Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Novel measurement and monitoring system for forming processes based on piezoresistive thin film systems

: Biehl, S.; Staufenbiel, S.; Hauschild, F.


Schmid, U. ; Society of Photo-Optical Instrumentation Engineers -SPIE-, Bellingham/Wash.:
Smart Sensors, Actuators, and MEMS IV : 4 May 2009, Dresden, Germany
Bellingham, WA: SPIE, 2009 (SPIE Proceedings Series 7362)
ISBN: 0-8194-7636-6
ISBN: 978-0-8194-7636-4
ISSN: 0277-786X
Paper 73621J
Conference "Smart Sensors, Actuators, and MEMS" <4, 2009, Dresden>
Conference Paper
Fraunhofer IST ()
thin film sensor system; piezoresistive; deep drawing

The investigation of a novel sensor system, integrated in the main load region of forming machines, is the challenge. Therefore it is important that the thin film system is multifunctional. It has an excellent tribological quality in combination with a piezoresistive behaviour. The layer system is deposited on the polished surface of a steel substrate. It has such geometries that it can be easily integrated in the drawing cushion of a deep drawing machine. The thin film sensor system exists out of a piezoresistive hydrogenated carbon layer, deposited in a PACVD process. Onto this layer arrays of chromium structures are deposited in a PVD process. The structures are protected against wear by an insulating silicon doped hydrogenated carbon layer. The whole thin film system has a thickness of about 9 ?m. During the forming process the steel plate is in direct touch with the sensor system and moves over it. The position of the steel and the load distribution is measured in dependence on the forming stadium. The sensor system works as a control system to ensure that the shape of the product is perfect and without any cracks or creases.