

The use of Open Source CFD to improve blade design

Bernhard Stoevesandt, Bastian Dose, Hamid Rahimi

Fraunhofer IWES, Germany

10-12 December 2018, Maritim Hotel, Dusseldorf, Germany

Extracting more energy from wind

≺ Enlarging the rotor blades of new wind turbines

 \prec In the first quarter of 2017:

≺ All offshore wind turbines ordered were in the 7 to 9 MW range

Improving the design (optimized design)

- ✓ More accurate modelling
- ≺ More cost-efficient turbines
- Lower cost of energy

FIGURE 29 Capacity rating of ordered offshore wind turbines in Europe

Wind turbines are getting larger

- ≺ Light weight blade design
- ≺ Blade flexibility increased

≺ Non-linear interaction between aerodynamics and structure

Aerodynamic Design-Tool: BEM

- \prec Main aerodynamic design method for wind turbines
- \prec Reasonable results for most load cases
- \prec Quick enough to run many design cases

Aerodynamic Design-Tool: BEM

 \prec BEM is derived based on large number of assumptions, valid for steady inflow

- Atmospheric flow is turbulent, highly 3D and unsteady

≺ Basic BEM is improved by engineering add-ons

✓ Dynamic Stall, stall delay, yawed inflow …

 \prec The models are often obtained by small experimental or low fidelity tools

BEM Engineering Models

Kotor designs of the new large turbines are challenging
Thick(er) airfoils, high(er) flexibility and high(er) Reynolds

✓ Leads to more unknowns and non-linear behavior
 ✓ Uncertainties in loads calculation for complex cases
 ✓ Direct impact on: structural design, extracted energy
 ✓ Leads to large safety factors → increasing costs

Improving BEM engineering models is necessary[®]

@ Imwindpower: The world's longest blade 88.4m

Computational Fluid Dynamics (CFD)

- \prec High fidelity \rightarrow No empirical corrections models required
- ≺ However: Computational expensive
 - \prec Not suitable for calculation of all DLCs
- \prec CFD can be used to
 - ≺ Recalibrate existing correction models
 - ✓ Development of new models

Use of open source codes for CFD and Aerodynamics

Open Source – Full control

Continuous development and improvement possible

Keep your own developments

No license fees

Large community (e. g. car industry)

Open Source – No Bug-Free guarantee

Steep learning curve

Lack of exhaustive Documentation

Computationally expensive

Our Fluid-Structure Interaction (FSI) approach

FSI framework developed in Oldenburg

✓ Open source CFD toolbox OpenFOAM

✓ Steady-state or dynamic simulations

- Runtime post-processing (AoA)

≺ Inhouse grid deformation

✓ Finite Element framework

Geometrically exact beam theory (GEBT)

- Supports large deformations and torsion
- \prec 6x6 section properties

Example: NREL 5 MW subjected to yawed inflow

Skewed wake model and BEM

 \prec Glauert model is only true at the tip $a = a_{av}(1 + k\frac{r}{R}\sin\theta)$

- ≺ Many attempts are made in the past to improve the k function
- ≺ Root vortex also induces axial velocities

 \prec It is not included in the current correction models

Results - INNWIND 6 m/s at 20° yaw

A positive yawing moment (stabilizing) can be observed

The qualitative behavior of the proposed model is closer to reference CFD

Results: DTU 10 MW subjected to yawed inflow

- \prec Clear effect on aerodynamic loading
- ✓ Rigid CFD underpredicts forces
- ✓ The BEM based model over predicting the loads
- \prec However, they take in to account the flexibility to some extend

 \prec How accurate are the current rotor tower interaction models in BEM?

- ≺ Significant discrepancies between different models
- \prec Can we improve them by CFD? How about different tower types?

- \prec Big drawback of downwind turbines: Blade-tower interaction
- \prec Idea: Use lattice structure towers instead of tubular towers
- \prec NREL 5 MW in downwind configuration

- ✓ Time-accurate Delayed-Detached Eddy Simulation (DDES)
- \prec Comparison of structural blade deformations for both tower types
- \prec Fluid-structure coupling for blades for higher fidelity

Truss tower geometry causes more severe effect on loads
 Torsional blade vibrations can cause additional fatigue

IWES

✓ Truss tower geometry causes more severe effect on performance

Turbulent inflow - cases

- Investigation of inflow turbulence on rotor performance

Comparison to load calculation with FAST v8.0 and Aerodyn v15

Results: Integral Forces

		Blade Resolved	Actuator Line	BEM
	Mean	761	698	729
Thrust [kN]	SD	37.9	33.9	49.7
	EFL	147.6	136.7	190.1
	Mean	4.43	4.32	4.35
Torque [MNm]	SD	0.495	0.452	0.599
	EFL	1.904	1.897	2.209

- Average values for thrust and torque are in reasonable agreement
- Standard deviation and Equivalent Fatigue Loads higher for BEM more accurate, fully resolved FSI gives less loads
- Linear relationship between fatigue loads and standard deviation

Conclusions

- High fidelity framework for full rotor simulations presented
- ≺ Fluid-structure coupling for large, flexible blades
- Improvement of skewed wake correction based on CFD
- Investigation of tower shadows (tubular vs. lattice)
- Results indicate that 2D tower shadow might not be valid

Thank You For Your Attention

Any questions?

bernhard.Stoevesandt@iwes.fraunhofer.de

Acknowledgements Fraunhofer IWES is funded by the:

Federal Republic of Germany

Federal Ministry for Economic Affairs and Energy

Federal Ministry of Education and Research

European Regional Development Fund (ERDF):

Federal State of Bremen

- ≺ Senator of Civil Engineering, Environment and Transportation
- ✓ Senator of Economy, Labor and Ports
- ✓ Senator of Science, Health and Consumer Protection
- Bremerhavener Gesellschaft f
 ür Investitions-F
 örderung und Stadtentwicklung GmbH

Federal State of Lower Saxony

