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Abstract

This report reviews selected image binarization and segmentation methods that have been pro-

posed and which are suitable for the processing of volume images. The focus is on thresholding,

region growing, and shape–based methods. Rather than trying to give a complete overview of the

field, we review the original ideas and concepts of selected methods, because we believe this infor-

mation to be important for judging when and under what circumstances a segmentation algorithm

can be expected to work properly.
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1 Introduction

This report is intended to give a wide, but by no means complete, overview over common binarization
and segmentation methods encountered in three dimensional image processing. We discuss gray-value,
region, and shape based methods. To do this, we describe some algorithms which we believe to be
representative for each class in some detail. We try to give an understanding of the original derivation
and motivation of each algorithm, instead of merely stating how each method functions. We believe that
this is of high importance in order to get an idea where and under what circumstances a method can
function and when one can expect an algorithm to fail.

Of course, there already exist many reviews on image segmentation: Pal and Pal [PP93], which
does not go into the details of the algorithms, but which classifies segmentation techniques, discusses
advantages and disadvantages of each class of segmentation method and contains an exhaustive list
of references to the literature up to the early 1990’s. Trier and Jain [TJ95] review 11 locally adaptive
binarizations algorithms and present a comparative evaluation for an optical character recognition (OCR)
task in 2D. Another review that focuses on medical image segmentation can be found in [PXP00].

To briefly motivate why one should consider different 3D segmentation algorithms, consider the
example of a 3D dataset in Fig. 1. Simple global thresholding, thoroughly defined below, can be used
to mark the locations of fibers in this dataset, c.f. Fig. 1(e). But the individual fiber areas (indicated
in black) are not separated, making it impossible to identify the exact extent of individual fibers in this
image. By choosing different binarization parameters (Figures 1(c) and 1(d)), separation of the fibers
can be improved, but this goes along with loosing some information within the fibers. All segmentation
methods that have been proposed in the literature aim at improving image segmentation in this or other
aspects. The causes for problems such as the ones in Fig. 1 can by manifold, many times being inherent
to the respective image acquisition method itself.

1.1 Notation

Throughout this survey, we have 3D volume images in mind, such as they are produced by CT (x–ray
computed tomography), MRI (magnetic resonance imaging), or others. An image f is defined over its
image domain Ω as

f(x) ∈ R, (1)

x ∈ Ω. (2)

For the purposes of this survey, we can think of Ω as a discrete three dimensional space, indexing the
grid points (voxels) on which gray values f(x) are observed. A segmented image is denoted by g on the
same domain Ω as the original image f , but taking on values from a discrete label space,

g(x) ∈ N. (3)

Binary images are a special case of this definition, for they are restricted to values 0 and 1, indicating
image background and foreground, respectively. The only exception from this convention will be Sec.
5.4. For the derivations of some of the methods, we will also need to be able to treat images as random
processes. We use capital letters for random variables, such as F (x) at voxel x, and we use p to denote
a probability density function. As is common, we write p(f) as shorthand notation for pF (F = f), the
joint distribution of all voxel values.

Other concepts that will be used throughout this text are related to the discrete grid Ω over which
images f or g are defined: A neighbor of a voxel x is a voxel x′ that is adjacent to x with respect to some
neighborhood definition. Two common definitions in 3D are 6 and 26 neighborhoods, i.e., voxels are
neighbors if they have a common face, or if they have a common face, edge or vertex, respectively. We
will write N(x) for the set of all neighbors of x. A connected region or component is then a set of voxels
in which any two elements can be connected by consecutive neighbors that are all contained in that set,
themselves. A segment is what we like to achieve by segmentation, i.e., an image region that encloses
the information of interest (e.g., an interesting microstructure or some defect in the image). Note that
the definition of a segment that we make here is not a rigorous one, because its exact definition depends
on how we compute the segment.
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(a) Volume rendering of the 3D dataset

(b) Original slice (c) Low binarization level

(d) Medium binarization
level

(e) High binarization level

Figure 1: Examplary segmentations of a fiber felt (polyamid fibers): Even at low noise levels, separation
of foreground can be difficult (data acquisition by L. Helfen / ESRF Grenoble, visualization
by T. Sych / Fraunhofer ITWM).

2 Thresholding

There exists a large number of gray-level based segmentation methods using either global or local image
information. In thresholding, one assumes that the foreground can be characterized by its brightness,
which is often a valid assumption for 3D datasets.

2.1 Global Thresholding

This is the simplest and most widely used of all possible segmentation methods. One selects a value θ,
minx(f(x)) ≤ θ ≤ maxx(f(x)), and sets foreground voxels, accordingly.

g(x) =

{
1 if f(x) ≥ θ
0 else

(4)

While (4) is a complete description of a binarization algorithm, it contains no indication on how to
select the value θ. The natural question that arises is whether there exists an optimal threshold value.
There are in fact different solutions to this threshold selection problem, each being based on different
model assumptions. We discuss some of these methods in the remainder of this section.

However, even if θ was optimally selected using a model which is suitable for the present image data,
global thresholding will give poor results whenever influences of noise are large compared to the image
content (low signal to noise ratio) or when object and background gray value intensities are not constant
throughout the volume.

2.1.1 Choosing Thresholds Using Prior Knowledge

In many situations, an imaged object will have known physical properties. For example, the manufacturer
of a material may know the material’s volume density from experiments. Then, the optimal threshold θ∗

may be defined as the value for which the segmented image g reaches this a–priorily known value. Such
strategies can actually be applied for choosing parameters of any kind of image processing method.
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For low noise levels and suitable known parameters, i.e., parameters which can also be computed from
binarized images, this pragmatic approach can often yield satisfactory results, especially if combined with
proper filtering methods for noise reduction.

2.1.2 Otsu’s Method

For choosing θ, one can analyze the distribution of gray values of an image (its histogram): Assume that
the gray value histogram of the image contains two separate peaks, one each for fore- and background
voxels (bimodal histogram). Then we would want to choose the minimum between these two peaks as
threshold θ. Otsu defines this choice for θ as the value minimizing the weighted sum of within-class
variances [Ots79]. This is equivalent to maximizing the between-class scatter. For an image taking on
discrete voxel values k, the optimal threshold is

θOtsu = argmaxθ







∑

k<θ

p(k) (µ0 − µ)
2

+
∑

k≥θ

p(k) (µ1 − µ)
2






(5)

where

p is the normalized histogram

µ := Mean{f(x)}
µ1 := Mean{f(x) | f(x) ≥ θ}
µ0 := Mean{f(x) | f(x) < θ}.

In the simple case of 256 gray values, T can be simply determined by evaluating the term for each
value and choosing the global minimum. Note that, in the discrete case, (5) can be entirely evaluated
from the histogram by summing over the appropriate value ranges. Otsu’s method is widely used in the
literature, and has proven to be a robust tool for threshold selection in our own experience.

2.1.3 Isodata Method

Another method for automatic thresholding is the iterative isodata method [RC78], which is actually
an application of the more general isodata clustering algorithm to the gray values of an image. Like in
Otsu’s method, the threshold is computed to lie between the means of fore- and background, µ1 and µ0,
but instead of searching for a global optimum as in (5), the search is performed locally. Given an initial
threshold θ(0), e.g., half of the maximum gray value, the isodata algorithm can be stated as follows:

1. At iteration i, generate binary image g(i) from f using θ(i).

2. Compute the mean gray values µ
(i)
0 and µ

(i)
1 of current fore- and background voxels, respectively.

3. Set θ(i+1) = (µ
(i)
0 + µ

(i)
1 )/2, and repeat until convergence.

Similar to the method given in Sec. 2.1.2, the underlying assumption here is that fore- and background
gray values can be characterized by different means, µ0 and µ1. This method is widely used in 2D image
processing, particularly in medical applications.

2.1.4 Bayesian Thresholding

From a statistical point of view, thresholding is an easily solvable task if we have a proper image model.
In a Bayesian setting, the posterior probability of observing f(x) is simply p(f(x)|j), where j ∈ {0, 1} is
the unknown class label, i.e., background and foreground. By Bayes’ Theorem we know that

p(f(x)|j) ∝ p(j)p(j|f(x)). (6)

This equation can be applied for determining the global image threshold θ. Assume that the gray
values of voxels belonging to fore- and background follow normal distributions about class means µ0 6= µ1.
Furthermore, let us assume that gray value variation in each class is equal, σ0 = σ1 = σ. Then the
likelihood p(j|f(x)) is given by
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p(j|f(x)) =
1√
2πσ

exp

(

− (f(x) − µj)
2

2σ2

)

, (7)

where µj is the class conditional mean value, as defined in Sec. 2.1.2. The optimal threshold θ can
then be found as the gray value of equal log posterior.

log p(θ|0) = log p(θ|1)

log p(0) − 1

2σ2
(θ − µ0)

2
= log p(1) − 1

2σ2
(θ − µ1)

2

θ =
1

2
(µ1 + µ0) +

σ2

µ0 − µ1
log

p(0)

p(1)
(8)

Eq. (8) gives the optimal threshold for separating two regions which follow Gaussian gray value
distributions with equal variance and different means. The restriction of equal variance can also be
dropped which results in a slightly more complicated term for the threshold parameter.

An example how this thresholding selection rule was successfully applied is the “Mardia-Hainsworth
algorithm”, which will be described, below.

Note also that the threshold selection scheme that was described in this section is only one small
example of how Bayesian methods can be applied to image processing. The Bayesian framework is the
most powerful toolbox for statistical modeling at all stages of image processing, from image denoising,
segmentation to object recognition. We will outline the general Bayesian modeling concept in Sec. 5.3,
but giving an overview over this wide field is beyond the scope of this review.

2.2 Local Thresholding

Local thresholding can compensate for some shortcomings of the global thresholding approach. As
mentioned above, intensity levels of an image can vary depending on the location within a data volume.
One common approach for preprocessing in 2D image processing is to calculate the mean intensity value
within a window around each pixel and subtract these sliding mean values from each pixel (“shading
correction”).

In the same spirit, but instead of modifying the image content prior to binarization, one can use a
spatially varying threshold, θ(x), to compensate for these inhomogeneous intensities.

g(x) =

{
1 if f(x) ≥ θ(x)
0 else

(9)

As was the case for the global thresholding approach, (9) does not provide any clues on how these
threshold values θ(x) should be computed. Some common approach to local thresholding will be de-
scribed, next.

2.2.1 Niblack Thresholding

In [TJ95], Trier and Jain obtained the best results among 11 tested local thresholding algorithms using
a method due to Niblack [Nib86]. Niblack’s algorithm calculates local mean and standard deviation to
obtain a threshold.

θ(x) = Mean {f(x′)| ‖x − x′‖∞ ≤ W} + λ
√

Var {f(x′)| ‖x − x′‖∞ ≤ W} (10)

Mean and Var denote the local empirical mean and variance, centered at voxel location x and using
window size W . λ is a parameter of this method. The binarization rule described by (10) implicitly
assumes smooth fore- and background areas, where the gray values vary about some unknown mean,
which is estimated in a window around the current coordinate x.

Trier and Jain found W = 15 and λ = −0.2 to work best for their 2D application [TJ95]. In 3D,
this approach works well in practice when the window size W can be chosen to correspond to the size of
objects that are present in the image. The system will fail, on the other hand, in large low–contrast areas:
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Assume the current window of size W at x contains a smooth area with little noise. Then, the estimated
variance will be low, resulting in false segmentations caused by noise or lower frequency variations within
the image

A heuristic modification of Niblack’s formula which solves this problem has been proposed by Sauvola
and Pietikäinen [SP00]. Again, a threshold at θ(x) is computed in a window of size W , but with an
additional parameter R.

θ(x) = Mean {f(x′)| ‖x − x′‖∞ ≤ W}
(

1 + λ

(√

Var {f(x′)| ‖x − x′‖∞ ≤ W}
R

− 1

))

(11)

The newly introduced parameter R can be thought of as an approximate normalization of the standard
deviation. In [SP00], it was proposed to set R = 128 for 8-bit (unsigned) data, and it turns out in practice
that setting R to half the maximal data range is a good choice: The exact value of R is not so crucial as
long as the values of

√

Var{·}/R stay in the range between zero and one for most voxels. For negative
λ, this term effectively sets the local threshold close to the mean value in high contrast areas (such as
object edges), and above the mean in low–contrast areas (such as large background regions).

As was mentioned above, (11) is a heuristic modification of (10), but it often yields better results in
practice.

2.2.2 Mardia and Hainsworth Method

In [MH88], Mardia and Hainsworth proposed an algorithm for spatial thresholding. Their idea was to
obtain random variables G(x) at each voxel location x as linear combinations of the neighboring voxels
x′,

G(x) =
∑

x
′∈N(x)∪{x}

γx
′F (x′), (12)

where the coefficients γ need to be specified. The authors discuss several possible solutions to the
problem of selecting a local threshold θ(x) being given G and the method they propose to use, described
below, is known as the “Mardia–Hainsworth algorithm”. As a matter of fact, Eq. (12) was again used
later for so-called kriging threshold computation by others, see below.

The main observation in [MH88] was that given coefficients γ, one can interpret G as a voxel value and
the threshold problem again reduces to voxel–wise thresholding. Thus, the global Bayesian threshold
selection method described in Sec. 2.1.4 can be applied to each G(x) to obtain a local thresholding
algorithm.

As in Sec. 2.1.4, the underlying assumption to the Mardia–Hainsworth algorithm is that the fore-
ground and background gray values in an image are following normal distributions with parameters
(µ0, σ) and (µ1, σ), respectively, where it was again assumed that variances are the same. Then, G will
also be a Gaussian random variable, with class–conditional mean µG

i , i ∈ {0, 1}, given by

µG
i =




∑

x
′∈N(x)∪{x}

γx
′



µi. (13)

For practical applications, it is recommended in [MH88] to set γx
′ = 1/|N(x) ∪ {x}|, resulting in a

local mean with µG
i = µi. The optimal local threshold θ is then given by (8). The complete Mardia–

Hainsworth algorithm consists of this local thresholding with a median filter to suppress noisy voxels:

1. For each voxel x, perform thresholding of G(x) using (8) with γ = 1/|N(x) ∪ {x}| (local mean).

2. Median filter of the resulting image with mask size 3 × 3 × 3, update µ0, µ1, and σ.

These two steps are iterated until convergence. In effect, this is a local Bayesian thresholding operating
on voxel values that were smoothed with a mean filter. Note that the cost of computation is significantly
higher than for the other methods that have been described, so far.

6



2.2.3 Indicator Kriging

Thresholding by indicator kriging was described by Oh and Lindquist [OL99]. Kriging is an interpola-
tion method that is commonly used in geostatistics. It relies mainly on local covariance estimates for
thresholding and is similar to the Mardia–Hainsworth method in that it estimates the value at voxel x

using a linear combination of its neighbors. Kriging estimators build upon the linear combination G(x)
from (12) with γx = 0, i.e., the central voxel is not included in the linear combination. Indicator kriging
is a modification of this linear combination where the continuous voxel distribution F (x) is replaced by
a binary variable i,

G(x) =
∑

x
′∈N(x)

γx
′ i(θ; f(x′)) (14)

where i(θ; f(x)) :=

{
1 if f(x) < θ
0 otherwise.

Note that this definition of i differs from the convention for thresholds, made above, where larger
voxel values corresponded to foreground in the image. The quantity of interest is the threshold value θ,
and if we knew its density p(θ), we could compute the optimal threshold. This unknown distribution
is approximated by (14) with coefficients γ chosen to minimize the mean square error to the unknown
p(θ). If we require the the coefficients γ to be normalized such that

∑

x
′ γx

′ = 1, we can interpret the
outcome as the probability of the gray value in voxel x not exceeding threshold θ:

p(θ; x) = Pr (f(x) ≤ θ)

= G(x) =
∑

x
′∈N(x)

γx
′ i (θ; f(x′)) . (15)

With the normalized coefficients γ, (14) is an unbiased estimator and therefore its mean square error
(MSE) is given by

MSE = Var[p(θ) − p(θ; x)] = E[(p(θ) − p(θ; x))2] = E[(i(x) −
∑

x
′∈N(x)

γx
′i(x′))2]

= E




( ∑

x
′∈N(x)∪{x}

ax
′i(x′)

)2



 =
∑

x
′

∑

x
′′

ax
′ax

′′Ci(x
′ − x′′). (16)

The coefficients a are defined such that ax = 1 and ax
′ = −γx

′ . Ci(·) is the covariance of the
indicators. Taking the normalization constraint for coefficients γ and a multiplier λ, minimization of
(16) with respect to γx

′ (or its substitutes a) can be put as a Lagrangian optimization problem:

Lλ =
∑

x
′

∑

x
′′

ax
′ax

′′Ci(x
′ − x′′) + λ

(
∑

x
′

ax
′ − 1

)

dLλ

dax
′

=
∑

x
′′

γx
′′Ci(x

′ − x′′) + λ = Ci(x
′ − x). (17)

Here we made use of the assumption that gray value statistics are stationary in the image. To estimate
the indicator covariances in (17), an initial estimate of the image regions must be given. This results in
the following algorithm, called indicator kriging segmentation:

1. Derive an initial estimate of two thresholds θ0 and θ1 from the image histogram, dividing f(x) into
disjoint sets of certain foreground and background positions.

2. Estimate the covariance function Ci from indicators i.
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x

f(
x)

θθ 2
θθ 1

Figure 2: Illustration of hysteresis thresholding: Foreground regions must contain voxels exceeding a
“high threshold” but can be extended until reaching a lower threshold. This ensures connected
regions and efficiently excludes background noise voxels.

3. Minimize MSE by solving (17), giving the set of coefficients {γx
′}.

4. If p(θ0; x) > 1 − p(θ1; x), assign x to background, otherwise to foreground. Return to step 2.

Similar to the Mardia–Hainsworth algorithm shown above, median filtering is used in [OL99] to
remove noisy voxels. One main difference of indicator kriging segmentation to that algorithm is that
covariance estimates are used.

2.3 Hysteresis

Another common problem in image segmentation is that the segments of interest may well be defined
by their intensities, but that there also exist other structures (e.g., noise) with high values. Global
thresholding would either underestimate the size of the true segments (because θ was too large) or would
include noise in the foreground (because θ was chosen too low).

One way of dealing with such situations where the voxel value distributions of fore- and background
voxels overlap is hysteresis thresholding, also known as “double thresholding”. It was proposed in [Can86]
as a method to segment connected edges from an edge strength map. Hysteresis thresholding uses two
thresholds, θ1 > θ2, and starts from voxels x with f(x) ≥ θ1. Then all voxels x′ are iteratively assigned
to the foreground which are neighbors of an already identified foreground voxel and which fulfill the
condition f(x′) ≥ θ2.

This procedure ensures segmentation of connected regions, since a number of “certain” foreground
elements are selected while its neighbors may have a lower value. At the same time, noisy background
voxels are suppressed by the higher threshold θ1. See Fig. 2 for an illustration.

Note that this algorithm bears some similarity to the region growing algorithms that will be introduced
in Sec. 3. Yet, hysteresis thresholding is more efficiently implemented using geodesic reconstruction
[Soi99]: Let ⊕ denote the dilation operator using structuring element W . Dilation enlarges the foreground
region of a binary image g by adding voxels to the borders of existing foreground in the directions
described by W , see e.g. [Soi99] for details. Using ∧ as the voxel–wise logical and operation, geodesic
reconstruction is iterative dilation and masking of g:

Rm(g) =
(
g ⊕ W

)
∧ m. (18)
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1 funct RegGrow(seed) ≡
2

3 region.empty()
4 region.add(seed)
5 while region.HasNeighbour() do

6 x := PopNeighbour(region)
7 if M(x)
8 region.add(x)
9 fi

10 od

11 return(region)
12 .

Figure 3: A generic region growing algorithm: Starting from seed, neighboring voxels are added to region
as long as they fulfill some condition M(x).

Here, m is the so-called mask image. This rule is applied until convergence, i.e., when dilating and
“masking” the result with m results in the same image again. Thus, in (18), the dilation is stopped when a
region defined by m is exceeded. Hysteresis thresholding is equivalent to a geodesic reconstruction where
the marker image m is given by the low-threshold regions, defined by threshold θ2, and the dilation series
is started from the high-threshold (θ1) seed points.

3 Region Growing

The philosophy behind all region growing algorithms is that all voxels belonging to one object are
connected and similar according to some predicate. A generic region growing algorithm is given in
Fig. 3. Apart from the choice of an appropriate neighborhood system and the seed selection, the only
difference between the numerous region growing methods lies in specifying the predicate M . Some of
these will be discussed in this section. We will assume that an appropriate neighborhood system has
been chosen for implementing the generic function “PopNeighbour”.

Note that in this survey, we view region growing as a voxel-based procedure, where an object is
formed from a group of voxels. A different view on region growing is “split&merge”. There, an image is
initially split into smaller regions, e.g., down to individual voxels. Neighboring regions are then merged
if they fulfill a homogeneity criterion like the one used in Algorithm 3. See e.g. [BB82, Ch. 5] for details
on this alternative view on region growing methods.

In seeded region growing, seed selection is crucial but can be seen as an external task, often done by
hand in medical image processing. Unseeded region growing was also proposed and will be discussed in
a later section.

3.1 Growing by Gray Value

One of the more commonly used region growing criteria is based on the observation that an object’s gray
values are usually within some range around a mean value. Thus, while growing a region, its current
mean and standard deviation are computed and a new voxel is added if its value lies within a range
around the region’s mean.

M(x) :=
(

| f(x) − µR |≤ cσR

)

(19)

where

R := {x′ | x′ belongs to region}
µR := Mean {f(x)|x ∈ R}
σR :=

√

Var {f(x)|x ∈ R}
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Figure 4: Weighting function for adapting the growing criterion according to the region’s size [MPO+97]:
(A) Voxels are added to small regions if their local neighborhood is homogeneous, (B) larger
regions are grown according to the square deviation from the region’s mean.

Except for the region seed, the only parameter of this method is c ∈ R
+, the coefficient defining

the allowed deviation from the region’s mean. Since mean and variance can be updated as one voxel
after another is added, this region growing algorithm is easily implemented. It can give reasonable
segmentation results where objects are connected and can be characterized by their gray values.

3.2 Adaptive Region Growing

A growing criterion called adaptive region growing was proposed in [MPO+97] for segmentation of the
human cortex. Their idea was to adapt the decision function according to the region’s size: Initially,
for a region containing very few voxels, voxels are added as long as a homogeneity (gray value variance)
threshold around the region is not exceeded. Then, when a certain number of voxels has been added to
the region, one assumes that the gray level statistics of this region have approached the object’s true
distribution. Thus, further voxels are added only if their gray values are close to the region’s mean gray
value. Using R, µR and σR as in (19) and a region size dependant weight w, the adaptive region growing
criterion is given by

M(x) :=

(

1

TR

(f(x) − f̂R)2

σ2
R

w +
σ2

N

TN
(1 − w) ≤ 1

)

, (20)

where

σN :=
√

Var {f(x) | ∃x′ ∈ N(x) : x′ ∈ R},
w := w(| R |)

TR, TN > 0 thresholds for enlarging R.

Small regions will only be enlarged when σ2
N does not exceed TN . For large regions, only voxels for

which (f(x) − µR)2/σ2
R does not exceed TR will be added. The weighting function w, depending on the

region size |R|, determines the point where the cost function switches from homogeneity to gray value
difference. Modayur et al. use a linear interpolation between the two terms in (20) as the region’s size
increases, from zero for small regions (homogeneity only) to one for large regions (gray value deviation
only), see Fig. 4.
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The authors of [MPO+97] applied this region growing method to neurological images of the human
brain. But the idea of adaptive region growing can easily be extended to model other situations, where
growing based on gray level difference (for large regions) may not be appropriate. One can generalize
the growing criterion from (20) and obtains

M(x) =
(
wΦ1(x) + (1 − w)Φ0(x) ≤ 1

)
. (21)

All that is left from the original formulation is the weighting, which still interpolates between two
cost terms depending on the region’s size. One may use (21), for example, to again start growing a region
based on gray value homogeneity (using Φ0) and then continue to add voxels to match some prior object
shape information (using Φ1)

A similar concept was discussed in [BB82, Sec. 5.5] under the title “semantic region growing”. Regions
were first merged until they attained a significant size, in this case defined by a ratio of area and perimeter.
A Bayesian decision was used for larger regions to determine if two regions should be merged or not.

3.3 Adams Seeded Region Growing

The two region growing methods described above considered one region R at a time. Let us next examine
the situation where the image contains m disjoint regions (R1, R2, . . . , Rm). In [AB94], a seeded region
growing method was proposed that segments a whole image by picking so-called “boundary voxels” and
adding them to regions based on a distance measure. The boundary voxels B are adjacent to at least
one region Ri and do not belong to any region in the image.

B :=

{

x /∈
⋃

i

Ri | N(x) ∩
⋃

i

Ri 6= ∅
}

(22)

The algorithm, which originally deals with 2D images, picks voxel x′ ∈ B which has minimal distance
δ to any region within the image. The distance measure δ used in [AB94] is the absolute difference of
gray value to a region’s mean. Thus, pick a voxel x′ with

x′ = argmin
x∈B,R

(
δ(x, R)

)
, (23)

with

δ(x, R) := |f(x) − µR| (24)

and assign it to the region Ri which minimizes (23). This algorithm is very similar to the ones
proposed in the previous sections, in that it selects the voxels that will be added to a region from a local
neighborhood. At the same time, it differs from these algorithms since the regions “compete” against
each other: Search for a voxel is performed over all regions, not for one region at a time.

3.4 Non-connected Region Growing

A region growing algorithm that can segment non connected regions was proposed by Revol et al. [RJ97]
and was also extended to a parameter-free method by using an “assessment function” [RMPCO02], see
Sec. 3.5.2.

The unique feature of this algorithm is that voxels may not only be added, but also removed from a
region. To achieve this, the so-called “k-contraction” is used. k-contraction removes k voxels from the
region, starting from the voxel with the lowest gray value, in increasing order. Note that this procedure
assumes that object voxels have larger gray values than background voxels. The procedure is repeated
until a homogeneous region is produced, where a region is called homogeneous if its gray value variance
is below some threshold σmax.

Parameters of this method are the seeds for initialization of the region and the homogeneity parameter
σmax. The region R is grown until convergence by first applying a dilation, i.e., adding neighboring
voxels, and then trimming the region using the k-contraction method described above. Because of
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1 funct Revol(seed) ≡
2

3 n = 1
4 R0 = {seed}
5 while Ri 6= Ri−1 do

6 Ri+1 = Ri ⊕ W
7 k = 0
8 while (V ariance(Ri+1) > σmax) do

9 k = k + 1
10 Ri+1 = k-contraction(Ri+1)
11 od

12 i = i + 1
13 od

14 return(Ri)
15 .

Figure 5: Non-connected region growing according to [RJ97], where ⊕ denotes dilation with structuring
element W : Region Ri at iteration i is enlarged by dilation. The result is “contracted” by
removing voxels from Ri+1 until the the gray value variance, V ariance(Ri+1), falls below the
parameter σmax.

the contraction, which trims the histogram, it is possible for a region to fall apart into non connected
components. A pseudo code of this algorithm is given in Fig. 5.

This algorithm differs significantly from the region growing methods described earlier. In this ap-
proach, growing and homogeneity testing are separate processes. This way, voxels that were regarded as
belonging to an object early in the growing process, may be removed later on. This also means that the
value distribution within a region is more flexible during the growing phase. We will describe how Revol
et al. extended this algorithm to a parameter-free growing algorithm in Sec. 3.5.2.

3.5 Parameter-Free Region Growing

For all region growing methods described so far, one needs to select seed voxels. Thresholding, as
described in Sec. 2, may be used for this initialization step. Here, one should apply thresholding conser-
vatively. By this we mean that the purpose is not to segment the entire object. It is more important to
choose a number of certain object voxels, from which to start region growing. In practice, this is often
done manually. Region growing methods that do not depend on such initialization have been proposed
and we will describe two of these in this section.

3.5.1 Unseeded Region Growing

Lin et al. [LJT01] proposed an implementation of Adams’ seeded region growing, presented in Sec. 3.3,
which does not need to be initialized by any seed points. However, it is not entirely parameter-free: It
requires a threshold θ. This threshold is used to decide if a voxel certainly belongs to a region. Let’s
describe the algorithm formally. As in Sec. 3.3, the set of unlabeled, region-bordering points (boundary
voxels) is defined as

B :=

{

x /∈
⋃

i

Ri | N(x) ∩
⋃

i

Ri 6= ∅
}

, (25)

where

Ri are 1 . . .m regions in the image.

Initially, the list of regions contains just one region, R1, which contains just one voxel. This could
be any voxel within the dataset. The same distance measure δ(x, R) as in Eq. (24) is used, see Sec. 3.3.
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Then, if there exists an x ∈ B for which δ(x, Ri) ≤ θ, for some existing region Ri, then x is added to
that region.

If no such voxel was found, it means that there is no boundary voxel that fulfills the similarity
constraint. In the following step, the voxel x is searched which has the smallest distance δ among all
voxels and all existing regions,

(x∗, R∗) = argmin(x′,R′){δ(x′, R′)}. (26)

The obtained voxel x∗ is not adjacent to region R∗, otherwise we would have found it in the first
step. Now, if δ(x∗, R∗) ≤ θ, we can add x∗ to R∗. If not, then there exists no region which is similar
enough to f(x∗). Therefore, create a new region Rm+1, containing the voxel x∗, and restart the whole
procedure.

Thus, the number of regions in the image increases. The authors of [LJT01] note that the solution
thus found may not be the optimal one because a voxel may not be added to the region which it most
closely resembles if that region is created after the voxel was visited. They propose to re-evaluate the
neighborhood of any newly created region to lessen this effect.

The nice feature of Lin et al.’s algorithm is that the scheme is not limited to Adams’ value distance
criterion. In fact, we may substitute a measure that is more appropriate for a given application and
apply their scheme for unseeded region growing. We are not aware of any work where this was done.

3.5.2 Assessment Function

This section expands on the region growing algorithm by Revol et al. described in Sec. 3.4. The idea
described in [RMPCO02] is to design an assessment function depending on an algorithm’s parameters,
in this case σmax, and then to optimize this functional over a given parameter range. Thus, this is a
more general parameter estimation approach which may also be applied to other methods.

Firstly, Revol at al. propose using Otsu’s thresholding algorithm followed by an erosion to initialize
the seeds of their algorithm, c.f. Sec 2.1.2. For the homogeneity parameter σ, an assessment function
fa(σ) is designed, with respect to which an optimal homogeneity parameter is estimated as

σmax = maxσ′

(
fa(σ′)

)
. (27)

Revol et al. propose and evaluate six different assessment functions, two of which we will discuss
here. As noted above, this method for choosing an algorithm’s parameters is quite general and an
appropriate assessment function should be chosen depending on the application. In [RMPCO02], two
types of assessment functions were discussed: boundary and region assessment functions.

Using a boundary assessment function implicitly says that a region can be well defined by its edges.
This is true in many imaging situations. It was proposed to use a functional of the form

fboundary(σ) =
1

| B(R) |
∑

x∈B(R)

∑

x
′∈N(x)∧x

′ /∈R

| f(x) − f(x′) |, (28)

where

R = R(σ) is the algorithm′s result using homogeneity threshold σ,

B(R) is the boundary of R, defined as all but the interior of R.

Eq. (28) will choose the homogeneity threshold σmax for the algorithm in Fig. 5 which will have the
largest average contrast along the region’s border. In other words, the parameter σmax which best fits
regions to image edges is chosen.

A “region-based” assessment function was given as
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f region(σ) =

(
√
∑

x∈R

(f(x) − µR)
2

+
∑

x∈RC

(f(x) − µRC )
2

)−1

, (29)

where

R = R(σ) is the algorithm′s result using homogeneity threshold σ,

RC = {x | x /∈ R},
µR = Mean [f(x)] ∀x ∈ R

µRC = Mean [f(x)] ∀x /∈ R.

This assessment function implicitly enforces regions which closely resemble the underlying image’s
values. Note that this is very similar to the segmentation cost function proposed by Mumford and Shah,
which we discuss in Sec. 5.4, except that here no penalization term for long region boundaries is used.

Revol et al. tested these two and further assessment functions on a two-dimensional image containing
a regular grid of lines, which represents one connected region. The number of common voxels in the
segmentation and ground truth were counted and normalized by the number of true and found points.
This gave an error measure equal to one for a perfect segmentation and less than one otherwise.

The two assessment functions that we presented in this section gave similar results and were among the
best-performing assessment functions in that paper. The method was tested on 3D MIR and synchrotron
radiation CT images of human calcaneus bone.

4 Deformable Surfaces and Level Set Methods

This section deals with some model-based approaches to image segmentation that have widely been
applied in 2D and 3D medical image processing.

4.1 Deformable Surfaces

In 2D image segmentation, active contours, also known as “snakes”, are parametric curves which one
tries to fit to an image, usually to the edges within an image. The original model is due to Kaas et
al. [KWT88], but many modifications have been proposed in the literature. Let C : [0, 1] → Ω2 denote a
curve in the 2D image domain Ω2. The original energy functional is then given by

E(C) = α

∫ 1

0

|C′

(q)|2dq + β

∫ 1

0

|C′′

(q)|2dq

︸ ︷︷ ︸

Eint

−λ

∫ 1

0

| ▽ f (C(q)) |dq

︸ ︷︷ ︸

Eext

(30)

The internal energy, Eint, is meant to enforce smoothness of the curve, whereas the external en-
ergy, Eext pulls the contour towards object edges. Differently speaking, the active contour model is a
regularized gradient edge detector.

One much discussed point on snakes is their inability to move into concavities of an object’s boundary
and their inability to find the borders when it is initialized too far distant from the actual border location.
Many researchers have proposed possible solutions to this problem, e.g., gradient vector fields [XP98].
Furthermore, the model in (30) cannot change topology: A curve must always stay closed and is implicitly
not allowed to cross. This is dealt with in the level set framework, discussed below.

But before proceeding to level set methods, we need to generalize the 2D active contour model
in (30) into a 3D deformable surface. The extension of the curve C to 3D is the parametric surface
S : [0, 1]×[0, 1] → Ω. Similar to (30), an energy term of external (image) forces and internal (smoothness)
constraints is constructed using first and second order derivatives [CKSS97],

E(S) =

∫ 1

0

∫ 1

0

(

αr

∣
∣
∣
∣

∂C
∂r

∣
∣
∣
∣

2

+ αs

∣
∣
∣
∣

∂C
∂s

∣
∣
∣
∣

2

+ βrs

∣
∣
∣
∣

∂2C
∂r∂s

∣
∣
∣
∣

2

+ βrr

∣
∣
∣
∣

∂2C
∂2r

∣
∣
∣
∣

2

+ βss

∣
∣
∣
∣

∂2C
∂2s

∣
∣
∣
∣

2

− λ| ▽ f (S(r, s)) |
)

drds.

(31)

14



E(S) has more parameters than the corresponding energy of the 2D active contour model. Never-
theless, it uses the same principles and is a direct extension to 3D image segmentation.

4.2 Level Sets

Level sets [Set99] implicitly define lower dimensional structures such as surfaces via a function Φ : Ω → R.

Φ(x) = c, (32)

for some constant c, usually fixed to zero. In other words, a level set is nothing but an iso-surface of
the function Φ. What is interesting about this definition is that Φ implicitly defines a hyper-surface S
enclosing an image region: Let R := {x|Φ(x) < 0}, then

S := ∂R, (33)

i.e., the boundary of region R is a surface S. Therefore, when looking for a segmentation, given by
S, we modify Φ, which implies a modification of the segmentation, rather than modifying S itself (which
was the approach taken by deformable surfaces, see Sec. 4.1). This modification of Φ can influence the
shape of S in many ways, and can also change its topology: In contrast to the definition of S for the
deformable surface model in Sec. 4.1, S can now break up into disjoint surfaces. Level set methods are
based on a partial differential equation and can be solved using finite difference methods. The basic
equation underlying level set methods is the level set equation, which describes the change of Φ over time
(or iteration) t,

Φt + V · ▽Φ = 0. (34)

Φt is the temporal partial derivative of the level set function, ▽ denotes the spatial gradient operator
and V describes an external force field guiding the evolution of the curve in the image. This equation is
also known in physics, where it is used to represent the reaction surface of an evolving flame.

In image processing, level set methods can for example be applied by defining the external force V

as the gradient field of an image. We are then looking for a steady state solution of Eq. (34), where the
surface S has locked onto object edges. This idea seems very similar to the deformable surface approach,
and a level set method that implements deformable surfaces – but without the drawback of fixed topology
– will be described in the following section.

4.3 Implicit Deformable Surfaces

The active contours of Witkin and the level set method were combined by Caselles et al. [CKS97], what
they called geodesic active contours. Their result has proven to be very useful because it combines
the intuitive active contours concepts with efficient implementations of level set methods. Additionally,
geodesic active contours have the advantage that they can change topology during evolution.

The 3D analog to geodesic active contours, the evolution of an implicit surface S by modification
of a level set function Φ, was described in [CKSS97]. The derivation therein is based on the concept
of minimal surfaces: It is observed that finding S can be put as finding a surface of minimal weighted
area, with the weight being given by a function h(f) of the image f . Minimization of this area via the
calculus of variations leads to a gradient descent rule in image space, see [CKSS97]. They then show
that this minimization procedure can equivalently be implemented by finding the steady state solution,
i.e., Φt = 0, of the following partial differential equation:

Φt = h(f) |▽Φ|
(

div
▽Φ

| ▽ Φ| + ν

)

+ ▽h · ▽Φ (35)

where

h(f) =
1

1 + |▽Gσ ∗ f |2
,

div v =
∂v1

∂x
+

∂v2

∂y
+

∂v3

∂z
with v :=

▽Φ

| ▽ Φ| .
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Here ▽Gσ denotes the difference of Gaussian (DoG) filter with size σ, and the parameter ν > 0 is a
constant force in the normal direction to the level sets of Φ. Eq. (35) is not quite intuitive, but should
rather be seen as an appropriate tool for finding a surface S minimizing (31). That is, by evolving a
function Φ until Φt = 0 using (35) from some initial estimate Φ0, one can find a regularized surface S
which is located on edges in the image f .

5 Other Segmentation Concepts

The segmentation methods that were described so far fell into three groups: They were gray–value based
(Sec. 2), region based (Sec. 3), or shape based (Sec. 4). What will be described in this section does not
fall cleanly into any of these three categories.

5.1 Fuzzy Connectedness

The idea behind fuzzy connectedness is to represent knowledge on the connectedness of voxels by a fuzzy
relation [US96]. A fuzzy relation

µ : Ω × Ω → [0, 1] (36)

can be interpreted as a measure of similarity between two voxels. From the point of view of image
segmentation, the use of the fuzzy connectedness method lies in finding the connectedness of two voxels
x,x′ ∈ Ω and deciding on whether these two voxels belong to the same object or not.

Udupa and Samarasekera use an idea very similar to the principle of bilateral filters (see [TM98]):
Whether two voxels x and x′ within an image belong to the same object depends on their distance
‖x− x′‖ and similarity |f(x)− f(x′)|. They call these two concepts adjacency and affinity, respectively,
and define a set of two fuzzy relations: The fuzzy adjacency, µω, and the fuzzy affinity, µξ. In their
simplest variant, they take the form of decaying functions of distance, steered by two scalar parameters
k1 and k2. Two possible definitions for adjacency ω and affinity ξ, taken from [US96] are:

µω(x,x′) :=

{ 1
1+k1‖x−x

′‖ if ‖x − x′‖ ≤ dmax

0 else

µξ(x,x′) :=
µω(x,x′)

1 + k2|f(x) − f(x′)| . (37)

Fig. 6 illustrates the dependencies of affinity and adjacency for a simple one–dimensional example.
Now that we have defined the affinity between two voxels, we can proceed to defining fuzzy connectedness:
A path pxx

′ = (x,x0,x1, ...,x
′) is a sequence of neighboring voxels leading from voxel x to x′. Denote by

Pxx
′ the set of all such valid paths between two points. Each path pxx

′ ∈ Pxx
′ will contain a “weakest

link” in terms of its fuzzy affinity µξ. The connectedness, µK , of two voxels can then be defined as as
the strongest path in terms of the weakest link’s affinity.

µK(x,x′) = max
p
xx

′∈P
xx

′

{

min
(xi,xi+1)∈p

xx
′

{
µξ(xi,xi+1)

}}

(38)

In [US96] and [NFU03], algorithms for computing the fuzzy connectedness between any two points in
the image domain are proposed. Within the fuzzy connectedness framework, segmentation of an image
reduces to thresholding of the fuzzy connectedness values. Therefore, any two voxels with µK exceeding
this threshold will be labeled as belonging to one image segment.

5.2 Watershed Algorithm

The watershed transform can be explained very intuitively by an analogy of water filling catchment
basins [Soi99]. Firstly, the image is interpreted as a topographic map. Thus, the value in each voxel
describes a height at that point (this is easier to imagine in 2D). Now, consider a drop of water falling on
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(a) Signal (b) Value difference

(c) Adjacency (d) Affinity

Figure 6: Illustration of fuzzy affinity in the 1D case, the reference location x0 = 5 is marked. The
adjacency in (c) is a decaying function of distance, whereas the affinity in (d) has local maxima
at the reference position and at positions with similar values.

the image. It will follow the path of steepest descent and will be caught in one voxel. Thus, a catchment
basin is defined as the set of all voxels from which the path of steepest descent ends in the same voxel.

The watershed algorithm can be implemented by sorting all voxels in the order of increasing value.
One starts at the lowest value, assigns a label to all voxels at this level and goes through the list of sorted
voxels in increasing order. During this procedure, one has to label voxels according to their neighborhood:
If at a value level, a voxel has an already labeled neighbor, it belongs to the same catchment basin. If at
one value, a voxel should be assigned more than just one label, it means that at this voxel, one should
build a “dam”, or watershed, separating two catchment basins. While going upwards through the value
list, new, isolated local minima in the topographic map will introduce new labels.

This algorithm could, for example, be used on the gradient strengths to achieve a segmentation using
edge information. Watersheds tend to oversegment, and strategies for avoiding this need to be considered.
Morphological reconstructions for preprocessing the set of starting points has shown to work well, see
[Vin93] for details. A feature of the watershed segmentation is that it will always achieve closed contours
since all value levels will be considered by the algorithm.

5.3 Bayesian Methods

Bayesian approaches to image processing treat all involved quantities as random variables and rely on the
laws of probability to derive probabilistic models for images. Among the tools of probability, Bayesian
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decision theory [DH73] is a quite powerful one. In Bayesian decision theory, costs are assigned to each
correct or wrong decision, and based on the probabilities of occurring events, the decision that minimizes
the risk is taken. The risk in Bayesian decision theory is the cost times the probability of a wrong action
being taken.

But by far the most important Bayesian approach to image processing are Markov Random Fields
(MRF), a multidimensional extension of Markov chains. A k–Markov chain is a sequence of random
variables, (X1, X2, . . . , Xn), where the marginal density of any one random variable Xi depends only
on the k preceding Xi−k, . . . , Xi−1. Similarly in an MRF, the marginal of random variable X depends
not on all other image points, but only on those in some neighborhood. The central result with regard
to MRFs is the Hammersley–Clifford theorem [GG84], which uniquely characterizes MRFs by Gibbs
distributions: X is a Markov random field if and only if

p(x) =
1

Z
exp

(
− β

∑

c∈C

U(c)
)
, (39)

where C denotes the set of all cliques, i.e., mutually neighboring voxels in X, and U is the energy
function that describes the interactions between voxels in the MRF X. The immediate implication of
the Hammersley–Clifford theorem is that computation of the joint density of all voxels in an image can
be reduced to considering local interactions within the cliques c ∈ C, only.

For an example where MRFs have been applied to 3D image segmentation, see [HKK+97], where
the parameters of an MRF model were computed from some manually labeled training samples and the
image was segmented using a simulated annealing algorithm.

5.4 Mumford and Shah’s Cost Function

The energy function for image segmentation proposed by Mumford and Shah [MS89] has been widely
used and its mathematical properties are well analyzed [Cha01]. It is a general approach to image
segmentation, where it is assumed that objects can be characterized by smooth surfaces, or volumes in
three dimensions. In this section, we deviate from the conventions made in the beginning of this review.
In the view of Mumford and Shah, a segmentation does not need to be discrete. In this section, we use
g(x) ∈ R. Define a set of discontinuities, K ⊂ Ω, defining the boundaries of the objects.

E(g,K) = c1

∫

Ω

‖g(x) − f(x)‖2dx + c2

∫

Ω\K

‖∇g(x)‖2 + c3l(K) (40)

where

c1, c2, c3 > 0

l(K) length of K

The first term in (40) encourages segmentations g that are an approximation of the original image.
Without the other two regularizing terms, an optimal segmentation would simply be the original im-
age. The second term penalizes variation within each component, thus enforcing smooth areas in the
segmentation result. This integral leaves out the object boundaries. Thus we only allow discontinuities
in the segmentation result at object boundaries. The length of the boundaries between regions needs
to be penalized to avoid oversegmentation (for example, simply divide the image into a large number of
small homogeneous cubes). Segmentations which minimize (40) will contain homogeneous regions with
the mean value of the corresponding regions from the original image.

Implementations of (40) will require optimization routines that fit the segmentation border K to a
given image.

6 Conclusions

Even though image segmentation has been a field of active research for many decades (the works cited in
this report spread from the 1970’s until 2003), it remains to be one of the hardest and at the same time
most frequently required steps in image processing systems. Therefore, there does not and can not exist a
standard segmentation method that can be expected to work equally well for all tasks. When approaching
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a new image processing problem, it is essential to carefully evaluate different available methods and to
choose the one that best solves the given task.

Of course, the listing in this report is by no means complete. Some important active research topics
such as graph cuts for image segmentation, see [SM00], or the wide field of machine learning applied to
image segmentation have not been covered.

Then, why is image segmentation such a hard problem? One possible answer can be given by looking
at the definition of a well posed problem in mathematics. A problem is well posed if its solution (1)
exists, (2) is unique, and (3) depends continuously on the data. Looking at the image segmentation
problem, we may hope for the existence of a solution. But the remaining two criteria will not usually
be fulfilled by a segmentation problem, which may explain why we should not expect an almighty image
segmentation algorithm to by published anytime soon.

In the meantime, one should resort to the methods that are available, some of which we have just
described. A big problem in 3D image processing is the amount of data. Some ideas and concepts
that we have described, like region growing, are quite intuitive; but implementing an efficient region
growing algorithm that allows one to comfortably deal with datasets of a few hundred megabytes can be
a demanding task. Another difficulty when dealing with 3D data are interactivity and visualization: For
2D images, hand–labeling of image points and visual validation of a segmentation result can be done.
But 2D projections of 3D data can often give a wrong spatial impression. Therefore it is important
to carefully examine segmentation results, not to rely on verification in single slices, and if possible to
compare the outcome quantitatively using measurements of some known parameters.
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