Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Metal foams reinforced with calcium phosphate cement for use as bone implants

Mit Calciumphosphatzement verstärkte Metallschäume für die Verwendung als Knochenimplantate
: Rößler, S.; Glorius, S.; Nies, B.; Standke, G.

Stephani, G. ; Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung -IFAM-, Dresden:
Cellular metals for structural and functional applications, CELLMET 2008 : Proceedings of the International Symposium on Cellular Metals for Structural and Functional Applications held October 8 - 10, 2008 in Dresden, Germany
Dresden: Fraunhofer IFAM, 2009
International Symposium on Cellular Metals for Structural and Functional Applications (CELLMET) <2, 2008, Dresden>
Conference Paper
Fraunhofer IKTS ()
Fraunhofer IFAM ()
Calciumphosphat; Druckfestigkeit; Eisen; Eisenlegierung; Elastizität; Implantat; Metallmatrix-Verbundwerkstoff; Metallschaum; Steifigkeit

Metal foams with high open porosity (80-90%) and adapted strength and stiffness possess a high structural similarity to cancellous bone and may be excellent candidates for bone substitute materials. However, the desirable high open porosity is in conflict with the mechanical properties necessary to provide full load bearing early after implantation. This limitation can be overcome by filling the metal foam with resorbable calcium phosphate cement (CPC). CPC itself is highly bioactive and osteoconductive, thus promoting bone healing in addition to contributing to mechanical strength. Depending on the CPC-system compressive strengths between 15 and 60 MPa can be reached. In the present study metal foams of iron and iron alloy (Fe+Fe3P) with elastic deformation properties and compressive strengths of 2.3 MPa and 6.8 MPa, respectively, were employed. The combination of elastic metal foams with brittle but compression resistant CPC yields composite materials with highly desirable biomechanical properties (compressive strength of 90 MPa and remaining compressive strengths of > 60 MPa at 10% deformation).