standard fibres

  • multiplexers

  • demultiplexers

  • fibre switches

  • dispersion-compensating techniques

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024