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Abstract 

Software reuse approaches are known to enable considerable effort and 
cost savings during the development of a group of software systems with a 
significant overlap in functionality. In practice, however, the need for 
systematic reuse often becomes apparent only after a number of product 
variants have already been delivered. The existing literature and an industry 
survey performed in the context of this dissertation indicate that in practice, 
new product variants are often created by cloning the code of an existing 
product and changing it according to the new requirements. In a long-term 
perspective, this practice often leads to significant maintenance problems. 

To counteract such maintenance problems, a systematic reuse approach 
can be introduced afterwards by transforming the implementation of the 
cloned product variants. However, successful transformation is a 
challenging task because it requires precise and detailed information 
about the distribution of implementation similarity between the product 
variants. This information is usually not available, as the product variants 
were modified independent of each other. The motivation for this 
dissertation is hence to provide the needed similarity information and thus 
support the migration of existing system variants towards software reuse. 

The main contribution of this dissertation is a reverse engineering 
approach for obtaining information about the source code similarity of 
existing product variants. Compared to existing approaches, it delivers 
more detailed similarity information, reduces the analysis effort, and allows 
for improved correctness of similarity information understanding. The 
approach models the variant products as hierarchical, intersecting sets of 
uniquely identifiable elements, and expresses the similarity of the variants 
using set algebra. The resulting similarity information is available on any 
abstraction level, from a single code line to a whole product. The 
approach proposes a generic analysis framework, which can be used for 
diverse system representations, diverse similarity detection algorithms, and 
diverse definitions of element similarity. Hence, the approach can be 
instantiated in various contexts and adapted to a specific analysis goal. 

The contributed approach supports simultaneous analysis of multiple 
source code variants and proposes visualization concepts that enable 
easy interpretation of the analysis results even for large systems and a 
high number of variants. The benefits of the approach are evaluated 
empirically by means of a controlled experiment and an industrial case 
study, and analytically on a reference set of cloned system variants. 
Furthermore, practical applications of the approach in an industrial 
context are briefly presented. 
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Introduction 

1 Introduction 

Software systems frequently need to fulfill the requirements of various 
user groups and work in diverse technical environments on disparate 
hardware platforms. An inevitable consequence of this variety of 
requirements is that software systems are often developed not as 
a singular instance, but rather as a family of similar system variants 
which provide functionality customized for particular user groups 
and environments. Software system customization is “unavoidable and 
purposeful” [Parnas 1976], and it is currently being practiced in a broad 
range of software-intensive industries [SPLC 2014]. 

As the system variants usually remain considerably similar despite the 
customization, adopting large-scale reuse of software assets frequently 
brings benefits in their development. First, as the software assets are 
reused in multiple software projects, less code needs to be developed 
anew, which results in a reduction of project development effort and 
cost. Second, this reduction in effort helps to shorten project 
development time. And third, the reused assets have already been 
verified in past projects – hence they usually have higher quality than 
freshly developed code, which leads to higher quality of the final system. 
From the multitude of existing software reuse approaches, the software 
product lines approach is especially being advocated for the 
development of a group of similar software systems, and its adoption is 
known to enable the achievement of the reuse benefits listed above 
[Gacek 2001] [Clements 2002a] [Bass 2003] [Steger 2004] [SPLC 2014]. 

The adoption of a systematic reuse approach needs advance planning as 
well as initial investment in the reusable asset base, and might also require 
restructuring of the software-developing organization and redefinition of its 
processes [Lim 1998] [Clements 2002a]. Hence, adopting software reuse 
requires time, money and management commitment. In industrial 
practice, however, factors such as lack of planning certainty, development 
resource constraints, and tight deadlines in many cases prevent a 
software-developing organization from adopting a systematic reuse 
approach. In such situations, the existing system variants are frequently just 
cloned and modified to create the next system variant [Dubinsky 2013]. 
The cloned system variants typically undergo further parallel development, 
and reuse approaches are often not introduced until after the variants 
have matured. As a consequence, the developing organization misses the 
benefits of software reuse. Additionally, the organization faces increased 
maintenance effort, as many tasks need to be duplicated between the 
system variants, and each duplicated task needs to be carefully verified 
due to a potentially different context in each of the systems [Ray 2012]. 

Software 
customization 

Software 
reuse benefits 
customization 

Customization 
via system 
cloning 
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Introduction 

In a system cloning situation such as described above, the adoption of a 
systematic reuse approach remains a tempting proposition – particularly 
as the development of further system variants and functionalities 
escalates the maintenance challenges. When striving for reuse, the 
developing organization faces a choice between building reuse-based 
systems from scratch or migrating the existing system variants towards a 
reusable form. This “rebuild or migrate” decision depends on many 
factors, such as longevity of the systems, quality of the existing code, 
and the degree of requirement and code similarity between the migrated 
systems. In case the similarity and the quality of existing system variants 
are high enough, and the maintenance is planned to continue in the 
future, migration of the systems or at least their selected parts is 
frequently the better option, because complete rebuilding would mean a 
loss of the past investments already made into the development of the 
systems [Simon 2002]. However, such a migration is a complex and 
effort-intensive undertaking, as several variants of each migrated 
software asset need to be understood and to be transformed correctly 
into the new reusable form. 

The motivation for this thesis is to support the migration of existing 
system variants towards software reuse. In many cases, reuse migration 
is impeded by the lack of sufficient similarity information about the 
source code of the migrated software assets (see Section 1.2). In an 
industrial survey, we observed that the similarity information tends to be 
quickly lost during the development of cloned system variants 
(Section 3.1). Moreover, the existing approaches for recovering that 
information exhibit deficiencies (Section 3.3). Hence, this thesis 
contributes a reverse engineering approach, named Variant Analysis, for 
obtaining the similarity information from the source code of the 
migrated system variants. Compared with the existing approaches, 
Variant Analysis delivers more detailed similarity information, reduces the 
analysis effort, and improves the correctness of similarity information 
understanding. The approach definition is based on a formalization of 
the variant similarity analysis problem (Chapter 4), and introduces a 
generic analysis framework based on modeling the analyzed system 
variants as hierarchical sets of uniquely identifiable elements having 
known sizes (Chapter 5). The approach supports simultaneous analysis of 
multiple source code variants and proposes visualization concepts that 
enable easy interpretation of the analysis results, even for large systems 
and a high number of variants. The benefits of the approach are 
evaluated empirically by means of a controlled experiment and an 
industrial case study, and analytically on a reference set of cloned system 
variants (Chapter 7). 

Before delving into the detailed content of the thesis, in this introduction 
we discuss the followed research approach, present the addressed 
research problems, describe the scope of this thesis, and outline its 
contributions and structure. 

Migration to 
software reuse 

Thesis 
motivation 
and content 

Introduction 
content 
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Introduction 

1.1 Research Approach 

This thesis follows the experimental software engineering paradigm 
[Basili 1993] and the Fraunhofer method of addressing research 
problems with industrial relevance [Rombach 2000]. The stages of the 
resulting research approach, illustrated in Figure 1, are: 

In the Practical Problem Identification stage, the state of the
industrial practice is analyzed, for example through observation of
organizations developing software or with the help of a literature
review, in order to identify existing problems.

The Scientific Problem Identification stage concerns an
investigation of the background of the practical problem to discover
the underlying reasons and formulate research questions. The
improvement hypotheses related to the identified practical and
scientific problems are stated.

In the Solution Development stage, a new approach, intended to
solve or mitigate the identified scientific and practical problems, is
researched.

The Scientific Benefit Evaluation stage is an (at best empirical)
assessment of whether the scientific hypotheses concerning the
developed solution can be confirmed.

The Practical Benefit Evaluation stage is likewise an (at best
empirical) evaluation of the practical hypotheses concerning the
solution.

Figure 1 The research approach followed in this thesis 

In the following sections, we discuss the content and background of this 
thesis according to the described approach stages. Afterwards, we map 
the thesis contributions and chapters to the approach structure. 
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1.2 Research Problems 

Software customization realized via system cloning is frequently reported 
in the literature. System cloning is applied both for open-source systems, 
where it is known as forking [Ernst 2010] [Robles 2012], and for 
commercial software in various industries [Dubinsky 2013]. We also 
observed cases of system cloning in our industrial consultancy projects 
[Duszynski 2008] [Duszynski 2011a]. Figure 2 presents a well-known 
example of an open-source system fork, which resulted in the creation of 
the BSD-based operating systems family. 

Figure 2 Example of system cloning: the history of BSD-based operating systems [Yamamoto 2005] 

Several successful migrations of cloned systems to software reuse have 
been reported [Faust 2003] [Riva 2003] [Staples 2004] [Jepsen 2007]. In 
a recent industrial survey [Berger 2013], reuse migration of independent 
products was reported as the most frequent way of software product 
line adoption: 50% of the 42 participants, each of whom was involved 
in developing software product lines, stated that they created at least 
one product line using this strategy (Table 1). 

Product line adoption strategy 
Proportion of participants 
who applied the strategy 

Proactive: product line was developed 
before any product was derived 

35.30 % 

Reactive: a single product was evolved 
into a product line 

47.10 % 

Extractive: multiple existing products 
were reengineered into a product line 

50.00 % 

Any combination of the strategies above 26.50 % 
Other 20.60 % 

Table 1 The results of an industry survey concerning product line adoption strategies [Berger 2013] 
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However, reuse migration is usually a complex and effort-intensive 
undertaking, which requires extensive restructuring of the system assets and 
affects the organization’s structure and processes [Clements 2002a]. In 
addition to the high effort and complexity, many reported reuse migrations 
fail to fully exploit the reuse potential resulting from the similarity of the 
migrated system variants – they miss the existing reuse opportunities. In 
some cases, the migration of system variants, although potentially beneficial, 
is not even attempted. As a consequence, the organization continues to 
face the high maintenance effort resulting from many duplicated tasks, 
which have increased difficulty as each of the involved code locations in the 
variant systems might be slightly different due to past customizations [Ray 
2012]. Hence, the practical problems related to reuse migration are: 

missing reuse opportunities due to a risk-averse migration process,
where only the best-understood assets and systems are migrated,
and the remaining cloned variants continue to be maintained in
separate code bases [Jepsen 2007],
missing reuse opportunities due to a lack of knowledge about
whether assets similar to a given one exist [Dubinsky 2013],
incorrect assessment of the achievable degree of reuse, leading to an
overly optimistic migration plan [Yoshimura 2006] [Kolb 2006a],
a loss of the past investments made into the existing products
through rejection of migration plans and implementation of new
reusable products from scratch [Beyer 2008],
continued maintenance challenges and a deteriorating code base
resulting from the postponement or rejection of reuse migration
[Dubinsky 2013].

Hence, the lack of sufficiently detailed and dependable code similarity 
information contributes to increased maintenance effort for cloned 
system variants, and reuse migration, if attempted, might require more 
restructuring effort and achieve a lower reuse rate than if this similarity 
information were available. Therefore, we identified the following 
practical problems: 

To better characterize the initial situation related to software system 
cloning, with a group of researchers we performed an exploratory survey 
on six industrial system families developed with the use of cloning 
[Dubinsky 2013] (see Section 3.1). One of our main findings was that 
there are several justified reasons for cloning a software system, even 
though cloning later causes the maintenance problems discussed above. 
The initial effort investment is perceived by the survey participants to be 

Practical 
migration 
problems 
are severe 

Migration of cloned software variants towards software reuse is effort-
intensive, and is likely to miss some of the existing reuse opportunities. 

For the cloned asset variants that are not migrated, their continued 
maintenance is also effort-intensive due to repetitive tasks applied in 
varying contexts of different system variants. 

Practical 
problems 

Industrial survey: 
cloning can be 
a valid strategy 
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significantly lower for cloning than for a systematic reuse approach, 
which makes cloning a preferred development approach in case the 
available resources (effort, time) are scarce in the short term. 
Furthermore, cloning increases planning independence and flexibility by 
eliminating the need to coordinate the development across a group of 
software variants, which would be necessary for reusable assets. And 
finally, the lack of planning certainty, caused for example by unpredictable 
market developments, may make it impossible to recognize the reuse 
potential of the software system variants upfront. Only as the first, 
experimental products turn out to be a success, and requirements for 
further variants emerge, does the longer-term perspective of introducing a 
software reuse approach become viable. Hence, the use of system cloning 
is not a fault of the developers, but rather a pragmatic response to the 
specific situation in which they find themselves. Therefore, it is 
reasonable to expect that cloning will continue to be practiced as a 
software customization approach for future software systems, and that 
the need to support software-developing companies with suitable 
responses to the stated practical problems will persist. 

Furthermore, we found out in the survey that as the cloned software 
variants are modified during evolution, their developers quickly lose the 
overview of the similarities existing in the variant code. Naturally, each of 
the clones is modified in a different way, as each of them realizes a 
different functionality. However, we discovered that even those changes 
that should be applied to all the clones are not always propagated 
consistently. Also, the knowledge about the cloning activities and 
subsequent changes was not managed in the surveyed organizations and 
was therefore lost quickly. As a consequence, the developers were not 
able to assess the degree of similarity between the code of different 
software assets. For example, they could not determine which variants are 
relevant for a specific code change, or had problems selecting a suitable 
initial code variant that could be cloned to develop a new variant with the 
lowest possible effort. Hence, we identified that the surveyed organizations 
lack sufficient information on the similarity of their variant code – a finding 
that we also observed in our industrial consultancy projects. 

Dependable assessment of the degree of similarity between different 
asset variants is crucial for reuse migration. Reuse migration typically 
requires extensive restructuring of the system assets. Hence, in migration 
planning it is essential to characterize with sufficient detail the starting 
point – the state of the software at present – and the target state in 
which the reuse approach is to be operational. Among other inputs, the 
asset similarity information is crucial in a range of significant migration 
decisions, for example: 

the selection of assets to be migrated,

the choice of specific variants of the assets to be migrated,

the assessment of reuse potential, that is the achievable degree of reuse,

The importance 
of similarity 
information 

Industrial survey: 
loss of similarity 
information 
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the assessment of migration difficulty and effort for the particular asset,

the prioritization of the migration tasks,

the selection of the implementation-level migration approach, e.g.,
whether a group of asset variants is merged or whether a single
variant is extended to cover the functionality required by all systems.

Even if reuse migration is not attempted, code similarity information still 
provides much help in maintenance activities for the cloned variants, as it 
helps to classify the similar assets and supports correct change 
propagation between the clones [Toomim 2004] [Nguyen 2012]. 

Based on these findings, our hypothesis is that the lack of sufficient code 
similarity information contributes to the identified practical migration 
problems such as high effort, missing reuse opportunities, or deferral of 
the migration. Therefore, recovering the code similarity information is a 
scientific problem with practical significance. In particular, the recovered 
information should be sufficient for the practical needs of reuse migration 
– it should dependably support the developers in the migration decisions
listed above. The similarity information should be sufficiently detailed, 
should be available on any level of abstraction (from small code chunks to 
whole systems), and should be available for any subgroup of the analyzed 
system variant family. Moreover, the developers should be able to 
understand the delivered information efficiently and correctly. Hence, the 
scientific problems addressed by this thesis are: 

The current approaches for recovering asset similarity information can be 
divided into two categories: 

Top-down similarity analysis involves an examination of the high-level
descriptions and representations of the software, and assesses whether
the functionality of the asset variants is identical or at least similar
enough to enable reuse. An example of a top-down functionality-based
similarity analysis approach is product line scoping [Schmid 2002a].

Bottom-up similarity analysis involves an examination of the low-level
implementation assets, most frequently the source code, in order to
determine if the variant implementations are similar enough to be
replaced by a single-copy, generic and reusable asset. Bottom-up
similarity analysis approaches are realized with reverse engineering
techniques [Chikofsky 1990] and are the focus of this thesis.

Existing 
similarity 
analysis 
approaches 

Scientific 
problems 

How to recover similarity information from the source code of multiple 
similar software asset variants, in sufficient quality to support reuse 
migration or parallel maintenance of these assets? 

How to structure and present the recovered information in a way that 
enables humans to understand it efficiently and correctly? 
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In most cases, the functionality of the migrated software systems is well 
known to its architects and developers. Hence, they have enough 
information to perform a top-down functionality-based similarity 
analysis. However, a top-down analysis is frequently not detailed enough 
to account for minor, but purposeful differences in the asset functions, 
e.g. due to differences in supported hardware platforms or the realized 
non-functional requirements. As a result, the implementation similarity 
of the analyzed assets might be significantly different than the similarity 
of their functionality. For example, Yoshimura et al. analyzed two 
variants of an automotive engine control system, and found that “the 
portion of functional commonality among two products is about 60-
75%; their implementations, however, share as little as around 30% of 
code” [Yoshimura 2006]. We also experienced a similar case when a 
top-down functional analysis overlooked important differences between 
system variants [Wleklik 2011]. Although understanding of the 
functional similarity is necessary for the successful adoption of a 
software reuse approach, it is not sufficient if the existing 
implementation assets need to be migrated to a reusable form. The 
result difference between the two similarity analysis approaches indicates 
that obtaining the implementation-level similarity information is crucial 
for correctly planning a reuse migration. However, this is a difficult task, 
as software systems are frequently implemented using hundreds of 
thousands or even millions of source code lines, and that amount of 
code needs to be further multiplied by the number of analyzed system 
variants. The large amount of code-level information cannot be 
comprehended and analyzed directly by a human. As a result, software 
architects and developers are often unable to assess the code similarity 
of the developed system variants or their parts, as indicated by our 
industrial survey. 

The large amount of analyzed source code calls for automated reverse 
engineering approaches developed to structure, abstract, and analyze 
the code similarity information and to allow humans to understand the 
analysis results correctly and efficiently. However, the results delivered by 
the existing reverse engineering approaches are lacking important 
details. For example, calculating similarity metrics on software system 
variants [Yamamoto 2005] is not sufficient as there is no information 
about the locations of code parts recognized as similar or different. On 
the other hand, recovering detailed variant code similarity with the use 
of clone detection techniques [Roy 2009a] creates a large number of 
unstructured results for any non-trivial variant set [Svajlenko 2013]. 
Although these results technically contain all the relevant similarity data, 
they require effort-intensive manual analysis, and the large amount of 
data makes it impossible for a human to fully comprehend the analyzed 
situation within a realistic period of time. Furthermore, the current 
approaches for structuring and abstracting clone detection information 
[Yoshimura 2006] [Mende 2008] are not satisfactory, as they only 

Difference 
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function and 
code similarity 
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provide results for any selected variant pair, but do not aggregate them 
for larger groups of three or more variants. Finally, clone detection 
techniques provide results that are recognized as similar enough 
according to the specified threshold, but may still be different enough 
for a developer to discard the possibility of reuse [Roy 2007]. This makes 
clone detection results not fully dependable as the code identified as 
similar cannot be classified as a reuse candidate with complete certainty 
without manual verification. In Chapter 3, we discuss the shortcomings 
of the existing approaches in more detail. 

1.3 Scope and Contributions 

To address the research problems described above, in this thesis we 
contribute a reverse engineering approach for obtaining the similarity 
information from the source code of software asset variants. In the 
approach, we propose a generic analysis framework based on modeling 
the analyzed system variants as hierarchical sets of uniquely identifiable 
elements having known sizes. The hierarchical set similarity models 
provide a data structure that, to a large extent, does not exhibit the 
outlined deficiencies of other approaches. The set models can structure a 
large amount of code similarity data containing the necessary degree of 
detail, while the proposed abstraction and visualization concepts enable 
easy interpretation of the analysis results with low manual effort – even for 
large software systems (1 MLOC and more) and a high number of variants 
(10 and more). The proposed approach is named “Variant Analysis”. 

As the main purpose of the approach is to support the consolidation of 
software variants in reuse migration, it focuses on detecting the similarity 
between software asset variants. The similarity existing within a 
particular variant is not addressed, as the detection of such similarity 
presents a different kind of research problem (see Chapter 2). Also, the 
approach assumes that a relatively high structural similarity exists 
between the analyzed asset variants, for example due to their common 
origin in a cloning process. Hence, it is less suitable for analyzing 
functionally similar, but structurally different systems developed 
independent of each other. 

Figure 3 depicts the relation of our approach to the complementary 
research concerns. Our approach focuses on structuring, abstracting, 
and visualizing the cross-asset similarity information in order to enable 
developers to understand this information efficiently and correctly. The 
use of a similarity detection algorithm working with the detailed asset 
content is needed to create the input similarity data. Hence, we provide 
generic means for accommodating a range of such existing algorithms 
depending on developer needs. 

Hierarchical 
set models 
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Focus on 
similarity 
between 
variants 
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Figure 3 The research context of the Variant Analysis approach 

The output of the approach is the structured, abstracted and visualized 
similarity information. Although we discuss the interpretation of this 
information and suggest possible resulting migration decisions, we do not 
define a general migration methodology or guidance. The reason for that 
is that the code similarity information, reflecting the available reuse 
potential, is just one of many criteria influencing migration decisions 
[Schmid 2005]. For example, Koskinen et al. [Koskinen 2005] identified 
and empirically validated 45 different criteria influencing decisions on 
software modernization, and still stated that their list is incomplete. The 
decision criteria for reuse migration can be of a technical nature (code 
quality [Wleklik 2011], functional similarity), but they may also concern the 
organizational structures and processes supporting software reuse, the 
economics of reuse decisions (future product development plans, available 
resources, scheduling of reuse migration activities), and others. The role of 
our approach is hence to provide similarity information as input for the 
higher-level migration methods and frameworks integrating the various 
technical aspects, such as the framework of Rubin et al. [Rubin 2013], which 
in turn provide just the technical perspective to holistic reuse adoption 
approaches such as the Carnegie Mellon Software Engineering Institute's 
Adoption Factory [Clements 2002a] [Northrop 2004]. 

In our approach, we concentrate on the similarity of the source code, and 
see approaches such as feature-based similarity analyses (e.g., scoping 
[Schmid 2002a]) and software family architecture reconstruction 
[Kang 2005] [Koschke 2009] as complementary, but not overlapping with 
our approach. This view is consistent with several existing reuse 
reengineering approaches that advocate the use of multiple information 
sources, including the analysis of functionalities, architecture, and asset 
implementation details [DeBaud 1998] [Bayer 1999] [Knodel 2005] 
[Kolb 2006b]. Figure 4 depicts the role of our approach in an example 
software reuse migration process. The Analysis and Evaluation process 
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phases can be repeated iteratively in case the evaluation uncovers new 
information needs requiring an extension of the previously performed 
analyses. Similarly, the migration process can be iterative itself – for 
example, it can be used to periodically reassess the state of the managed 
product portfolio and perform corrective migration actions if needed. 

The purpose of our approach is to support reuse migration and parallel 
maintenance of a group of similar, possibly cloned, software system 
variants by delivering detailed code similarity information. As discussed 
above, we found out in an industrial survey that the code similarity 
information is usually not available for the migration stakeholders – 
although its availability is crucial for the quality of migration decisions. 
Our hypotheses concerning the identified practical migration problems 
are therefore that the availability of detailed code similarity information 
has the following effects: 

it reduces migration effort,
it increases the degree of reuse achieved in the migration,
in case the migration is not attempted, it reduces the effort for
further parallel maintenance of system variants.

Consequently, a similarity analysis approach should support the 
migration stakeholders by obtaining the needed information efficiently 
and correctly. Hence, the hypotheses related to the identified scientific 
problems state that our approach fulfills this purpose better than the 
other related approaches: 

it reduces the effort for analyzing and understanding the similarity
information,
the degree of effort reduction increases with an increasing number of
analyzed variants (i.e., for a higher number of variants, the
contributed improvement is greater),
it allows the migration stakeholders to understand the implemented
similarity with a higher degree of correctness.

Figure 4 The role of code similarity analysis in an example reuse migration process 
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Naturally, the basic prerequisite for applying any analysis approach is that 
the obtained results are technically correct and complete. In Chapter 7, we 
describe the analytical evaluation of the correctness and completeness of 
our approach results. 

We evaluated a subset of our practical and scientific hypotheses 
empirically. In a controlled experiment, we investigated the effect of using 
the set model on the effort and correctness of source code similarity 
analysis. In an industrial case study, we asked the participating developers 
to assess the effect of information delivered by the approach on reuse 
migration. In both evaluations, the collected empirical results supported 
our hypotheses. As the performed empirical evaluations provide just 
singular data points, a further, more extensive evaluation of the stated 
hypotheses remains to be performed as interesting future work. We 
describe our hypotheses in more detail in Chapter 3, and provide the 
details of the controlled experiment and of the case study in Chapter 7. 

Although the main motivation for our approach is to support the 
migration of cloned software variants towards a reuse approach, for 
example software product lines, we do not assume or distinguish any 
such specific reuse approach. The provided code similarity information 
can be used for migration to any approach, as well as for other 
informative or analytical purposes. For example, an analysis of an old, 
discontinued system variant group that will not be maintained or 
migrated anymore can still be helpful for the planning of its successor, 
as similarities in the new variants are most likely to occur in the same 
functional areas. 

Taking a more general view, the set models provide a general-purpose 
approach to structuring and presenting the results of any kind of 
comparison, performed on hierarchical structures composed from any 
kind of comparable atomic elements. Given suitable comparison 
functions, the set models can be constructed and visualized not only for 
code, but also for software models and even for non-software assets. In 
Chapters 4 and 5, we specify and discuss the requirements on such 
functions that are necessary and sufficient for defining a set model 
based similarity analysis in a generic case. 

Figure 5 presents the detailed contributions of this thesis and assigns 
them to four main contribution categories: formalization, methodology, 
instantiation, and evaluation and empiricism. In this thesis, we make the 
following contributions: 

Formalization of the variant similarity analysis. We define a
conceptual model that classifies and relates the concepts associated with
the variant similarity analysis problem. We discuss the general properties
of software variants and derive from them a group of formalized
requirements concerning the construction of the analysis technique.

Contributions 
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Based on the requirements and the scope of our application 
scenarios, we formally define a variant similarity analysis technique 
and a method for evaluating the quality of its results. Although the 
conceptual model, the requirements, and the definitions serve as a 
theoretical foundation for our approach, we believe they are useful 
for defining and evaluating any kind of multi-system similarity 
analysis technique. 

Variant similarity analysis method. We define a generic similarity
analysis method based on the hierarchical set similarity models. We
propose visualization concepts that help the interpretation of the
model information, and define metrics that provide additional
information to support migration decisions. The generic method can
be used to structure and present the results of various similarity
analysis algorithms applied to various types of content such as source
code, models, and non-software assets.

The core idea of the method is the use of hierarchical set
similarity models. The set models structure the similarity
information in a way that is both technically viable and easy to
understand for humans, even for a large number of analyzed
variants, and make it available on any abstraction level, from
a single code line to a whole system. We discuss the algorithms
and activities needed for set model construction. In a controlled
experiment, we show the benefits of the set models: reduced
effort and improved correctness of source code similarity
analysis. Furthermore, we analytically evaluate the high degree
of correctness and completeness of the provided analysis
results, and collect measures related to the potential drawbacks
of set model use, such as the proportion of original similarity
data ignored due to the requirement of result transitivity.
In conclusion, the proportion of ignored original similarity data
is not significant.

Figure 5 Thesis contributions 
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Instantiation of the similarity analysis method. We instantiate
the defined similarity analysis method for the longest common
subsequence (diff) algorithm applied to the textual representation of
software source code. Using a tool implementation, we perform the
analytical set model evaluation described above. Finally, we provide a
set of guidelines on performant and scalable set model
implementation techniques, on the result interpretation, and on the
practical application of our approach.

Empirical contributions. By performing a survey on the cloning
practices in industry, we contribute to a better understanding of the
origins of the practical problems: the large-scale cloning practices,
their benefits and drawbacks, and their consequences for reuse
migration. Hence, we characterize the problem and provide the
empirical basis for formulating related research hypotheses.
Furthermore, we evaluate the benefits of the core idea of our
solution, the set similarity model, in a controlled experiment. Finally,
we describe and evaluate the practical application of our similarity
analysis method in an industrial case study and in the consultancy
projects that used the implemented analysis tool. Hence, using these
three types of empirical investigations, we empirically support the
complete iteration of the research cycle, as depicted in Figure 6.

Figure 6 The empirical investigations along the research cycle 
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Figure 7 Thesis chapters and contributions mapped to the research approach structure 

In Chapter 3, we focus on the practical and scientific problems
addressed by this thesis: we present the industrial survey of code
cloning practices, define the application scenarios and analysis goals
for our approach, discuss the shortcomings of existing related
approaches, and derive the practical and scientific hypotheses.

In Chapter 4, we describe the foundation of our approach: the basic
properties of software variants, the conceptual model of variant
similarity analysis, the requirements on the construction of variant
similarity analysis techniques, and the formal definitions of a variant
similarity analysis technique and of the quality of its results.

Chapter 5 contains the core of our solution: the definition of the
hierarchical set similarity models, the algorithms and activities used in
their construction, the visualization concepts, and the similarity metrics.

Chapter 6 describes techniques for the performant and scalable
implementation of our approach, with the main focus on the set model.

Chapter 7 describes the analytical evaluation of the developed
approach, the evaluation of the scientific hypotheses in a controlled
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approach, including the industrial case study.

In Chapter 8, we conclude our thesis, summarize the contributions
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reports the raw data collected in the experiment.
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2 Context and Related Work 

This thesis contributes a reverse engineering1 approach for analyzing the 
similarity of a group of cloned software system variants. In this chapter 
we provide a short overview on the two main research areas constituting 
the background of this work: 

In Section 2.1 we introduce the basic concepts of software reuse and
describe the software product lines approach, which is a systematic
reuse-based approach used for development of a group of software
system variants.

In Section 2.2 we address the fundamental principles of reverse
engineering, and in Section 2.3 we present the reverse engineering
approaches used in the context of introducing software reuse in the
development of software system variants.

In the research background description we provide definitions of the 
fundamental concepts of software reuse and reverse engineering, which 
we will refer to in the remainder of the thesis. For space reasons, we do 
not provide a complete presentation of the state of the art in these topics 
– instead, we rather concentrate on their aspects which are the nearest to
the focus of this thesis. For interested readers, the provided references 
lead to more comprehensive literature sources. 

2.1 Software Reuse 

The reuse of software assets has been proposed by McIlroy as early as in 
1968 [McIlroy 1969], and that idea accompanied the software 
engineering research ever since. The basic rationale behind software reuse 
is that if a software asset solving a specific problem already exists, and a 
related problem needs to be solved, it should be easier and faster to use 
(and potentially adapt) the existing asset than to “reinvent the wheel” by 
developing the new solution from scratch. Software reuse is defined as: 

Definition 1 Software reuse 

The use of an asset in the solution of different problems [IEEE 2010]. 

In particular, software reuse means that the same software asset is used 
during the development of many other assets or software systems. 
As software development creates a range of different asset types, reuse 
is possible for any of these types. 

1 As this thesis is related to software, it refers to software concepts unless explicitly
stated otherwise. Hence, the term “reverse engineering” means “software reverse 
engineering”, “product lines” means “software product lines”, etc. 

Basics of reuse 

17 



Context and Related Work 

Definition 2 (Reuse) asset 

An item, such as design, specification, source code, documentation, 
test suites, manual procedures, etc., that has been designed for use 
in multiple contexts [IEEE 2010]. 

The above definitions reflect two important properties of software reuse. 
First of all, reuse involves two types of activity: the provision of assets, 
i.e. their development for reuse, and the subsequent development of 
software solving a particular problem, with reuse of the provided assets. 
The distinction between development for reuse and development with 
reuse is frequently applied in reuse approaches. Typically, development 
for reuse requires an investment of additional effort, as generic assets 
are more costly to develop than non-generic ones. Subsequently, the 
reuse of the generic assets is expected to provide savings that outweigh 
the initial investment [Barns 1991]. 

Second, the definitions reflect the fact that in most cases reuse is not 
likely to occur as a matter of coincidence, but rather needs to be a result 
of a plan. In the development for reuse, a software asset needs to be 
generalized, and its interfaces carefully structured, to enable its use in 
more than one context. Hence, the asset needs to be explicitly developed 
for reuse. Furthermore, a reuse of an already existing asset also benefits 
from a systematic plan. Development with reuse involves finding an 
appropriate asset, understanding and evaluating it, and optionally 
adapting the asset to the target context. If planned and structured 
support is not available, the effort required for these steps can outweigh 
the reuse savings: the appropriate asset can be hard to find [Henninger 
1994], understanding the asset can be difficult without appropriate 
documentation [Bayer 2004], and adaptation efforts can be significant 
despite a seemingly minor mismatch between the provided and required 
functionality [Thomas 1997]. Consequently, performing software reuse 
in an unplanned and ad-hoc way might fail to achieve the promised 
benefits. Hence, several systematic approaches, addressing the problems 
of planning, structuring, managing, and financing a reuse program, have 
been developed [Jacobson 1997] [Lim 1998] [Clements 2002a]. 

Definition 3 Systematic software reuse 

Systematic software reuse is the purposeful creation, management, 
support, and reuse of assets [Jacobson 1997]. 

Reusing software influences not only the technical development activities, 
but has also implications for development processes, organization 
structure, and even for the way the organization offers its products on the 
market. The systematic software approaches address these issues, as 
neglecting them can ultimately lead to a failure of the reuse program 
[Sherif 2003]. Hence, the organizational and process issues need to be 
carefully considered when reuse adoption is planned. A migration of existing 
software assets towards a reusable form needs to unify the technical and 
organizational aspects, and is therefore a complex undertaking. 
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In the 1960’s and 1970’s, reuse of source code was practiced mainly on 
the level of algorithms and small routines, for example performing 
calculations of mathematical functions. With a growing maturity of reuse 
approaches, the typical size of a reusable asset increased: in the 1990’s, 
component-based software engineering advocated the reuse of 
components, which encapsulated semantically related functionalities of a 
software system and were composed to form the final software products 
[Jacobson 1997]. Finally, the software product line engineering approach 
raises the granularity of reuse to the level of complete software systems.  

2.1.1 Software Product Line Engineering 

Software product line engineering is a systematic reuse approach for the 
development of multiple similar software systems. The developed group 
of similar software systems is called a software product line. 

Definition 4 Software product line 

A software product line is a set of software-intensive systems sharing 
a common, managed set of features that satisfy the specific needs of 
a particular market segment or mission and that are developed from 
a common set of core assets in a prescribed way [Clements 2002a]. 

The software product line engineering approach can be seen as a further 
specialization of component-based software engineering. In both 
approaches, the software systems are developed by reusing a set of core 
assets. However, product line engineering is adapted for the situation in 
which the developed software products exhibit a high degree of 
similarity as they satisfy the specific needs of a particular market 
segment. Each of the products is tailored to best fit the needs of a 
particular customer group in that segment, but at the same time, the 
high similarity makes it possible to compose a major share of product 
functionalities from reusable assets. Consequently, large-scale reuse 
enables development of a potentially large family of individualized 
products in a cost-effective way, a principle known in many industries as 
mass customization [Tseng 2007]. 

The high similarity of the products is actively promoted by managing the 
set of features provided by the product line: for example, development of 
a feature beneficial to just one product might be rejected if it 
compromises any quality attribute of the other products. The development 
is optimized for achieving the global goals of the whole product line, and 
the local goals of particular products can be sacrificed if necessary. The 
management is also performed on the technical level: the reusable assets 
are developed only if sufficient need for them, motivated by the product 
features, exists. The assets are developed and composed in a prescribed 
way, so that the asset interfaces and the architecture of the product line 
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provide a “building plan” optimized for quick product assembly. Finally, 
each asset is generic enough to support all products where it is reused. 
This is assured by managing the variability of the assets, which is the set of 
all characteristics which may vary from one product to another. 

In product line engineering, the distinction between development for 
reuse and development with reuse is reflected by the definition of two 
main development activities: family engineering, which develops the 
reusable assets and stores them in an asset base, and application 
engineering, which reuses the assets to derive end-user products (see 
Figure 8). The ultimate goal of both development activities is to satisfy the 
requirements placed on the developed software products. The requirements 
are managed in the scoping process in order to harmonize their alignment 
between products and hence maximize the benefits of reuse 
[Schmid 2002a]. Additionally, product line engineering establishes an explicit 
feedback process, where application engineering provides information on 
new product requirements, asset usage, and product-specific asset 
adaptations back to family engineering. The feedback process, frequently 
missing in the component-based approaches, ensures that the product line 
evolves consistently with the newest product requirements. 

 

Figure 8 A schema of product line engineering (adapted from [Muthig 2002]) 

The family engineering activity concerns the development of assets for 
reuse. As in any other reuse approach, the development of reusable 
assets requires an initial investment, which is paid back by the savings 
resulting from reusing the assets in application engineering. In case the 
complete process of establishing a product line is performed before the 
delivery of the first product (a proactive adoption approach, see Section 
2.1.2), the initial investment ranges between one and two times the cost 
which would be required for developing a single software product 
without reuse. Typically, the investment in product line engineering is 
paid back after the third software system is delivered [Clements 2002a]. 
Hence, product line engineering is only justified and beneficial if a 
sufficiently large number of sufficiently similar systems should be 
developed [Böckle 2004] [Ganesan 2006]. 
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Even if a group of similar systems is delivered, satisfying the market 
demand for individually customized solutions, these systems do not 
necessarily have to be developed as a product line internally. Depending 
on the similarity of demanded features and the technical organization of 
the assets, the systems can be developed using a range of techniques 
with varying approach to asset reuse: from a standardized platform, 
where just the underlying infrastructure components are reused, up to a 
fully configurable generic product base where a complete product is 
composed automatically from the reusable assets based on provided 
feature selection. Several classifications of these approaches exist 
[Bosch 2002][Riva 2003][Krueger 2004]. In particular, the similar systems 
can be developed in completely independent software projects, with no 
application of software reuse – this is considered to be the most 
immature approach to implementation of a group of similar software 
systems. In our thesis, we focus on the similarity analysis of such 
independent software projects in order to support creation of reusable 
assets, but we do not assume any specific target approach for 
implementation of the restructured reuse-based systems. 

Similarly, the variability supported by reusable assets can also be realized 
in many ways with the use of many different technologies 
[Anastasopoulos 2001]. Basically, the approaches for variant derivation, 
that is for instantiating the generic asset for the use in a specific context, 
can be classified into the following categories [Kästner 2010]: 

Compositional approaches create the content of the asset by
composing it from a number of smaller content pieces such as files,
classes, modules or code fragments. The composition is usually
performed at the build time or during deployment. The possible
implementation technologies range from simple file selection to
advanced mechanisms such as aspects [Kiczales 1997] or feature-
oriented programming [Apel 2013].

Annotative approaches process a generic asset, which contains
annotated content sufficient to derive all intended asset variants, and
remove all content fragments except for those that correspond to the
single selected variant. The removal is typically performed at the build
time. An example of an annotative approach is the C preprocessor
[ISO/IEC 2011].

In duplication-based approaches the content of each asset variant
is stored separately in a permanent way, and new variants are
created by duplication of other already existing variant during the
development time and subsequent modification of that content. The
most popular duplication-based approaches are configuration
management branching [Conradi 1998] and cloning [Dubinsky 2013].

Other approaches include techniques not falling into the above
categories, such as generators and model-driven development
[Beydeda 2005] where the content of the asset is created
automatically based on a higher-level specification.
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In the compositional and annotative approaches, customized asset 
instance is typically created in an automated process which reads a 
correct configuration (i.e. a parameter or feature selection) as input and 
produces the intended asset variant content as output. Hence, the 
information concerning the parameters and features is explicitly 
maintained. Moreover, the content of an asset variant only exists after 
the automated process was run. In the duplication-based approaches, 
the variant derivation process is typically not automated, as the changes 
to the asset variant content, which eventually differentiate it from other 
variants, are added in a human-based development process. Hence, the 
information on possible parameters and features is not required for 
variant derivation and in the practice is often not explicitly documented. 

2.1.2 Software Product Line Adoption Strategies 

An organization planning the development of a product line can be 
situated in a variety of circumstances, and can accordingly select from a 
variety of product line adoption strategies. A general classification of 
these strategies is provided in Table 2. 

Future product prediction approach 
Revolutionary 

(proactive) 
Evolutionary 

(reactive) 

Deve-
lopment 
starting 

point 

New product 
line 

(green field) 

New assets are developed 
to match all expected 
products. Known as the 
proactive approach. 
[Clements 2002a] 

New assets match the 
current products and are 
evolved as further 
products emerge. Known 
as the reactive approach. 
[Clements 2002a] 

Using 
existing set 
of products 
(extractive) 

New product line is 
developed from existing 
assets and matches all 
existing and expected 
products. Known as the 
extractive approach. 
[Krueger 2002] 

Existing assets are 
adapted for reuse in 
existing products, and 
evolved as further 
products emerge. Known 
as retroactive 
[Staples 2004] or 
extractive approach. 

Table 2 Two dimensions of product line adoption (based on [Bosch 2002] and [Krueger 2002]) 

In many cases, the product line is developed in a green field scenario, as 
no comparable products exist in the organization yet. Hence, the 
development scope of the product line and the reusable assets needs to 
be defined first. Depending on the market prediction possibilities and 
domain stability, the development of reusable assets might encompass all 
products foreseeable over the lifetime of the product line (revolutionary, 
proactive approach), or it might just include the already ordered ones and 
assume that products which would emerge later will be addressed by the 
respective adaptation of the assets (evolutionary, reactive approach). 
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In case one or more projects addressing the market segment of the 
product line already exist, these projects can be reengineered to form (a 
part of) the new product line. Hence, the suitable assets are extracted 
from the existing products and adapted for reusability [Schmid 2002b]. 
Again, the development might follow the revolutionary route and 
encompass all foreseeable products, or limit itself to the currently 
provided ones, assuming evolutionary adaptation to further 
requirements which are not yet known or certain at the moment of 
product line adoption. 

As product line engineering requires an initial investment into the 
reusable asset base, its adoption in the green field scenario requires 
sufficient confidence that the reuse will pay off. Hence, it is applicable in 
case when there is sufficient certainty that a number of similar products 
will be developed, and the resources necessary for its initialization are 
available. However, in many situations one or both of these 
requirements are not fulfilled. The lack of resources (especially time) or 
uncertainty of market development might justify the development of 
products with little or no reuse [Dubinsky 2013] (see also Section 3.1). 
Only in the longer perspective, if sufficient products proved successful 
and their maintenance could be optimized by reuse adoption, the 
organization can justify the introduction of a reuse approach and 
restructure the existing products accordingly. In such situation, reverse 
engineering can play an important role by delivering information 
supporting the migration decisions [Hall 1992]. 

The choice of proactive or reactive approach to product line evolution 
depends mainly on economical and risk management considerations. 
Although the proactive approach is thought to enable a higher ultimate 
payoff from reuse, it also requires a larger initial investment and sufficient 
certainty of future product development [Clements 2002b]. If the certainty 
is not given, or the resources available for product line adoption are 
significantly limited, the reactive approach is preferred [Simon 2002]. 

2.2 Reverse Engineering 

This thesis focuses on the analysis of asset similarity across a group of 
software variants. Such an analysis is an example of a reverse 
engineering task. In contrast to the regular, forward engineering 
process, where high-level abstractions (requirements, design) are 
transformed into low-level implementation of a system, reverse 
engineering proceeds in the opposite direction in order to gain 
knowledge of higher-level concepts from the lower-level implementation 
assets, as depicted in Figure 9. 
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Definition 5 Reverse engineering 

Reverse engineering is the process of analyzing a subject system to 
identify the system’s components and their interrelationships and 
create representations of the system in another form or at a higher 
level of abstraction [Chikofsky 1990]. 

Reverse engineering is a recommended practice if the knowledge and 
documentation of the system is not available or is insufficient, and the 
source code remains the only reliable representation of the software 
system [IEEE 1998]. The result of reverse engineering is the recovered 
information and knowledge concerning the analyzed software system. 
During this process, the analyzed assets are not altered – hence, reverse 
engineering is a purely analytical activity. If the knowledge gained by 
reverse engineering is subsequently used to plan and perform changes to 
the subject system, starting a forward engineering process, the resulting 
cycle is a reengineering process (see Figure 9), defined as: 

Definition 6 Reengineering 

Reengineering (...) is the examination and alteration of a subject 
system to reconstitute it in a new form and the subsequent 
implementation of the new form. Reengineering generally includes 
some form of reverse engineering (to achieve a more abstract 
description) followed by some form of forward engineering or 
restructuring [Chikofsky 1990]. 

Figure 9 Forward engineering, reverse engineering, and reengineering (adapted from
[Chikofsky 1990]) 
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Reverse engineering aims at gaining knowledge from the existing assets. 
However, this process cannot be fully automated, as knowledge is a 
capacity of a human being. Therefore, knowledge has to be obtained by 
a human through analysis and interpretation of information concerning 
the analyzed system. The information, in turn, can be generated 
automatically based on the available data. 

Definition 7 Data 

Data are discrete, objective facts or observations, which are 
unorganized and unprocessed, and do not convey any specific 
meaning [Awad 2004]. 

Definition 8 Information 

Information is data that have been shaped into a form that is 
meaningful and useful to human beings [Laudon 2006, p. 13]. 

Information is an aggregation of data that makes decision making 
easier [Awad 2004, p. 36]. 

Definition 9 Knowledge 

Knowledge is data and/or information that have been organized and 
processed to convey understanding, experience, accumulated 
learning, and expertise as they apply to a current problem or activity 
[Turban 2005, p. 38]. 

Knowledge is information combined with understanding and 
capability; it lives in the minds of people [Laudon 2006, p. 2]. 

Data are raw facts collected from the subject system. Information is 
created by processing and structuring the data for a specific analysis 
purpose. Data and information are not human-dependent and can be 
created and processed automatically. Finally, knowledge is built by 
humans interpreting the available information based on their goals and 
experience (Figure 10). 

Figure 10 The relationships between data, information and knowledge (from [Liew 2007]) 
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Figure 11 A generic reverse engineering process and its relation to data, information and knowledge 

The hierarchy of data, information and knowledge shapes the structure 
of any reverse engineering process. Typically, a reverse engineering 
process (e.g. [Jarzabek 1998], [Mueller 2000]) consists of the following 
generic phases, depicted in Figure 11: 

Extraction: collects the raw data from system assets and stores them
in a repository or model. The data can be collected using a multitude
of automated techniques, such as for example parsing [Aho 2006],
and also by manual inspection [Demeyer 2008].

Abstraction: processes the collected data in order to derive
information. For that purpose, the data can be organized (e.g.
structured, filtered, aggregated), contextualized (e.g. categorized,
linked) and analyzed (e.g. to derive further information). Since many
different abstractions can be derived from the same data, it is
necessary for an efficient analysis to define the concrete analysis
goals and the intended users of the information. The abstraction
phase can be performed iteratively, as the information derived in the
recent abstraction step can be combined with preexisting data to
create new information.

Presentation: concerns the display of the created information to the
human analyst in a suitable form. Different views and visualization
techniques might be used to facilitate navigation and understanding
of the facts and correlations obtained in the reverse engineering
process [Eick 2002].

Interpretation: is performed by a human analyst based on the
analysis goals, available information, previous knowledge and
personal experience. In the result, new knowledge on the subject
system is derived. Depending on the analysis goals, the interpretation
of the same provided information can lead to creation of different,
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goal-specific knowledge. Therefore, the quality of the gained 
knowledge needs to be evaluated with respect to the analysis goal. 
Subsequently, the knowledge can be used for [Knodel 2011]: 

o Refinement of reverse engineering analyses, in case the
analysis results raises further questions regarding the subject system.

o Verification of existing assumptions with regard to the
subject system, resulting in confirmation of the status quo or
identification of discrepancies.

o Synthesis with the results of other analyses, in case the
reverse engineering analysis provides only one of many possible
viewpoints on the underlying problem.

o Definition of action items, based on the analysis goals and the
problems or risks identified during the analysis.

Typically, the phases of extraction, abstraction and presentation are 
automated, while the interpretation phase necessarily remains a human-
based task. However, the interpretation of the information provided by 
the reverse engineering approach might be supported by appropriate 
guidance, for example in the form of rules, patterns, or heuristics 
[Demeyer 2008]. 

2.3 Similarity Analysis Approaches for Software Variants 

Reverse engineering techniques can be used to recover the information 
about source code similarity of the system variants, which in turn is 
required to support the decisions on reuse introduction. A large number of 
reverse engineering techniques have been developed [Canfora 2007]. 
However, as each technique addresses one of a variety of specific analysis 
goals, most of them cannot be directly applied to the variant similarity 
analysis problem. A large proportion of reverse engineering techniques is 
targeted at an analysis of only a single instance of a software asset or 
system [Canfora 2007], for example to redocument that system or asset 
[Benedusi 1992], recover its architecture [Koschke 2000], detect design 
violations [Murphy 2001][Knodel 2011] or find code smells [van Emden 
2002]. Moreover, the techniques which do aim at analyzing a group of 
system instances are frequently developed with the goal of analyzing 
system versions, for example to detect development trends or recover 
information on system evolution [Kagdi 2007][D’Ambros 2008]. However, 
the analysis of versions is based on a number of assumptions, which are 
not fulfilled for system variants. Hence, in this section we provide an 
overview of only these reverse engineering algorithms and techniques 
which can be used for the analysis of variants. Subsequently, in Section 
3.3 we analyze the drawbacks of these techniques in the context of a 
system cloning scenario. The inherent differences between software 
versions and variants are discussed in Section 4.1. 
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2.3.1 Comparison and Differencing Algorithms 

The basic prerequisite for analyzing similarity of any group of objects is 
the ability to compare at least two objects and recognize the differences 
between them. Several algorithms for differencing various types of data 
structures exist: 

A popular algorithm for comparison of text files is the Longest
Common Subsequence algorithm, also known as diff [Hunt 1976].
The algorithm compares two text files, treated as lists of text lines,
and determines the longest list containing text lines which are
identical in both files and occur in the same order. The remaining
lines in both files are considered to be different. An extended variant
of the algorithm can detect the differences between 3 files at once
[Khanna 2007].

Apart from text representation, source code can also be represented
as an abstract syntax tree (AST). Several algorithms for differencing
tree structures exist: for example, the Change Distiller algorithm
[Fluri 2007] compares two ASTs, matches the corresponding nodes,
and computes a minimal edit script transforming one tree into the
other.

Source code can be represented as a model, i.e. a typed graph.
Multiple algorithms for finding isomorphic subgraphs in two input
graphs exist. Examples of such algorithms directed at software
models are JDiff [Apiwattanapong 2007] and UMLDiff [Xing 2005].

Typically the differencing algorithms compare just two objects (files, 
trees, models), and provide a list containing every difference they found. 
Hence, they are suitable for an analysis of relatively small amount of 
code, where the amount of found differences is low enough to be 
comprehended by a human without the use of structuring, filtering, and 
other abstraction mechanisms. Even though the advanced frameworks 
using these algorithms, such as Beyond Compare [BeyondCompare 
2014], do utilize an abstraction mechanism, based on the system folder 
hierarchy, the current form of that mechanism still provides only little 
abstraction. Only the existence of an unspecified difference inside the 
system hierarchy is indicated, and no further information about the size 
and nature of that difference is provided. 

The differencing algorithms do not directly address simultaneous 
comparisons of a larger number of objects – such a comparison would 
need to be performed as a series of pairwise comparisons. A few file 
differencing tools, e.g. Diffuse [Diffuse 2014], attempt such comparison 
by selecting one file and comparing every other file with it – a so-called 
“star comparison”. However, file pairs not involving the selected star 
center are not compared. 
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2.3.2 Clone Detection 

Software cloning, that is duplication of software assets and their use in 
other context with or without modifications, has been extensively 
researched [Koschke 2008]. However, depending on the intended usage 
of the cloning information, various different notions of a software clone 
are used. Clone detection experts frequently have varying opinions 
whether a given code sample should be considered a clone or not 
[Kapser 2007]. Hence, any definition of a software clone which is 
general enough must necessarily be a vague one. We use the following 
definition of a software clone, attributed to Ira Baxter [Koschke 2008]: 

Definition 10 Software clones 

Clones are segments of code that are similar according to some 
definition of similarity. 

The notion of a clone is therefore defined by referring to the concept of 
similarity – which again can be defined in a multitude of ways. We 
define and further discuss the concept of similarity in Section 4.6.2. 

It is important to distinguish asset cloning from asset reuse. Although 
both these activities result in the usage of an asset in more than one 
context, in the case of reuse the same asset is used at all locations. Even 
if adaptations and configurations of a local asset instance are needed, 
conceptually all instances of the reused asset evolve together. In contrast 
to that, software cloning is an activity of duplication: two or more 
(initially identical) copies of the asset are created, which in their further 
evolution are treated as different assets. 

Software cloning is mostly studied as a small-scale phenomenon, where 
an asset fragment such as a method is copied to a new location in the 
same or different asset. Several approaches for small-scale clone 
detection [Bellon 2007], removal [Rieger 1999], prevention [Lague 1997], 
and management [de Wit 2009] have been proposed. A typical size of a 
code clone ranges from a few code lines up to several hundreds of lines. 
The search space of clone detection algorithms is large for any non-trivial 
software system, as any code fragment can be potentially judged as a 
clone of any other code fragment. Typically, code fragments are 
reported as clones if the measured value of their similarity exceeds a 
specified threshold [Mende 2008]. The clones can be detected as pairs as 
well as groups of similar code fragments – such groups are called clone 
classes. Hence, clone detection can be used to simultaneously analyze a 
larger number of software systems. 

In an analysis of a group of similar software systems, the extensive 
search strategy of clone detection approaches results in reporting a large 
amount of detailed clone data, which leads to two analysis problems. 
First, the reported clones might concern very diverse configurations of 
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similar code fragments, including clones found inside one system, clones 
between unrelated fragments of the various systems, and finally the 
clones in software assets which come from different systems and 
semantically relate to each other. However, only the last category is 
relevant to the later reuse migration activities. In an example analysis, 
Svajlenko et al. generated and analyzed five similar software systems 
containing 28 860 relevant function clone pairs. However, due to the 
extensive search, a clone detection tool reported, in addition to the 
expected clone pairs, over 2 million further clone pairs in these systems. 
Hence, only 1.46% of reported function clone pairs corresponded to 
similarities which were relevant from the reuse migration point of view 
[Svajlenko 2013]. Although these results were technically correct from 
the clone detection point of view, they need to be further filtered for 
their use in a reuse migration. 

A second analysis problem is caused by the fact that clone detection 
results are represented as a list of code locations where the similar code 
fragments were found. However, these detailed results are not suitable 
for a human to directly estimate the degree of total similarity between 
particular assets or the whole systems. Hence, abstracting the results by 
calculating similarities of larger code structures is necessary. 

The clone detection results can be abstracted by using the system 
hierarchy structure (e.g. code files and folders) and calculating clone 
coverage metrics, i.e. the proportion of total code of a given system part 
(folder, file) covered by the detected clones. Furthermore, for 
determining the similarity of two selected system parts the clone 
detection results can be filtered – only the clones occurring between two 
selected system parts need to be considered, that is, the clones where all 
similar fragments are found inside only one system part can be 
discarded. A system structure browser, based on these abstraction and 
filtering techniques, can display several coverage metrics for clones 
found between the selected system part and either the remainder of the 
system or any other system part [Kapser 2006] [Jiang 2007]. The 
browsing of clones in the system structure can also be facilitated by 
interactive visualizations and user-specified filters [Zhang 2008] 
[Asaduzzaman 2011]. 

The described abstraction and filtering techniques are also used in 
similarity analyzes for a group of software systems. Yoshimura et al. used 
clone coverage metrics to assess similarity of two software systems 
[Yoshimura 2006] – here, the detected clones were filtered by only 
considering these clones which had a counterpart in the other system. In 
an analysis of a larger group of systems, Yamamoto et al. and Mende et 
al. computed the similarity metrics for each pair of the systems and 
presented them as a square matrix (see Figure 12 left) [Yamamoto 2005] 
[Mende 2008]. Hemel et al. used clone detection to perform a “star 
comparison” of a group of system branches and estimate their deviation 
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from the main development branch [Hemel 2012]. For visualization of 
similarities between many systems, Kamiya et al. propose using 
scatterplots (see Figure 12 right) [Kamiya 2002]. Cordy extends that idea 
by proposing live scatterplots, which can aggregate several rows or 
columns in the scatterplot based on the system hierarchy, and on user 
demand provide detailed data for each scatterplot cell [Cordy 2011]. 

Figure 12 Example presentation of multi-system similarity analysis results in the form of pairwise 
similarity matrix (left; the values indicate the degree of similarity) and a multi-system 
scatterplot (right; the similarity is indicated by the cell color) 

2.3.3 Other Approaches 

Several other techniques related to assessing similarity of software system 
or asset variants, based on reverse engineering, have been proposed. 
However, as they have a different analysis focus than our technique, i.e. 
they do not directly aim at assessing the similarity of source code, we only 
categorize these approaches and provide example references: 

Techniques for reverse engineering of product line architecture
recover the architectures of the particular similar systems and then
match the architectural elements between the systems in order to
identify common and variable architectural components [Kang 2005]
[Koschke 2009] [Wu 2011]. However, their focus remains at the
abstraction level of architectural components.

Several techniques for detecting features in the source code have
been proposed. Features are units of program functionality, and the
goal of feature location techniques is to establish a correspondence
between the features and the source code locations responsible for
their implementation [Kästner 2014]. These techniques can also be
applied to a group of cloned software systems in order to detect
optional features, i.e. functionalities supported by only a subset of
the systems [Rubin 2012].
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Context and Related Work 

 Several approaches for recovery and evaluation of potentially 
reusable assets exist [Bayer 1999] [Knodel 2005] [Kolb 2006b]. The 
basic idea of these approaches is to select an asset from a single 
product and identify the functionalities which are missing for 
achieving full reusability of the asset across the product line. 

 There are two approaches which propose expressing and measuring 
the similarity of software system variants by using a set model: 

o Peterson discusses sets constructed from requirements which are 
posed on products in a product line [Peterson 2004]. These sets 
typically intersect as some requirements are relevant to several 
products. He measures the reuse potential of the product line 
based on the degree to which the requirement sets overlap. 
However, the requirements are specified manually and no reverse 
engineering is involved.  

o Berger et al. identify components in Simulink models which have 
similar interface descriptions, mark them as variants, and model 
the variant products as intersecting component sets 
[Berger 2010]. However, only interfaces of components are 
considered, and components are identified as variants if the 
interface similarity exceeds a specified threshold. Hence, the 
identified component variants can still significantly differ in the 
implementation details. Also, there is no support for abstracting 
larger models (e.g. in the form of model structure hierarchy), nor 
there are any visualization concepts defined. 

2.4 Summary 

In this chapter we presented the context of our work: we discussed the 
fundamental concepts of software reuse, including software product line 
engineering (Section 2.1), and outlined the basics of reverse engineering 
(Section 2.2). Subsequently, we presented the related approaches 
analyzing similarity of software variants (Section 2.3). 

We frequently refer to the fundamental concepts presented here in the 
further chapters of this thesis. Moreover, in Section 3.3 we discuss the 
deficiencies of presented existing analysis approaches in the context of 
analysis goals related to reuse migration, and we motivate the need for 
developing a solution overcoming these deficiencies. 
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3 Towards an Approach for Variant Similarity 
Analysis 

In the Introduction we presented the existing literature reports which 
document the existence of cloned software system variants, the reasons 
for their creation, and the resulting maintenance challenges. As most of 
these reports are punctual observations made in just one organization, 
together with a group of other authors we contributed a broader 
perspective by performing an exploratory survey, in which we investigated 
the cloning practices in industrial software product lines [Dubinsky 2013]. 
In Section 3.1 we describe a subset of the observations we made in that 
survey, concerning the benefits and drawbacks of cloning and the role of 
code similarity information, and derive respective conclusions.  

The results of the industrial survey motivate the practical need for 
delivering the necessary similarity information, for example by 
performing source code analysis. Hence, in Section 3.2 we define three 
application scenarios where code similarity analysis is applicable and 
derive from them the specific analysis goals which are addressed by our 
approach. Subsequently, in Section 3.3 we discuss the shortcomings of 
existing similarity analysis approaches which prevent them from fully 
addressing the information needs of a reuse migration. Finally, the 
expected benefits of using our approach in the defined application 
scenarios are formulated as hypotheses in Section 3.4. 

3.1 Cloning in Industrial Software Product Lines – An Exploratory 
Survey 

The practice of cloning complete software systems in order to provide 
variants of their functionality was reported by many researchers 
[DeBaud 1998] [Schmid 2002b] [Faust 2003] [Riva 2003] [Staples 2004] 
[Yoshimura 2006] [Jepsen 2007] [Koschke 2009] [Duszynski 2011a]. 
Usually, these systems were cloned by either directly copying the source 
code, or by creating separate branches in a configuration management 
repository. Regardless of the technical mechanism however, the duplication 
of the similar code ultimately resulted in increased maintenance effort and a 
need to consolidate the variant systems into a reusable code base. 

Despite the literature reports on maintenance problems, system cloning 
is still a frequently used mechanism for implementation of system 
variants. However, until now no systematic study has been conducted to 
investigate the reasons of that contradiction. Hence, together with a 
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group of other researchers we performed a survey of industrial 
organizations which clone large artifacts or complete systems to develop 
new system variants [Dubinsky 2013]. The survey had an exploratory, 
theory-building nature – we did not search to confirm or refute any 
specific hypothesis. Instead, we aimed at characterizing the context of 
the clone-based system development, the rationale behind cloning, and 
its perceived positive and negative consequences. For space reasons, in 
this section we only concentrate on the study findings directly related to 
the context of this thesis. We omit other aspects investigated in the 
survey, e.g. these related to organizational roles and processes, as well 
as some details of the survey setup, as these aspects are described in the 
conference paper [Dubinsky 2013]. 

In the survey we interviewed eleven participants, involved in developing 
six groups of similar system variants realized with the use of cloning. The 
participants were employed in three different software-developing 
organizations, each belonging to a different industry: aerospace and 
defense, data storage management, and automotive. The selection of 
surveyed organizations and cloned system groups was limited to those 
we had access to – we did not perform any further filtering of the 
surveyed systems. Most of the participants were fulfilling senior technical 
roles in the software development process: five of them described their 
role as “software leader/technical leader”, three as “architect”, two as 
“developer” and one as “integrator and QA engineer”. Among the 
surveyed cloned system groups, the oldest was initially developed about 
10 years before the time of our study, while the youngest emerged one 
and a half years before the study. However, all of the system groups are 
composed of products which are still actively offered on the market. The 
teams responsible for the development of system groups numbered 
between 26 and 100 people. 

We collected the survey data using a questionnaire, followed by a 
structured interview with predefined open-ended questions. The 
questionnaire contained questions about the general setting of the 
system group and the extent of the cloning practices. In the interview, 
we first asked the interviewees to describe the system group and used 
processes and tools in more detail. Then, we investigated the way the 
cloned systems were created and maintained: e.g. who decides to create 
a clone, which reasons are used to motivate a cloning case, and how the 
information about existing clones is subsequently maintained. We also 
asked the participants about their perception of advantages and 
disadvantages of cloning in their specific situation. Finally, we analyzed 
the findings using the grounded theory approach [Corbin 2008] to 
detect and describe repeating concepts and link them to the collected 
evidence. In the analysis, we only used the questionnaire and interview 
data – we were given no access to the source code of surveyed system 
groups, and hence we could not perform own measurements of the 
extent and nature of the existing clones. 
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3.1.1 Survey Results 

In the opinion of the survey participants cloning saves time and reduces 
cost of the initial development of a new system variant. By cloning an 
existing solution, a first code base version already supporting many of the 
required features can be quickly created. Moreover, the original code, which 
is cloned to obtain the new variant, is already trusted and validated and 
can hence be assumed to have sufficient quality. Note that the same two 
reasons, i.e. development speed and code quality, are also provided in the 
case of proper software reuse, and constitute the main reuse benefits. In 
fact, some study participants considered cloning to be a form of reuse and 
wished to increase the amount and scope of the artifacts they cloned. 

“It is easier to start with something. Cloning gives [us] an initial basis.” 

“It saves time. These components were already used, tested, closed. A 
kind of an off-the-shelf software.” 

“We did something. It is ‘old’ and for most cases it is stable. The amount 
of time to bring [new code] to the required level of quality is not easily 
estimated.” 

“We clone code and should do better with cloning requirements and design.” 

In contrast to reuse, cloning has a low entrance barrier, as no special 
skills or development methodologies are required. Moreover, the 
development of the cloned variant is initially easier as in the case of reuse: 
since no assets are shared with other existing systems, the dependencies 
to these systems do not need to be considered. Hence, there is no 
need to inform the other projects about code changes, to refine the 
common code, or to consider the lifecycles, schedules and development 
goals of the other systems. One participant also indicated that as the 
cloned code is only used in the context of one system, it can be more 
readable and understandable than a highly generic reusable code. 
Consequently, his team decided to introduce file-level clones with the 
purpose of improving code readability and maintainability. 

 “It gives freedom to change, [when cloning] there is no damage to 
existing products.” 

“[In the past,] a new variant (…) was integrated back into the 
mainstream by using preprocessor switches. This has made the code very 
unreadable, so we wanted to go away from that and we started to 
branch off the files that differ among variants.” 

In the opinion of survey participants, the low initial effort makes cloning 
to a suitable development approach when there is a strong pressure to 
deliver the new software system variant quickly. Similarly, cloning 
might be chosen if the additional resources necessary to set up the 
reuse infrastructure are not available. The use of cloning can be 
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therefore justified or even imposed by the circumstances of the 
development project, or might represent a “lesser evil” compared to the 
consequences of delayed project completion. Moreover, in some cases 
the knowledge of the number and required functionality of the 
demanded system variants is not available upfront, but rather 
emerges progressively as time passes. Hence, the scope of the system 
group might only look suitable for reuse in the hindsight. 

“When a new customer came, we needed to decide how to implement 
his requirements in the fastest way. We do not have time to think 
thoroughly about generic approaches.” 

 “Maybe we can [think about reuse] from the beginning. Still this is easy 
to say now, when we know that the first product is a success. At the 
beginning, the other risks are more important.” 

“At the beginning we did not know that we will have to support all the 
controllers that we support now – this emerged over time.” 

In the surveyed projects, cloning can also occur in an unplanned and 
unorganized way, as a consequence of short-term thinking and 
unawareness of reuse-based development approaches. In some 
organizations, the lack of resources for setting up a systematic reuse 
approach resulted not from the tight deadlines, but rather from the 
missing organizational focus on reuse. As these organizations 
provided no incentives or supporting structures for recognizing reuse 
opportunities, and no funding scheme covering the initial costs of reuse 
was available, the particular variant projects used cloning to optimize the 
development costs in the short term. 

“There is a lack in resources for an organized work and methodology 
with respect to the product line engineering.” 

“There is no place or procedure that asks to search for existing assets.” 

“No one [is responsible for reuse]. One who requires an asset, takes it.” 

The existence of many cloned systems and assets leaded in a longer time 
to additional work and significant maintenance problems in the surveyed 
projects. Repetitive maintenance tasks, for example propagating a 
bug fix or a requirement change, need to be performed on each cloned 
copy. Moreover, each task duplicate still requires a careful analysis, as 
each clone has been modified for a specific context. Finally, the degree 
of change required to make the cloned code compliant with new variant 
requirements, and hence the adaptation effort, is sometimes much 
higher than initially estimated. 

“We need to perform many activities several times: for each variant, we 
have to check the code and implement the change or fix. Then, the 
design and documentation documents, as well as the test specification 
need to be adapted for each variant. Tests need to be run.” 
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“If we find a bug then many times it can be here and also in other 
places. The new product contains code that exists also in the old 
product. So, if we fix the old one then we also fix the new or vice versa.” 

“It is usually not possible to port without making changes to the code.” 

“It is a copy and a lot of adaptation.” 

A common characteristic of the surveyed system groups was the lack of 
sufficient reuse-oriented development governance. On the technical 
level, this manifested as the lack of management of reuse-related 
and cloning-related information. First, the information about cloned 
artifact origin was not tracked or stored, and instead existed mainly 
in team member’s minds. Hence, the provenance of particular asset 
clones might be forgotten due to passing time and staff turnover, and 
the later bug fixes and feature changes could fail to address all relevant 
asset clones. Second, the changes applied to particular clones were 
not tracked or managed. As a consequence, assessing the similarity of 
two clones or judging their suitability as a basis for a new variant 
implementation was difficult without detailed code analysis. And third, 
no measurements related to reuse or cloning were performed. 
Hence, the organizations were not able to reliably assess the reuse 
opportunities, nor were they objectively informed about the technical 
benefits and drawbacks of their cloning choices. 

“No one is in charge of the cloning knowledge – in practice, it is the one 
who implements [a functionality] and the architect who is in charge of 
the work item.” 

 “(…) code that we cloned loses connection with the product which it is 
cloned from, and then there is no sharing of new insights and innovations.” 

“Sometimes, we find the same bug again in a different variant that 
nobody thought about before.” 

3.1.2 Discussion 

The results of the survey indicate that the use of cloning, even at the level 
of complete software systems, might be a justified development strategy. 
Some of the surveyed software systems were cloned because the pressure 
to deliver new system variants quickly at a low cost was stronger than the 
incentives to optimize the development for longer-term goals such as 
maintainability and reusability. As the tradeoff between speed and 
reusability occurs frequently [Kolb 2010], many companies might be 
tempted to clone and, after some time, consolidate only these assets and 
products which proved to be successful on the market while abandoning 
the rest (the grow-and-prune approach [Faust 2003]). Cloning can for a 
certain period of time be beneficial, providing development speed and 
flexibility [Riva 2003], or at least constitute a “lesser evil” compared to 
other early development risks. Hence, cloning has to be considered as one 
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of possible and justified strategies for development of multiple similar 
software systems – even if it sometimes also results from the unawareness 
of other, reuse-based development approaches. Interestingly, similar 
conclusions were also formulated by Kapser and Godfrey with regard to 
small-scale code clones [Kapser 2008]. 

However, although cloning might sometimes be considered to be 
“good”, and it will likely be further practiced, the consolidation of 
cloned systems should be performed early enough to prevent the long-
term maintenance problems resulting from code duplication. Moreover, 
the collected results suggest that the maintenance problems occurring to 
cloned systems are intensified because the reuse-related and cloning-
related information tends to be lost in the evolution process. Similarly to 
the maintenance tasks, the consolidation of cloned systems also requires 
a modification of their code, but on a larger scale. Hence, both the 
maintenance and the consolidation of cloned systems would benefit 
from the existence of current and accurate cloning information. 
Therefore, the cloning organizations need to be supported by 
approaches and tools for management (e.g. using documentation) and 
recovery (e.g. using code analysis) of the code similarity information. 
Also, methodical approaches utilizing that information for both clone 
consolidation and cloned code maintenance are needed. 

The surveyed system groups and their developers were selected because 
of their availability to the survey authors. Hence, the survey results and 
the derived conclusions need to be interpreted in due consideration of a 
range of validity threats, especially of external nature (i.e., with regard to 
the result generalizability). First, the number of surveyed subjects is 
limited, and they can potentially be not representative of the general 
software industry. Hence, the estimation of prevalence or significance of 
the identified facts is not possible. Second, our only data sources were 
the subjective answers provided in the questionnaires and the interviews. 
We were not able to cross-check these answers by measuring the 
artifacts belonging to the surveyed system groups, which leaves a possi-
bility that some of the answers could be inaccurate. To conclude, the 
survey results can be mainly treated as a data point in the investigation 
of industrial cloning practices, but not as their complete picture. 

3.2 Application Scenarios and Analysis Goals for Code Similarity 
Analysis 

In the previous section we described the practical situations where 
software products are cloned and separately maintained, and discussed 
the resulting long-term maintenance problems. Furthermore, we motivated 
the need for performing code-level similarity analysis on the created 
software product variants. To complete the description of the practical 
context of the variant similarity analysis problem, in this section we list 
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three concrete application scenarios for which the variant similarity 
analysis technique provided in this thesis is intended, and derive from 
them the goals that the analysis technique should fulfill. We define the 
application scenarios on the basis of the industrial survey, a review of the 
related literature, and our experience in industrial technology transfer 
projects at Fraunhofer IESE (see Section 7.4). The application scenarios are: 

[AS1] Reuse potential assessment: A group of software system or 
software asset variants, maintained in parallel, is analyzed in order to 
assess whether introduction of a systematic reuse approach is 
appropriate for the analyzed variants or a subset of them. For that goal, 
the parts of the analyzed software assets suitable for transformation into 
a reusable form should be identified. The information delivered by 
similarity analysis is used to guide the selection of system variants and 
their constituent software assets for performing the transformation 
activities, and enables discussion on implementation alternatives (e.g. 
use the asset as is, modify it, or write a new version from scratch) 
[Yoshimura 2006] [Koschke 2009] [Duszynski 2011a]. 

From the economical and risk management perspective, the migration of 
existing system variants towards reuse frequently constitutes a better 
choice compared to the development of the target reusable systems 
from scratch [Simon 2002]. However, in some cases the organization 
might decide to start a completely new development of the reusable 
system variants and replace the old cloned products. The reason for such 
a decision might be, for example, a wish to abandon outdated 
implementation technologies or an insufficient general code quality of 
the old product implementation [Wleklik 2011]. In this situation, a 
similarity analysis performed on the old products still delivers important 
information for the new implementation planning, as the similarities 
between the new products, and hence their reuse potential, will likely be 
analogous to the similarity found in the old analyzed products covering 
the same markets and functionalities. 

[AS2] Consolidation of existing reusable software: Even if a 
software system uses a structured reuse approach, e.g. the software 
product line approach, new functionalities of the particular system 
variants can still emerge in various ways, including cloning [Staples 2004] 
[Mende 2008] [Schulze 2013]. Therefore, the software system variants 
are periodically analyzed in order to check whether new candidates for 
reusable assets emerged after some evolution period. If such candidates 
are identified, a merge can be performed to reconsolidate the reusable 
implementation and assure achieving a high reuse rate. This scenario is 
also known as the grow-and-prune approach [Faust 2003]: the explicitly 
allowed uncontrolled growth of the software allows for quickly satisfying 
customer demands, as discussed in Section 3.1, while the later pruning 
phase consolidates the newly implemented assets and creates a generic 
solution, counteracting the long-term maintenance problems. 
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[AS3] Support for parallel variant maintenance: An organization 
developing cloned variants in parallel might decide to not introduce 
software reuse despite favorable similarity analysis results [Rubin 2013]. 
This can happen for a number of valid reasons, such as e.g. a high cost 
of an already performed safety certification for the products which 
would need to be repeated after reuse migration. However, the 
organization can still regularly analyze the system variants for code 
similarity in order to use the derived information for reduction of 
maintenance effort. For example, similarity information is useful to 
identify whether a specific code change (e.g. a bug fix) is relevant to 
other system variants. Also, it helps reduce code inspection effort by 
avoiding assessing the same code again in another variant. Finally, the 
similarity information can be used at the planning and management 
level, for example for verifying assumptions regarding similarity 
distribution or for detecting development trends such as a growing 
dissimilarity of a specific asset in a specific variant. 

Although the described application scenarios target different practical 
situations, they share a number of common characteristics: 

In each scenario, the analysis users are interested in the similarity of
software assets between the analyzed system variants, while the
similarity inside the particular variants (e.g. code clones) is not relevant.

In each scenario, the information retrieved by the analysis concerns
software assets of different sizes: starting from the small scale, e.g.
single methods, up to whole potentially large software systems.
Because of that, providing both code-level similarity details as well as
suitable abstractions for similarity of large asset structures is an
important requirement for a similarity analysis technique satisfying
these scenarios.

In most cases a fairly high similarity among the analyzed software
system variants can be expected – otherwise, the intention of the
development organization to capitalize on the similarity existing in
the software assets, and the resulting wish to perform the similarity
analysis, would not emerge in the first place. The expectation of a
relatively high similarity is particularly reasonable if the analyzed
variants were developed in a cloning process.

The human effort for performing the analysis and interpreting its
results should not be overly high. As all the described application
scenarios occur in the context of development effort reduction
measures, this strived for effort reduction should not be canceled
out by an effort-costly analysis process, as this would nullify the
analysis purpose.
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Moreover, it is important to note that while the application scenarios 
differ in their intended use of the similarity information, they share 
common requirements regarding the form and scope of that 
information. Hence, common analysis goals with regard to the retrieved 
similarity information can be derived from each application scenario. 
These goals, specifying the variant similarity analysis problem addressed 
by this thesis, are: 

Identify software assets of any size, belonging to the analyzed software
system variants, which exhibit similarity across some or all of the variants.

Characterize the found similarity with regard to the properties that
enable well-founded decisions on further activities concerning the
similar assets (e.g. their transformation into a reusable form). These
properties are:

o the degree to which the assets are similar,

o the variants where assets similar to a given one are found,

o the distribution of the similarity in the system or in a particular
software asset,

o the deviations in the found similarity, describing which asset
elements are dissimilar, how they are dissimilar and where the
dissimilarities are located.

The commonality of the analysis goals, shared by the described application 
scenarios, justifies the possibility to apply the same reverse analysis 
technique for retrieving similarity information in all these different practical 
cases. Although the interpretation of the retrieved information certainly 
differs for each application scenario, the requirements on the form and 
scope of the input information are essentially the same. 

3.3 Shortcomings of the Existing Approaches 

None of the existing reverse engineering techniques for analysis of variant 
similarity (see Section 2.3) can fully address the requirements resulting 
from the application scenarios described above. In particular, every of the 
existing approaches exhibits one or more of the following shortcomings: 

No abstraction mechanism for large systems. If a group of large
software systems is analyzed, suitable abstractions of the similarity
information are required. However, the comparison and differencing
algorithms, as well as some of the clone detection approaches, only
provide a detailed list of low-level analysis results [Hunt 1976]
[Roy 2009a]. Even the advanced differencing frameworks merely indicate
an existence of an unspecified difference inside a structure hierarchy,
without providing any further information about the size and nature of
that difference [BeyondCompare 2014]. Hence, deriving any statement
on the similarity of large code structures is not directly possible.

Analysis goals 
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No detailed code information available. Some approaches,
especially these providing similarity metrics aggregated on the level of
whole systems [Yamamoto 2005], exhibit a deficiency opposite to the
one described above. Although the aggregated metrics provide
instant similarity information even for large systems, the low-level
information on the particular similar code locations which
contributed to the calculated metrics values are not available. Hence,
this information is not sufficient to identify concrete reengineering
tasks for a reuse migration on the code level.

Imprecise similarity information. Clone detection techniques
frequently use a similarity threshold to decide whether two code
fragments are similar enough to be considered as clones [Mende
2008]. On a similarity scale ranging from 0 (no similarity) to 1 (identity),
frequently a threshold value of 0.7 is selected. The use of a similarity
threshold is helpful for finding cloned code fragments despite their
subsequent modification. However, in the context of reuse potential
assessment it introduces a significant imprecision in the analysis results.
First, a code asset which is in 50% covered by clones of other asset
code, assuming the 0.7 threshold value, can actually contain any
proportion of similar code between 35% and 50%. Second, the code
assets assessed as clones cannot be merged into a reusable form
without a manual code review, as their residual differences can be
large and meaningful enough to make them unsuitable for reuse
migration. A similar problem occurs also for model-based code
similarity analyses, e.g. using UML models, as two code fragments
having an identical model can still substantially differ on the code level,
e.g. due to the peculiarities of different hardware platforms.

No abstraction mechanism for a large number of asset
variants. Most of the existing approaches deliver similarity
information calculated for each pair of asset variants [Yamamoto
2005] [Mende 2008]. However, for n variants there exist n(n-1)/2
different variant pairs. Hence, the similarity of n asset variants is
reported as n(n-1)/2 partial results, which still need to be aggregated
together in order to understand the complete similarity distribution.
Already for 10 variants, 45 partial results are calculated. The lack of
suitable abstraction makes it difficult to analyze such complex
similarity analysis result.

No information on all variant combinations available. This
shortcoming is related to the previous one, as it is a consequence of
the pairwise similarity result presentation. Since only the information
about the pairs of compared variants is provided, the analysis
questions concerning larger groups of variants (three and more)
cannot be answered without further result processing. For example, a
simple question such as “what is the amount of code which is
identical across all the variants” cannot be answered based on the
pairwise similarity only, as each pair of variants can potentially share a
different selection of similar code fragments.
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As discussed in the previous section, a similarity analysis technique 
should facilitate a quick understanding of the provided results. The result 
understanding should be supported for any level of abstraction in two 
scalability dimensions: the asset size dimension, ranging from small code 
fragments up to large systems, and the number of variants dimension, 
ranging from two up to several tens of asset variants. At the same time, 
the delivered information should be precise and accurate in both 
dimensions, regardless of the asset size and the amount of its variants. 
In Table 3, we map these requirements to the existing analysis approaches 
presented in Section 2.3. Due to the discussed shortcomings, none of 
the existing approaches fulfills all the requirements. Moreover, the last 
two requirements, particularly relevant for a large number of analyzed 
variants, are not adequately addressed by any of the approaches. Hence, 
the objective of this thesis is to provide a similarity analysis approach 
which does not exhibit the listed deficiencies and fulfills all requirements. 

We further refer to the above discussion in Section 4.2, where we define 
construction requirements for techniques analyzing variant similarity. As the 
review of related approach shortcomings contributed to the requirement 
definition, we provide there a deeper discussion of some of the listed 
problems, in particular these related to pairwise analysis result presentation. 
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State of the art 
approaches 

Comparison and 
differencing algorithms 
[Hunt 1976] [Fluri 2007] 
[Xing 2005] [Diffuse 2014] 

– 
+ / 

– (model
based) 

+ / 
– (model
based) 

– – 

Advanced differencing 
frameworks 
[BeyondCompare 2014] 

(+) qualitative 
only: amount 

of change 
not visible 

+ + – – 

“Bare” clone detection 
[Koschke 2008] [Roy 2009a] 

– + – 
(+) local 

only: clone 
classes 

(+) local 
only: clone 

classes 
Clone detection with 
hierarchical abstraction 
[Kapser 2006] [Jiang 2007] 

+ + – 
(+) local 

only: clone 
classes 

(+) local 
only: clone 

classes 

Clone coverage metrics 
[Yoshimura 2006] [Mende 
2008] [Hemel 2012] 

+ + – – – 

System similarity metrics 
[Yamamoto 2005] 

+ – + – – 

Cross-system scatterplots 
[Kamiya 2002] [Cordy 2011] 

+ + – – – 

Table 3 The properties of the existing approaches: + stands for “supported”, (+) for “partially 
supported”, “–” for “not supported” 

Shortcomings 
prevent the 
fulfillment of 
analysis goals 
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3.4 Research Hypotheses 

The main goal of our approach is to counteract the identified practical 
problems discussed in the thesis introduction: the migration of a group 
of cloned system variants towards reuse is effort-intensive and is likely to 
miss some of the reuse opportunities, while their continued parallel 
maintenance, without the migration, also requires a high effort due to 
the many repetitive tasks. Furthermore, in previous sections we discussed 
that the information on code similarity is frequently missing or 
insufficient in the organizations developing cloned system variants, 
which is detrimental to cloned variant maintenance and migration. 
Hence, our approach concentrates on providing the information on code 
similarity in order to support the migration and maintenance activities. In 
that context, we defined three application scenarios where code 
similarity analysis can contribute (Section 3.2). 

Based on these discussions, we postulate three practical hypotheses 
concerning the role of code similarity information in the migration and 
maintenance of cloned system variants (Table 4). In the following, we 
discuss our understanding of these hypotheses. 

Hypothesis name Hypothesis text 
Postulated 

improvement 
measure 

HP1: Migration Effort Reduction 
Availability of detailed code similarity 
information reduces the effort for 
migration to reuse. 

20% less  
migration effort 

HP2: Higher Degree of Reuse 
Availability of detailed code similarity 
information allows for achieving a higher 
degree of reuse in the migration. 

80% less missed 
reuse opportunities 

HP3: Effort Reduction in Parallel 
Variant Maintenance 

Availability of detailed code similarity 
information reduces the maintenance 
effort for variants developed in parallel. 

10% less 
maintenance effort 

Table 4 The practical hypotheses 

The practical hypotheses formulate the postulated improvements in the 
migration and maintenance of cloned system variants, achieved by 
providing the detailed code similarity information, as compared to the 
situation where that information is not (or not sufficiently) available. As 
discussed in the Section 1.2 and 3.2, the code similarity information 
should be available on any level of abstraction (from small code chunks 
up to whole systems), be available for any subgroup of the analyzed 
system variant family, and should be sufficient to dependably support 
the developers in the migration decisions (e.g. these listed in Section 
1.2). Certainly, such information could in the practice encompass many 
interesting categories: the syntactic similarity of code, the semantic 
similarity of the program behavior, or even the similarity of created 
runtime structures such as call graphs, function pointer hierarchies, and 
data structures. Moreover, the usefulness of each such category could 

Hypotheses 
context 

Practical 
hypotheses 

Detailed 
similarity 
information 
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strongly vary depending on the context: the system domain, code-level 
implementation mechanisms, and even the used programming 
language. It remains an open research question to determine which kind 
of information provides the best support for the defined application 
scenarios and what kind of context dependencies for that information 
exist. In this thesis, we narrow our focus on the detailed code similarity 
information to the syntactic similarity. 

Consequently, we formulate the hypothesized improvements, which can 
be achieved by providing the code similarity information, with relation to 
the syntactic similarity only. The postulated practical improvement 
measures, given in Table 4, indicate our intuition regarding the type and 
significance of the improvement provided by our approach as compared 
to the current state of the art (Section 2.3). Still, it needs to be recognized 
that a reuse migration is a complex undertaking, involving many activities 
and influenced by many context factors. The migration effort can be 
divided into multiple constituent parts, for example such as: 

the effort for planning the migration,

the effort for performing the analyses supporting the planning,

the effort for setting up the reuse infrastructure and implementing
the necessary changes in the assets,

unnecessary additional effort spent due to incorrect reuse decisions,
e.g. introducing reuse where it does not provide benefits,

other engineering effort (testing, verification, training),

management effort.

While for some of the listed categories no meaningful influence of a 
code similarity analysis can be expected, we hypothesize that the effort 
for supportive analyses and the unnecessary effort due to incorrect reuse 
decisions can indeed be significantly reduced. Hence, in the hypothesis 
HP1 (Migration Effort Reduction), we postulate that a migration effort 
reduction by 20% can be achieved by using our approach. The possible 
reduction is, however, heavily depended on the proportion of the different 
effort categories and possibly on several other context factors. Therefore 
we postulate that the 20% improvement should be achievable in most 
cases, but can possibly fail to materialize in a particularly unfavorable 
context. Naturally, the postulated improvement relates to a situation when 
the availability of the similarity information is provided, but all other 
factors influencing the improvement measure remain constant. The same 
conditions apply likewise to the other hypothesized improvements. 

The scientific problems addressed by this thesis are the recovery and 
structuring of code similarity information, as well as the subsequent 
presentation of that information to enable efficient and correct similarity 
information understanding by human analysts (Section 1.2). Hence, we 
hypothesize that the Variant Analysis approach provides an improvement 

Postulated 
practical 
improvements 

Scientific 
hypotheses 
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in these areas. Naturally, the proposed similarity analysis approach 
should also provide technically correct results and be suitable for 
practical use in the context of defined application scenarios. Our 
scientific hypotheses, listed in Table 5, reflect these conditions: 

Hypothesis name Hypothesis text 
Postulated 

improvement 
measure 

HS1: Correctness 
The Variant Analysis approach provides 
correct results. 

Precision > 0.99 
Recall > 0.99 

HS2: Analysis Effort Reduction 
The Variant Analysis approach reduces 
the effort for analyzing the similarity 
information compared to other approaches. 

Up to 4 variants:  
30% less analysis effort 

5 and more variants: 
50% less analysis effort 

HS3: Analysis Effort Scalability 

The effort for analyzing the similarity 
information using the Variant Analysis 
approach grows slower with an 
increasing number of analyzed variants 
compared to other approaches. 

For any m,n N, 
where m>n>=2,  
the effort fulfills: 
VA(m)/VA(n) < 

OTHER(m)/OTHER(n) 

HS4: Understandability 

The Variant Analysis approach allows for 
understanding the implemented 
similarity with a higher correctness 
compared to other approaches. 

50% less  
false statements 

HS5: Practicability 
The Variant Analysis approach can be 
successfully used by practitioners. 

Successful industrial 
applications: > 90% 

positive feedback  
Table 5 The scientific hypotheses 

While the hypotheses HS1 (Correctness) and HS5 (Practicability) concern 
the properties of the Variant Analysis approach only, the remaining three 
hypotheses have a comparative character. Hence, the hypotheses HS2, 
HS3 and HS4 concern the improvements provided by the Variant Analysis 
approach compared to the currently existing analysis techniques – such as 
the use of comparison algorithms or clone detection approaches 
combined with their respective structural abstraction mechanisms. Below, 
we further discuss the details of the particular scientific hypotheses: 

The hypothesis HS1 (Correctness) concerns only the technical
correctness of the provided results and, in contrast to the other four
hypotheses, does not include any human-based factors.

The hypothesis HS2 (Analysis Effort Reduction) specifies two values of
the improvement measure, depending on the number of analyzed
variants. This is a result of the hypothesis HS3 (Analysis Effort
Scalability), which states that the effort savings achieved by the use
of the Variant Analysis approach increase with the increasing number
of analyzed variants. In other words, we postulate that with a
growing number of variants, our approach is more scalable in terms
of the involved human analysis effort than the other current
approaches. The hypothesis HS3 is based on the observation that the

Details of the 
scientific 
hypotheses 
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current approaches do not provide sufficient abstraction mechanisms 
for a larger number of variants (see Section 3.3). Hence, the positive 
effect of such mechanisms defined in the Variant Analysis approach 
should be increasingly visible when the number of variants grows. 

The hypothesis HS4 (Understandability) concerns humans who
analyze the information provided by an analysis approach and derive
from it higher-level statements concerning the similarity of analyzed
assets. With this hypothesis, we postulate that the results provided by
the other approaches are harder to understand (for example due to
their ambiguity – see Section 4.2.2, especially Figure 18) and might
hence lead to false statements concerning similarity. False statement
is a statement about code similarity which is formulated by a human
as a result of using a given analysis technique, and which is incorrect
because the real situation in the code is different.

The hypothesis HS5 (Practicability) implies not only that the
practitioners are technically able to understand and apply the Variant
Analysis approach, but also that they are satisfied with the use of the
obtained results in their migration and maintenance decisions.

As in the case of the practical hypotheses, the postulated improvement 
measures are not absolute, but rather indicate our intuition regarding 
the type and significance of the expected improvement. We postulate 
that the specified improvements should be in general achievable, unless a 
very unfavorable combination of other influencing context factors occurs. 

In Figure 13, we provide a summarizing overview of the formulated 
hypotheses and their relations to the defined application scenarios. 
While some practical hypotheses are specific to a given application 
scenario, the fulfillment of any scientific hypothesis contributes to the 
fulfillment of every practical hypothesis. 

Figure 13 Overview of the practical and scientific hypotheses and their relations to the application scenarios 
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3.5 Summary 

In this chapter we provided a consolidated description of the problem 
area addressed by this thesis. First, in Section 3.1 we presented the 
results of an industrial survey of code cloning practices performed in the 
context of variant software system development. The study results 
indicate that the existence of detailed information on the cloned 
software asset similarity would be beneficial for solving the occurring 
maintenance challenges – however, that information is frequently 
missing in the practice. Subsequently, in Section 3.2 we defined three 
application scenarios for a technique analyzing variant similarity, which 
we derive from the study results, a literature review and own practical 
experiences. By characterizing the information needs resulting from the 
application scenarios, we defined the analysis goals for our asset variant 
similarity analysis technique. In Section 3.3 we argument that the 
existing similarity analysis approaches do not address the analysis goals 
adequately, as they exhibit a range of shortcomings. Finally, in Section 
3.4 we provide the improvement hypotheses, related to the application 
scenarios, which describe the benefits we expect from the solution 
described in this thesis. Hence, this chapter completed the description of 
the addressed research problem and its scientific and practical context, 
and set the scene for the following chapters which provide our solution. 
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4 Investigation and Formalization of the 
Variant Similarity Analysis Problem 

In the previous chapters, we motivated the practical need for analyzing 
variant source code for similarity and defined application scenarios 
where that need occurs. In general, the purpose of performing variant 
code similarity analysis is to: 

 recover the similarity information from the existing assets, 
 support the human in understanding that information, 
 and finally provide a fact base for decisions aimed at solving a 

practical problem defined by the given application scenario. 

However, different analysis techniques might fulfill that purpose to a 
different degree. Therefore, this chapter provides a foundation to reason 
about such techniques and to evaluate them. We start by characterizing 
the specific properties of software variants, especially those which 
distinguish them from software versions (Section 4.1). Based on these 
properties, we define and motivate a group of construction requirements 
that a variant similarity analysis approach should fulfill in order to achieve 
its purpose (Section 4.2). The requirements provide means to compare 
and evaluate variant similarity analysis techniques, and can serve as 
guidance when defining a new technique. 

Furthermore, in Section 4.3 we extend the defined construction 
requirements by deriving a group of assumptions which concern the 
nature of information needed in the specified application scenarios. 
These assumptions motivate the design decisions structuring the analysis 
approach described in this thesis. In Section 4.4 we formally define the 
similarity analysis of software variants based on the stated construction 
requirements and assumptions. In Section 4.5 we define an approach to 
measure the result quality of a similarity analysis structured according to 
our definition. Finally, in Section 4.6 we systematize the introduced 
concepts by defining a conceptual model of variant similarity analysis. 
Hence, the basis for reasoning about the analysis problem, the possible 
solutions, and the quality of results provided by these solutions is defined. 

4.1 Software Variants 

Although software versions as well as software variants represent 
distinguished states of a given software asset, they have a fundamentally 
different nature. Basically, a version refers to an identified state assumed 
by an asset at a specific point in time, while a variant refers to one of 
multiple asset states which exist (or potentially exist, e.g. can be 
automatically generated) at the same point of time (Figure 14). 

Versions and 
variants 
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Definition 11 Software version 

A version of a software asset is an identifiable, unique state of the 
content of that asset (e.g. of its source code) created at a given point 
in time. A change to the asset content results in a creation of a 
subsequent version. 

Definition 12 Software variant 

A variant of a software asset is one from a group of identifiable, 
unique states of the content of that asset (e.g. of its source code) 
which exist or can potentially exist at the same point in time. 

A group of software versions represent different states of a given 
software asset that it assumed in time (Figure 14). Therefore, the 
versions can be treated as points placed on the axis of time as they 
represent the temporal change of the asset content. The time axis 
defines an order on the group of versions, and allows treating that 
group as a list, unambiguously ordered by creation time. This order has a 
clear objective meaning as it represents a linear flow of changes 
performed on the asset during its development history. Typically, two 
asset versions which according to the time order are neighboring or 
placed near each other (i.e. they are separated by only a low number of 
other versions) are much stronger related or similar to each other than 
two versions which are distant (i.e. separated by many other versions). 

Figure 14 Versions and variants of a software asset 

In contrast to that, every element of a group of software variants exists 
and is valid simultaneously at the same point in time (Figure 14). Variants 
represent the spatial variability of the asset content, due to the fact that 
different forms of the asset content are used simultaneously at different 
logical locations – for example in different products of a product line. 
However, as the usage locations are of purely logical nature, there is no 
objective way to define an order on the variants in a general case (see 
Section 4.1.1). Hence, the group of variants needs to be treated as an 
unordered set. 

time

Time ordering 
of versions 

No objective 
ordering of 
variants 
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The reverse engineering techniques analyzing asset versions take 
advantage of the linearly ordered nature of the analyzed data. Because 
the versions represent a flow of changes made to the asset, it is valid to 
assume that a change made to a given asset version is present in all the 
subsequent versions of the asset unless another change modifies or 
removes the affected content. Therefore, for the analysis techniques it is 
sufficient to relate each asset version to its immediate predecessor to 
fully characterize the differences across a group of analyzed asset 
versions (see the left part of Figure 15). Hence, for n analyzed versions 
the analysis needs to consider n-1 relations between versions. Since such 
analysis depends on the defined order of analyzed versions, any 
modification of that order can lead to a different analysis result. 

Furthermore, the focus of the version analysis techniques is to 
characterize the changes performed on the asset according to the 
direction defined by time. Therefore, the time direction is relevant when 
comparing two asset versions, and the time ordering of versions is used 
in the presentation of comparison results. For example, a comparison of 
versions V1 (predecessor) and V2 (successor) could produce a result such 
as “15 code lines added, 2 deleted”. In this case, the presence of 15 
code lines in V2 which are absent in V1 is interpreted as addition due to 
the fact that the version V2 is the successor of V1 according to the time 
ordering. Given an opposite ordering of these versions (i.e. if V1 would 
be a successor of V2), the same comparison would produce a result with 
an opposite interpretation of the found change: “2 code lines added, 15 
deleted”. Hence, the direction of the version ordering is relevant in the 
interpretation of version analysis results, as symbolized by directed 
relation edges in Figure 15. 

Figure 15 The basic analysis schema for software versions and variants 
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Software variants have no objectively defined order that could be used 
by a respective analysis technique. Therefore, a variant analysis technique 
should not assume or depend on any variant order – such dependence 
would mean that using different input orders of the same variants could 
lead to different analysis outputs. Since none of the orders is 
distinguished or correct, it would not be decidable which of the many 
different analysis outputs is correct. Moreover, since all the analyzed 
variants exist simultaneously at the same point in time, no assumption of 
the content of a specific variant can be derived by only looking at the 
contents of any other variant or group of variants. To fully characterize a 
group of software variants, it is necessary to relate each asset variant to 
every other analyzed variant. Hence, for n analyzed variants the analysis 

technique needs to consider 
2

)1(nn
 relations (Figure 15 right).

Moreover, the lack of order defined on the analyzed variants means that 
there is no objective reason to interpret the differences between any two 
of the variants by assuming a specific direction of the difference, as done 
in the case of versions. For variants, both possible difference directions 
are equally relevant. This is symbolized by undirected relation edges 
connecting the variant nodes in Figure 15. 

4.1.1 A Discussion on the Lack of Objective Variant Ordering 

In some cases, the properties of the existing variant derivation 
approaches (see Section 2.1.1) might suggest that an unambiguous 
order on the derivable software variants can be defined. In this section, 
we discuss and eventually refute the possibility of defining such order. 
The possible criteria that could deceptively be proposed as a basis for 
defining an order on the variants are: 

The size of variant asset content, calculated in bytes or as the
amount of contained lower-level or higher-level elements (e.g. lines
of code or modules). This measure can be calculated for all variant
derivation approaches. However, the size of a variant does not
necessarily correspond to its functionality or other properties, so that
it is possible that variants having similar sizes might strongly differ
from each other due to implementing very different features.
Ordering variants by their size would in most cases not place the
more related or more similar variants in the neighborhood of each
other, as typically expected in the case of time-ordered software
versions. Finally, some variants could have an identical size, despite
different content, so that the decision on their ordering would need
to be subjective. Hence, the content size cannot be used as an
ordering criterion in the general case. The arguments provided above
apply analogically to the idea of ordering the variants by the number
of selected parameters or features.

Implications 
of the lack 
of variant 
ordering 

Examples of 
incorrect 
variant 
ordering 
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The value of a certain configuration parameter, for example a
numeric parameter. This measure could be calculated for
compositional and annotative approaches, as they explicitly maintain
the configuration information. However, as the space of potential
variant assets is multi-dimensional due to the existence of many
parameters and many values for each parameter, there could be
more than one variant having the same value of the selected
configuration parameter. This would again result in the necessity of a
subjective ordering decision. An analogical case occurs in
mathematics, where there is no natural ordering definable on the set
of complex numbers. Furthermore, in a general case it is not
guaranteed that the parameter selected as an ordering criterion
corresponds or correlates to the properties analyzed by a given
reverse engineering approach.

Figure 16 A schematic visualization of example content change across a group of related asset variants 

Variant creation time, which could be especially relevant in the
context of duplication-based approaches. For example, one could
argue that a variant that was derived (branched, cloned) from the
main development line at an earlier point in time should be less
related or similar to the main line than another variant derived from it
at a later point in time. Hence, the initial derivation time of the
variants would correlate with their similarity to the main line.
According to that ordering proposition, variant B in Figure 16 should
be the least related or similar to variant A, since it was derived from it
first, while variant C should be a little more similar and variant D
should be the most similar. However, there are several observations
that make this ordering idea invalid:

o Variants might evolve at different speeds, so that the content of a
younger variant might be changed faster than the content of an
older variant. Eventually, the amount of changes performed on the
younger variant might be greater than the amount of changes
performed on the older variant. Hence, the amount of change
relative to the first version of the given variant does not need to
correlate with its age. In Figure 16, variant B is more similar to
variant A than variant C, despite the fact that B is older than C.

time
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o New variants might be derived not only from the main line, but
also from any other variant. For example, in Figure 16 variant D
was derived from variant B. In case a new variant is derived from
an existing variant which is the least similar to the main line, it
will, at least initially, also be one of the least similar variants,
despite being the youngest. In Figure 16, variant D is less similar
to variant A than variant B, despite being younger than variant B.

o If a new variant is derived from a non-mainline variant, and in a
short period of time a second new variant is derived from
another non-mainline variant, these new variants might be very
dissimilar to each other (depending on the similarity of the
original parent variants) despite having a proximate creation
time.

o Finally, the derived variants might develop in different
“directions”, that is, each of them might be extended by
different new features as illustrated in Figure 16. Moreover, the
similarity between the parent variant and the derived variant
does not only depend on the changes performed on the derived
variant, as the parent variant is typically developed further after
the derivation too (for example, in Figure 16 compare the latest
state of variant A to the state it had at the moment when variant
B was derived from it). Also, some variants which were initially
dissimilar might in the course of their evolution be extended by
the same or analogous features and become more similar (as in
the case of variants C and D in Figure 16). Some content parts
might also be exchanged at a later time between any groups of
the cloned variants (an activity known as porting). Hence, in a
general case the similarity of a group of variants does not need
to correspond to the order in which they were initially created.
As a consequence, also the approaches going in the opposite
direction by attempting to deduct the evolution history of a
group of software variants based on their code similarity
([Yamamoto 2005] [Tenev 2012] [Kanda 2013], see also Section
5.5.5) will not always produce a result identical to the actual
evolution history in the general case.

In some specific cases it might be possible to define a meaningful order 
on a group of software variants. A precondition for such an order is that 
there exists a known correspondence between the defined order and the 
property analyzed by the reverse engineering technique. For example, a 
software product can have a “Minimal”, “Standard” and “Extended” 
variant, where each larger variant is created by only adding features to a 
smaller one. In such a case, ordering the variants by size measured as 
number of used features can be justified if the analyzed properties are 
for example code similarity or memory footprint. A good understanding 
of the analyzed products is necessary to recognize such a case. However, 
in the general case techniques analyzing software variants cannot 
assume that any specific order is definable. 

Possible 
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variant 
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4.2 The Construction Requirements for Techniques Analyzing 
Variant Similarity  

In the previous section we characterized a fundamental difference 
between software versions and variants: while the versions are ordered 
by time, and can therefore be treated as an ordered list of asset states, 
the variants cannot be ordered in a general case and need therefore to 
be treated as an unordered set. Because of that, a technique analyzing 
software variants should not make any assumptions regarding the order 
of variants and should treat each variant symmetrically: no variant 
should be in any way distinguished in the analysis or in result 
interpretation. In the following subsection, we elaborate on the 
consequences of this important property by defining construction 
requirements for any general-purpose technique analyzing similarity of 
software variants. In the later subsections, we discuss further general 
requirements, from which any such analysis technique would benefit. 
The requirements provide means to compare and evaluate variant 
similarity analysis techniques, and can serve as guidance when defining a 
new technique. 

The defined construction requirements are derived from theoretical 
reflections on the variant similarity analysis problem, a review of the 
existing approaches (see Sections 2.3 and 3.3), as well as from our 
practical experiences in applying earlier versions of our Variant Analysis 
technique in the industry ([Duszynski 2008] [Duszynski 2011a], see also 
Section 7.4). In our experience, software architects and developers need 
to be very well informed before they make a decision on a code 
transformation as significant as it is needed for introducing software 
reuse. Hence, the information provided by an analysis technique needs 
to be sufficiently detailed – as the source code is their ultimate mean to 
specify system functionality, the code-level facts as well as code-level 
consequences of transformation are very important to the developers. 
Naturally, the provided information needs to be highly trustable and 
dependable – optimally the architects and developers should understand 
or trust the analysis algorithm creating the information and be able to 
verify the result manually. Finally, the developers demand a high control 
over the process of code transformation – hence, the code 
transformation activities should be performed or at least controlled by a 
human, as a code automatically transformed to a reusable form might 
be not trusted by the developers and might look unfamiliar to them, 
hence inhibiting the attempted maintainability improvement. Therefore, 
the code similarity information needs to be easily understandable by a 
human to facilitate the manual code modification activities. 

The above characteristics of technical stakeholder needs are not entirely 
of a technical nature, but also include psychological and cultural factors 
such as the tendency to risk avoidance. In a practical experience report 
from industrial reengineering projects in the financial domain, Cordy 
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provides several observations from the perspective of an analysis tool 
provider that well agree with our above experiences [Cordy 2003]. He 
further notes that providing correct analysis answers are very important, 
and having partial but correct information is better than no information 
or incorrect information. Although Cordy stresses that his observations 
might not be generalizable, which also applies to our experience, we 
believe that accounting for the specific needs and attitudes of 
stakeholders who use the provided information is important for any 
reverse engineering technique. 

4.2.1 Consequences of the Lack of Variant Ordering 

The lack of defined order in the set of analyzed variants makes it 
necessary to make the analysis and its results order-agnostic. Therefore, 
the analysis needs to use: 

[C1] Commutative analysis operations: consider two software 
variants, abstractly represented by two intersecting sets A, B (Figure 17). 
The sets contain respectively 5 and 7 elements, and three of these 
elements are common to both sets. An example analysis operation, 
denoted as , is commutative when for two analyzed sets A, B, the 
analysis result is the same for A B and for B A, and non-commutative 
otherwise. Since a non-commutative operation assumes a certain order 
on the input sets, which is not defined for software variants, such an 
operation would be unsuitable for an analysis of variants. 

Figure 17 Two example intersecting sets A and B 

The commutativity of operation  concerns also the presentation of the 
created result. For example, if  were a comparison operation, a non-
commutative result presentation for sets A and B could be “60% of set 
A elements also belong to set B”, because for the other order of 
compared sets, we get a different result of “42.9% of set B elements 
also belong to set A”. A commutative result presentation for these sets is 
“3 elements of set A also belong to set B”, “33,3% (3 out of 9) 
elements that belong to at least one of the sets A, B, belong to both 
these sets”, or “the intersection of sets A, B contains 3 elements”. 

A non-commutative result presentation is problematic because it can 
potentially be different for any permutation of the analyzed sets. Since 
none of the orders defined by such permutations is distinguished, it 
would not be decidable which of the many different analysis outputs is 

A B

2 3 4
Card(A) = 5
Card(B) = 7
Card(A B) = 3
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correct. Using only one of the different results can be misleading, while 
using all of them makes the result interpretation complex and 
ambiguous. In contrast to that, using a commutative presentation 
produces just one analysis result, which helps interpretation.  

[C2] Associative analysis operations: in the implementation of the 
analysis technique, it might be necessary to perform some operations on 
selected subgroups of the analyzed variant set first, and aggregate the 
partial results later. Also, for some data parallel operations (i.e. 
operations performed multiple times on different data, such as the 
pairwise comparison of each pair of variants), the implementation might 
require that these operations are performed in a sequence – for example 
if a single program thread is used. However, the final result of the 
analysis should not depend on the selection of such groupings or on the 
order of the performed operations. The associativity property details the 
previously stated condition that the result of the analysis must not 
depend on the order in which the variants are provided in the analysis input. 

4.2.2 Providing Detailed Result Information 

The construction requirements described in this subsection support the 
goal of providing result information in a possibly complete, detailed and 
user-verifiable form. 

[C3] Information on all possible variant combinations should be 
provided in the analysis results. Several comparison approaches 
performed on variants, for example [Yamamoto 2005] and [Mende 
2008], present the analysis results as a square matrix of variant-to-variant 
similarity metrics (see the example in Figure 18). Although this result 
presentation might seem to be natural, as the comparison of many 
variants is usually performed pairwise with each of the variants 
compared to each other, it hides important information when used for 
three or more variants, such as for example the size of the common 
parts shared by all analyzed variants. 

Consider the two situations depicted in Figure 18, where three variants 
abstractly represented by sets A, B, C are analyzed for similarity. On the 
left side of Figure 18, all the commonality between the three sets is 
located in the subset A B C, while the other set intersections A B C’, 
A B’ C, A’ B C are empty (A’ denotes the complement of set A, that 
is the set’s negation). On the right figure side, each of these other set 
intersections has a cardinality of 2, which is a sizable part of the sets A, 
B, C, and the size of the subset A B C is reduced to one element. 
However, for both situations the cardinalities of the three sets A, B, C 
are identical, and the cardinalities of the two-set intersections A B, A C 
and B C are also identical. Hence, despite the strong difference 
between the two analyzed situations, for both of them identical pairwise 
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comparison results and identical square similarity matrix are created (the 
middle of Figure 18), which is of course undesirable. For more than three 
variants, examples of much stronger differences which still lead to identical 
results in the pairwise presentation can be constructed. 

Figure 18 The inadequacy of pairwise result presentation: identical results are provided (middle) 
although the analyzed situations (left, right) strongly differ 

The above example illustrates the fact that pairwise result presentation 
does not deliver full information about the analyzed variants. However, 
result information about any possible combination of the variants, and 
not only about the pairs, is needed. For example, a similarity analysis 
might need to calculate the size of the asset content shared by all 
variants – this information is not available in the square similarity matrix. 
Moreover, providing the information on all possible variant combinations 
is necessary to distinguish different analyzed situations such as those 
depicted in Figure 18. 

[C4] Information detail level should be sufficient with regard to the 
analysis goals. For example, a similarity analysis technique that provides 
input for planning code reengineering should be detailed enough to 
detect even small, but meaningful, code-level differences between the 
analyzed variants. In case the variants differ in any aspect that is relevant 
to the developer, they should not be recognized as identical. 

Some analysis techniques provide only low-detail results in the form of 
metrics or abstracted code representation such as UML models. Such 
result form is not detailed enough for use in implementation level 
activities, as it is possible to define two assets or asset part variants with 
identical metric values or model representations which still implement 
very different functionalities. In such a case, a developer could not 
depend on the analysis result and could not assume that the analyzed 
asset variants are also identical on the code level. Thus, such low-detail 
representations are not suitable for use in the planning and performing 
of implementation level activities. 
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[C5] Traceability to implementation is another aspect of the 
information detail level. For each part of the analyzed asset 
implementation, it should be possible to determine how that particular 
part contributes to the analysis result. For example, in a similarity analysis 
it is not sufficient to deliver a single similarity metric on the input asset 
variants (such as, e.g., the Levenshtein distance [Levenshtein 1966] of 
their textual representations). A similarity metric does not allow to 
determine how exactly a given variant differs from the others and which 
parts of the content contributed in which way to the calculated similarity 
value. Optimally, it should be possible not only to determine the amount 
or proportion of content identified as being similar or different in the 
analyzed variants, but also to trace down which of the elementary 
content elements are recognized as similar. Consequently, for any 
content element the information about its similarity should be known, 
reflecting the information detail level requirement. 

4.2.3 Result Presentation and Interpretation 

The construction requirements described in this subsection reflect the 
requirements regarding the ease of result interpretation. 

[C6] Proper result abstraction: although sufficient details should be 
available in the analysis result, the user should not be overwhelmed with 
these details unless they are demanded. A proper abstraction, allowing 
uniform result presentation regardless of the analyzed asset size and the 
number of analyzed asset variants, is needed. The human effort for 
result preparation and abstract result interpretation should not grow 
with increasing asset size, and should grow only moderately with 
increasing number of analyzed asset variants. 

For example, a result presentation in the form of square similarity matrix 
(Figure 18) does not provide a good abstraction mechanism and is 
complex to interpret. Even though the matrix is symmetric and its 
diagonal can be ignored, for n compared variants it still contains 
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 significant numbers characterizing the overall similarity. Thus, a

human needs to relate all these numbers to each other in order to 
understand the overall situation. However, even for low values of n the 
amount of the numbers can be large – for example for 10 variants the 
matrix already contains 45 significant values. 

[C7] Indication of the relative size of variants and their elements is 
helpful as the analyzed asset variants usually have different sizes. Also, 
the sizes of their content parts (subsystems, files) are likely to vary 
strongly. Because of this, the information about the degree of similarity 
found in a particular asset or its part should be accompanied by an 
indication of the size of that part. This enables better interpretation of 
the result since it is, e.g., easier to understand how the differently sized 
parts contribute to the total similarity of the asset. 
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4.2.4 Other Requirements 

The above list of requirements focuses on the aspects relevant for 
similarity analysis of software variants. However, it does not cover 
further, general principles which are relevant for any reverse engineering 
technique, such as:  

 result completeness, i.e. the extent to which all information relevant 
to the goal is retrieved, 

 result correctness, 

 robustness, e.g. against unexpected or non-standard input data, 

 efficiency (also covering scalability of the technique and even the 
possibility to automate its steps). 

Quality evaluation of a variant similarity analysis technique should 
incorporate both the specific as well as the general construction principles. 
For example, result correctness and completeness can be evaluated in 
terms of precision and recall (see Section 4.5). Robustness concerns the 
behavior of the analysis in untypical situations such as processing an asset 
variant strongly dissimilar from the others or receiving multiple identical 
variants in the analysis input. The scalability of a similarity analysis means 
in the practice that it should be possible to perform the analysis for many 
variants of a software asset (10 or more), and for assets as large as 
software systems having millions lines of code. Efficiency means, among 
others, that the analysis should be automatable and that the user should be 
able to access result details or to validate hypotheses formulated upon result 
investigation (e.g., by on-demand calculations) with low response times. 

4.3 Assumptions Resulting from the Application Scenarios 

The construction requirements described in the previous section provide a 
general framework for discussing and evaluating any similarity analysis 
technique for software variants. However, in the context of this thesis we 
further assume that our specific similarity analysis technique should be 
mainly used for the application scenarios defined in Section 3.2, which are: 

 [AS1] Reuse potential assessment, 

 [AS2] Consolidation of existing reusable software, 

 [AS3] Support for parallel variant maintenance. 

In Section 3.2 we characterized the common characteristics of these 
three application scenarios and derived from them general goals 
concerning the information provided by the similarity analysis. In this 
section, we elaborate on the consequences of the selected application 
scenarios by defining a group of construction assumptions for our 
analysis technique. The assumptions play a complementary role to the 
construction requirements described above, and together with them 
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form the basis on which our analysis technique is defined. In contrast to 
the construction requirements, we do not postulate that the below 
assumptions need to apply for other analysis techniques. 

[A1] The analysis results should only concern similarities between 
the variants of software assets, as this is the main interest of the 
analysis users in the specified application scenarios. A search for 
similarity inside the same asset variant is not necessary, and can be 
sufficiently covered by already existing techniques applied to a single 
software asset variant, such as clone detection. 

[A2] A relatively high structural similarity of the analyzed variants 
can be assumed. Since the ultimate goal of two application scenarios 
AS1 and AS2 is to merge the analyzed software assets into a common 
reusable form, the similarity found by the analysis technique needs to be 
sufficiently high in order to allow such merge activities. Also for the third 
scenario AS3, the intended maintenance tasks can only be repeated on 
code parts having a high enough similarity. However, the similarity 
reported by the analysis technique can only be as high as the similarity 
actually existing in the analyzed assets. Therefore, while the analysis has 
to provide high quality results in the scope of the application scenarios, 
the asset groups with low similarity are not in that scope. Consequently, 
it is acceptable for the analysis to exhibit reduced performance for input 
assets having low similarity. 

[A3] Use one-to-one correspondences between the parts of asset 
variants recognized as similar. As the analyzed variants are in most 
cases created in a cloning process, for many of their assets there exists a 
single counterpart asset in another variant that shares a common 
ancestor with the given asset in the cloning history. Even if the 
properties of asset evolution history not always correspond to the 
similarity of asset variants (see Section 4.1.1), the asset variants sharing a 
common history are in most cases still more similar to each other than 
assets developed independently. Moreover, identification of a single 
counterpart to an analyzed asset is helpful for planning the cross-variant 
code merging activities in the context of defined application scenarios, 
while code merging inside one variant can be addressed using 
information provided by clone detection techniques. Finally, this one-to-
one correspondence assumption is a direct consequence of the previous 
assumptions A1 and A2. Since identifying similar assets inside one 
variant is not necessary, also matching all these assets to some asset in 
another variant is of limited use and can actually complicate the 
interpretation of analysis results. Also, the assumed high structural 
similarity makes it likely, for all but the smallest assets, that at most one 
appropriate matching candidate exists in the other variant, even if its 
content and the location in the structure hierarchy were modified in the 
course of variant evolution. 
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[A4] Make the analysis results dependable – prefer higher 
certainty results over providing more results. As the information 
provided by the analysis greatly impacts decisions concerning code 
transformation activities of a potentially large scale, it is crucial that this 
information is as correct as possible. As discussed in Section 4.2, the risk 
of making an incorrect reuse decision or of otherwise reducing code 
quality has to be minimized. At the same time, the demand to minimize 
the human effort for information analysis, resulting from the defined 
application scenarios, implies that the human should be able to trust the 
provided result and should not need to manually inspect the code to 
verify the result correctness. Therefore, there should be a very high 
certainty that the provided results accurately characterize the real state 
of the analyzed assets, i.e. that the identified similar assets are indeed 
similar. It is acceptable that the analysis uses techniques that maximize 
the result certainty even at the cost of missing some relevant results: it is 
better to miss some similarity than to report dissimilar assets as being 
similar. Hence, although both the certainty and the quantity of result 
information are important, the certainty takes precedence over the quantity. 

The described concepts of result certainty and quantity are analogous to, 
but more general than the information retrieval measures of precision 
and recall (see Section 4.5). In information retrieval terms, the analysis 
technique should strive for high result precision, and sacrifice the recall if 
necessary. In addition to that, result certainty also means that providing 
information which is known to potentially contain incorrect values, or 
which requires further validation, should be avoided. For example, many 
clone detection approaches such as the one of Mende et al. recognize 
any two functions having a Levenshtein distance based similarity of 70% 
or more as similar, regardless of the type of remaining dissimilarities 
[Mende 2008]. Such a result is not certain enough as the remaining 30% 
of code can potentially contain functionalities that still differ enough to 
prevent a transformation of the analyzed functions to a reusable form. 

[A5] Provide transitive similarity results. In case an asset A is 
recognized by the analysis as similar to asset B, and asset B is recognized 
as similar to asset C, the similarity of A to C should also be given. 
Transitive similarity results are much easier to interpret than non-
transitive ones, as similarity of an asset to any element from a given 
group implies that the asset is similar to every element of that group. 
Hence, only the members of the group, and not the topology of the 
recognized pairwise similarity relations among these group members, 
need to be known in order to fully understand the reported similarity 
result. As in the practice analyses of 20 and more asset variants are 
possible, and hence groups of similar elements having 20 and more 
elements can be found, an interpretation of a complex graph of up to 
190 possible pairwise similarity relations among such 20 elements would 
be a very complex task – which would need to be repeated several times 
during a single analysis result interpretation as each variant would likely 
contain several analyzable content elements. In contrast to that, a 
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transitive result is simple to understand as it only needs to name the 
similar elements and state the nature of similarity relation that bounds 
any two of them. Hence, transitivity well supports the need to provide 
easily interpretable analysis results. 

Because of the assumption A4, demanding high result correctness, the 
similarity reported by the analysis cannot be constructed as a transitive 
closure of the actually found similarity relations, as this might result in 
incorrectly reporting dissimilar asset pairs as similar. Hence, the analysis 
should report a transitive form of the found similarity by either 
constructing a transitive subset of the result, skipping the pairwise 
relations that do not contribute to a transitive result form, or by relaxing 
the assumed similarity definition, so that it fully and transitively applies to 
the transitive closure of the previously found result. However, relaxing 
the similarity definition should not conflict with the result correctness 
assumption A4 – hence, skipping some of the detected non-transitive 
relations is preferred. As there are several possible algorithms to perform 
that step, which provide results optimized according to various criteria, 
we defer further discussion on the possible alternatives to Chapter 5. 

There are several advantages in processing and interpreting transitive 
results of a similarity analysis. Apart from the already described easy 
interpretation of the results, transitivity enables a stronger and more 
focused definition of the analysis approach described in this thesis. At 
the same time, the information loss due to the creation of a transitive 
result subset is in the practice minor for our instantiation of the 
approach (see Section 7.1). 

4.4 A Formal Definition of Variant Similarity Analysis 

Based on the considered application scenarios for variant similarity 
analysis and on the construction assumptions derived from them, in this 
section we formally define the notion of similarity analysis presented in 
this thesis. The definition provided here is formal and abstract, as it does 
not specify yet the exact form of the provided result, the quality of that 
result, further information derivable from the result, or any other technical 
aspects of the analysis. The details of the analysis approach conforming to 
the given definition are described in Chapter 5. 

The analysis approach definition is based on the construction 
requirement C1 (commutative analysis operations), on the assumptions 
A1 (only similarities between variants are considered), A3 (one-to-one 
correspondences between similar assets), and A5 (result transitivity), and 
it also assumes that any object is similar to itself (see the discussion in 
Subsection 4.6.2). The construction assumption A3 implies that for a 
given element of an analyzed asset variant, at most one corresponding 
similar element can be identified in each other variant. Moreover, the 
identified elements are transitively similar to each other (assumption A5), 
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and they are not identified as similar to any other element of any variant 
(consequence of assumption A1). Hence, for each element of any analyzed 
asset variant, a similarity analysis should identify zero or one similar 
elements respectively from each other variant. Finally, it is important to note 
that the similarity relation between the identified elements is an equivalence 
relation, as it is reflexive (any object is similar to itself, see Subsection 
4.6.2), symmetric (requirement C1) and transitive (assumption A5). 

Let’s define SV as the set of all analyzed software asset variants, and SV  . 
SV is the input data delivered to the variant similarity analysis. Furthermore, 
each asset variant contains some internal elements, which can be tested for 
similarity with the elements of any other variant (see Section 4.6). Therefore, 
without further defining the nature and properties of the elements, let’s 
assume that the asset variant can be treated as a set containing its content 
elements. The assumed set can be correctly and unambiguously 
constructed, as the asset variant content contains no two elements 
recognized by the analysis as identical (assumption A1). Hence, SV is a set 
containing non-empty sets of content elements from the analyzed variants: 

SV = {S1, S2, …, SN}, where Si ={e1, e2, …, eKi} and N>0 and  i (1..N):Ki>0 

Equation 1 Analysis input: a set containing non-empty sets of asset variant content elements 

Let’s define USV as the union of all sets {S1, S2, …, SN}, and let’s select an 
element e from one of these sets, that is, e USV. For any given element e, 
belonging to an analyzed asset variant, the similarity analysis should 
identify zero or one similar elements respectively from each other variant. 
To represent that selection of similar elements, we define a function 
fSIMSEL on the input sets SV. For a given element e USV, the function fSIMSEL 
assigns to each set Si in SV zero or one elements of that set Si which are 
recognized as similar to e. Hence, the result of the function fSIMSEL, 
returned for the sets SV and the element e USV, is a set of USV elements 
which has the following properties: 

fSIMSEL(SV, e) = {elem: elem USV}, 

where e  fSIMSEL(SV, e) and  Si {S1, S2, …, SN}: ( card(Si  fSIMSEL(SV, e))  1). 

Equation 2 The selection function identifying variant content elements similar to a given element e 

Obviously, the result of the function fSIMSEL always contains the input 
element e. In a special case, the returned set might contain only the 
element e – such a result means that no element from other asset variants 
was identified as similar to e. Moreover, note that the function fSIMSEL can 
also be defined as a function returning the equivalence class of the input 
element e. In this case, the equivalence class of e is specified by a similarity 
relation defined on USV, which is an equivalence relation as discussed 
above. In the remainder of this chapter, we use the term “similarity 
selection” to refer to any result set returned by the function fSIMSEL. 
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The similarity selection, which is the output element set of fSIMSEL, should 
not be confused with a tuple that lists similar elements from each set Si. 
The mathematical definition of a tuple states that tuple elements are 
ordered and that it contains no empty elements. However, we don’t 
define any specific order on the sets of SV, and for some of these sets 
there might be no identifiable element similar to the input element e. 

Finally, we define the result of a variant asset similarity analysis 
Sim_Analysis(SV) as the set of all outputs of the similarity selection 
function fSIMSEL obtained for all content elements of all asset variants, that 
is for all elements of the sets Si. 

Sim_Analysis(SV) = { fSIMSEL(SV, e) : e USV } 

Equation 3 Result of the similarity analysis for the input set of non-empty variant content sets SV 

Because the similarity relation constructed by the analysis is an 
equivalence relation, and hence the particular similarity function result 
sets fSIMSEL(SV, e) represent equivalence classes containing elements of USV, 
the analysis result has the following properties: 

1. For any two similar elements, the function fSIMSEL returns the same result:

  e1 USV :  e2 USV  e2  fSIMSEL(SV, e1): fSIMSEL(SV, e1) = fSIMSEL(SV, e2) 

2. The different fSIMSEL(SV, e) sets are pairwise disjoint:

 e1 USV :  e2 USV  e2  fSIMSEL(SV, e1): fSIMSEL(SV, e1)  fSIMSEL(SV, e2) =  

3. All elements of USV are covered: U { fSIMSEL(SV, e) : e USV } = USV 

Equation 4 Properties of the similarity analysis result 

Consequently, every input element e USV belongs to exactly one 
similarity function result set fSIMSEL_i. Figure 19 schematically depicts the 
analysis input as defined by Equation 1, and the analysis result as defined 
by Equation 3. In the figure, the similar elements from each of the asset 
variants are displayed as similar geometrical shapes. 

Figure 19 A schematic presentations of the similarity analysis input (left) and the analysis result (right) 
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4.5 Evaluating Quality of the Variant Similarity Analysis Results 

The definitions introduced in the previous section specify that the 
similarity analysis result is a set of similarity selection sets. These 
definitions describe the form of the analysis result, but do not define its 
quality. In an ideal case, the similarity relation constructed by the analysis 
should truly and fully correspond to the actual similarities of the analyzed 
asset content elements. However, in a practical case the similarity 
analysis, as well as many other reverse engineering approaches, can 
produce information different from the ideal solution, for example due 
to inaccuracies between the analyzed reality and the model of that 
reality assumed by the analysis algorithm. Hence, a means for evaluating 
the correctness and completeness of analysis algorithm result is needed 
in order to assess the quality of a given algorithm in the practice. 

4.5.1 Evaluating Results of Information Retrieval Problems 

The variant similarity analysis problem is an example of an information 
retrieval problem. Hence, in this subsection we briefly introduce the 
information retrieval measures of precision and recall, which are used to 
measure the correctness and completeness of analysis results. 

The left part of Figure 20 describes an abstract model of an information 
retrieval problem and of the result of an analysis solving that problem. 
The analysis solves the problem by retrieving all the elements from a 
given group that fulfill a specified criterion: in Figure 20, all circles which 
are filled should be retrieved. The elements retrieved by the analysis are 
called positives, and the not retrieved elements are called negatives.  

Figure 20 A model of an information retrieval problem and the four possible result categories 

To depict the most general case, the analysis result symbolized by the 
large circle in Figure 20 missed some of the expected elements and also 
returned some other elements not belonging to the correct result. This 
illustrates that the input elements can be classified based on the analysis 
result into four categories: true positive (TP), false positive (FP), false 
negative (FN), or true negative (TN), as defined in the right part of Figure 20. 
The measures of precision and recall, defining respectively the 
correctness and completeness of the retrieved result, are based on these 
four element categories and are defined as follows [Manning 2008]: 
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Definition 13 Precision 

Precision (P) is the fraction of retrieved documents that are relevant: 

P = 
FPTP

TP
 

Definition 14 Recall 

Recall (R) is the fraction of relevant documents that are retrieved: 

R = 
FNTP

TP
 

Hence, high recall means that most of the existing relevant results are 
found, while high precision means that most of the found results are 
relevant. In an ideal case, all the relevant results are returned, and none 
of the returned results is irrelevant, resulting in the maximal possible 
recall and precision values of 1. 

4.5.2 Definition of Precision and Recall Measures for Similarity Analysis Results 

Let’s assume that the analysis result depicted in Figure 19 presents the 
ideal, correct solution of the similarity analysis problem. Consequently, 
any other result provided by the analysis for the given input sets, such as 
the result provided in Figure 21 (below), is not fully correct. Note that 
any analysis result being different from the ideal one can be constructed 
from the ideal result by applying, if necessary several times, one or both 
of the following two operations: 

 Some of the original similarity selection sets could be split into two or 
more sets, incorrectly implying that there is no similarity between the 
element of these new partial similarity selection sets, 

 Some of the (partial or original) similarity selection sets could be 
merged into larger sets, incorrectly implying that there is similarity 
between the elements of the previously separate selection sets. 

 

Figure 21 An example of an incorrect analysis result 
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For example, in Figure 21 the sets fSIMSEL_1 and fSIMSEL_3 were split in two 
parts each, implying that there is no similarity between the elements of 
these parts. Subsequently, the first part of fSIMSEL_1 was merged with 
fSIMSEL_2, implying transitive similarity between the contained elements: 
the light-gray triangle, the black triangle, the white square and the dark-
gray square. Finally, the second part of fSIMSEL_3 was merged with fSIMSEL_5. 
To evaluate the degree to which the constructed result is incorrect, we 
discuss now the definition of the measures of precision and recall for the 
given form of the analysis result. 

Because the analysis result is transitive, an existence of a similarity 

selection set containing n elements means that there exist 
2

)1(nn

pairwise similarity relations between the elements of that set. It seems 
intuitive to define the result correctness based on these pairwise 
similarity relations: an existing and found pairwise relation is a true 
positive, an existing but not found relation is a false negative, and so on. 
However, this intuitive definition is problematic in use, as it leads to 
multiple undesired effects. These effects can produce precision and recall 
values that are lower (worse) for some solutions although these solutions 
are intuitively better than solutions which have higher (better) measure 
values. The undesired effects are: 

Incorrectly assigning a dissimilar element to an existing group of n
other elements creates n false positive relations (one for each
element in the group). As a result:

o For a group of 2 elements 2 false positives are created, while for
a group of 10 elements the addition of one incorrect element
creates 10 false positives. Hence, the second case is measured as
being much worse than the first, although in both cases there is
only one element which is placed incorrectly.

o Incorrectly matching 9 pairs of dissimilar elements produces 9
false positives, while incorrectly adding one element to a group
of 10 elements produces 10 false positives. Hence, the second
case is measured as being worse than the first, although
intuitively the opposite should be true.

o Merging two groups, having respectively n and k similar
elements, produces nk false positives. Very different numbers of
false positives can result from a single decision to merge two
groups. Again, a single merge of two large groups is valued as
much worse as multiple merges of small groups (e.g. consider
one merge for n=k=10 and 90 merges for n=k=1).

Analogically, incorrectly excluding one element from a group of n
elements creates n-1 false negative relations (one for each element
remaining in the group). Again, the number of false negatives
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depends on the size of the initial group, which leads to 
counterintuitive effects and measure values for the cases of element 
removing and group splitting. We omit the discussion of these cases 
here, as they are analogical to the cases occurring for false positives. 

 Moreover, it is very hard to determine the number of true negatives, 
which is needed for calculating further result correctness measures 
beyond precision and recall [Manning 2008]. Theoretically, the sum 
of false positives and true negatives should be constant, and the 
worst possible analysis result should return the maximum possible 
number of non-relevant elements. Hence, the sum of false positives 
and true negatives should equal to the maximal possible number of 
false positives. However, calculating that number is a complex task – 
especially as the analysis can in the practice be used on more than 20 
asset variants having millions of content elements each. 

Because of the discussed problems, we don’t use the above definition of 
positive and negative result elements based on pairwise similarity. 
Instead, we introduce another, simpler definition that does not cause the 
listed negative effects. 

We define the result of the similarity analysis algorithm as a series of set 
merge operations performed on the elements of the input systems. 
Consequently, n-1 correct merge operations performed on single 
elements construct a correct similarity selection set of size n, which 
represents a result containing n-1 true positives. If a merge incorrectly 
connects two sets, it is considered a false positive. If a correct merge is 
not present in the analysis result, it is considered a false negative. Figure 
22 depicts the true positives, false positives and false negatives existing 
in the incorrect analysis result introduced in Figure 21. In the figure, any 
two elements connected through one or more similarity relations (i.e. a 
true positive or a false positive) are considered similar due to the 
transitivity of the result. 

 

Figure 22 The incorrect result from Figure 21 (left) and its interpretation according to the merge-
based analysis result definition (middle, with legend to the right). 
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As discussed above, any incorrect analysis result can be constructed from 
the correct similarity selection sets by a series of merge and split 
operations. Hence, as a split is just an absence of merge, these 
operations result in the creation of respectively one false positive (merge) 
or false negative (split). The number of false positives and false negatives 
can be therefore calculated by finding the minimal number of merges 
and splits necessary to convert the ideal result into the evaluated one. 

The merge-based analysis result definition does not introduce the 
negative effects described above, and the precision and recall values 
calculated for comparatively worse analysis results are consistently lower 
(worse) than those obtained for better analysis results. Finally, the 
number of true positives, false positives, true negatives and false 
negatives is easy to calculate for any, even large, analysis result. Below, 
we define the respective calculation formulas. For space reasons, we 
omit the mathematical proofs of formula correctness. 

Let’s denote R as the number of all relevant elements, and NR as the 
number of all not relevant elements. Obviously, R = TP + FN and NR = FP 
+ TN (see Figure 20). Furthermore, let’s denote U as the cardinality of the 
union of all analyzed input sets USV, and SREF as the number of similarity 
selection set in the ideal, reference solution. Finally, let’s denote SSOL as 
the number of created similarity sets in the tested solution, and PSOL as 
the number of all selection set parts from the ideal solution that are 
found in the tested solution. 

Measure Description Calculation Formula 
Value in 
Figure 22 

U Cardinality of USv Count set elements 15 
SREF Sim. sets in reference Count similarity sets 5 
SSOL Sim. sets in solution Count similarity sets 5 
PSOL Ref. set parts in solution Count set parts 7 
R Relevant elements R = U –  SREF 10 
TP True positives TP = U – PSOL 8 
FN False negatives FN = R – TP = PSOL – SREF 2 
FP False positives FP = PSOL – SSOL 2 
MAX_VAR Maximum size of a set 

representing a variant  
Count set elements, 
select the largest set size 

4 

MAX_SIMREF Maximum size of a 
selection set from the 
reference solution 

Count set elements, 
select the largest set size 4 

NR Not relevant elements U – MAX(MAX_VAR, 
MAX_SIMREF)  

11 

TN True negatives TN = NR – FP 9 
Precision in Figure 19 See Definition 13 1.0 
Recall in Figure 19 See Definition 14 1.0 
Precision in Figure 22 See Definition 13 0.8 
Recall in Figure 22 See Definition 14 0.8 

Table 6 The calculation formulas and example values for the measures used in the merge-based
precision and recall definition 

Calculation of 
merge-based 
evaluation 
measures 
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All these values are easy to determine by simply counting the number of 
respective objects in the ideal or tested solution, and they are sufficient for 
calculation of the precision and recall measures. Table 6 lists the 
calculation formulas for the introduced values, provides their values for the 
example presented in Figure 22, and lists further calculations of true 
negatives as well as the precision and recall measures for the ideal and the 
example solution. As the merge-based values of positive and negative 
analysis results are easier to interpret and easier to calculate than the 
values based on the pairwise similarity definition, we use the merge-based 
definition in the evaluation of our approach discussed in Chapter 7. 

4.6 The Conceptual Model of Variant Similarity Analysis 

In the previous sections we characterized the specific properties of 
software variants and created the basis for defining and evaluating 
reverse engineering techniques for analyzing variant similarity. In this 
section, we describe the conceptual model that systematizes and 
interrelates the concepts used in the similarity analysis of software 
variants. The purpose of the model is to provide a “big picture” overview 
of the variant similarity analysis problem. 

The presented conceptual model is general, as it applies to various 
analyzes of similarity performed on various asset types. Hence, for many 
concepts described in the model an inheritance hierarchy is defined, 
listing some of the specific manifestations of the given concept. The lists 
of specific manifestations are not intended to be exhaustive – their role is 
to present the breadth of the spectrum of possible choices. 

We describe the conceptual model in three subsections, related to the 
Structure of the analyzed software asset, the concept of Similarity 
defined on this structure, and to the Analysis itself. The complete 
conceptual model is depicted in Figure 23. 

4.6.1 Software Asset Structure 

A Software Asset can exist in many Variants (see Definition 12), which 
are the object of the variant similarity analysis. A Software Asset consists 
of Asset Elements, which might in turn be composed from further Asset 
Elements. The Software Asset can in a specific case be a Code Asset (e.g. 
an implementation of a software system), a Design Asset (e.g. a model 
of that system) or a Specification Asset (e.g. a description of system 
requirements). Depending on the type of the Software Asset, the 
contained Asset Elements can be implemented as Code Elements 
(Packages, Compilation Units, Classes, Methods, and Tokens), Textual 
Elements (Folders, Files, Line Blocks, and Lines) or Model Elements 
(Model Nodes, Model Links and Model Attributes). 

The role of the 
conceptual 
model 

Software asset 
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Figure 23 The conceptual model of variant similarity analysis 
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It is important to note here that the type assumed for a specific Asset 
Element depends not only on its intrinsic properties, but is also a 
function of the performed analysis – for example, in some cases the 
same asset can be treated as Code Element (e.g. a Method) or a Textual 
Element (e.g. a Line Block), depending on the specific analysis goal. 

A Structure Hierarchy provides a mechanism for grouping the Asset 
Elements. Frequently, the Structure Hierarchy is defined based on the 
containment hierarchy of the Asset Elements – however, definitions 
based on their other properties are possible. If for a given Asset Element 
there exist some subordinate Asset Elements in the Structure Hierarchy, 
we call such an element structural – consequently, an element having no 
subordinates is atomic. The place that an element occupies in the 
Structure Hierarchy is characterized by its Location. 

Finally, an Asset Element contains its Content. The specific form of the 
content strongly depends on the type of Asset Element and its role in the 
Structure Hierarchy: for atomic elements the Content can frequently be 
characterized as one or a group of primitive data type values (e.g. a 
textual string for a Line, a numeric value for a Model Attribute), while for 
structural elements the Content is usually composed from the 
subordinate Asset Elements and, recursively, their own Content. 

4.6.2 Software Asset Similarity 

The Similarity between a group of Software Assets relates to the Content 
and Structure Hierarchy of the Asset Elements placed in these assets. 
Similarity is an abstract concept which we define as: 

Definition 15 Similarity 

Similarity between two or more objects is a relation of sharing 
common properties. Similarity is gradual and relates to commonalities 
and differences between objects: the more commonality the objects 
share, the higher their similarity; the more differences the objects 
have, the lower their similarity.   

The above definition is necessarily abstract – in a concrete case, Similarity 
needs to be further defined for the purpose of a particular Similarity 
Analysis. Specifically, a Similarity Analysis needs to define which objects 
it can analyze, which properties of these objects are relevant for 
characterizing their Similarity, and what corresponding values or value 
classes of these properties are accounted for as a commonality or 
a difference. 

Assets in the 
structure 
hierarchy 

Asset content 

Similarity 
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Identity is the maximal Similarity between a group of objects: the objects 
are considered identical if all their relevant properties are common and 
none of the properties is different. Consequently, an object is always 
identical to itself. Depending on the choice of the object properties 
relevant for the analysis, the Identity can be defined as Complete Identity 
(all object properties are analyzed), Identity except Formatting (the 
syntactic formatting and visual layout of the asset content is not 
considered), Identity of Formal Definition (only the properties directly 
relevant to the purpose of the asset are considered, and others, e.g. 
comments or notes, are omitted), Identity of Result (e.g. the behavior 
specified by the asset content is identical, even if the form of its 
specification is not), or others. 

Similarity with Deviation is a kind of Similarity weaker than Identity, as 
differences in the analyzable properties are to a certain degree allowed. 
Usually, a similarity threshold is defined that specifies the maximal 
degree of difference that is still acceptable for the objects to be 
considered similar. The differences might be allowed to exist for all types 
of object properties (resulting in Similarity with Non-Systematic 
Deviation) or only for certain property types or for properties fulfilling 
specific conditions (resulting in Similarity with Systematic Deviation). 

A Similarity Analysis can use different similarity definitions for different 
Asset Elements. For example, Identity can in the practice only be 
expected for rather small Asset Elements, such as e.g. Tokens and 
Methods, while larger elements such as Packages and whole Software 
Assets are rarely identical, but still can exhibit Similarity with Deviation. 

Similarity can be quantified by a Similarity Measure which is a numeric 
value assigned to the analyzed objects. If the measure only applies to 
two objects, we call it a Pairwise Similarity Measure. Frequently, such 
measure is calculated by a distance function which places the analyzed 
objects in a metric space [Santini 1999]. Other Pairwise Similarity 
Measures are confidence and correlation measures (e.g. Pearson 
correlation [Rodgers 1988]). If more than two objects are considered, we 
call such measure a Multi-Object Similarity Measure. Example Multi-
Object Similarity Measures are dispersion metrics (e.g. standard 
deviation) and commonality metrics (quantifying the properties common 
to all considered objects). 

While a Similarity Measure represents a value quantifying the Similarity, a 
Similarity Computation is an algorithm or formula used to calculate that 
value. An Elementary Similarity Computation calculates the Similarity 
based on the immediate properties of the analyzed Asset Elements 
derived from its Content and Location. An Aggregating Similarity 

Identity 

Similarity with 
deviation 

Similarity 
measures 

Similarity 
computation 
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Computation operates additionally on the Structure Hierarchy of the 
Asset Elements to calculate Similarity for structural elements by 
aggregating the similarity values of their subordinate elements. For 
example, a Similarity Analysis might use the Levenshtein distance as an 
Elementary Similarity Computation to calculate Similarity of any two 
Files. However, as Levenshtein distance is not defined for Folders, a 
further Aggregating Similarity Computation needs to be defined that 
specifies which File similarities should be used for Folder similarity 
calculation (i.e. if all the possible pairs of Files, or only some of them, 
should be considered), which formula should be used to calculate the 
Folder similarity from the selected File similarity values, and how to 
calculate similarity for nested hierarchies of Folders. 

4.6.3 Similarity Analysis of Software Asset Variants 

As described in the introduction to this Chapter, the purpose of 
performing a Similarity Analysis on Variants of a Software Asset is to 
recover the Similarity Information from these assets. For that purpose, 
the Similarity Analysis uses the Similarity Measures calculated for Asset 
Elements to create the Similarity Information, for example in the form of 
Numerals (e.g. values of a particular Similarity Measure), Aggregations 
(created by grouping of the Asset Elements or of the Information units 
describing them), Associations (relating some Asset Elements or 
Information units to each other) and Classifications (assigning the Asset 
Elements or the Information units describing them to predefined abstract 
categories). As the Similarity Analysis is defined with respect to certain 
Analysis Goals, derived from an Application Scenario, the resulting 
Similarity Information is also interpreted with regard to these goals. 

The Application Scenario concerning the analyzed Variants plays a key 
role in the similarity analysis process: by providing the Analysis Goals for 
the Similarity Analysis, it defines the form and scope of the required 
Similarity Information. Consequently, the type of the analyzed Similarity 
and the proper Similarity Computations and Similarity Measures are 
selected and defined accordingly to provide that Information. The 
selection of the type of sought Similarity might also result in processing 
the same analyzed Asset Elements in different ways, for example as 
Textual Elements or Code Elements. Hence, two Similarity Analyses 
performed on the same Software Assets but targeting different 
Application Scenarios might differ in their use of the particular Asset 
Elements, in the provided Similarity Information, as well as in the 
definition of any of the underlying concepts of Similarity, Similarity 
Computations and Similarity Measures. 
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4.7 Summary 

In this chapter we defined the foundations for the variant similarity 
analysis approach described in this thesis. We started by discussing the 
inherent properties of software variants, such as the lack of an 
objectively definable variant ordering. Based on these properties and the 
application scenarios described in Section 3.2, we defined the 
construction requirements applicable to any variant similarity analysis 
technique, which specify the necessary order independence of the 
analysis, the information content of the results, and the need for user-
supporting result presentation. These requirements form the foundation 
of our approach, further defined in Chapter 5, and can also be used to 
reason about other, related analysis approaches. Subsequently, we 
derived a number of further assumptions applying specifically to our 
approach, such as the preference for high result certainty and result 
transitivity, which we motivated by the stated application scenarios.  

Based on the construction requirements and the defined assumptions, in 
Section 4.4 we provided a formal definition of a similarity analysis 
approach. Subsequently, in Section 4.5 we discussed the method for 
evaluating the result quality of the approach by using the information 
retrieval measures of precision and recall and introducing a set merge 
based definition of the correct analysis result. Finally, in Section 4.6 we 
systematized the concepts used in similarity analysis of software variants 
by providing a conceptual model of software assets, their similarity, and 
the analysis of that similarity. Hence, this chapter provided the 
foundation for reasoning about the similarity analysis problem and for 
defining and evaluating its possible solutions in the scope of the selected 
application scenarios. 
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5 Variant Similarity Analysis with Hierarchical 
Set Similarity Models 

As motivated in the previous chapters, an analysis of a potentially large 
number of system variants, each of them having a potentially large code 
basis, is frequently required in the practice. Despite the analysis difficulty, 
resulting from the ordering independence of variants, the similarity 
analysis results should provide a sufficient detail of information and be 
available on any granularity level in the system structure hierarchy. 
Hence, the defined application scenarios pose significant requirements 
on detailed data collection, suitable result model structuring and 
understandable and supportive result presentation. In this chapter we 
describe the concepts, models, algorithms and visualizations constituting 
our variant code similarity analysis approach, aimed at satisfying these 
requirements. The approach is based on the idea of hierarchical set 
similarity models and is defined in compliance with the construction 
requirements, assumptions and formalizations presented in Chapter 4. 

Using the analysis result formalization defined in Chapter 4, we derive in 
Section 5.1 the basic idea of the set similarity model and discuss its 
properties, such as the availability of similarity information for any 
combination of the input variants. In Section 5.2 we integrate the set 
model with the concept of a structure hierarchy, which together define 
the hierarchical set similarity model and enable the provision of similarity 
information of various granularity levels. On this basis, in Section 5.3 we 
discuss the activities needed for hierarchical set model construction and 
motivate the analysis process followed in our approach. Afterwards, in 
Section 5.4 we proceed to the description of analysis algorithms used for 
mapping corresponding elements between the structure hierarchies and 
for the construction of set model based on input similarity data. In 
Section 5.5, we introduce the visualization concepts defined for 
presenting the set model information across the available variant 
combinations and the system structure hierarchy, and discuss the 
properties of these visualizations. In Section 5.6 we describe various 
metrics calculated on the created set model, which further detail the 
analysis results. Finally, in Section 5.7 we summarize the complete 
analysis results, present the advantages and limitations of our approach, 
and discuss the fulfillment of the previously stated requirements. 
Subsequently, in Chapter 6 we describe a few implementation 
mechanisms for the analysis approach, and in Chapter 7 we evaluate a 
subset of the approach contributions. 
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5.1 The Set Similarity Model 

In Chapter 4, we introduced several properties characterizing the 
content of the asset variants for the purpose of our similarity analysis 
approach. In particular, we postulated that: 

An asset variant can be treated as a set containing the asset content
elements, which are the atomic units of the analysis.
(Assumption A1) The analysis only considers the similarities between
different asset variants, while the similarities inside a variant are
ignored. Hence, the set of variant content elements is a proper set
and not a multiset, because any two elements of that set are
considered to be different.
(Assumption A3) An asset element should have at most one
counterpart element, recognized as similar, in every of the other
variants. The analysis should therefore establish one-to-one
correspondences between the elements of any analyzed variant pair.
In case there are more than one suitable candidate elements in the
counterpart variant, the analysis should provide criteria to select the
most suitable candidate and discard the others.
(Assumption A5) If an asset element is recognized as similar to any
two (or more) other elements, these other elements should also be
recognized as similar to each other. In other words, the analysis
should deliver transitive similarity results.
In result of the above statements, the similarity analysis should, for
any given element of any variant, identify zero or one similar
elements respectively from each other variant.
The relation of similarity, defined on the asset content elements, is
reflexive (an element is similar to itself) and symmetric (which results
from the requirement C1). As it is also transitive, it is consequently an
equivalence relation.
The group of identified similar elements, which are in equivalence
relation to each other, is an equivalence class. Hence, the analysis
assigns the content elements of the input variants to equivalence
classes based on the defined similarity relation, so that every element
belongs to exactly one such class.

All elements assigned to a given equivalence class, constructed by the 
analysis, are identified as similar to each other. Furthermore, each of these 
elements belongs to a different input asset variant. Hence, all member 
elements belonging to the same equivalence class can be treated as 
variant manifestations of a single, abstract content element, which is 
possibly instantiated with a slightly different content in the respective asset 
variants. In other words, the proposed interpretation of the analysis result 
is that the asset variants containing the elements of the equivalence class 
actually contain variants of a single, abstract content element. The abstract 
element and the variants are equivalent, that is, they can only differ up to 
the degree allowed by the used similarity equivalence relation. 
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Interpretation 
of an 
equivalence 
class 
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Consider a group of sets S1, S2, …, SN, containing the atomic content 
elements of N input variant assets, and an equivalence relation , defined on 
the elements of the sets S1, S2, …, SN according to the above discussion, 
i.e., such that no two elements belonging to the same set are equivalent. 
For each set Si, we define a corresponding equivalence set SE

i as follows: 

Definition 16 Equivalence set 

An equivalence set SE
i corresponding to a set Si, constructed using the 

relation , is the set of all equivalence classes of  which contain an 
element of the input set Si. 

The construction of equivalence sets, using shape similarity as the similarity 
equivalence relation, is depicted in the Figure 24. As some of the 
equivalence classes contain elements from more than one of the input sets 
S1, S2, …, SN, and hence they belong to more than one equivalence set, 
the constructed equivalence sets intersect with each other. For any 
subgroup of the sets S1, S2, …, SN, all content elements identified by  as 
similar across all the subgroup sets are placed into the equivalence classes 
located inside the intersection of the corresponding equivalence sets (see 
Figure 24 right). Consequently, the remaining content elements are placed 
into equivalence classes located outside of that intersection. 

Figure 24 Equivalence sets construction: the elements of the input asset content sets are assigned to 
the equivalence classes (left). The resulting equivalence sets, containing these classes, 
intersect with each other (right). 

Hence, the analysis can express the similarity of the input sets by using 
intersections and unions of the corresponding equivalence sets. The 
equivalence set intersection and union are standard set operations. 
Based on the sets S1, S2, …, SN and the relation , we define them as: 

Definition 17 Equivalence set intersection 

An equivalence set intersection, constructed for any subgroup (proper or 
not) of the sets S1, S2, …, SN using the relation , is the set of all equivalence 
classes of  which for every subgroup set contain an element of that set. 

Definition 18 Equivalence set union 

An equivalence set union, constructed for any subgroup (proper or not) of 
the sets S1, S2, …, SN using the relation , is the set of all equivalence classes 
of  which contain an element of any subgroup set. 
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The union of equivalence sets SE
1, S

E
2, …, SE

N contains, through the 
equivalence classes, all content elements of the input sets S1, S2, …, SN. 
Moreover, each content element is contained exactly once in the 
equivalence set union. The equivalence set union models the similarity of the 
input sets by storing the equivalence classes and presenting the intersections 
of any subgroup of the equivalence sets. We call this model, being the result 
of the similarity analysis, a set similarity model and define it as2: 

Definition 19 Set similarity model 

A set similarity model, built for the sets S1, S2, …, SN  and the equivalence 
relation , is the union of the equivalence sets SE

1, S
E
2, …, SE

N 
corresponding to the sets S1, S2, …, SN and constructed using the relation . 
The set model expresses the similarity of the input sets using the equivalence 
classes of  and the intersections of the equivalence sets. 

In Figure 25 we provide an example of a set similarity model constructed for 
the analysis result presented previously in Figure 19. Again, the analysis uses 
the shape similarity as the similarity equivalence relation. Note that the right 
part of Figure 24 (on the previous page) also presents a set similarity model. 

 

Figure 25 The input sets (left) and the analysis result from Figure 19 (middle) represented with the set 
similarity model (right). 

Consequently, the task of the set model based similarity analysis, using the 
provided similarity equivalence relation, is to form the equivalence classes 
from elements of the input content sets and to build the set similarity model 
by precisely determining how the resulting equivalence sets intersect: 

Definition 20 Set model based similarity analysis 

A set model based similarity analysis treats the input variant assets as sets 
of comparable, atomic content elements. The analysis uses an equivalence 
relation, defined on the atomic content elements, to construct the 
equivalence sets corresponding to the input variant sets and to determine 
their intersections, consequently building a set similarity model. 

2 In the text of selected definitions in this chapter, we underline the concepts 
introduced previously in earlier definitions to indicate that the respective previous 
definition is necessary to fully understand the currently defined concept. 
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Note that the scope of element similarities recognized by the similarity 
analysis fully depends on the provided equivalence relation. The 
equivalence relation defines which properties of the analyzed elements are 
relevant for their similarity, while their remaining properties are ignored. 
For a different relation used on the same input sets, a different analysis 
result might be constructed. For example, using the similarity of shape and 
color on the sets from Figure 25 would lead to zero recognized similarities. 
Hence, the similarity equivalence relation selected for the specific analysis 
should always be known during the interpretation of the analysis result. 

The described concept of a set similarity model has the following 
properties, relevant in the processing and interpretation of similarity 
analysis results, which distinguish it from the other related approaches: 

For any content element of any input set, it is directly known which
other sets contain equivalent content elements, and which elements
these are. This information can be used to locate the elements
corresponding to each other among input sets, or to determine the
degree to which a given element exhibits reuse potential (e.g. by
counting the sets containing the element variants).
For any intersection of the equivalence sets, all the content elements
belonging to that intersection are directly known. For example, it is
straightforward to determine the content elements which are
recognized as common among all the input sets, or the content
elements which are unique to a given set.
The cardinality of any equivalence set and of any intersection can be
simply calculated by counting the contained elements. The cardinality
metric can be then used to define various metrics expressing the
similarity of the sets or their subsets – for instance, the similarity of
two sets A, B can be defined as card(A B)/card(A B).
The set model describes a set union of the code bases of all analyzed
variant products. Hence, it enables analysis and measurement of the
unified code base as a whole, without the need to assume the point
of view of a concrete product variant.
The set model can be further analyzed by retrieving all elements
fulfilling a given logical condition. The condition can be specified
directly, e.g. S1 S2 S3’, or indirectly, e.g. “all set intersections shared
by exactly k sets”. Such retrieval operation, which we call a subset
calculation, has the same properties as a set intersection: it provides a
group of elements which can be unambiguously identified and counted.

Figure 26 Example subset calculations. 
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 Further logical conditions, defining new subset calculations, can take 
as an input the results of already existing calculations and, for 
instance, merge or intersect the provided element groups. The subset 
calculations can be used to identify the elements fulfilling a specific 
analysis goal – for example, in the right part of Figure 26 the 
equivalence classes containing the elements shared by at least 3 sets, 
and hence possibly having a high reuse potential, are selected. 

 Moreover, the results of several subset calculations can be 
automatically processed to answer more complex questions arising in 
specific analysis settings – such as finding the most similar set pairs, 
finding sets completely contained in other sets, clustering the input 
sets into strongly similar groups, finding a minimal number of sets 
covering almost the complete code, and further. The set model 
provides a convenient basis for performing such calculations – they 
only require the model itself, and no reanalysis of the underlying 
code assets is needed. In contrast to that, the results of other 
approaches do not directly allow for such follow-up analyses. 

 The set model is an abstraction of the underlying variant products. 
However, it contains more information than the other existing 
abstraction mechanisms such as similarity metrics and pairwise 
matrices. Consequently, the set model provides more support in 
distinguishing different arrangements of similarity among the input 
products, as it is much less likely that different analysis inputs will 
result in the same analysis output (see the example in the Figure 18). 

The set similarity model is simple to understand, and it has several 
properties, discussed above, which are supportive for a similarity analysis. 
It is defined in an abstract way, without specifying the exact type of 
analyzed variant systems and their elements. Hence, the concept of set 
similarity model, and the resulting further analysis mechanisms described 
in the remainder of this chapter, can in theory be applied to any asset type 
– the source code treated as text or as parse trees, software models, other 
software-related assets such as documentation and test cases, abstract 
asset descriptions such as requirement repositories, and also to any other 
non-software assets. However, the prerequisite to defining a set similarity 
model, and hence also to using the further analysis concepts, is the 
conformance to the stated analysis assumptions. Consequently, there are 
two basic analysis mechanisms which need to be thoroughly defined 
before the set model can be constructed for a given asset type: 

 The decomposition of the asset into atomic, comparable 
elements. Optimally, the elements should represent roughly equally 
sized or important pieces of the asset content. Defining elements of 
varying importance (e.g. some elements represent single code 
methods, while others represent single import statements) complicates 
the interpretation of the analysis result, as e.g. counting the elements 
belonging to a given set intersection does not provide a fully reliable 
indication of the relative importance of that intersection anymore. If 
the definition of unequally important elements cannot be avoided, the 
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elements might be assigned positive integer weights denoting their 
relative importance to ensure that recognized element similarity is 
proportionally reflected in the resulting similarity of the whole assets. 

The definition of an equivalence relation on these elements, as
previously discussed in this section. The relation definition might be
supported by the rules for unambiguous assignment of equivalent
elements to the reported equivalence classes. In the most cases, a
definition of an equivalence relation which only considers the
element content (e.g. element content equality) results in equivalence
classes containing more than one element in some asset variants –
violating the assumptions A1 (only similarities between variants are
considered) and A3 (one-to-one correspondences). Hence, it is
necessary to extend that basic definition of an equivalence relation
with further rules, for example based on the location of the elements
in the system structure, in order to decide which of the potentially
equivalent element candidates should be finally reported in the
analysis result. In the Section 5.4 we provide an example of such
rules, which we defined for our implemented analysis instantiation.

Admittedly, the difficulty of defining the three stated analysis mechanisms, 
as well as the quality of achievable analysis results, varies strongly 
depending on the analyzed asset type. In Section 5.4 we define the 
similarity analysis on textual assets, which are decomposed to atomic lines 
of text and analyzed for syntactic equivalence. Analyses of more complex 
asset types require solving various research problems: for example, finding 
corresponding elements is more difficult for software models than for text 
files. Furthermore, different asset types may require different processing of 
input data in order to achieve the transitivity of similarity relation (see 
Section 5.4 for discussion). Finally, analysis of asset types which should be 
compared based on the semantics rather than syntax, such as e.g. 
requirement descriptions, faces the difficulty of defining an automatically 
evaluable equivalence function. Consequently, instantiating the set model 
based similarity analysis for further asset types might require prior 
research, and is part of the planned future work. 

In the following sections, we define and discuss further concepts of our 
analysis which are based on the set similarity model and extend the 
possibilities of its use. In Section 5.2 we define the application of a set 
model in hierarchical system structures, which enables a set-based 
similarity assessment on any level of the system hierarchy. In Section 5.4 
we present a concrete instantiation of the set model based analysis for 
textual software artifacts and discuss the necessary steps for input data 
processing and model construction. In Chapter 6 we describe ideas for 
performant set model implementation. Finally, the understandability of 
the set models, especially for a large number of sets and a large number 
of set elements, is discussed in Section 5.5, where we propose the 
respective visualization concepts. Set model understandability is also 
evaluated in a controlled experiment in Section 7.2. 
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5.2 Hierarchical Set Similarity Model 

In this section we combine the idea of the set similarity model with the use 
of trees representing the internal hierarchical structure of the asset 
content. In the most cases, the internal structure of a software system or 
asset can be represented as a tree-based hierarchy of its constituent parts. 
For example, the source code is physically stored in files and organized in a 
tree structure of folders. Several programming languages use a logical 
structure of a package or namespace tree. Also in software models, a tree 
package structure is frequently used. Finally, a tree hierarchy of assets is 
constructed by many reverse engineering approaches [Lethbridge 2004]. 
The tree hierarchy supports decomposition of the asset into smaller 
parts, grouping and categorization of these parts, and easy navigation in 
the asset content. Depending on the specific asset type, many concrete 
decompositions of the asset into the structure tree and the atomic 
content elements can be defined. As discussed in the Section 5.1, this 
decomposition constitutes an important analysis mechanism, and should 
hence be defined to appropriately support the analysis goals. In this 
section we define the data model expressing the decomposition and the 
similarity of asset content, while in Section 5.4 we provide an example 
decomposition for source code directories containing textual code files. 

5.2.1 Asset Content Trees and Set Similarity Models 

A metamodel of the asset content tree is presented in Figure 27. The 
metamodel defines the decomposition of the asset into a tree of 
Structure Tree Elements. In the tree structure, we distinguish between 
Structural Containers (e.g. folders, packages), which can store other 
Structure Tree Elements, and Content-Filled Elements (e.g. files, classes) 
which can only be located at the tree leaves. A Content-Filled Element 
can store a set of Atomic Content Elements, i.e. the basic analyzable 
elements the asset is decomposed to. 

Figure 27 A metamodel of the tree-based structure of asset content hierarchy. 

According to the definition of set model based similarity analysis (Definition 
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Definition 21 Asset content tree 

An asset content tree for a given set S is a tree graph T, in which the tree 
leaves reference non-overlapping subsets of the set S, and the union of all 
these subsets is equal to the set S. 

 

Figure 28 A set of asset content elements and an asset content tree. 

An example asset content tree is presented in Figure 28. The asset 
content tree specifies the internal asset structure, defines a partition of 
the asset content set, and assigns the content subsets created by the 
partition to the tree leaves (Content-Filled Elements). Moreover, by using 
the principle of hierarchical aggregation, any parent node in the tree 
(i.e., a Structural Container) can also be associated with a subset of the 
original asset content set. The parent subset is simply the union of all 
leaf subsets existing in the subtree rooted by the selected parent node. 

The analysis assumptions, described in the Section 4.3, prescribe that the 
similarity of the Structure Tree Elements located in the different analyzed 
asset variants should be expressed using one-to-one element 
correspondences. Furthermore, these correspondences are subject to the 
same conditions as in the case of Atomic Content Elements: no two 
elements of the same tree are similar to each other, and their similarity 
relations are transitive. Hence, the correspondence identification defines 
an equivalence relation on the Structural Tree Elements and assigns the 
elements of the input trees to equivalence classes. 

For a group of input asset content trees T1, T2, …, TN, and an 
equivalence relation  defined on the elements of these trees such that 
no two elements of the same tree are equivalent, we construct an unified 
asset content tree. The unified asset content tree represents the structure 
of all input content trees, expresses the correspondences between the tree 
elements, but does not yet contain the asset content set elements: 

Definition 22 Unified asset content tree 

An unified asset content tree built for the input trees T1, T2, …, TN  and 
the equivalence relation , is a tree structure containing the equivalence 
classes of the input tree elements constructed using the relation . 
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The construction principle of the unified asset content tree is analogical to 
the creation of a set model from the asset content sets. The Structure Tree 
Elements of the input asset variants are placed into the equivalence classes 
of the unified asset content tree in the same way as the Atomic Content 
Elements of these variants are placed into the equivalence classes of the 
content set similarity model. 

Let’s analyze three example variants of a software asset, represented in 
Figure 29 by their asset content trees. The example equivalence relation of 
the analyzed Structure Tree Elements is defined according to their location 
in the asset structure tree, and indicated by the respective Greek symbols. 
Note that as the variant structure trees are different, not all Structure Tree 
Elements have a correspondence in each other variant (see for example 
the element ). Subsequently, a unified asset content tree, covering all 
Structural Tree Elements from all asset variants, is constructed. The unified 
asset content tree contains an equivalence class for any Structure Tree 
Element which exists in at least one input tree variant. 

Subsequently, for each identified group of corresponding Content-Filled 
Elements, a set model is constructed from their Atomic Content Elements, 
as depicted in the right part of Figure 29. In that process, the content 
element equivalence relation  (introduced in the Section 5.1) constructs 
equivalence classes from elements of content sets which are assigned to the 
elements of the same tree element equivalence class. After the set model is 
constructed, each element of the unified asset content tree representing 
the Content-Filled Elements references a related set model built from 
Atomic Content Elements. Consequently, the unified asset content tree 
and the set models represent the full analysis result, providing an overview 
of all asset variants, their elements, and the identified similarity. 

Figure 29 Three assets are decomposed into asset content trees, with atomic content elements stored in 
the tree leaves (left, middle). A unified asset content tree is constructed from the asset content 
trees, and its elements reference the set similarity models of atomic content elements (right). 
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Figure 30 The construction of set models for parent elements of the unified asset content tree based on 
the child element set models. 

Finally, the set models of the unified asset content tree elements 
representing the Structural Containers can be constructed based on the 
set models of their contained Content-Filled Elements. The construction 
process, depicted in Figure 30, follows two simple principles.  First, the set 
model of a given Structural Container contains all Atomic Content 
Elements from the Content-Filled Elements located inside it. Second, the 
membership of any Atomic Element in the respective set intersection is 
permanent, that is, in the parent sets representing the variant Structural 
Containers the Element still belongs to the same set intersection (i.e., the 
intersection expressing the same logical condition on asset membership, 
e.g. S1 S2 S3’). Hence, the logically equivalent set intersections created 
for the child tree elements can be simply added to obtain the respective 
intersection for the parent tree element. 

Figure 30 presents the construction of the parent set models for the 
intermediate Structural Container and for the root Structural Container, 
hence building the set model for the tree root representing the complete 
analyzed asset. Consequently, for each element of the unified asset 
content tree, representing either an equivalence class of Content-Filled 
Elements or of Structural Containers, a set similarity model expressing the 
similarity of all contained Atomic Content Elements is always available. 

Another interesting property of the unified asset content tree is that the 
tree fulfills all conditions necessary to create a set similarity model from 
its elements (nodes). Hence, given a group of sets ST1, ST2, …, STN 
containing the elements of the trees T1, T2, …, TN and the equivalence 
relation ~, a second type of a set similarity model can be constructed. 
The new model expresses the similarity of the given trees, but not the 
similarity of the contained atomic content elements. 

1 2
A

C
D

3
E

B

GF

1 2
H

J
LK

I

1 2
M

P
O

3
R

N

Q

S

3
T U

1 2
M

P
O

3
R

N

Q

S

3
T U

A

C
D

E

B

GF

H
I

K  J
L

1 2

3

M

P

O

R

N

Q

S T U

A

C

D

E

B

GF

H
I

K   J
L

1 2

3

Set model for 
Structure Tree 
Elements 

Constructing 
set models 
for parent tree 
elements 

87 



Variant Similarity Analysis with Hierarchical Set Similarity Models 

The same set model construction principle can be applied to any group of 
corresponding subtrees of the given trees T1, T2, …, TN, hence creating a 
set similarity model for these subtrees. Consequently, for each element of 
the unified asset content tree a set similarity model expressing the 
similarity of the contained Structure Tree Elements is available. A set 
similarity model of Structure Tree Elements can be analyzed and processed 
in the same way as a set model of Atomic Content Elements, including the 
computation of subset calculations and the use of set visualizations. 

With all the above observations, we finally define the hierarchical set 
similarity model. That model is a fundamental structure used by our 
similarity analysis approach and enables the definition of the analysis 
mechanisms described in the remainder of this Chapter: 

Definition 23 Hierarchical set similarity model 

Given a group of analyzed assets, a hierarchical set similarity model for 
these assets is the unified asset content tree, where each node of the 
tree references two set similarity models. These two set similarity models 
express respectively the similarity of the Structure Tree Elements and of 
the Atomic Content Elements located in the subtree of the unified asset 
content tree rooted by the given node. 

Accordingly, the term “hierarchical set similarity model” refers to the 
presence of a hierarchy of set similarity models on the different 
granularity levels of the asset content decomposition, as exemplified in 
Figure 30. The construction of the hierarchical set similarity model for a 
given group of assets requires that the asset content trees, the tree 
element equivalence relation , and the atomic content element 
equivalence relation  are defined. 

5.2.2 A Data Model for the Set Model Based Similarity Analysis 

Based on the association between the unified content tree elements and the 
set models constructed for the Atomic Content Elements and the Structure 
Tree Elements, we extend the metamodel of asset structure hierarchy, 
defined previously in Figure 27, by adding the asset similarity information. 
Figure 31 presents the resulting metamodel of the data used in our analysis. 

The metamodel is subdivided into the asset content structure metamodel 
(left) and the asset content element similarity metamodel in the form of 
two Set Models (right): one for the Structure Tree Elements of the 
variant assets, and another one for their Atomic Content Elements. 
Naturally, a Set Model is associated with all analyzed asset variants. The 
similarity information is stored in the Equivalence Class objects, which 
associate the content elements recognized by the analysis as equivalent. 
Consequently, the metamodel specifies the data structure of the asset 
content tree and the two respective equivalence relations, which is 
sufficient for the construction of the unified asset content tree and the 
set similarity models for each tree element. Hence, the presented 
metamodel fully specifies the hierarchical set similarity model. 
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Figure 31 A data metamodel for the similarity analysis: the content structure of each asset (left) is 
associated with two set models (right), which store the asset content similarity information. 

5.2.3 Representation of Equivalence Between Transformed Tree Structures 

The construction of the unified asset content tree and the hierarchical 
set similarity model, described above, can be performed for any 
arrangement of identified equivalences between the variant Content-
Filled Elements. For description simplicity, the above example used the 
tree location equivalence – however, in the practice the asset content 
parts represented by the Content-Filled Elements can be renamed, 
moved to another Structural Container, and otherwise transformed 
during the evolution of the particular asset variant. Despite the 
transformations, the equivalence of the respective elements should still 
be recognized. In this section, we describe the representation of such 
equivalences in the hierarchical set similarity model, while in Section 5.4 
we discuss the possible approaches to the equivalence identification. 

The construction of the unified asset content tree for the location 
identity approach is simple, as the unified tree is just a supertree of the 
input asset content trees. In the other case, when a group of differently 
located elements is recognized as equivalent, each of their respective 
parent elements existing in the unified asset content tree should still be 
able to contain all its child elements. To preserve that property, we use 
the concept of hard links, commonly known in the file systems: a given 
equivalence class of Structure Tree Elements can be referenced by more 
than one location in the tree, and each of the referencing locations is 
treated as a full representation of the given class. Hence, for the equivalent 
elements having different tree locations, a hard link is inserted in the 
unified tree at each location where one of the original elements existed, 
and all these links refer to the same equivalence class of the Structure 
Tree Elements and to the same Atomic Content Element set similarity 
model. Consequently, also in the general case the unified asset content 
tree is constructed as a supertree of the input asset content trees – 
however, some of the supertree elements are replaced by hard links in 
order to appropriately reflect the constructed equivalence relation. 
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Figure 32 Three assets content trees from Figure 29 (left), with the node  moved inside the parent node  
in the second variant, are used to construct a unified asset content tree. The tree (right) contains 
hard links in all original locations of the node , which reference the same set similarity model.  

An example unified asset content tree using hard links is presented in 
the right part of Figure 32 (above). The figure shows the construction of 
the unified tree for the asset content trees which were introduced before 
in Figure 29 – however, the second asset variant tree is modified as the 
Content-Filled Element  is moved into the Structural Container . The 
element  exists in two different locations in the original asset content trees. 
Consequently, two hard links are created in the resulting unified asset 
content tree, and both those links represent the same equivalence class of 
Content Filled Elements and reference the same set similarity model. 

When the equivalent Content-Filled Elements are hard-linked with each 
other, the hard links are not needed for Structural Containers, as it is 
sufficient to express the equivalence of the Structural Containers based 
on their tree location identity: 

In case a more complex equivalence relation of the differently located
Structural Containers was used, the identified containers would need
to be represented as hard links in each of their original locations in
the unified asset content tree. However, as only the Content-Filled
Elements can contain the Atomic Content Elements of the analyzed
asset, the same effect of Container representation can be achieved
by accordingly creating the hard links of the child Content-Filled
Elements wherever necessary, and leaving the non-linked Containers in
each of their original locations.

Moreover, avoiding hard Container links eliminates the possibility to
introduce cycles to the tree hierarchy structure, which would
complicate the processing of the hierarchical set similarity model.
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Finally, using the Container equivalence relation based on the tree
location identity simplifies the respective equivalence algorithms, as
only the Content-Filled Element equivalence needs to be found.

To conclude this discussion on the tree element equivalence, let’s consider 
the hierarchical aggregation of the set similarity models in a unified asset 
content tree containing hard links. To obtain a correct set model, the 
aggregation can follow one of two strategies, presented in Figure 33: 

The exclusive aggregation strategy builds the set similarity model
of the parent tree element only from the models of these child
elements which are a child of the given parent node in each of their
variants. Hence, only non-linked elements and these of the hard
linked elements which only occur in the subtree rooted by the given
node are considered. The remaining hard linked elements, whose
instances also occur outside of the considered subtree, are excluded.

The inclusive aggregation strategy differs from the exclusive
strategy by including the set models referenced by the hard linked
elements having further instances outside of the considered subtree.
Hence, in the inclusive strategy the set similarity model is built from
the models of these child elements which are a child of the given
parent node in at least one of their variants. Consequently, the
models of every contained non-linked element and every contained
hard linked element are included.

Naturally, for each group of hard links referencing the same set similarity 
model the given model is considered in the aggregation just once. 
Furthermore, note that the result of both strategies is identical for the 
root tree element, because as the root element is the parent of every other 
tree element, no further hard link instances exist outside of its subtree. 

Figure 33 The construction of set similarity models for the parent node  (left) and for the root node  
(right) of the unified asset content tree from Figure 32. 
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5.2.4 Further Remarks on the Hierarchical Set Similarity Model 

The hierarchical set similarity model bases on several concepts commonly 
used in the mathematics and its applications, such as element sets, 
equivalence relations, tree graph structures, and tree-based hierarchical 
data aggregation. Furthermore, the concept of an equivalence set, 
defined in Section 5.1, bases on a well-known concept of a quotient set 
and extends it for the case of a specific type of equivalence relation 
defined on many element sets instead of just one set. 

However, the introduced composition of the existing mathematical 
concepts, resulting in the definition of the hierarchical set similarity 
model, is to the best of our knowledge an original contribution of this 
thesis, as no similar model structure was defined or used in other 
published research works. Based on a survey of related approaches, we 
are confident that no analogical structure was defined or used for the 
purpose of reverse engineering software similarity, which is the 
application area of this thesis. We are also not aware of the existence of 
such structure in other areas of computer science. Finally, the existing 
data structures which use similar names, such as “hierarchical sets” or 
“nested set model” [Kamfonas 1992], describe in fact a different, much 
simpler structure of an element set and its contained subsets, analogical 
to the asset content tree. 

As discussed in this section, the construction of the hierarchical set similarity 
model requires inputs provided by three other activities: the decomposition 
of the assets into the asset content trees, the construction of unified asset 
content tree using Structure Tree Element equivalence relation, and the 
construction of the Atomic Content Element set similarity models. Hence, 
the process of performing the similarity analysis needs to include these three 
analysis stages. With this observation, we continue to Section 5.3, where we 
define the analysis process of our approach. 

5.3 A Process for Hierarchical Set Model Construction and Usage 

As discussed in Section 2.2, the purpose of reverse engineering is to 
construct higher-level abstractions of the input data stored in the analyzed 
assets, and to visualize these abstractions to support a human in building 
asset-related knowledge.  Hence, the most reverse engineering approaches 
follow a typical analysis process consisting of four main phases: extraction, 
abstraction, presentation, and interpretation (see Figure 11 in Section 2.2). 
The above typical reverse engineering process applies as well to the similarity 
analysis approach defined in this thesis. Accordingly, in the previous section 
we already hinted at the necessity of introducing separate analysis phases, 
which cover various aspects of the analysis and build the respective parts of 
the defined data model. Hence, the set model based similarity analysis 
process, depicted in Figure 34, consists of the following phases: 
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Structure extraction phase constructs an asset structure model for
each input asset variant. As discussed in the previous sections, the
structural decomposition of an asset can include an identification of
internal content hierarchy structure, if applicable, and it results in the
creation of element sets which contain the basic analyzable Atomic
Content Elements for the further analysis. For now, the constructed
structure models of the asset variants are not yet related to each other.

Structure mapping phase takes as its input the created structure
models and uses the defined structure tree element equivalence
relation to determine the asset structure hierarchy elements which
correspond to each other across the compared asset variants. In the
result, a unified hierarchy structure is constructed, and the
correspondence information is stored in the structure tree set model.

Content set model construction phase analyzes the corresponding
sets of Atomic Content Elements, identified by the previous phases,
and in accordance to Definition 20 determines their set intersections.
Hence, by using the defined equivalence relation, the set model of
Atomic Content Elements is built. The constructed model expresses
the similarity of the input asset variants and is the basis for result
visualization and interpretation. Furthermore, on the analyst request
the computation of subset calculations and metrics can, at any
point in time, be performed on the both set models and used to
enrich the information basis for the subsequent analysis phases.

Figure 34 The process for the set model based similarity analysis. 
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Visualization phase presents the calculated information in the form
of diagrams and tables. We defined several views, enabling the user
to explore and navigate through the created results. The user can
retrieve the information about the degree of asset similarity, the
distribution of similar elements in the asset content, and other conside-
rations for any structural and atomic element of the asset content.

Interpretation phase concerns the activities of a human analyst,
performed using the visualized results and related to the analysis
goals. As described in Section 2.2, these activities include analysis
refinement (e.g. by starting calculation requests or re-running the
analysis using a different definition of the equivalence relation),
verification of previous assumptions, synthesis with results of other
analyses, and finally definition of action items. These manual activities
are not in the explicit focus of this thesis – however, we partially
support them by providing the respective guidance in Appendix B.

Analogically to the other concepts of the set model based similarity 
analysis, the described analysis process is generic and applicable to any 
kind of software asset, as long as the basic analysis mechanisms listed 
in Sections 5.1 and 5.2 are defined. Hence, Figure 35 presents the 
analysis process on a higher abstraction level, and explicitly depicts the 
analysis input, the analysis results, and the three mechanisms where the 
generic analysis is customized for a specific asset type and analysis goal: 
the definition of asset content decomposition, the definition of structure 
element equivalence relation, and the definition of atomic element 
equivalence relation. 

Figure 35 The similarity analysis input (left), the internal analysis process using the customizable 
definitions of analysis mechanisms (middle), and the resulting analysis output (right). 

In the following sections, we discuss in more detail the concepts and 
algorithms specific to each of the defined analysis phases. As the structure 
extraction was already discussed in Section 5.2, we proceed now to the 
topics of structural correspondence mapping and set model construction. 
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5.4 Approaches for Set Similarity Model Construction 

As discussed in the previous sections, a similarity analysis performed for a 
group of hierarchically decomposed asset variants constructs two set 
models: the first one for the Structure Tree Elements, expressing the 
correspondences between the elements of different asset content 
hierarchy trees, and the second one for the Atomic Content Elements, 
expressing the content similarity of the asset or its parts. In both these 
cases, for the construction of a set model it is necessary to define a 
respective equivalence relation on the asset content elements. The 
provided definition of the equivalence relation should, in particular, 
allow for unambiguous selection of the best match for a given content 
element, and guarantee the required result properties such as transitivity. 
In this section, we discuss the concepts and algorithms used in the 
construction of an equivalence relation on different forms of input 
similarity data and present their example instantiation. 

In a general case, the similarity between any two elements of the input asset 
content can be calculated by applying a pairwise similarity measure (as 
discussed in Section 4.6), for example calculated by a distance function. 
Without loss of generality, we can assume that the resulting similarity 
measure value is a real number from the [0;1] interval, where the value of 0 
expresses the minimal or non-existing similarity, and the value of 1 expresses 
the maximal possible similarity. Naturally, the similarity measure can only be 
defined for element pairs which are comparable, e.g. when both elements 
are of the same type. However, this condition does not reduce the 
generality of the above similarity measure, as any pair of non-comparable 
elements can be assigned the similarity measure value of 0. 

The set model based similarity analysis does not consider the similarity 
between comparable elements located inside the same asset variant. 
Consequently, all such elements are treated as being different, and only the 
similarity between elements of different asset variants is considered. As our 
approach does not introduce any new similarity identification algorithm, the 
input similarity data is provided by an external algorithm. For example, the 
Levenshtein distance algorithm can be used to measure similarity of two files 
treated as lists of text lines. The input similarity data, being the basis for the 
construction of element equivalence classes, is typically provided in one of 
the two following, abstracted data forms, illustrated in Figure 36: 

Figure 36 Abstract forms of input similarity data: gradual pairwise similarity (left) and binary pairwise 
similarity (right). 
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Gradual pairwise similarity provides a similarity measure value in
the [0;1] interval for any possible pair of input elements coming from
different variants. Hence, for a given content element all elements
from a different variant are initially considered as potential matches,
but the degree of their similarity varies. This data form is typically
produced for content elements having further internal structure,
where the simple similarity definitions such as identity are not
practically useful. Example similarity identification approaches
calculating such similarity measures are Levenshtein distance applied
to text files and common token coverage applied to code clones.

Binary pairwise similarity lists pairs of similar elements. The
element similarity is binary, as only the existence of similarity is
reported: a given pair of elements is either similar or not. Hence, for a
given content element a low number of potential matches, all having
the same degree of similarity, is proposed. This data form is typically
produced for simple content elements, having no meaningful internal
structure, where the similarity definition of identity can be used. For
example, the longest common subsequence (diff) algorithm identifies
matching lines from two analyzed text files, but does not further
investigate the similarity of non-identical lines.

Some similarity identification approaches initially collect the similarity 
data in the gradual form, but subsequently process them to report a 
result of the binary nature. This is done for example by many clone 
detection approaches, which apply a similarity threshold value to report 
the higher gradual similarity values as clone pairs and discard the 
remaining ones. An example of a transformation of gradual pairwise 
similarity to binary pairwise similarity is depicted in Figure 36, where the 
gradual similarity data in the left part of the figure is processed using a 
similarity threshold of 0.7 to receive the binary pairwise similarity data in 
the right figure part. In a general case, the resulting similarity relation is 
reflexive and symmetric, but not transitive. Hence, the construction of an 
equivalence relation, specifying the set model, requires further 
processing of the similarity data. 

In our analysis we receive input similarity data of both gradual and binary 
nature. Consequently, in the following subsections we discuss the 
concepts used in the processing of both these data forms. However, to 
support that discussion with respective analysis examples, in the 
subsection 5.4.1 we first present the asset content decomposition 
instantiated in our analysis implementation. Subsequently, in subsection 
5.4.2 we describe the algorithms used for structure correspondence 
identification, working on gradual similarity data, and in subsection 5.4.3 
we present the atomic element equivalence algorithms, using binary 
similarity data. Finally, in subsection 5.4.4 we discuss the consequences of 
the selected asset decomposition and equivalence identification approaches. 

Transformation 
of the data 
similarity form 

Algorithms and 
examples 

96 



Variant Similarity Analysis with Hierarchical Set Similarity Models 

5.4.1 An Instantiation of Asset Content Decomposition 

The objective of this thesis is to support the migration of variant 
software assets towards software reuse. In the most cases, the 
functionality of software assets is expressed in the form of source code. 
Hence, it is worthwhile for a similarity analysis approach to support an 
analysis on the source code level. However, multiple programming 
languages exist, and the followed programming paradigms and defined 
language grammars vary strongly. Consequently, an analysis which 
involves parsing the source code faces a tradeoff between broad 
applicability of the analysis and the technical difficulty of supporting the 
structural and syntactic forms of various source code languages. 

In the context of this thesis, we strive for both generality and simplicity 
of the analysis instantiation. The provided instance of similarity analysis 
should be applicable to a sufficiently broad range of software assets, 
while its implementation should mainly focus on the concepts related to 
the set similarity model and not on the peculiarities of a given 
programming language or asset-derived data structure. For these 
reasons, we define the following, language-independent decomposition 
of the asset source code to structural and atomic content elements: 

 The source code of the asset is decomposed according to the 
structure of its file system tree. Hence, the source code folders 
assume the role of Structural Containers, and the source code files 
are treated as Content-Filled Elements. 

 The content of each source file is treated as text, without considering 
the used programming language. Hence, a file is decomposed into 
text lines, which are the Atomic Content Elements of the analysis. 

 Furthermore, the decomposition can filter out the asset content parts 
which conform to the above decomposition rules but are not 
considered relevant for the analysis. For example, the non-source files 
located in the source folders, or empty text lines in the source files, can 
be ignored and hence not treated as analyzable content elements. 

The presented textual and file system based asset decomposition 
determines the nature of applicable equivalence relation definitions, as 
well as the scope of possible interpretations of the analysis result. 
Consequently, the construction of the structure tree set model involves the 
search for code files which correspond to each other across the asset variants. 
The construction of atomic element set model involves the search for 
corresponding text lines across the mapped source files. Finally, the results 
of similarity analysis, applied to the given asset decomposition, measure the 
textual similarity of asset implementation. The atomic content element set 
model of an asset contains all of the asset’s text lines, and the intersections 
of the asset element sets contain the text lines which are identified as 
common across the respective asset variants. In subsection 5.4.4 we provide 
a deeper discussion on the benefits and drawbacks of the above asset 
content decomposition and the equivalence relations defined on top of it. 
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5.4.2 Mapping Correspondences in Structure Hierarchies 

The construction of Structure Tree Element set model requires an 
identification of the tree elements which correspond to each other in the 
asset content structure hierarchies. Hence, the role of the Structure Tree 
Element equivalence relation is to construct a mapping of the variant 
structure trees onto each other. In an analyzed group of cloned asset 
variants, where each variant might further evolve after the cloning, a given 
Structure Tree Element can be assigned to one of the following three groups: 

The elements which existed in the original asset implementation and
were not moved in the structure hierarchy after the cloning.

The elements which existed in the original asset implementation, but were
moved to other location in the structure hierarchy after the cloning.

The newly created elements, which did not exist in the original
asset implementation and were added after the cloning.

Due to the cloning of the asset variants in the past, the corresponding 
Structure Tree Elements which were not moved are still located at the 
same asset root relative paths in their asset structure trees. Naturally, the 
content of any Structure Tree Element might also be modified, possibly 
to a significant degree, during the asset evolution. Hence, the 
equivalence relation on the Structure Tree Elements can be constructed 
based on two data sources. First, the similarity of the element location in 
the structure tree needs to be considered. In particular, the Structure 
Tree Elements having the same relative locations in the structure 
hierarchies are likely the elements which were not moved, and hence 
should correspond to each other – except if their content similarity is 
very low and other, significantly more similar elements exist. Second, the 
similarity of element content is also relevant for the equivalence relation: 
the mapping should identify tree element groups having maximal 
possible content similarity, and two cloned and subsequently modified 
elements are likely to be much more similar to each other than two 
unrelated elements. Hence, content similarity can be used to determine 
the corresponding elements which were moved in the structure 
hierarchy, or such newly created elements which are related despite 
having no common ancestor element. 

It is important to note that the input similarity of the variant structures and 
the classification of Structure Tree Elements based on their location 
similarity might not fully correspond to the original correspondences of 
tree elements resulting from their evolution history. First, two variant 
elements placed at the same tree locations could both represent the not 
moved elements, but it is also possible that one or both of these elements 
were moved or newly created and did not originally exist in their current 
tree locations. As these cases cannot be distinguished based on the tree 
structure alone, the content similarity can be used to justify whether such 
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elements should indeed be reported as related to each other. But, second, 
also the content of a tree element could be significantly modified during 
its evolution. Hence, corresponding files might be not recognized because 
of strong content modification, while unrelated files might be strongly 
similar due to e.g. using boilerplate code. In our analysis approach we are 
interested in finding asset parts currently exhibiting reuse potential, 
regardless of their evolution history. We accept the discrepancies listed 
above, such as e.g. not recognizing two dissimilar elements having shared 
history, since their low similarity would likely not allow for reuse introduction 
anyway. Consequently, in the context of our approach the mapping should 
represent the best possible result calculated solely on the basis of the 
currently existing similarity of asset element location and content. 

The Structure Tree Elements contain a potentially large number of 
Atomic Content Elements, which can be modified during asset evolution. 
Hence, a search for related tree elements having identical content would 
typically not return many results – it is much more likely that the content 
of the related elements is slightly different. Consequently, in case the 
content similarity is used for the identification of corresponding tree 
elements, their similarity should be expressed in the gradual pairwise form. 

In the file system based asset structure decomposition, used in our 
analysis instantiation, the role of the structure tree mapping is to verify 
the similarity of files located at the same locations in the file system tree, 
i.e. having the same paths and names, and to reconstruct the file 
movement operations performed in the evolving asset variants. In result, 
the mapping identifies the groups of similar files, which are likely to 
represent cloned variants traceable to a single code file from the primary 
asset implementation. Furthermore, strongly similar newly created files 
should also be identified – in the practice such files might be created by 
a subsequent small-scale cloning or they can otherwise represent 
potentially reusable functionality. 

Based on the above observations, our analysis instantiates the following 
three approaches to the identification of corresponding Structure Tree 
Elements across asset structure hierarchies: 

Location identity approach does not consider the content of the
tree elements, but only their location. The elements placed at the
identical tree paths are reported as equivalent to each other – for
example, for the file system trees the approach would report files
having the same tree root relative paths and file names. This simple
approach can only provide good results when the analyzed asset
structures have not been significantly modified after the cloning.
However, in the practice it was suitable for about 70% of software
system groups we analyzed.

Manual mapping approach can be used when the structure element
correspondences are known to the analyst or system developers. As
an automatic approach cannot provide a better result in that case,
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the corresponding elements are marked by a human. Alternatively, to 
reduce the effort, a human can review and modify the preexisting 
results of an automatic approach. In the practice, we applied the 
manual approach to about 10% of analyzed software system groups. 

Algorithmic approach involves the use of a formal algorithm. Several
concrete algorithms are imaginable here. In the context of our
analysis approach, two algorithms were developed:

An algorithm matching isomorphic subtrees between given tree
structures [Valiente 2001] was adapted to the file system
structure by Zahra [Zahra 2010]. Hence, the algorithm analyzes
only the input tree structures, where the tree elements are
labeled using file system names. The rationale for using the tree
structure based algorithm is especially to detect folder-level
rename and move operations, and to perform the mapping
without potentially time-consuming element content
comparison. However, this algorithm did not provide sufficiently
good results and was therefore not used in the practical analyses.

Tenev developed an algorithm for mapping multiple variants of
a connected graph (not necessarily a tree), which uses a
predefined distance function calculating the similarity of any
two graph elements [Tenev 2011]. In the case of file system
structure, the Levenshtein distance was used to evaluate the
content similarity of any two files. We applied the algorithm to
about 20% of software system groups we analyzed, and
received very good results (see Chapter 7 for more information
on the algorithm’s evaluation). In the following paragraphs, we
briefly discuss the details of the algorithm.

For the reasons discussed above, an algorithm for tree element mapping 
which relies on element content similarity needs to use gradual pairwise 
similarity. Furthermore, as the algorithm maps many variants of a tree 
structure, containing many tree elements, it should optimize its result in 
the following way: 

Local optimum for a given tree element in a pairwise mapping: when
mapping two tree structure variants, a given structure element
should be assigned to its most similar counterpart in the other
variant, unless the content similarity of even the best candidate is too
low to be meaningful.

Global optimum in a pairwise mapping: the achievement of the local
optimum for every tree structure element might be impossible, as the
proposed mapping choices might conflict with each other (e.g. two
elements might have the same most similar counterpart). Hence, the
globally optimal pairwise mapping should optimize the similarity of
the complete identified structure match, and might sacrifice the local
optimums of some elements, i.e. provide for them alternative less
similar counterparts, to achieve that goal.
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 Global optimum in mapping many structure variants: the identified 
pairwise element matches, calculated for each tree variant pair, might 
conflict with each other when building the transitive equivalence 
classes over all tree variants. For example, the two elements in a 
given pairwise match might be, based on the other pairwise matches 
involving these elements, optimally placed in two different 
equivalence classes. Hence, it might again be necessary to discard or 
correct some of the provided results, optimal from the point of view 
of a given variant pair, in order to achieve the global optimum 
similarity identified over all analyzed variants. 

Tenev provides an algorithm following the above optimization strategy, 
inspired by multiple alignment algorithms used in bioinformatics 
[Gusfield 1993]. The algorithm has a time complexity of O(n3k2log (k)) 
and requires O(n2k2) memory space, where n is the number of analyzed 
graphs (e.g. asset variants) and k is the number of graph elements 
(e.g. source files). 

In the first step, the algorithm computes the pairwise mapping for each 
pair of input asset variants. To achieve that, the similarity of all possible 
element pairs is computed using the defined distance function. Then, the 
element pairs are selected for the pairwise mapping using a greedy 
choice, starting from the most similar element pair. Naturally, every next 
element pair can only be selected for the result if it does not contain any 
of the elements already selected before. The selection process terminates 
if there are no more candidate element pairs, having similarity above the 
defined threshold, which can be added to the mapping result. In the 
result, an approximation of the globally optimal pairwise mapping 
is constructed. 

In the second step, the algorithm uses the prepared pairwise mappings 
to construct the final mapping for all input variants. This is done by 
iterative use of the Center Star method [Gusfield 1993], illustrated in 
Figure 37 on the next page. For each input graph variant, a cost function 
is calculated on all pairwise mappings involving that variant. In this way, 
a single variant having the strongest connections to all remaining 
variants is determined. Subsequently, the selected variant is used as the 
star center, that is, for each of its elements an equivalence class is built 
which includes the given element and all the elements from the other 
variants which were mapped to it in the pairwise mappings (even if these 
elements were not transitively mapped to each other). Hence, for n input 
variants only the n-1 pairwise mappings involving the star center variant 
are used to construct the equivalence classes. In this way, the use of the 
Center Star method is a form of global optimization, as it selects the 
pairwise mappings which lead to a better global mapping result. 
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Figure 37 The iterative Center Star method: in each iteration the star center variant is determined, 
and its elements are mapped using the center’s pairwise alignments. 

After every element from the star center was mapped, the process is 
iteratively repeated: the pairwise mappings between the remaining 
variants, reduced by removing the elements already mapped to the 
previous star center, are again input to a cost function which determines 
the next star center. After n-1 iterations all input variants are processed 
and the mapping result is complete. 

Note that the created equivalence classes can contain element pairs not 
included in the pairwise mappings (due to a possible transformation of a 
non-transitive relation graph into an equivalence class), while they might 
also miss some of the previously identified element pairs. However, as 
the element pairs are also constructed as a result of the tradeoff 
between the local and global pairwise mapping optimums, some of the 
pairs might also include two non-related elements or miss the related 
ones. To measure the consequent result quality, the algorithm should be 
therefore evaluated based on its final results, as discussed in Section 4.5. 
We discuss the algorithm evaluation in Chapter 7, using the text-based 
instantiation of the analysis approach. 

As defined in Section 5.2, the mapping of n input structure trees onto each 
other constructs a set model on the Structure Tree Elements, and 
consequently determines the form of the unified content tree representing 
the union of all input asset variants. The mapping only determines the 
equivalences of Content-Filled Elements, as the Structural Containers are 
always mapped to each other using the location identity approach. 
Consequently, the mapping algorithms described above only construct the 
correspondences for Content-Filled Elements, i.e. the code files. 
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5.4.3 Definition of Atomic Content Element Equivalence Relation 

After the structure tree elements are mapped to each other across the 
analyzed variants, the atomic element set models are built. For reasons 
analogical as in the case of tree elements, the identification of 
corresponding atomic content elements can be performed based on the 
similarity of their location and content. As the atomic elements represent 
small pieces of asset content, which usually do not have a meaningful 
internal structure, their similarity is frequently expressed in the binary 
pairwise form. This observation applies also to the atomic element 
analysis of our textual asset content decomposition, as described in the 
next paragraph. Hence, in this subsection we discuss the algorithms and 
approaches dealing with the construction of a set model based on binary 
pairwise similarity provided for the asset content elements. 

The file system based asset structure decomposition, used in our analysis, 
treats the source code files as text and divides the file content into text 
lines, which are the atomic content elements. Hence, the construction of 
the set model requires finding the text lines which correspond to each other. 
In the case of two analyzed files, the Longest Common Subsequence 
(diff) algorithm is most frequently used for this task in the practice. The 
text lines inside a file are ordered, and the result of diff is the longest list 
of lines which exist in both given files and occur there in the same order. 
Hence, we decided to create the text line set model based on the results 
of the diff algorithm. Using other algorithms, such as e.g. searching for 
similar text lines without considering their order, would also be possible. 
We prefer diff however, as its results, such as e.g. “these lines occur one 
after another in the second file, potentially with gaps”, are easier to 
interpret and more meaningful for developers than the results of line 
order independent algorithms, e.g. “each of these lines exists at some 
unspecified place in the second file”. In subsection 5.4.4 we present an 
approach for improving the results of diff with regard to the detection of 
non-identical, but still similar, text lines. 

Diff creates the text line similarity results in the binary pairwise form – 
that is, it identifies the line pairs containing the same text, while the 
remaining line pairs are considered dissimilar. The use of line ordering 
information allows for an unambiguous assignment of lines to each 
other, as required in our approach: even if multiple text lines identical to 
the sought line exist in the counterpart file, only one of these lines, 
determined by its location, is reported by diff in the resulting similar line 
pair. Moreover, no similarities between the lines of the same file are 
identified. Consequently, diff results constructed for a pair of files can be 
interpreted as a group of equivalence classes defined on the input text 
lines, and directly used to construct a set model for the input file pair. 
Finally, the results of diff contain no false positives, as no two different 
text lines are reported as similar. 
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Figure 38 Examples of non-transitive relation graphs constructed from the diff results. 

In the general case of n input files, the relation graphs created by 
2

)1(nn

pairwise diffs performed on these files are in over 99% cases transitive 
(see Chapter 7). The transitive graphs can be directly reported as 
equivalence classes. The remaining graphs of identified pairwise similarities 
are not only non-transitive, but they can also include more than one line 
originating from the same file (see Figure 38 for examples). These kinds of 
input irregularities can also occur for other similarity identification 
algorithms besides diff. Hence, in the general case an algorithm 
constructing equivalence classes out of non-transitive relation graphs is 
needed. The algorithm can optimize its result according to at least the 
following four, partially conflicting criteria: 

[OC1] Maximizing the amount of identified element pairs included in
the equivalence classes. For example, each line pair identified by diff
is correct, so they are all worth to be included in the result. However,
including all element pairs requires a transformation of non-transitive
relation graphs into equivalence classes, adding element pairs not
occurring in the input to the result. Also, the set model construction
principles forbid such transformation for graphs containing more
than one element originating from the same asset variant.

[OC2] Minimizing the amount of element pairs, which were not
included in the input, in the reported result. In particular, it is possible
to not include such pairs at all – in such a case, the equivalence
classes need to be built from transitive subgraphs of the input relation
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graph. Below, we discuss various possible solutions to that problem, 
following to a different degree the other optimization criteria. 

[OC3] Maximizing the size of identified equivalence classes. Large
equivalence classes are interesting in the context of reuse migration,
as the code parts recognized as shared by many asset variants
indicate more reuse potential than the code parts recognized as
shared by only few variants. However, defining possibly large
equivalence classes might conflict with the other criteria.

[OC4] Minimizing the amount of identified equivalence classes might
also help express the reuse potential. The minimal size of the
constructed equivalence set union can be used to estimate the
maximal reuse potential of the input assets, achieved when each
equivalence class is transformed to a reusable content element.
Again, this criterion in some cases conflicts with the others, as
discussed below.

Simultaneous optimization for the criteria OC1 and OC2 is addressed by 
existing algorithms for correlation clustering [Bansal 2004]. However, the 
assumption A4, discussed in Section 4.3, states that high certainty results 
should be preferred. Consequently, we decided to focus on the criterion 
OC2, and only include these element pairs in the result which were 
provided in the input while not allowing any other element pairs. Hence, 
we deal with the problem of covering the input relation graph with 
disjoint transitive subgraphs (cliques). Note that with that problem 
definition, the further problem of only creating equivalence classes that 
do not contain two elements from the same variant can be ignored – 
such two elements are not connected with a similarity relation, so they 
are never included in the same clique anyway. The clique coverage 
problem can be solved in the following ways: 

To optimize the criterion OC3, an algorithm searching for the
maximum clique can be applied iteratively on the relation graph.
Hence, the maximum clique possible for the given graph is found,
and the remainder of the graph is then covered with further disjoint
maximum cliques. Our implementation uses two variants of that
algorithm: a faster, approximated one and an exact one based on the
work of Tomita et al. [Tomita 2006].

Algorithms optimizing the criterion OC4, that is partitioning the input
graph into a minimal number of cliques, also exist [Tseng 1986].

The optimization of criterion OC1 involves determining a minimum
graph cut created by partitioning the graph into disjoint cliques. An
algorithm which can be used for that goal was developed by Ji and
Mitchell [Ji 2007].
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Figure 39 Example relation graphs and their alternative solutions. 

 Simultaneous optimization for multiple stated criteria is harder than 
for a single one. The listed algorithms can produce several solutions, 
which are equivalent from their criterion point of view but are not 
equivalent according to the other criteria. Listing all solutions optimal 
with regard to one criterion, and then selecting from them the best 
choice with regard to another criterion, might be in some cases 
a suitable strategy: 

 All solutions provided in the bottom left corner of Figure 39 
contain the minimum possible amount of 3 tuples, but the 
solutions denoted with (2) and (3) contain a larger maximum 
tuple and have a lower graph cut.  

 Both solutions provided in the bottom right corner of Figure 39 
contain the maximal possible clique of size 2, but only the 
solution denoted with (1) is optimal with regard to the amount 
of tuples and to the graph cut.  

 However, there exist cases where achieving a solution satisfying all 
three criteria OC1, OC3 and OC4 is not possible. Hence, a 
prioritization of the criteria is necessary: 

 Consider the upper left corner of Figure 39, where either the 
two criteria OC1 and OC3 or the single criterion OC4 can be 
fully optimized. The solution denoted with (1) contains the 
minimal number of equivalence classes, as specified by the criterion 
OC4, while the different solution denoted with (2) includes the 
maximum sized equivalence class and has the minimum graph cut. 
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In the upper right corner of Figure 39, the criteria OC1 and OC4
can only be achieved for non-maximal clique size (hence missing
the criterion OC3), while satisfying the criterion OC3 by creating
a maximal clique of size 4 leads to non-optimal solutions for the
other two criteria.

Finally, in some cases multiple solutions, optimal with regard to all
three criteria, can exist. For example, consider the solutions denoted
with (2) and (3) in the bottom left corner of Figure 39. In such a case, a
further criterion is necessary so that only one of these solutions is
consistently selected each time the given graph appears. We use a
prioritization of graph vertices, hence determining an order on them,
and select solutions where the larger tuples are created for vertices
having a higher priority. For example, if the vertex priority is noted
using the alphabetical order, solution (2) is preferred over (3) as vertex
C appears in the order before vertex F. In Chapter 6 we describe the
possibilities to provide a graph vertex order, solving the presented
choice problem, without violating the variant order independence
mandated by the construction requirements of our approach.

Applying the similarity data processing approach described above, in 
Figure 40 we provide solutions for the non-transitive diff relation graphs 
presented in Figure 38. The transitivity of diff-based input and the result 
quality of the maximum clique algorithm are evaluated in Chapter 7. 

Figure 40 Solutions provided for the relation graphs from Figure 38. 

5.4.4 Discussion 

In the previous subsections we presented a range of possible approaches 
and algorithms for constructing an equivalence relation out of initially 
non-transitive similarity data. The resulting equivalence relation differs 
from the input data: edges are removed or added to the input similarity 
relation graphs, and in the case of gradual similarity the input similarity 
values are not part of the result. Naturally, the difference between the 
originally detected similarity and the returned equivalence relation 
should be minimized. The degree of that difference depends primarily on 
the transitivity of the input data, and, to a lesser extent, is influenced by 
the applied transitivity algorithm. Hence, the type of the analyzed asset, 
and the definition of its structure decomposition which determines the 
applicable similarity detection approaches providing the input data, 
significantly influences the generally achievable quality of analysis result. 
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In a specific case, the degree of difference can also be higher for strongly 
dissimilar input asset variants, for example extensively modified during a 
long parallel evolution. In that case, the mapping algorithm might miss 
some corresponding structure element pairs (e.g. if their similarity degree 
falls below the acceptance threshold), and the corresponding atomic 
content elements might also be more difficult to find. This might cause 
an input relation graph to become non-transitive, despite an existence of 
a corresponding element group, and consequently lead to further 
element pair omissions during equivalence class construction. In any 
case, even if the provided input is highly transitive, it is still necessary to 
consciously select a transitivity algorithm suitable for the defined analysis 
goals. As discussed in the previous subsection, the form of the created 
equivalence classes and their difference to the input data can be 
optimized towards various criteria, affecting the meaning and interpreta-
tion possibilities of the analysis result. 

The form of presented mapping and transitivity algorithms is strongly 
influenced by the analysis assumptions listed in Section 4.3. First, the 
assumptions A1 (only considering similarity between the variants), A3 
(one-to-one correspondences), and A5 (transitivity), fundamental for the 
definition of the set similarity model, create the need for the presented 
algorithms and specify the form of their results. Second, the assumptions 
A2 (focus on high similarity input) and A4 (high result certainty) drive the 
design choices made while defining the algorithm details. Because the 
motivation of analysis assumptions, described in Section 4.3, also applies 
to the consequent set model algorithm choices, we do not repeat the 
respective discussion here. 

In our opinion, the disadvantages of ignoring a reasonably minor part of 
the similarity input during the construction of equivalence classes are far 
outweighed by the benefits of using the set model in result analysis. We 
provide a deeper discussion of that topic in Section 5.7 at the end of this 
chapter, when the full benefits of the set model usage are already 
described. Hence, in the remainder of this subsection we concentrate on 
the properties of the textual, file system based asset decomposition, and 
on its consequences for the similarity analysis. 

The textual asset content decomposition, and the choice of the diff 
algorithm as the basis for text line equivalence function, is motivated by 
its generality and simplicity. Regarding generality, the content of a broad 
range of asset types is physically stored in textual files, and can hence be 
processed by the analysis instantiation. Diff is frequently sufficient in the 
practice for comparing text-based files, even if their internal syntax and 
semantics is complex: a notable example is the use of diff by most 
configuration management systems for comparing versions and variants 
of source code files regardless of their programming language. 
Regarding simplicity, uniform processing of text line lists is much simpler 
than dealing with various structures of asset type specific abstract syntax 
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trees, for example depending on the programming language. 
Consequently, the analysis instantiation can focus on the aspects 
peculiar to the set model construction. 

Analogically, the decision to use a file system based asset structure 
hierarchy is also motivated by the concerns of generality and simplicity: 
file system hierarchies are commonly used, and the construction of other 
possible structures (e.g. namespace hierarchies) would require deriving 
semantic information from the file content, which is bound to a specific 
asset type. To provide results consistent with the text-based definition of 
file content similarity, the provided mapping algorithms, identifying 
corresponding similar files, also use text-based file similarity measures 
such as the Levenshtein distance.  

Finally, the simplicity of the defined decomposition, the high detail level 
of text analysis, and the use of well-known diff algorithm for similarity 
detection are likely to help technical stakeholders in understanding the 
analysis process and trusting its results. As discussed in Section 4.2, the 
factors of understandability and trustability are important for every 
reverse engineering technique. 

Alternatively, clone detection could be used for the similarity analysis of 
textual assets, as several text-based clone detection approaches exist 
[Roy 2007]. In that case, the mapping could measure file similarity using 
common clone coverage, and the atomic element similarity could be 
built using code clones expressed as blocks of corresponding lines or 
tokens. Furthermore, some clone detection approaches directly report 
clone classes instead of pairs, eliminating the need for transitivity 
algorithms. However, the clone classes cannot be used directly in the 
construction of a set model, as they might overlap (i.e. two classes can 
partially cover the same lines or tokens). Moreover, the overlapping 
clone classes might cover different file variant groups, and overlap only 
in some of the involved variants. Hence, compatible non-overlapping 
clone class coverage needs to be constructed. To retain a possibly high 
proportion of the input similarity data, the detected clone classes might 
be cut into smaller parts, possibly having different similarity relation 
graphs. Solving that problem is possible [Tenev 2013], but the involved 
algorithms and the interpretation of the constructed result are more 
complex compared to diff. 

The main disadvantage of text-based processing, ignoring asset content 
syntax and semantics, is the sensitivity to non-meaningful content 
changes. First, the content can be textually modified without syntactic 
changes, for example by adding whitespace characters or by changing 
the location or amount of line breaks. Second, the content might be 
modified to a syntactically equal form by renaming identifiers, changing 
variable types, or moving a line group to a different location in the same 
file. And third, a modification can replace the old content with a 
functionally equivalent, but syntactically and textually different form. 
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We support diff in detecting part of the above changes by performing 
user-configurable in-memory normalization of the input text. The 
simplest form of normalization performs line content modifications such 
as removing unnecessary whitespaces, character case normalization, 
string replacement (e.g. based on user-provided equivalent identifier list, 
such as compiler-specific keywords), and other rule-based replacements 
such as comment removal. Hence, we extend the pairwise equivalence 
relation implemented by diff, as the non-identical text lines which are 
equivalent with regard to the normalization can also be found. Further 
normalization includes filtering out unnecessary text lines such as empty 
lines or identifiable code blocks (e.g. multi-line comments). Finally, 
advanced normalization of the input code, involving parsing and syntax-
based transformations, can be performed by an external tool before 
running the diff algorithm [Roy 2009b]. The advanced normalizations 
used by Roy include pretty printing (nullifying the formatting 
differences), normalization of identifier names and data types, 
normalization of constants and literal values, and normalization of 
expressions (e.g. arithmetic operator changes). In this way, most 
categories of local code changes detectable by clone detection can be 
neutralized. In result, after normalization the code affected by these 
categories of changes is recognizable as similar by diff. 

There are two prominent remaining change categories not addressed by 
the normalization approach. First, due to the line order dependence of 
diff, it is still not possible to recognize an unmodified code part which was 
moved to a different location in the file. This problem could be mitigated 
by the use of a differencing algorithm detecting block moves, such as the 
algorithm of Tichy [Tichy 1984]. Second, the detection of code parts which 
remain semantically equivalent despite modification is not possible with 
the normalization approach, as it requires building a detailed, asset type 
specific model of the analyzed source code functionality [Gabel 2008]. 
Despite these deficiencies, a diff-based similarity analysis provides 
practically useful results, as reported in Chapter 7. 

5.5 Visualization 

Proceeding to the next phase of the analysis process, in this section we 
define various visualizations of the information stored in a hierarchical 
set similarity model. The defined visualizations are intended to support 
the human analyst in navigating and understanding the provided 
similarity information. As noted by Eick et al., visualizations of abstract 
data (i.e. non-physical objects) require effective visual metaphors [Eick 
2002]. Consequently, for the defined visualization concepts we discuss 
the analysis support rationale that led to their presented form. 
Accompanying the graphical visualizations, we also briefly describe the 
tables and data exports which provide a textual view on asset similarity. 
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The visualization of a hierarchical set model needs to include at least two 
basic views: a view presenting the similarity of a group of intersecting 
sets, and a view on the system structure hierarchy. We describe these 
views and their coupling in the following two subsections. Afterwards 
we describe further visualizations, which are aimed at the distribution 
analysis of similarity – either with the goal of understanding the 
distribution in general, or supporting the identification of specific asset 
elements interesting in the context of analysis goals. Finally, we present 
two views on the set model information answering specific analysis 
questions and visualized with phylogenetic trees: a dendrogram, which 
clusters the variant asset sets according to their similarity, and a 
cladogram which reconstructs their probable evolution history. 

5.5.1 Set Bar Diagrams: Visualizing the Similarity of Multiple Intersecting Sets 

The visualization of a set model should present the information about all 
analyzed sets and their similarity (i.e. their existing intersections) in a 
compact and understandable form. The most common method for 
visualization of a group of intersecting sets is a Venn diagram 
[Venn 1880], where the sets are presented as partially overlapping 
shapes (see the left part of Figure 41). A Venn diagram for n sets 
contains 2n-1 areas, corresponding one-to-one to all possible set 
intersections. The diagram displays hence the complete information 
about set similarity. Moreover, the set intersections which differ only by 
adding or removing one set are adjacent on the diagram, so that all 
intersections fulfilling a simple logical statement such as S1 S2 are 
conveniently grouped. 

Venn diagrams are intuitive and easy to understand for up to five sets, 
but for a higher number of sets the exponentially growing number of 
displayed diagram areas, and the need to use complex irregular shapes 
instead of ellipses [Ruskey 2005], makes them complex and difficult in 
interpretation. Furthermore, area-proportional Venn diagrams, visually 
indicating the relative sizes of the set intersections, were only 
demonstrated to exist for a low number of sets [Ruskey 2005], and the 
presented intersections still have varying shapes which hinders the visual 
comparison of their size. Finally, the fixed layout of adjacent set 
intersections prevents visual grouping of the intersections according to 
arbitrary criteria (consider e.g. a group of all intersections belonging to 
exactly two sets). Euler diagrams, which are a variant of Venn diagrams 
not displaying empty intersections, are slightly less complex for suitable 
data sets, but otherwise share the listed disadvantages. As in the practice 
an analysis of 20 or more cloned asset variants might be required, we do 
not consider Venn diagrams and Euler diagrams to be suitable for the 
defined application scenarios. 
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Figure 41 A Venn diagram for five intersecting sets (left) and the construction of a set bar diagram 
for these sets: the intermediate form (top right) and the final diagram form (bottom right). 

Therefore, we define a visualization of a group of intersecting sets in the 
form of a bar diagram, which eliminates most of the above disadvantages 
of Venn diagrams at the cost of displaying only a part of the available 
information at a time [Duszynski 2010a]. The construction principle of a 
set bar diagram is presented in Figure 41. A set bar diagram contains a 
single bar for each of the n sets, which represents all set elements, and 
one additional bar displaying the elements of the complete set union. All 
the bars in the diagram have equal width, and the length of each bar is 
proportional to the number of elements in the respective set. We 
categorize the set intersections (or, equivalently, the set elements) into 
three groups: core (belonging to all sets), shared (belonging to not all, but 
more than one set) and unique (belonging to exactly one set). Each 
element category is displayed in an own section of the bar, sized 
in proportion to its cardinality, and indicated by a distinct color. In the 
figure, the cardinality of each set or element category is indicated by a 
number placed on or near the bar section. These numbers can also be 
hidden in the diagram, and displayed in a tabular form instead. 

Due to the size-proportional visualization, a set bar diagram provides a 
quick overview of the amount of set elements falling into each of the 
defined categories, as well as over the sizes of the analyzed sets relative to 
each other and to the set union. The relative proportions of the three 
element categories allow for an initial estimation of the reuse potential of 
the asset parts represented by the displayed sets: a bar with a high core 
element proportion indicates a high reuse potential, while a bar with a high 
unique element proportion does not. The shared element category can be 
suitable for reuse to a different degree, as it contains elements shared by 2 
sets as well as by n-1 sets. Hence, the use of subset calculations is necessary 
to retrieve more information about these elements. 
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Figure 42 The visualization of an example subset calculation in the set bar diagram. 

Consequently, a fourth category of subset calculation elements can be 
built from the elements of the above three categories fulfilling a 
provided logical condition, and displayed on the diagram on demand. 
The visualization of a subset calculation, showing the set intersections 
specified by a logical condition, can be dynamically overlaid over the bar 
diagram as presented in Figure 42. Note that the subset calculation bar 
section is contiguous, except for a case when it is split into two parts for 
a calculation including core and unique elements, but only some or none 
of shared elements. Furthermore, it is possible to use different colors to 
visualize a group of subset calculations on the same diagram, as long as 
they are disjoint. This can be done for example to indicate the categories 
of elements shared by a different number of sets. 

In the practice, gaining an overview of the similarity of a group of sets 
typically requires displaying a group of bar diagrams, as each of the 
diagrams contains only partial information about the sets – unlike a Venn 
diagram, which shows the complete set similarity. However, a bar diagram 
can be also constructed and understandably visualized for a high number 
of variants, including a graphical indication of the relative sizes of the sets 
and their intersections, which is not possible for Venn diagrams. 

As the set bar diagram is based on the set similarity information only, it 
can be displayed for any set model constructed by the analysis. Hence, for 
any Structure Tree Element a bar diagram displaying the atomic content 
model of the element, as well as a bar diagram of the structure tree set 
model for the subtree rooted in the selected element, are available. 
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5.5.2 Visualization of Set Similarity in the Asset Structure Hierarchy 

During a similarity analysis, the visualization of the tree-based asset 
structure hierarchy should enable the analyst to explore the structure 
tree, recognize the elements which might be interesting in the context of 
the analysis goals, and request details for these elements. To provide the 
diagram space needed for displaying summarized similarity information 
for each currently visible tree element, we use a simple tree structure 
visualization inspired by UML package diagrams, which presents the tree 
elements in the form of nested rectangles (see Figure 43). In the 
visualization, each element rectangle is divided into up to three areas: 
the name area displaying the element type and name, the similarity 
information area described in more detail below, and, for Structural 
Containers, the content area displaying the child tree elements. As 
typical for tree-based visualizations, the non-leaf element rectangles can 
be expanded, displaying their immediate children at the next tree level, 
or collapsed, hiding all their children. 

Figure 43 Hierarchy structure visualization showing similarity information for each displayed element. 

The similarity information area provides a condensed view on the set 
model of the given structure element. It displays a single similarity bar, 
which is identical with the union similarity bar of the respective set bar 
diagram. Hence, the proportion of core, shared and unique elements 
indicates the overall similarity of the contained sets. As in the case of bar 
diagrams, the similarity bar can also display the proportion of set 
elements returned by a similarity calculation. Although the bar section 
proportions are preserved in each similarity bar, the bars belonging to 
different elements are drawn with the same size. The reason for that is 
that vast differences in possible element set sizes can exist on the same 
diagram, conflicting with the decision to use a fixed-size information 
area. Hence, additional textual information is provided below the 
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similarity bar: starting from the left side, the number of analyzed sets 
(i.e. element variants), the type of the shown set model (atomic or 
structural), and the size of the contained set union are displayed. Hence, 
an indication of the relative size of each element is provided, albeit not 
in a graphical form. 

The UML package tree structure visualization supports a top-down result 
exploration approach, where the user can start at the highest structure 
level and proceed stepwise to the details by expanding the elements that 
exhibit interesting concentrations of similarity. For each element, further 
similarity details are available on demand: all other types of diagrams 
defined in this section, for example the bar diagram, can be displayed for 
the selected element in a separate view. Moreover, the structure and 
similarity information can be filtered and otherwise configured before 
visualization. First, the displayed tree can include only elements fulfilling 
a predefined condition, for example the elements existing in a certain 
variant, having large sizes, or associated with a metric value above 
certain threshold. Second, the displayed similarity information can be 
based not on the set union, but on a specific variant set, and show the 
similarity bars corresponding to that set. Finally, the provided area can be 
used for displaying other information, for example the values of 
element-specific metrics defined in Section 5.6. Hence, the information 
display can be adapted to consider a specific analysis goal. 

The chosen visualization approach, providing an equally sized 
information area for each displayed element, allows for presenting a 
group of metric values or a small diagram for each displayed element. 
However, it causes the relative importance of the elements to be not 
directly recognizable in the visualization, preventing a quick analysis of 
similarity distribution. Furthermore, the structure diagram is less 
understandable when showing a large number of elements. In the 
subsection 5.5.3, we present two visualization approaches having the 
opposite properties – they graphically show relative element importance, 
also for a large number of elements, at the cost of providing only a 
limited information for each single element. 

Visualization of Code-Level Similarity 

For the analysis of text files, a text editor displaying the similarity 
information of individual atomic content elements (i.e. text lines) is 
provided in addition to the diagrams (see Figure 44). The editor can be 
started by selecting a file in the system structure diagram. In the editor, 
the similarity category of each text line (core, shared, unique, calculation) 
is indicated with line background coloring and a category icon – except 
for lines which were ignored during the analysis and consequently do 
not represent set model elements. For each line, a tooltip showing 
similarity information details is provided on user demand. Hence, the 
defined visualization mechanisms allow for accessing the set model 
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based similarity information on any level of system hierarchy – from the 
system structure root, representing the complete asset, down to every 
single atomic content element. 

Figure 44 Visualization of code-level similarity with line background coloring, category icons, and 
on-demand details. 

5.5.3 Visualization of Similarity Distribution 

The UML package tree structure visualization allows for navigating the 
system hierarchy towards the elements that exhibit interesting 
concentrations of similarity. Particularly, a non-leaf tree element can only 
contain a high proportion of similar code if the majority of its child 
elements are likewise composed of predominantly similar code. For 
example, the core source folder displayed in Figure 43 only contains about 
20% of non-core code. Hence, any of its child elements can only contain a 
low amount of such code, and the proportion of non-core code can only 
be high for small elements. However, the interactive exploration approach 
requires the user to traverse the structure tree, collect the similarity 
information, and reason about the relative element importance. In the 
process, some high similarity elements located together with groups of 
low similarity siblings can be overlooked, as their parent tree element 
exhibits a low overall similarity. Furthermore, estimation of similarity 
distribution inside a yet unopened tree branch is not possible. Hence, it is 
for example not known whether the contained atomic core elements are 
distributed proportionally among all child elements, or strongly 
concentrated inside just a few of them. To counteract the above 
deficiencies, we provide two visualizations of similarity distribution which 
do not require hierarchy traversing: a distribution diagram and a tree map. 

A distribution diagram for a given Structure Tree Element is constructed 
using the union similarity bars of all Content-Filled Elements located in 
the selected subtree (see Figure 45). The similarity bars are drawn 
vertically and placed next to each other. All bars are displayed with equal 

Line 
background 
coloringLine 

category 
icon

On-demand 
line status 

information

Filtered out lines: 
no coloring 

Status bar 
summarizing all 
lines in the file

Assessing 
similarity 
distribution 
using package 
view 

Similarity 
distribution 
diagram 

116 



Variant Similarity Analysis with Hierarchical Set Similarity Models 

height, still keeping the relative proportion of each similarity category in 
the bar, while the size of the respective element set is indicated using its 
width. Hence, the total width of the distribution diagram corresponds to 
the set union size of the selected Structure Tree Element whose children 
are displayed, and the area occupied by each element category on the 
whole diagram is proportional to the cardinality of that category.  The 
bars building the similarity diagram can be sorted from left to right 
according to various criteria, e.g. the proportion of contained core code 
or the size of their element set. The sizes of presented elements can be 
either displayed individually, or, as in Figure 45, successively added to 
indicate the cumulative code size of all elements between the left 
diagram edge and the current position. 

Figure 45 Distribution diagram visualization: the illustration of the construction principle, created for the io 
folder from Figure 43 (left), and a diagram screenshot for a large industrial system group (right). 

The distribution diagram has two basic usage scenarios. First, large 
structure elements containing e.g. strongly similar or dissimilar code can 
be visually identified based on their width, without the need to browse 
structure hierarchies. Second, the border lines separating the bars on the 
diagram can be hidden (see the right part of Figure 45). In that case, the 
similar code areas shown in the diagram present curves of total similarity 
distribution inside the selected structure element. The analysis of these 
curves might help in estimation of the reuse potential and in the size 
assessment of element groups having certain degree of similarity. For 
example, in the right part of Figure 45 the files containing 100% core 
code, grouped near the left edge of the diagram, constitute about 5% 
of the total code base, and the files containing 90% or more core code 
constitute about 15% of the shown code. Hence, the example analyzed 
systems contain about 300 KLOC of code which can be transformed to a 
reusable form with a likely low effort. 

Another visualization technique supporting a quick identification of 
characteristic tree structure elements is a tree map [Bederson 2002]. 
A tree map displays all elements of a tree at once (see Figure 46). The 
structure elements are visualized as rectangles, nested according to the 
tree hierarchy, and having areas proportional to their cumulative element 
size. Hence, a non-leaf element occupies exactly the same area as all its 
children, which are overlaid over it. Furthermore, each rectangle can be 
colored according to a metric value associated with the tree element.  
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Figure 46 Tree map visualization: the illustration of the construction principle, created for the src folder 
from Figure 43 (left), and a screenshot for a code folder from three BSD systems (right). The 
color intensity shows the proportion of core code in the set union of a given element. 

Hence, a tree map integrates the display of the system structure hierarchy, 
the relative element sizes, and an additional metric value shown for each 
element. In this way, it supports quick identification of elements with 
unusual sizes, unusual metric values, or both, while also indicating 
whether these elements are located nearby in the system structure. 

In our visualization, the size of the set union is used as displayed element 
size, and the elements are grouped according to the system hierarchy. 
The third category of visualized information, i.e. the metric, allows just 
for color-coding single values of enumerative or numeric type. Hence, 
the displayed element color can indicate either the proportion of a 
certain code category (core, shared, unique, calculation) in the total 
union code of the element, or it can be used for displaying other metrics 
such as those defined in Section 5.6. However, the tree map is not 
suitable for presenting values of more than one metric for the structure 
elements [Bederson 2002], which is a disadvantage when compared to 
the fixed-size package visualization. 

As in the case of package system hierarchy visualization described in 
subsection 5.5.2, the input similarity information displayed in the 
distribution diagram and the tree map can be configured to reflect a 
specific analysis goal. Hence, these visualizations support presenting 
filtered or variant-specific perspectives on the analysis models. 

A distribution diagram presents a compact high-level abstraction of the 
overall similarity distribution inside the selected subtree of the system 
hierarchy. Hence, it is suitable for gaining an initial overview of the 
distribution. The tree maps, on the other hand, are suitable for finding 
elements or element groups having a high value of the displayed metrics, 
e.g. reflecting the element variant similarity. However, both these 
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visualizations, due to displaying all hierarchy elements at once, can only 
present low amount of information for each element. Consequently, we 
see these diagrams as complementary to the UML-like package hierarchy 
visualization, as each of them provides a different perspective on the 
hierarchical set similarity model. Finally, presenting the similarity 
information of all elements in a tabular form, filtered and sorted 
according to user-specified criteria such as the proportion of core code, 
provides yet another perspective on the code similarity. While the tabular 
form misses most of the graphical visualization advantages, it can be 
used in a fashion similar to a database and quickly provide lists of sought 
elements, such as e.g. the files with the highest core code proportion.  

5.5.4 Size-Preserving Set Intersection Visualization 

The tree map visualization exhibits three properties which are not 
sufficiently supported by Venn and Euler diagrams. First, it presents a 
high number of diagram areas in an understandable way. Second, it 
graphically indicates the relative area sizes, which allows for quick visual 
identification of the largest areas. And third, it uses similar shapes for the 
shown areas, which facilitates their visual comparison.  

During a set model based similarity analysis, it is interesting to identify 
and compare the size proportions of the content element sets and their 
intersections. Hence, to support that analysis, we exploit the tree map 
advantages listed above by defining a tree map set diagram (see Figure 
47). In the diagram, the tree map areas are used to display set 
intersections instead of showing structure hierarchy elements. The name 
of each area indicates its membership in the input sets (in Figure 47 we 
use binary name coding for readability), and the area size corresponds to 
the cardinality of the associated set intersection. Consequently, the 
empty intersections are not displayed, analogically as in an Euler diagram. 

 

Figure 47 A Venn diagram for four industrial system variants, indicating the intersection sizes (left). 
The same intersecting sets visualized using a tree map set diagram (right). 
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Figure 48 Example hierarchy structures, created for four sets, which can be used in a tree map set diagram. 

The standard tree map visualization utilizes the system structure 
hierarchy to graphically group the elements which are located in the 
same structural container. This property can also be used to facilitate the 
understanding of the tree map set diagram. Naturally, a group of 
intersecting sets does not specify a hierarchical structure. However, a 
tree map cannot preserve the adjacency-based layout of a Venn 
diagram, which groups all intersections belonging to a given set in a 
contiguous area. To partially compensate for this disadvantage, an 
artificial structure can be defined on the set intersections: for example, 
all intersections fulfilling a specified condition can be grouped together 
in a structural container. Figure 48 presents three example definitions of 
a tree map set structure hierarchy. The first structure, grouping the 
intersections shared by a specific amount of sets, is used in Figure 47. 

Furthermore, the tree map area color can also be used to support the 
diagram understanding. In Figure 47, we reuse the set element category 
colors to emphasize the structure hierarchy and create a visual reference 
to the coloring used in other diagram types. Naturally, as in the case of 
the typical tree map visualization, the element color can also be used to 
indicate the value of any other metric. 

The tree map set diagram is in the practice suitable for visualizing code 
similarity of even 20 to 30 asset variants. Although 30 sets can in theory 
create over 109 intersections, the amount of non-empty intersections 
cannot be larger than the cardinality of the set union, as each such 
intersection contains at least one union element. Moreover, the existence 
of set intersections having high cardinality, frequent in the case of cloned 
asset variants, further limits the possible amount of remaining intersections. 
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In our experience, the analyzed asset element sets rarely create more than 
100 000 set intersections, and the visualization of that amount of areas is 
possible with the available tree map drawing tools. Finally, due to the size 
proportional visualization of a tree map, the small set intersections 
containing just a few elements are displayed as a single point or 
completely disappear from the diagram, and large groups of such small 
intersections are shown in the tree map as “boxes of sand” – areas densely 
filled with point-sized fragments, with visually recognizable summary size. 
Hence, typically a few hundreds of the largest set intersections remain 
identifiable on the diagram, which is sufficient for the analysis goal. 

The relation between the bar diagram and the tree map set diagram is 
analogical as the relation between the similarity distribution diagram and 
the structure tree map. While the bar diagram shows a compact high-
level abstraction of the set similarity, providing an initial overview, the 
tree map set diagram delivers a detailed indication of the most relevant 
set intersections. Hence, these two diagrams are based on the same 
similarity information, but respond to different analysis needs. 

The tree map set diagram allows the human to identify the most relevant 
set intersections and subsequently formulate subset calculations to verify 
the assumptions about overall set similarity. The results of the specified 
subset calculations can be in turn visualized in other diagrams, such as the 
package hierarchy diagram and the structure tree map, to provide the 
information about relative distribution of the calculated element 
categories in the system structure hierarchy. In this way, the visualizations 
defined up to the present point provide two complementary perspectives 
on the asset similarity, focusing either on the similarity of element sets, or 
on the projection of that similarity onto the asset structure. 

5.5.5 Similarity Visualization with Phylogenetic Trees 

The information stored in the set model can be used to answer a range 
of questions regarding the relative similarity of the input asset variants. 
For the frequent questions, it is worthwhile to automate the typical user 
steps leading to an answer and define suitable answer visualization. We 
define two such visualizations, based on phylogenetic trees, in a joint 
work with Vasil Tenev [Tenev 2012]. 

Similarity Clustering of Element Sets 

A frequent analysis concern is the identification of input variant pairs or 
groups which exhibit particularly high similarity. To automate the search 
for similar variant groups, similarity based clustering of the variant sets 
needs to be constructed and visualized. Dendrograms are a form of 
phylogenetic trees frequently used for this purpose. Hence, we construct 
a dendrogram using the set similarity information as input. 
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Figure 49 Dendrogram constructed for the full source code of six BSD systems [Tenev 2012]. The location 
of branching points corresponds to the similarity of the respective tree branches. 

A dendrogram visualizes the input asset variants as branches of a tree 
(see Figure 49). The construction algorithm starts from the top of the 
tree, where all the branches exist separately. In each iteration the 
algorithm finds two most similar branches and merges them, indicating 
their relative similarity with the location of the drawn merge point. 
Finally, only the tree trunk remains and the clustering is complete.  

The constructed tree visualizes the identified variant groups, using the 
branch layout, and indicates the relative similarities between and within 
the groups, using the branch length. Hence, an analyst can intuitively 
identify the similar variant groups, as well as the outlier variants with low 
similarity (for example, see the outlier 386BSD 0.1 system in Figure 49). 
Moreover, it is simple to assess whether the similarity of a variant group 
is high enough for the analysis goal. A dendrogram can also be a 
convenient starting point for formulating subset calculations, 
subsequently visualized in other diagrams. 

The dendrogram construction algorithm is based on the pairwise similarity 
distance between the tree branches. Hence, the information stored in a 
set model is sufficient for tree construction, and the dendrogram can be 
drawn for any set model, available on any structure hierarchy level in the 
analysis results. However, as discussed in Section 4.2.2, the pairwise 
similarity information does not adequately reflect all details of the similarity 
arrangement between the input sets. Moreover, several algorithms for 
branch weighting exist. The calculated weighted similarity of two groups 
can hide much higher or lower similarity values existing between some of 
member variants, depending on the algorithm. Finally, two variants with a 
minimally lower similarity value can be assigned to two different clusters, if 
only other variants having minimally higher similarity to these variants 
exist. Therefore, a dendrogram provides a helpful indication of the general 
clustering tendency between the input variants, but the gained insights 
need to be verified using more precise analysis means such as the 
quantitative results of the respective subset calculations. 
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Similarity-Based Reconstruction of Probable Evolution History 

Another analysis concern, particularly relevant for asset variant groups 
having a long evolution history, is the identification of evolutionary 
relationships between the variants. Reconstruction of the past history of 
variant cloning can provide important indications for subsequent reuse 
migration decisions, regardless of the current variant similarity:  

Estimation of the degree of change, experienced by a given variant
after the cloning, indicates the intensity of past maintenance
activities. Reuse introduction is more profitable for variants
experiencing intensive maintenance, as the reuse reengineering
investment pays off faster in their case.
It is helpful to identify whether the input assets group contains only
variants, developed in parallel, or if some of them are in fact asset
versions, developed one after another. In the embedded systems
domain, many versions of the same asset variant might need to be
maintained, as the customers using the earlier versions might
demand bug fixes while rejecting major version updates. However, in
most cases only the latest version of a given variant is relevant for
reuse migration – the maintenance of the earlier versions is typically
either planned to cease in the near future, or requires only a low
effort compared to the new version development.

As discussed in Section 4.1, the versions of an asset form a time-ordered 
list, while the variants are developed in parallel and cannot be ordered 
using an objective criterion. This property is also reflected in the similarity 
existing in a group of versions as compared to a group of variants: versions 
are similar to each other in a different way than variants. The last existing 
version k is typically the most similar to version k-1, a little less similar to 
version k-2, and so forth – the time ordering of versions can be hence 
reconstructed based on their similarity. In contrast to that, the similarity of 
variants is much more symmetrical and cannot be reduced to a linear form. 

Figure 50 depicts an example of a set similarity model for three variants 
and three versions, using area-proportional Venn diagrams. The version S1 
was developed as the first, and the version S3 as the last. Consequently, 
they are less similar to each other than to the intermediate version S2. 
Furthermore, their set model is also characteristic, as explained by the 
evolution-based interpretation of the particular set intersections: 

The intersection S1 S2’ S3 represents code that existed in version S1,
was removed in S2, but was again added in S3. This is not typical, as the
majority of code which was once removed does not appear again in
subsequent versions. Consequently, this set intersection is very small.

Similarly, the intersection S1’ S2 S3’ represents temporary code, added
in S2 but removed in S3. Again, this intersection is relatively small.

In contrast to that, the intersection S1’ S2 S3 is much larger, as it
represents the code added in version S2 which remained in use in S3.
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Figure 50 The similarity of a group of versions (left) as compared to a group of variants (right). 
The drawn Venn diagrams are area-proportional, i.e. the size of an area indicates its cardinality. 

In contrast to the set model of versions, the model constructed for 
variants is much more symmetrical due to their parallel evolution. For 
example, in Figure 50 the set intersections S1 S2 S3’, S1 S2’ S3 and 
S1’ S2 S3 have comparable sizes. While the set model of versions can be 
linearized by filtering out the set intersections having negligible sizes, this 
is not possible for the set model of variants. Hence, this property can be 
used to distinguish asset variants from versions. 

We use the set model information to identify the evolutionary 
relationships among a group of input asset variants (or versions) by 
constructing a cladogram, which is a type of phylogenetic tree designed to 
visualize this type of information (see Figure 51). We start by filtering out 
all set intersections with cardinality falling below a defined threshold – by 
default, 1% of the union code size. Then, we construct a Hasse diagram 
of the remaining intersections and lay out the diagram as a tree, with 
branch lengths proportional to the sizes of particular intersections. 

 

Figure 51 Cladogram constructed for the full source code of six BSD systems depicted in Figure 49 [Tenev 
2012]. The length of branch sections is proportional to the amount of common or unique code. 
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In most cases, the Hasse diagram can be unambiguously reduced to a 
tree, although sometimes a higher value of the filtering threshold might 
be needed to remove further intersections. If the transformation is not 
possible, the alternative solutions can be displayed as parallel, alternative 
tree branches, hence proposing more than one tree location for a given 
variant. The existence of alternative tree branches indicates that the 
involved assets are variants which contain large code parts shared by 
some, but not all of the parallelized variants. This can happen for 
example if significant code parts were exchanged between the variants 
not having a direct common cloning ancestor. 

The cladogram construction algorithm assumes that the software grows 
with time, i.e. a later software version contains more code than an 
earlier one. In most cases, this assumption is correct (see for example the 
three consecutive versions of the NetBSD system in Figure 51), although 
the opposite case of shrinking software can also exist. Moreover, in 
some cases the difference between two analyzed variants or versions can 
be smaller than the defined set intersection filtering threshold. In such a 
situation, these assets are represented by a single tree location, labelled 
accordingly with both asset names. 

The cladogram helps to distinguish asset versions from variants, and 
indicates the relative changes between them. However, as already 
discussed in Sections 4.1.1 and 5.4.2, the similarity of asset variants and 
versions might not always correspond to their real evolution history. For 
example, the system OpenBSD 2.0 branched off from NetBSD 1.1 (see 
Figure 2), and not from NetBSD 1.2 as indicated in Figure 51. Hence, the 
information displayed by a cladogram should be mainly used as an 
approximation of the evolution history when a reliable history record 
cannot be provided from other sources. Analogically, the similarity 
distance between two variants should not be confused with their 
maintenance intensity, as different variants might have different 
evolution paces. Instead, the maintenance intensity of a given variant 
should be estimated by comparing the degree of change with the length 
of time period a given variant exists. 

5.5.6 Discussion 

The visualizations presented in the current Section can be assigned to 
three categories: visualizations of set similarity (set bar diagram, tree map 
set diagram), projections of the set similarity onto the system structure 
(package hierarchy diagram, code similarity view, distribution diagram, 
tree map), and visualizations peculiar to a specific analysis question 
(dendrogram and cladogram). The visualizations present the hierarchical 
set model from various complementary perspectives, and are available for 
any set model existing at any level of the system structure hierarchy. 
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The set similarity and system structure visualizations can be modified by 
the use of subset calculations, visually emphasizing the set elements 
fulfilling a specified logical condition. Furthermore, the similarity 
information used in the system structure visualizations can be filtered, 
displaying e.g. only the structure elements having specified sizes, 
similarity properties, or variant membership. Hence, a specific diagram 
type can be used many times, also in an interactive way, to display 
different perspectives on the input asset variant similarity. 

The visualized information can be alternatively provided in a textual, 
tabular form. For example, the bar diagram section cardinalities, lists of 
hierarchy elements with associated similarity information and metric 
values, and even the complete table of all identified element equivalence 
classes can be displayed, exported, and processed with external tools 
such as spreadsheets and databases. This enables the user to filter and 
sort the information according to further criteria, also these which are 
not supported in the defined visualizations. 

Visualization of analysis results needs to comply with the same principles 
and construction requirements as the analysis algorithms themselves. In 
particular, the discussed diagrams were defined according to the analysis 
construction requirements described in Section 4.2: 

Complying with the requirements C1 (commutativity) and C2
(associativity), the visualizations do not distinguish any of the input
variants and treat all of them with equal importance, unless specified
otherwise by the user.

Information on all possible combinations of the variant intersections
is available (requirement C3), and it is provided on any system
hierarchy level down to the single atomic content elements
(requirement C5 – traceability).

The requirement C4 (information detail level) is achievable if the asset
structure decomposition distinguishes sufficiently detailed atomic
content elements. With this condition fulfilled, the defined
visualizations comply with the requirement C4.

The requirement C6, i.e. a result abstraction defined in a uniform and
scalable way regardless of the analyzed asset size and the number of
analyzed asset variants, is supported.

Indication of the relative size of variant sets and their intersections
(requirement C7) is supported.

Further visualizations of the hierarchical set similarity model information, 
for example using statistical graphics techniques such as histograms or 
scatterplots, can be defined. These diagram types could extend the 
available perspectives on the set similarity, supporting the identification of 
tendencies and correlations or the search for outlier elements. In the 
future work we intend to investigate the further possible visualizations and 
evaluate their resulting usefulness for the similarity analysis. 
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5.6 Metrics 

The set model provides detailed information on input asset variant 
similarity, which can be used in the context of the defined application 
scenarios. The provided information is quantitative, and calculations 
performed on that information such as e.g. the calculation of core content 
proportion can be used to select the asset elements suitable for the 
analysis goal. However, in some cases the set model information needs to 
be further examined to provide a more precise basis for result 
interpretation and reuse migration decisions, or to otherwise characterize 
the set model and the system structure. Consider the following examples: 

For a given source code file, containing e.g. 50% core code, the
estimated migration difficulty might depend on the distribution of
that code inside the file. A code composed of a single block, covering
50% of the file, is likely easier to migrate than strongly fragmented
core code located in every second line of the file.
Analogically, a file where the code belongs to many different set
intersections might be more difficult in the migration than a file
containing a low amount of intersections, despite the same degree of
overall similarity existing in both files.
The same observations apply to the higher structure level of source
folders and whole assets. For example, an asset containing 50% core
code, strongly concentrated in just a few files, might be easier to
migrate than an asset where the core code is distributed
proportionally and fills 50% of each code file.

Consequently, we define a group of metrics, characterizing the 
fragmentation and distribution properties of the hierarchical set model, 
which are intended to support the reuse decisions by providing additional 
relevant information. Based on the metric calculation basis, we divide the 
metrics into three categories: metrics characterizing a group of intersecting 
sets, metrics characterizing the distribution of these sets in the structure 
hierarchy, and metrics specific to the textual file system based asset 
decomposition. For brevity, we only catalogue and discuss the primary 
metrics, i.e. the metrics calculated directly on the model information. 
Naturally, in the analysis the metric values can be further combined, and 
their values can be aggregated (e.g. as the average or extreme values) and 
related (e.g. as values relative to element size or other metrics). The values of 
all three metric categories can be visualized on the structure diagrams 
described in the previous Section. The metric values can also be exported in 
a tabular form, processed (sorted, filtered) with external tools, and visualized 
with other diagram types such as histograms and correlation charts. 

Let’s denote the amount of analyzed variants as N, the variant sets as Si 
(where 1  i  N), the equivalence set union for the sets Si as U, the set 
of all equivalence set intersections for the sets Si as P, and the set of all 
elements of unified structure tree as T. Using that notation, in Table 7 
we define four metrics characterizing a group of intersecting sets. 
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Metric Calculation Formula Value Range 
Number of Non-Empty 
Set Intersections (NNESI) 

Count the intersections: 
card ( {p P : card(p) > 0} ) 

1..2N-1 

Size of the Largest 
Intersection (SLI) 

Select the largest intersection: 
MAX( card(p P) ) 

1..MIN(card(Si)) 

Entropy of the Set 
Intersection Sizes (ESIS) 

[p P]( – (card(p)/card(U)) / 
log2(card(p)/card(U)) ) 
Normalized: ESIS / log2(2N-1) 

0..log2(2N-1) 
Normalized: 0..1 

Relative Set Union Size 
(RSUS) 

( [i=1..N] card(Si)) / card(U) 
Normalized: (RSUS-1) / (N-1) 

1..N 
Normalized: 0..1 

Table 7 The metrics characterizing a group of intersecting sets 

Number of Non-Empty Set Intersections expresses the amount of
different intersections which need to be considered to fully cover all
content elements. A high number of intersections indicates a relatively
higher complexity of the similarity arrangement and a higher migration
effort, as each intersection potentially needs to be dealt with separately.

Size of the Largest Intersection is also relevant for the estimation of
migration effort. In case even the largest set intersection is relatively
small, the variant code is strongly fragmented between different
intersections and hence more complex from the reuse point of view.

Entropy of the Set Intersection Sizes measures the relative distribution
of content elements among the set intersections using the Shannon
entropy [Shannon 1948]. The calculated entropy value equals 0 if all
elements belong to just one intersection, and achieves the maximal
value if the elements are distributed evenly, i.e. every set intersection
has the same size. The metric can consider either all 2N-1 set
intersections, or only the non-empty ones – naturally, this needs to
be indicated when reporting the metric value. A variant code
concentrated in just a few set intersections, i.e. having a low entropy,
is likely easier to transform into a reusable form.

Relative Set Union Size (RSUS) describes the theoretical reuse potential
of the analyzed sets, achievable when each equivalence class is
replaced by a single, reusable content element. The metric expresses
the maximal factor of the input content size reduction achievable
through reuse – hence, the higher values indicate more reuse potential.
The minimal RSUS value of 1 is only achievable for completely disjoint
input sets, containing only unique elements, while the value of N
indicates that each element of the N input sets is a core element. Note
that the RSUS metric is also influenced by the shared content
elements and the amount of sets these elements belong to.

The set metrics defined above can be applied to any group of 
intersecting sets – for example, the metrics values can be listed for the 
content sets of all hierarchy structure elements in order to support the 
identification of the elements interesting for further analysis. The above 
metrics are equally applicable to the atomic content element sets as well 
as to the sets containing the structure tree elements. 
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Metric Calculation Formula Value Range 
Structure Elements 
Containing the 
Intersection (SECI) 

Given p P, count the  structure 
elements containing p: 
card( {t T : card(p in t) > 0} ) 

0..card(T) 

Intersection Entropy in 
the Tree Structure (IETS) 

Given p P and denoting (p:t) as the 
proportion of p in the content of t: 

[t T]( – ((p:t) / [t T] (p:t)) / 
log2((p:t) / [t T] (p:t)) ) 
Normalized: IETS / log2(card(T)) 

0..log2(card(T)) 
Normalized: 

0..1 

Table 8 The metrics characterizing the distribution of the variant sets in the structure hierarchy 

In Table 8 we define two metrics characterizing the distribution of the 
intersections of atomic content sets in the structure hierarchy. Both these 
metrics are calculated for a specified set intersection – it can be a single 
intersection, as well as a group of such intersections selected by a subset 
calculation. Because only Content Filled Elements contain the atomic 
content elements, the Structural Containers are not included in the 
calculation of the metrics value. The distribution metrics can be calculated 
for all Content Filled Elements in a tree, or for a specific selection of them, 
for example for the elements located in a given tree branch. 

Structure Elements Containing the Set Intersection counts the
Content Filled Elements in which at least one atomic content element
belonging to the given intersection is contained.

Intersection Entropy in the Tree Structure measures the relative
distribution of the intersection elements in the structure tree. The
entropy value equals 0 if the intersection only exists in one Content
Filled Element, and achieves the maximal value if the intersection is
distributed evenly, i.e. the atomic intersection elements proportionally
fill the content of all tree elements. The calculation uses the relative
proportions of the intersection size (p:t)/ [t T] (p:t), and not the
absolute cardinalities card(p in t)/card(p). The reason for that is that
Content Filled Elements have different sizes themselves. In case the
specified intersection has equal absolute cardinalities in the Content
Filled Elements having different sizes, these elements are filled with
the intersection content to a different proportion, and the
intersection is hence not distributed evenly.

Generally, set intersections having lower SECI and IETS values are 
concentrated and located in only a part of the asset, and might be 
therefore easier to manage in reuse migration. 

Finally, in Table 9 we define three metrics which are specific to the textual 
file system based asset content decomposition. In that decomposition, the 
content lines in text files are ordered, and their order is meaningful for the 
application scenarios as the small functionality fragments (e.g. methods) 
are implemented using consecutive code lines. The fragmentation of the 
text line list with regard to the similarity information is therefore relevant 
for the assessment of reuse migration or parallel maintenance difficulty. 

Set distribution 
metrics 

Textual 
decomposition 
metrics 
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Metric Calculation Formula Value Range 
Number of Fragments 
(NF) 

Count the fragments: 
card(Fi) 

1..card(Si) 

Size of the Largest 
Fragment (SLF) 

Select the largest fragment: 
MAX(card(f Fi)) 

1..card(Si) 

Fragment Entropy (FE) 
[f Fi]( – (card(f)/card(Si)) / 

log2(card(f)/card(Si)) ) 
Normalized: FE / log2(card(Si)) 

0..log2(card(Si)) 
Normalized: 0..1 

Table 9 The metrics characterizing similarity distribution in the textual file content 

Consequently, in the defined metrics we use the concept of a fragment, 
which is a group of consecutive lines belonging to the same set 
intersection. Each file can be unambiguously divided into such fragments, 
and there exists at least one fragment in each file. In the case of the set 
union, the file fragments do not exist physically. Hence, the above metrics 
are calculated separately for the elements of each variant tree, and their 
values for the union tree are provided as the maximum or minimum of the 
variant values, depending on the analysis goal. In Table 9, we denote the 
set of all fragments located in the files belonging to the considered variant 
structure tree or a tree branch as Fi. The defined metrics are: 

Number of Fragments counts the fragments existing in a given file. For
a folder, it reports the sum of fragment counts of the contained files.

Size of the Largest Fragment reports the largest fragment in a file. For a
folder, it returns the sum of largest fragment sizes of the contained files.

Fragment Entropy measures the relative distribution of the file
content in the fragments: the entropy equals 0 if the code is
concentrated in one fragment, and achieves the maximal value if the
code is composed entirely from single-line fragments. Hence, it
expresses the overall fragmentation of the code. The metrics
calculation is identical for files and for folders.

The above fragmentation metrics are intended to support the estimation 
of relative difficulty of the reuse migration and parallel maintenance 
tasks. A lower code fragmentation and a larger fragment size might 
indicate a lower transformation or maintenance effort, as the 
arrangement of existing code similarities is in that case relatively less 
complex and easier to understand and manage. 

In general, the software metrics provide a convenient way to identify 
locations or elements in a software system exhibiting a sought property 
(e.g. complexity, maintainability). However, as the given property is usually 
influenced by more context factors than these included in the metric 
calculation, the elevated metric values might in the practice not always 
correlate with the elevated occurrence of the sought software property 
[Lanza 2006]. Hence, a review of the identified locations is still needed to 
confirm their suitability for the analysis goal. This applies likewise to the 
metrics defined in this section. Nevertheless, it is an interesting future 
work to evaluate in the practice the predictive power of these metrics. 

Interpretation 
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5.7 Discussion 

The generic similarity analysis approach, discussed in this Chapter, is 
instantiated for a specific asset type by defining three analysis 
mechanisms: a decomposition of the asset content into structural and 
atomic content elements, an equivalence relation on the structural 
elements, and an equivalence relation on the atomic elements. The 
resulting analysis instantiation decomposes the content of input asset 
variants and expresses their similarity in the form of a hierarchical set 
similarity model. Accompanying the model, a group of defined 
visualizations and metrics supports the navigation and interpretation of 
the analysis results. The defined analysis and visualization concepts are 
generic, i.e. independent of the analyzed asset type. The generic nature 
of the approach is its strong advantage, since it broadens the possible 
approach application scope and allows for customization of the analysis 
according to the peculiarities of a given asset type. 

The similarity analysis approach is defined in conformance with the 
construction requirements discussed in Section 4.2. In particular, the 
approach and the constructed set model do not distinguish any of the 
analyzed variants, nor do they assume a specific variant order. 
Furthermore, the set model based similarity analysis fulfills all the criteria 
concerning the nature of the provided similarity information, discussed in 
Section 3.3, which are not addressed in their entirety by the other 
related approaches. In short, the stated criteria demand that full 
information details, as well as suitable abstraction mechanisms, are 
provided for the two dimensions of analysis problem complexity: the 
asset size (which can range to millions of code lines) and the amount of 
asset variants (where many tens of variants are possible): 

Regardless of the size of a structural asset or asset element, and of its
location in the structure hierarchy, the similarity of the asset variants
can be uniformly presented in the form of intersecting content
element sets. At the same time, the similarity information is traceable
to each individual asset content element. Given a sufficiently
restrictive equivalence function, the stored similarity information is
also precise in the sense used in Section 3.3 and the construction
requirement C4, i.e. it enables distinguishing even small, but
meaningful differences between the asset variants.

The set model expresses the similarity of even a large number of
input variants in an understandable way. At the same time, the
similarity information concerning any subgroup of the analyzed
variants is readily accessible, and is available on any system hierarchy
level down to the single content element.

Benefits: 
generality 

Benefits: 
abstraction 
and detail level 
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Consequently, we consider the hierarchical set model and the 
visualizations defined on top of it to be the main factor which enables the 
achievement of a scalable abstraction of the analysis result, despite 
preserving the full information detail, for both dimensions of the system 
size and the amount of variants. Furthermore, the scalable abstraction and 
the fulfillment of the remaining similarity information criteria discussed in 
Section 3.3 constitute the core reason for the benefits of our analysis 
approach as compared to the current state of the art. Hence, the set 
model is the main factor contributing to the fulfillment of practical and 
scientific improvements specified in our hypotheses in Section 3.4: 
reduced migration and maintenance effort, less missed reuse 
opportunities, and a faster and more correct assessment of asset variant 
similarity. In Chapter 7, we continue the discussion on the approach 
benefits by presenting the evaluations of the research hypotheses. 

The construction of the similarity model in the form of intersecting content 
element sets is only possible due to the restriction of the analysis scope, as 
defined by the analysis assumptions in Section 4.3. In particular, the set 
model exhibits two properties which limit the type of the storable similarity 
information: it does not consider similarities existing within a single set, 
and it requires that the similarity relation between the content elements is 
transitive. Therefore, the similarity expressed in the set model can differ 
from the original similarity existing in the input assets in two ways: some 
of the input similarity might be not reflected in the set model, while some 
additional similarity might be artificially added to the model (e.g. by 
constructing a transitive closure of the input similarity relation).  

The divergence between the set model similarity and the input similarity 
constitutes in our opinion an acceptable price paid in exchange for the 
benefits of using the set model. Especially in the context of the application 
scenarios intended for the analysis approach, which motivate the analysis 
assumptions and the resulting limitation of the model usage scope, the 
similarity divergence is either occurring mainly for non-relevant information, 
or it can be influenced to reduce its effect on the analysis goals: 

As discussed in Section 4.3, the similarities existing inside the same
set are not in the focus of the application scenarios – therefore their
absence in the set model is acceptable.

The amount of artificial similarity added to the result can be
minimized when choosing the analysis algorithms, at a possible cost
of ignoring a part of the original similarity information. The
optimization towards minimal or none artificial similarity leads to a
creation of analysis result which has a high certainty, which saves the
human effort as there is no need to verify the result manually. At the
same time, the possible omission of a small amount of similarity
relations, indicating potentially reusable element pairs, constitutes a
comparatively much lesser concern: although the reuse potential of
these elements is not exploited, overlooking their similarity does not
induce additional analysis or migration effort.

Limitations: 
divergence 
from the input 
similarity 

Benefits 
described by 
the hypotheses 
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We consider the benefits of the set model to be much more significant 
than its drawback of the restricted similarity information form, unless the 
resulting divergence from the input similarity is large enough to hinder 
the achievement of analysis goals. In the case of textual file system based 
analysis instantiation, using the diff algorithm, the divergence is relatively 
small (see Section 7.1) and the analysis goals are achieved in the practice 
(Section 7.3 and 7.4). However, an analysis instantiation for any asset 
type needs to be evaluated separately: the overall utility of the set model 
might vary for different asset types, depending on the degree to which 
the input similarity of these types is transitive. Furthermore, the 
properties of the used content decomposition and equivalence relations 
need to be known during result interpretation, as they likewise influence 
the utility of the approach instantiation. 

The property of transitivity, required in the construction of the set model, 
significantly influences both the benefits and drawbacks of the 
presented approach, and hence deserves a further discussion. The 
divergence between the set model and the original similarity is, to a 
large degree, created in the process of finding the transitive similarity 
relation most closely resembling the provided input. Hence, the negative 
consequences of that divergence can be to a large extent attributed to 
the transitivity requirement. However, the construction of a set model is 
not possible without transitive similarity, so that the set model benefits are 
also only achievable due to the transitivity. 

The main advantage of the transitive similarity form is that the 
interpretation of a transitive similarity analysis result is much easier than 
of a non-transitive one. Since any element of a transitively similar group 
is similar to any other element from that group, knowing the group 
members is sufficient to fully understand their similarity. In contrast to 
that, interpretation of a result which is not known to be transitive 
requires analyzing the topology of pairwise element similarity relations – 
a tedious task, which is complex and likely to induce mistakes when the 
group contains many tens of elements. In a controlled experiment, 
described in Section 7.2, we evaluated the effect of using the set model 
for presenting the similarity information of five source file variants as 
compared to presenting the same information in the pairwise form. The 
set model group performed the experimental tasks over twice as fast on 
average, while making over 90% fewer mistakes (see Section 7.2 for 
details and discussion). Between the two groups, the strategy of solving 
the (identical) experimental tasks mainly differed in the usage of result 
transitivity. Hence, in our opinion the experiment result supports the above 
claim of better understandability of the transitive similarity results. 
Admittedly, the experimental variable varied between the participant 
groups had a broader scope, as the complete underlying similarity model 
(set or pairwise) was varied. However, transitivity plays a central role in the 
interpretation of the set model information, and it is likely that it 
substantially contributed to the measured result. 

The role of 
transitivity 

Transitivity 
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Furthermore, note that even for a large number of content elements the 
similarity information stored in the set model is still available in its 
entirety. In contrast to that, the existing approaches using non-transitive 
similarity information, e.g. provided by clone detection, face the tradeoff 
between presenting the complete input information, which cannot be 
understood by a human in reasonable time when the number of elements 
is large, and abstracting that information in the form of pairwise 
similarity matrices or scatterplots, which by necessity ignore the topology 
of the similarity relation graphs. Hence, in the abstracted pairwise result 
it is not possible to recognize how the elements similar between variants 
A and B relate to the elements similar between B and C, and whether in 
both cases the same or different elements of variant B are reported (see 
Section 4.2.2). Hence, although the information provided by the non-
transitive approaches is technically fully correct, their abstraction 
mechanisms cannot express an important part of that information. 

Finally, the further activities performed on the identified similar asset part 
variants, such as merging their implementations to a single-copy 
reusable asset, are in most cases transitive in their nature. Hence, the 
transitive form of the analysis result corresponds to the nature of 
similarity relations sought in the context of the given application scenarios, 
and can be directly utilized in the consequent maintenance tasks. 

5.8 Summary 

Based on the formalization of variant similarity analysis described in 
Chapter 4, in this chapter we presented the main contribution of this 
thesis: the definition of the similarity analysis approach based on the idea 
of hierarchical set similarity models. We described the construction of a set 
similarity model with the use of an equivalence relation, and listed three 
analysis mechanisms which need to be defined in order to make the 
analysis applicable for a specific asset type. Subsequently, we integrated 
the set model with a tree-based model of a system structure hierarchy, 
hence creating the hierarchical set similarity model. The model uses set 
algebra to express the similarity of both atomic content elements as well 
as the system tree structures, and allows for evaluating the analyzed 
variant asset similarity at any level of the structure hierarchy. 

Using the properties of hierarchical set model, such as the need to establish 
variant structure correspondences before analyzing the atomic content 
elements, we motivated a generic similarity analysis process. In turn, we 
described the concepts and algorithms used in the respective process 
phases. We devoted particular focus to the set model construction, using 
two forms of input similarity data, and to the visualization of intersecting set 
similarity, allowing for understandable presentation of a high number of 
intersecting sets and a high number of structure hierarchy elements. 
Furthermore, we defined several metrics calculated on the set model 
information, intended to support the interpretation of the analysis results in 
the context of the application scenarios. Finally, we discussed the benefits 
and drawbacks of the presented analysis approach. 

Transitivity 
enables 
scalable 
abstraction 

Transitivity of 
maintenance 
activities 

134 



Analysis Tool Implementation Techniques 

6 Analysis Tool Implementation Techniques 

The purpose of this short Chapter is to present selected implementation 
techniques for the Variant Analysis approach. As previously discussed, it 
is required that the capabilities of the analysis tool scale according to the 
problem dimensions occurring in the practice: the input asset variants 
can contain millions of code lines, and many tens of variants can exist. At 
that problem scale, the structure and processing of the analysis data 
model need to be optimized to avoid performance problems. Hence, we 
address the optimization of the data structures storing the set model in 
Section 6.1, and the processing of these structures in Section 6.2. 
Furthermore, in Section 6.3 we discuss a technique to ensure a 
repeatable and consistent selection of analysis result despite the 
presence of multiple optimal solutions to a given analysis problem. 

6.1 Supporting Performance Optimization with Data Redundancy 

The construction of the set model requires that the asset content 
elements identified as similar are assigned to the same equivalence class. 
In the further processing, that assignment information is accessed in 
various ways. For a detailed analysis of the asset similarity, the exact 
locations of all elements equivalent to a given one are needed. 
Visualizations mainly use the statistical information on each equivalence 
class, i.e. its cardinality and the set membership of contained elements. 
Finally, subset calculations are also based on the set membership 
information. The structure of forward and backward references between 
the elements and their equivalence class, specified by the data 
metamodel in Section 5.2, needs to be supported with additional, 
redundant information to prevent performance problems: 

A unique integer identifier from the 0..N-1 range is assigned to each
of the N input asset variants. This storage order of variants does not 
influence the analysis result, but is only used to determine which 
object in a given list refers to which input asset variant. For example, 
the equivalence class object maintains a resizable array, storing 
pointers to the member elements at the positions referring to their 
asset identifiers (or null pointers if there is no equivalent element in a 
given content set). Hence, the pointer structure has a size of N and 
allows for constant-time access to any of its elements. 
The membership information, listing the content sets where the
equivalence class elements belong to, can be efficiently processed when 
stored in a bit vector. The vector abstracts the pointer array described 
above: at the respective bit positions, only ones and zeroes remain to 
represent the element pointers and null pointers. In our tool we use a 
32-bit integer to encode the bit vector, as supporting the amount of up 
to 32 variants was in the practice sufficient for all performed analyses. 

135 



Analysis Tool Implementation Techniques 

Figure 52 A data metamodel from Figure 31, with the additional attributes storing redundant, 
performance-relevant set model information. 

Furthermore, each equivalence class explicitly stores its cardinality
value. Although that value is redundant, as it can be calculated using
the pointer array or the bit vector, the cardinality of an equivalence
class is constant and only needs to be calculated once. Consequently,
the acquisition of data is optimized by reading the cardinality value
instead of calculating it again.

Finally, every equivalence class object contains a second bit vector
storing the results of subset calculations. The inclusion or exclusion of
the equivalence class in the result of a given calculation is
represented by the value of one bit. The result needs to be stored for
performance reasons, as it is subsequently used in visualizations,
metrics, and further calculations. Again, our implementation uses a
32-bit integer to store that bit vector.

In total, each equivalence class stores three additional integers, using 12 
bytes of memory. In other words, the additional information occupies 
about 12 MB of memory for each million lines of set union code, which 
is an acceptable overhead. In Figure 52 we show the data metamodel 
containing the additional, redundant information needed for the 
optimized set model processing. 

6.2 Efficient Evaluation of Subset Calculations 

The construction of the analysis data model is performed once, and it is 
acceptable if it runs for a few minutes for large asset groups. However, 
the subsequent browsing of the model should not involve noticeable 
delays even for large data structures. Hence, the data acquisitions for 
various diagrams and the subset calculations need to be performed in a 
fraction of a second. Such an operation might need to visit each asset 
content element from every variant, each equivalence class, or both, 
iterating over millions of elements. 
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Figure 53 A screenshot of the user interface for specifying subset calculation condition (called 
a “query” in the tool). 

In our tool implementation, the data acquisition operations involving 
only reading a group of variable values comfortably fit within the 
specified time limit. However, the subset calculations needed further 
optimization, described below, as they require that the membership and 
cardinality information is evaluated with the use of a user-specified 
logical condition. To retrieve any possible combination of the set 
intersections, our implementation provides the following possibilities to 
specify the logical condition (see Figure 53): 

Primary calculations are specified using the input set names. For each
set, the condition can affirm the set, negate it, or ignore it. For
example, for input sets S1, S2, S3 the condition S1 S2’ affirms the set S1,
negates S2, and ignores S3.

Optionally, a criterion on the equivalence class cardinality SHARED BY
FROM … TO … can also be specified as a part of primary calculation.

In a given calculation, all atomic formulas are connected with the
same logical operator, which can be either AND or OR.

Secondary calculations can be used to construct more complex logical
conditions by using other, already existing primary or secondary
calculations. Again, each used calculation can be affirmed, negated,
or ignored, and all non-ignored calculations are connected using the
AND or OR operator.

The use of negation and the AND and OR operators is sufficient to 
construct any combination of the input set intersections. The logical 
conditions using both AND and OR operators need to be constructed as 
secondary calculations, using the intermediate step of primary 
calculations to specify the single-operator formulas. The use of only one 
operator type in a given calculation has two advantages. First, it allows 
for unambiguous recognition of the operator precedence, as the 
operators of the previously existing calculations are evaluated first. 
Second, it enables the performance optimizations described below. 

Specification of 
subset 
calculations 
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The evaluation of the SHARED BY condition is quick, as the cardinality of 
a given equivalence relation, stored as its attribute, needs to be simply 
compared to the numbers specified in the condition. For the evaluation 
of the remaining calculation parts, note that the relevant information is in 
each case fully available in a single bit vector: the set membership vector 
for primary calculations, and the past calculations vector for the secondary 
calculations. To use that fact, we define further three helper bit vectors 
based on the specified logical condition. The bit positions in the defined 
vectors are analogical to the bit positions used in the original membership 
or calculation vectors. In the calculations on the bit vectors, we use the 
symbol | to denote bitwise OR operator, and the symbol & to denote 
bitwise AND operator. The helper vectors need to be calculated just once 
before iterating over the equivalence classes: 

 AFFIRM vector bits are set to one if and only if the respective set (or 
calculation) is affirmed by the specified condition. 

 Likewise, the NEGATE vector bits are set to one if and only if the 
respective set (or calculation) is negated by the condition. 

 The USED vector bits are set to one if and only if the set (or calculation) 
was not ignored by the query. Hence, USED = AFFIRM | NEGATE. As the 
condition needs to reference at least one set, we always have USED != 0.  

 Furthermore, we assume that a single condition does not affirm and 
negate the same set or calculation, i.e. that AFFIRM & NEGATE = 0. 
This assumption is not restrictive, as the calculations not fulfilling it are 
only those which return all set union elements (for OR operator) or no 
elements (for AND operator). 

Using the above three bit vectors, the logical condition specified by the 
calculation can be quickly evaluated on the respective bit vector 
EC_VECTOR of each equivalence class in the following way: 

 The equivalence class fulfills the condition using the AND operator if 
and only if EC_VECTOR & USED = AFFIRM. 

 The equivalence class fulfills the condition using the OR operator if 
and only if EC_VECTOR & USED != NEGATE. 

The EC_VECTOR bits which are not selected by the USED bit mask vector 
do not influence the calculation result. Hence, to verify the correctness 
of the above logical statements we only need to consider the 
EC_VECTOR bits for which exactly one from the respective AFFIRM and 
NEGATE bits are selected. 

 First, let’s consider a single EC_VECTOR bit: in Table 10 we present 
the evaluation of all possible single bit value combinations. The 
evaluated conditions, listed in the two rightmost columns of the 
table, provide correct results in all four cases. When the bit should be 
AFFIRMED, they return the value of 0 for the 0 bit and 1 for the 1 bit. 
When the bit should be NEGATED, they return the value of 1 for the 
0 bit and 0 for the 1 bit. 
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EC_VECTOR AFFIRM NEGATE USED 
EC_VECTOR 

& USED 

EC_VECTOR 
& USED 

= AFFIRM 

EC_VECTOR 
& USED 

!= NEGATE 

0 0 0 Not evaluated: bit not used 
0 0 1 1 0 1 1 
0 1 0 1 0 0 0 
0 1 1 Not evaluated: AFFIRM & NEGATE != 0 
1 0 0 Not evaluated: bit not used 
1 0 1 1 1 0 0 
1 1 0 1 1 1 1 
1 1 1 Not evaluated: AFFIRM & NEGATE != 0 

Table 10 Truth table evaluating the correctness of the quick evaluation expressions 

Now, let’s consider a multi-bit EC_VECTOR and a logical condition
using the AND operator. Every considered bit needs to fulfill the
condition. Hence, the vectors AFFIRM and EC_VECTOR & USED need
to be identical at every bit, and hence equal, as specified by the quick
evaluation expression.
For a multi-bit EC_VECTOR and a logical condition using the OR
operator, at least one bit needs to fulfill the specified condition. Hence,
there must be at least one bit where EC_VECTOR & USED differs from
the NEGATE vector. In other words, it is sufficient if these two vectors
are not identical, as specified by the inequality relation in the quick
evaluation expression.

Consequently, the fulfillment of a primary or secondary subset calculation 
condition for a given equivalence class can be evaluated with two simple 
operations, bitwise AND and equality testing, each of which is performed 
in a single processor cycle. The resulting calculations are very fast even for 
million lines of input code, as described in Section 7.1. Moreover, the 
calculation time is not influenced by the complexity of the used logical 
expression (e.g. the amount of used variables). In Table 11 we provide an 
example calculation of the conditions S1 S2’ and S1 S2’, performed on the 
input consisting of three asset variant content sets. 

EC_VECTOR 
(S1;S2;S3) 

AFFIRM NEGATE USED 
EC_VECTOR 

& USED 

EC_VECTOR 
& USED 

= AFFIRM 
(S1 S2’) 

EC_VECTOR 
& USED 

!= NEGATE 
(S1 S2’) 

000 100 010 110 000 0 1 
001 100 010 110 000 0 1 
010 100 010 110 010 0 0 
011 100 010 110 010 0 0 
100 100 010 110 100 1 1 
101 100 010 110 100 1 1 
110 100 010 110 110 0 1 
111 100 010 110 110 0 1 

Table 11 Example calculations using the quick evaluation expressions 
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6.3 Ensuring Repeatable Results for Multiple Optimal Solutions 

As discussed in Section 5.4.3, some of the analysis problems have many 
optimal solutions. For example, the transitivity algorithms described in 
Section 5.4 might find several equally good partitionings of the input 
similarity graph. Likewise, many longest common subsequences might 
exist for two input element lists. As only one of the optimal solutions can 
be stored in the analysis result, the tool implementation faces the 
problem of selecting these results in a consistent and repeatable way: for 
the same analysis input and parameters, the analysis should always 
return the same result. 

Frequently, an algorithm selects the first found optimal result and then 
terminates. However, the selected result might depend on the order of 
the input data or on other factors which are not directly related to the 
solved problem. For example, we observed that the most 
implementations of the diff algorithm might return a slightly different 
(but still optimal) result when the order of the two compared files is 
switched: they tend to maximize the length of contiguous line blocks 
reported for the first input file. Hence, comparing the two sequences 
“ABC” and “ACB”, these implementations return “AB” as the longest 
common subsequence, while for the reversed order of the sequences the 
result “AC” is reported. Hence, the use of the diff algorithm in variant 
similarity analysis enforces a decision on the relative order of each input 
variant pair. At the same time, as discussed in Section 4.1, the analysis 
result should not depend on the order of the input variants. 

To consistently return an identical analysis result despite input changes 
which are not relevant from the similarity point of view (e.g. input data 
order, names of assets or asset parts, etc.), we define a canonical order 
on the input variants. Hence, the asset or asset parts which are provided 
to an order-sensitive analysis algorithm are consistently ordered before. 
To eliminate the influence of external factors, the ordering criteria are 
based solely on the analysis-relevant information. For example, a group 
of files is sorted based on the amount of relevant content lines, and for 
equally sized files the lexicographical order of the first differing line pair 
is used. If no differing line pair can be found, the files are identical from 
the analysis algorithm point of view, and hence their relative order is 
irrelevant. Using the canonical order for the above example of two string 
sequences, the sequence “ABC” is ordered as the first, and the result 
“AB” is always returned. 

Using the canonical order, the analysis always returns the same result for 
the given input file group, as long as no analysis-relevant information is 
changed. The result is also identical for an identical file group which is 
found elsewhere, e.g. at a different location or in a different selection of 
input asset variants, as only the analysis-relevant file content is used when 
determining the order. Note that the canonical order is determined 
separately for each input file group belonging to the input asset variants. 
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The use of a canonical order solves both problems described above. First, 
in the case of externally implemented analysis algorithms it eliminates 
the influences of input element order on the provided result, occurring 
when the algorithms implicitly use the order to select one of the possible 
optimal solutions. Second, in the case of an own algorithm 
implementation the canonical order helps in an explicit selection of the 
single optimal result, as discussed in Section 5.4.3. At the same time, the 
canonical order does not violate the variant order independence 
mandated by the construction requirements of our approach: the 
provided analysis result is identical for any order of the input variants, 
and the canonical order has no influence on the result interpretation. 
Actually, the role of the canonical order is a positive one: it constitutes a 
mechanism which enables the analysis to achieve the order 
independence despite the use of order-dependent external algorithms 
and the existence of multiple solution optimums. Furthermore, as the 
provided analysis result is selected as one of a group of solutions optimal 
with regard to the specified analysis criteria, there is no other analysis 
problem solution better than the provided one, although there are many 
solutions which are equally good and differ in some details. 

On the implementation level, the repeatability of the provided analysis 
result can be further influenced by the nondeterministic behavior of the 
used data structures. For example, in the Java programming language 
the iteration order over elements stored in a HashSet or a HashMap 
might be different for two program executions run on the same data. 
Consequently, the resulting differences in element iteration order might 
override the canonical order, influence the order-dependent algorithms, 
and cause them to choose a different optimal solution. To prevent that 
influence, we avoid data structures with nondeterministic iteration order 
and use their deterministic variants instead (in the case of Java, these are 
the LinkedHashSet and the LinkedHashMap). 

6.4 Summary 

In this Chapter we discussed three selected implementation mechanisms 
for our analysis approach: the use of data redundancy for improving the 
data acquisition performance, the use of bitwise operations for a 
performant computation of subset calculation results, and the definition 
of a canonical order on the analysis elements which allows for a 
consistent and repeatable selection of a single analysis result from 
multiple optimal solutions. With these descriptions, we argue that the 
set model based similarity analysis can deliver its results in a performant, 
scalable and consistent way. Furthermore, in Chapter 7 we support that 
statement with performance measurements of our analysis 
implementation, performed for data sets of various sizes. 

Consequences 
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7 Evaluation 

The set model based similarity analysis approach, defined in the previous 
Chapters, is intended for the analysis of a group of cloned and modified 
software asset variants. Depending on the application scenario, the 
analysis results are subsequently used to plan a reuse migration of the 
input variants, or to support their further parallel maintenance. 
In contrast to the state of the art approaches, the hierarchical set model 
provides a scalable abstraction of the analyzed similarity information for 
both large software assets and a large amount of variants. Hence, we 
hypothesize that the use of the approach reduces the analysis effort and 
allows for better understanding of the similarity information. 
Furthermore, these analysis-time benefits should allow for a reduction of 
the overall migration or parallel maintenance effort, and lead to a higher 
degree of reuse achieved in the migration. Finally, we postulate that the 
results provided by the approach are correct and that the approach can 
be successfully used by the software development practitioners. 
A discussion of the above hypotheses was presented in Section 3.4. 

To substantiate the stated hypotheses, we use a range of evaluation 
means (see Figure 54). In an analytical evaluation (Section 7.1), performed 
on industrial, open source, and artificial software systems, we check the 
result correctness and collect measures concerning the input data 
transitivity and analysis performance. With a controlled experiment 
(Section 7.2), we investigate the differences in human analysis effort and 
in human understanding correctness between two forms of presented 
similarity information: pairwise and set model based. In an industrial case 
study (Section 7.3), we mainly look at the fulfillment of the practical 
hypotheses concerning the effort reduction and achievable reuse degree. 
Finally, in Section 7.4 we report on five industrial application experiences, 
where the approach was used by the author, other researchers, and 
software practitioners on software system groups from various domains.  

Figure 54 The overview of the practical and scientific hypotheses and the used evaluation means. 
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While the performed evaluations investigate the approach contributions 
from a variety of viewpoints, they are all performed based on a realistically 
available data input. Hence, the provided positive evaluation results are 
not a decisive proof of the approach benefits, but rather constitute data 
points which indicate that the hypotheses were confirmed in the example 
encountered context. The positive evaluation results increase the 
confidence that the defined approach indeed provides the stated benefits. 
Nevertheless, we consider a further approach evaluation to be a necessary 
part of the future work. 

7.1 Analytical Evaluation 

In this Section we report and discuss the results of a group of 
measurements, targeting the transitivity of the similarity data provided 
by the diff algorithm, the correctness of the overall approach result 
(hypothesis HS1), and the tool performance. We collected the 
measurements on three types of input software variant groups, having 
varying sizes and varying amount of member variants: 

Industrial software systems created with the use of cloning. The
selection of the system groups is limited to these for which we had a
sufficient source code access during the practical application projects at
Fraunhofer IESE. For anonymity reasons, we only provide the resulting
measurement data, but do not disclose the company names, product
names or other sensitive details.
Open source systems where multiple cloned variants exist and are
actively maintained. As the BSD Unix system family is the most
prominent case of a large-scale cloning of long-living systems, we
perform the measurements on selected groups of the BSD variants.
Artificial software systems generated by ForkSim, a cloned system
generation framework [Svajlenko 2013]. The sample data sets,
provided by the main ForkSim author Jeffrey Svajlenko, were created as
source clones of the JHotDraw 5.4 graphics framework and extended
by random injections of files and functions from the Java 7 SDK code.
The added code was modified in some variants and injected at same or
different locations. While the properties of artificial data sets might differ
from real system clones, their advantage is that the origin and location of
each code modification, and hence the information on all code
similarities, is exactly known. Using a group of artificially created systems,
the similarity analysis results can be evaluated for correctness against
the known similarity – which is not possible for real system clones.

The measurements were performed on a computer equipped with a 
2.53 GHz Intel Core2 Duo processor, 2 GB RAM and 32-bit Windows 7 
operating system. Our tool implementation, based on the Fraunhofer 
SAVE framework [Duszynski 2009], is implemented in the Java 6 
programming language, uses Eclipse Modeling Framework for data 
model management, and runs as a set of Eclipse plugins under 
Eclipse 3.7. All analysis procedures, except for the multiple alignments 
mapping algorithm, use a single processing thread. 

The analyzed 
system types 
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In Table 12, we present the analyzed variant system groups in more detail. 
We analyzed three industrial system groups of various sizes: the group 
Ind_Small represents one of the smallest real-world analysis problems, 
while the other two groups are typical for the analysis problem dimensions 
occurring in the industry. Subsequently, we analyzed four BSD Unix 
variants released in a similar time. Before that time, OpenBSD did not yet 
exist, while the development of the “standard” BSD Unix ceased after the 
4.4 Lite 2 release. Hence, only during the selected time as many as four 
large BSD variants existed simultaneously. In addition, we analyzed the 
BSD_15 system group – although these systems are both variants as well 
as versions of each other, we analyzed that large group to test the 
approach scalability. Finally, we analyzed five artificial system groups, 
created using different generation settings (see Table 12 for details). The 
reported code size does not include empty (whitespace-only) lines, while 
all remaining file content (import declarations, comments, etc.) is included. 
The file count considers only code files: configuration files and the 
remaining textual files were ignored in the analysis. 

System 
Group Id 

Description 
Number of 

Systems 
LOC 

(Min-Max) 
Files 

(Min-Max) 
Ind_ 
Small 

Industrial embedded software:  2 variants of 
a machine controller driver for various hardware, C 

2 
    31,685 
to 35,340 

38 

Ind_ 
Medium 

Industrial embedded software: automotive controller 
with variants for various customers, C/C++ 

12 
    31,402 

to 179,299 
   139 
to 534 

Ind_ 
Large 

Industrial embedded software: 4 variants of a 
machine control system, various functionality, C/C++ 

4 
    1,122,110 
to 1,526,155 

   3,540 
to 4,555 

BSD_4 
The full usr/src code of four BSD Unix variants 
released in 1995 and 1996: 4.4 BSD Lite 2, 

FreeBSD 2.1.5, NetBSD 1.2, OpenBSD 2.0. C/C++ 
4 

    2,275,711 
to 3,604,446 

  6,921 
to 11,193 

BSD_15 

The full usr/src code of fifteen BSD Unix releases, 
developed between 1992 and 1999, belonging to 

four BSD variants: BSD (4.4, 4.4 Lite 2), 
FreeBSD (2.0.5, 2.1.5, 2.2.5, 3.0), NetBSD (1.0, 1.1, 
1.2, 1.3, 1.4.1), OpenBSD (2.0, 2.1, 2.3, 2.4). C/C++ 

15 
   1,885,612 
to 4,808,638 

 6,302 
to 15,730 

Gen_4 

4 generated variants based on JHotDraw (original 
system size: 285 files and 34,513 lines). The new 

code was injected into up to 3 variants and modified 
with 50% probability. Java 

4 
 55,371 

to 111,713 
   361 
to 636 

Gen_5A 
5 generated JHotDraw variants; new code injected into 

up to 4 variants, 50% modification probability. Java 
5 

    45,313 
to 82,681 

   311 
to 393 

Gen_5B 
5 generated JHotDraw variants; new code injected into 

up to 4 variants, 50% modification probability, 
increased number of injected files and folders. Java 

5 
 64,051 

to 110,322 
   413 
to 671 

Gen_5C 
5 generated JHotDraw variants; new code injected into 

up to 5 variants, 50% modification probability, 
increased number of injected files and folders. Java 

5 
 98,145 

to 114,258 
   489 
to 574 

Gen_6 
6 generated JHotDraw variants; new code injected into 

up to 5 variants, 50% modification probability, 
increased number of injected functions. Java 

6 
    57,352 
to 79,273 

   380 
to 444 

Table 12 The analyzed variant system groups 

Analyzed 
system groups 

145 



Evaluation 

System 
Group Id 

Set Union 
Size 

Core 
Code Size 

Unique 
Code in 

the Union 
Union Similarity Bar 

Number of 
Non-Empty 
Intersections 

Relative 
Set Union 

Size 
Ind_Small 38,203 28,822 9,381 3 1.754 

Ind_Medium 205,134 24,112 20,388 273 6.527 
Ind_Large 2,215,140 663,618 534,853 15 2.382 

BSD_4 5,687,835 932,767 2,846,787 15 1.954 
BSD_15 16,240,391 292,789 6,744,827 3,251 2.921 
Gen_4 136,421 34,616 31,170 15 2.524 

Gen_5A 101,223 34,371 38,347 31 2.972 
Gen_5B 151,175 34,936 36,036 31 3.172 
Gen_5C 155,410 72,387 35,148 31 3.414 
Gen_6 104,167 34,272 21,022 63 3.905 

Table 13 A short description of the analyzed systems’ similarity 

Table 13 presents a shortened description of the analyzed systems’ 
similarity. The system files were first matched to each other using the 
mapping algorithm specified in Table 14, and subsequently the file 
content was compared using diff. For the content comparison, the leading 
and trailing white spaces were removed from content text lines to nullify 
their influence of the reported similarity. Apart from that, no other text 
filtering or normalization operations were used. 

In the created results, note the high similarity of all three industrial systems 
groups. The proportion of unique code is low in each industrial group. 
In the Ind_Small group, the core code constitutes at least 80% of each 
variant’s code. In the Ind_Medium group, the set union size is 6.5 times 
smaller than the sum of variant sizes – despite a relatively small core, there 
exist sizable code fragments shared by many variants. Finally, the core of 
the Ind_Large group constitutes at least 43% of each variant’s code. The 
high similarity of the presented system groups is in our experience typical 
for the industrial cloned system variants, which motivates the design 
decisions of our approach discussed in the previous Chapters. 

7.1.1 Performance and Scalability 

Table 14 presents the performance and scalability measurements of the 
approach implementation. The run times and memory use were measured 
by system function calls embedded in the tool code. Due to the use of the 
Eclipse Modeling Framework data model, all measurements do not 
concern the pure analysis algorithms measured in isolation, but rather by 
necessity include the overhead of creating and iterating over the EMF 
object structures. Hence, the measured run times are longer and the 
memory use is larger than the values necessary for the analysis alone (for 
example, see the mapping run time of the BSD_15 systems and the 
memory use of the Ind_Small systems). Hence, the measurements should 
be interpreted as the practical time and memory requirements of the 
analysis tool realized in the given technology. 
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 System 
Group Id 

Mapping 
Algorithm 

Mapping 
Time 

Total Analysis 
Time 

Total 
Memory Use 

Subset Calc. 
Time 

(Min-Max) 
Ind_Small Location Identity 0.046 s 1.48 s 223 MB 1-4 ms 

Ind_Medium Alignments 1,204 s 1,270 s 731 MB 8-12 ms 
Ind_Large Location Identity 5 s 263 s 1,152 MB 94-102 ms 
BSD_4* Alignments 13,069 s 13,611 s 65,101 MB 204-216 ms 

BSD_15* Location Identity 189 s 3,374 s 43,822 MB 486-578 ms 
Gen_4 Alignments 71 s 81 s 413 MB 7-11 ms 

Gen_5A Alignments 63 s 71 s 320 MB 4-9 ms 
Gen_5B Alignments 132 s 145 s 478 MB 6-12 ms 
Gen_5C Alignments 138 s 150 s 425 MB 6-12 ms 
Gen_6 Alignments 119 s 129 s 382 MB 4-9 ms 

Table 14 The performance and scalability measurements 

In the analysis, we used either the location identity or the multiple 
alignments mapping algorithms. For industrial system groups, we used the 
multiple alignments algorithm only if it resulted in a significantly higher 
found similarity, which was the case for Ind_Medium systems. For the 
artificial system groups, we always used the multiple alignments algorithm 
as we also needed it for the evaluation of approach correctness, described 
later in this Section. Finally, for BSD_4 systems the multiple alignments 
algorithm resulted in a higher found similarity, but we were unable to use 
that algorithm for BSD_15 systems due to its memory requirements. 

The 32-bit Java virtual machine is only able to allocate about 1.5 GB of 
memory, which is not sufficient for analyzing the BSD_4 and BSD_15 
system groups. Hence, we analyzed these groups using a different 
computer equipped with 64-bit Windows 2008 operating system, 24 
processor cores running at 2.80 GHz, and 64 GB of memory. Note that as 
only the multiple alignments mapping algorithm is parallelized, the high 
amount of cores does not affect the comparability of the remaining time 
measurements. In Table 14, we indicated the use of the different hardware 
with a star symbol (*) placed next to the BSD system group names. 

The measured results show that using a relatively modest contemporary 
hardware configuration, an analysis of all except the largest system groups 
is possible. Except for the alignment mapping or the large BSD system 
groups, the similarity analysis and the construction of the hierarchical set 
model is performed within few minutes. In case the multiple alignments 
algorithm is used, it dominates the time and memory requirements of the 
implemented tool. In the subsequent result interpretation phase, for all 
system groups no user-noticeable delays were observed during result 
browsing and diagram construction. This is exemplified by the measured 
subset calculation times. For each system group, we performed 10 
measurements, formulating different logical conditions and using both 
primary and secondary calculations. The calculation time did not exceed 12 
ms for medium-sized system groups, and the longest time of 578 ms was 
measured for the BSD_15 system group having 16 MLOC of set union code. 

(* used different hardware, see below) 
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7.1.2 Input and Result Transitivity 

In Table 15 we report the transitivity-related measurements performed 
on the input similarity data provided by the diff algorithm. First, we 
counted the provided similarity graphs, with nodes representing text lines 
and edges representing their binary similarity relations identified by diff. 
Second, we distinguished between the transitive and non-transitive graphs: 
as each analyzed graph is contiguous, the transitive graphs are complete 
and can be directly reported as equivalence classes. Third, we processed the 
non-transitive graphs (see Section 5.4.3 for details) to split them into 
transitive subgraphs. Consequently, the final amount of graphs reported in 
the result (i.e. the amount of the equivalence classes, equal to the size of the 
set union) is higher than the amount of input graphs. Finally, we counted 
the edges belonging to each graph category. For the measured systems, at 
least 99.56% of input graphs, containing at least 97.52% of input edges, are 
transitive. The final analysis result contained at least 99.25% of input edges. 
As discussed in Section 5.4.3, no artificial edges were added to the result. 

Graphs Edges 

System 
Group Id 

All Input 
Input 

Transitive 

Input 
Non-

Transitive 
Result All Input 

In 
Transitive 

Graphs 

In Non-
Transitive 

Graphs 

Removed 
from the 

Result 

Ind_Small 38,203 
38,203 
100% 

0 
38,203 
+0% 

28,822 
28,822 
100% 

0 0 

Ind_Medium 200,319 
199,750 
99.72% 

569 
0.28% 

205,134 
+2.40% 

5,542,092 
5,472,550 
98.75% 

69,542 
1.25% 

23,561 
0.43% 

Ind_Large 2,184,673 
2,175,073 
99.56% 

9,600 
0.44% 

2,215,140 
+1.39% 

5,144,634 
5,063,006 
98.41% 

81,628 
1.59% 

38,823 
0.75% 

BSD_4 5,658,176 
5,639,487 
99.67% 

18,689 
0.33% 

5,687,835 
+0.52% 

8,984,972 
8,875,337 
98.78% 

109,635 
1.22% 

39,415 
0.44% 

BSD_15 16,103,634 
16,049,242 

99.66% 
54,392 
0.34% 

16,240,391 
+0.85% 

122,905,536 
119,856,941 

97.52% 
3,048,595 

2.48% 
654,267 
0.53% 

Gen_4 136,333 
136,268 
99.95% 

65 
0.05% 

136,421 
+0.06% 

345,351 
345,007 
99.90% 

344 
0.10% 

142 
0.04% 

Gen_5A 101,005 
100,858 
99.85% 

147 
0.15% 

101,223 
+0.22% 

455,040 
453,669 
99.70% 

1,371 
0.30% 

478 
0.11% 

Gen_5B 151,003 
150,879 
99.92% 

124 
0.08% 

151,175 
+0.11% 

686,227 
685,129 
99.84% 

1,098 
0.16% 

381 
0.06% 

Gen_5C 155,035 
154,799 
99.85% 

236 
0.15% 

155,410 
+0.24% 

863,365 
861,286 
99.76% 

2,079 
0.24% 

745 
0.09% 

Gen_6 103,678 
103,372 
99.70% 

306 
0.30% 

104,167 
+0.47% 

803,648 
799,728 
99.51% 

3,920 
0.49% 

1,183 
0.15% 

Table 15 The transitivity measurements for all variant groups 
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Considering the high proportion of transitive input graphs, the set similarity 
model is in our opinion suitable for storing and analyzing the diff-based 
similarity information. Furthermore, the high proportion of input edges 
which are included in the final analysis result, and the lack of artificially 
added edges, make the analysis result trustable and dependable for the 
defined application scenarios. Naturally, the input system groups provide just 
example data points and do not allow for a statistically significant analysis. 

At this point, it is interesting to ask whether, and under which conditions, 
the similarity provided by diff can be strongly non-transitive and hence 
unsuitable for the analysis goals. Based on the data in Table 15, there 
seems to be no single measured factor correlating with lower transitivity: 

The proportion of non-transitive graphs is similar in all real-world
system groups (0.28% to 0.44%), regardless of their size and the
amount of member systems. The artificial systems contain less non-
transitive graphs (0.05% to 0.30%), which might be a side effect of
the generation process.
Naturally, the graphs created for a higher amount of systems contain a
larger number of edges (e.g. on average there are 5.9 edges for BSD_4
graphs, but 122.2 edges for Ind_Medium graphs). However, the data
suggests that there is no strong correlation between the amount of
non-transitive graph edges and the amount of removed edges. In
Table 15, between 21% and 48% of the input non-transitive graph
edges needed to be removed. The proportion of removed edges
varies strongly for groups containing a similar number of systems.
Interestingly, the proportion of removed edges is the highest for the
Ind_Large group, containing just 4 systems, and the lowest for
BSD_15 group containing 15 systems.
Furthermore, there seems to be no clear correlation between the
amount of analyzed systems and the transitivity of the result. Although
lower transitivity could be expected for a higher number of variants, the
lowest result transitivity value was measured for the Ind_Large group.
Consequently, we initially conclude that the individual content
topology of the analyzed system groups, defining the layout of the
non-transitive graphs, is a factor having much more influence on the
result transitivity than the amount of grouped variants or the proportion
of non-transitive edges. Hence, the result transitivity and the suitability
of the system group for a set model based similarity analysis cannot be
estimated in a simple way before the actual analysis.

To reduce the influence of the individual content topology on the 
measurements of result transitivity, we performed a further analysis on a 
single system group, the Ind_Medium systems. We selected that group as 
it contains a high number of real-world variants. From the initial group of 
12 systems, in each iteration we removed one system, performed a new 
analysis, and measured the result transitivity, until two systems remained. 
For consistency, we always preserved the initial analysis settings and we 
reused the mapping previously constructed for 12 systems. 
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When removing the single systems in the analysis iterations, we 
effectively needed to define a removal order on the variants. However, 
as no variant order can be distinguished (see Section 4.1), and there exist 
12! possible orders for Ind_Medium systems, we decided to at least run 
the analysis with two removal orders: based on the variant names 
(the alphabetically last variant is removed) and on the variant code sizes 
(the largest variant is removed). Table 16 contains the analysis results and 
the transitivity measurements, which are visualized in Figure 55. 

Name Ordered Ind_Medium Variants Size Ordered Ind_Medium Variants 
Graphs Edges Graphs Edges 

Systems All Trans All Trans Result All Trans All Trans Result 

2 128,609 
128,609 
100% 

79,376 
79,376 
100% 

79,376 
100% 98,020 

98,020 
100% 

24,286 
24,286 
100% 

24,286 
100% 

3 193,521 
193,135 
99.80% 

272,494 
271,133 
99.50% 

271,752 
99.73% 159,870 

159,838 
99.98% 

78,198 
78,104 
99.88% 

78,144 
99.93% 

4 194,962 
194,468 
99.75% 

579,671 
575,484 
99.28% 

577,489 
99.62% 189,595 

189,563 
99.98% 

219,383 
219,185 
99.91% 

219,301 
99.96% 

5 195,540 
194,984 
99.72% 

1,005,035 
996,097 
99.11% 

1,000,856 
99.58% 189,621 

189,589 
99.98% 

477,613 
477,273 
99.93% 

477,503 
99.98% 

6 196,886 
196,340 
99.72% 

1,544,935 
1,529,727 
99.02% 

1,538,591 
99.59%  190,094 

190,043 
99.97% 

851,827 
851,103 
99.92% 

851,620 
99.98% 

7 196,911 
196,365 
99.72% 

2,200,539 
2,178,030 
98.98% 

2,192,513 
99.64% 191,785 

191,358 
99.78% 

1,335,553 
1,325,989 
99.28% 

1,332,886 
99.80% 

8 197,595 
197,043 
99.72% 

2,972,069 
2,940,218 
98.93% 

2,961,241
99.64% 192,430 

192,046 
99.80% 

1,936,884 
1,921,677 
99.22% 

1,932,897 
99.79% 

9 199,738 
199,181 
99.72% 

3,853,182 
3,809,426 
98.86% 

3,836,304 
99.56% 193,711 

193,307 
99.79% 

2,655,336 
2,629,896 
99.04% 

2,648,592 
99.75% 

10 199,996 
199,431 
99.72% 

4,852,784 
4,796,342 
98.84% 

4,833,009 
99.59% 194,325 

193,852 
99.76% 

3,492,048 
3,453,078 
98.88% 

3,481,628 
99.70% 

11 200,301 
199,732 
99.72% 

5,212,881 
5,150,654 
98.81% 

5,190,836 
99.58% 197,047 

196,514 
99.73% 

4,432,191 
4,376,255 
98.74% 

4,414,509 
99.60% 

12 200,319 
199,750 
99.72% 

5,542,092 
5,472,550 
98.75% 

5,518,531 
99.58% 200,319 

199,750 
99.72% 

5,542,092 
5,472,550 
98.75% 

5,518,531 
99.58% 

Table 16 The transitivity measurements for subgroups of Ind_Medium variants 

Figure 55 The transitivity measurements for subgroups of Ind_Medium variants. 
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For the two variant orders, two different results are created: while for the 
name order the transitivity gently decreases with increasing amount of 
variants, for the size order a sudden change occurs between the six-variant 
and the seven-variant groups. In our opinion these two different results, 
created by selecting different variants out of the same group, again indicate 
that the individual topology of the variant content is the strongest factor 
influencing the transitivity of both the input and the analysis result. 
Nevertheless, based on the measurement data we observe that: 

The proportion of non-transitive input graphs increases, but only slowly,
with the increasing size of the selected variant group.
The proportion of edges belonging to the non-transitive input graphs
increases moderately with the increasing size of the variant group.
Apparently, within the same system group selection the smaller input
graphs tend to be more frequently transitive than the larger ones.
The proportion of the input edges removed in the construction of
the analysis result increases, but only slowly, with the increasing size
of the variant group. Given the much faster growing proportion of
the non-transitive input edges, this means that with the increasing
graph size the transitivity algorithms are able to preserve an
increasing proportion of the input edges for the final result. This
property, effectively counteracting the growing proportion of non-
transitive input edges, is intuitively correct: for the smallest non-
transitive graph, having 3 nodes and 2 edges, 50% of the edges
need to be removed, while for the larger graphs having many tens of
edges a removal of just a few edges (and hence their lower
proportion) might be sufficient when the graph is dense.

As we have no access to a system group having more than 12 real 
variants, we cannot measure how far the two observed counteracting 
trends, i.e. the increasing proportion of non-transitive graphs and edges in 
the input, and the decreasing proportion of the initially non-transitive 
edges which are removed from the result, balance each other for a higher 
number of variants. Hence, we cannot say whether the diff-created input 
can be in a general case less transitive for a higher number of variants – 
answering this question, and providing more generalizable measurements, 
remains a future work. Nevertheless, the individual content topology of a 
variant group seems to dominate the other factors influencing the result 
transitivity: adding a new variant can drastically reduce the transitivity, as 
well as improve it (e.g. consider the result transitivity of groups having three, 
four and five variants in the size-ordered analysis). Hence, the proportion of 
edges removed from the result cannot be estimated upfront – instead, 
it needs to be measured individually for each analyzed variant group. 

7.1.3 Approach Instantiation Correctness: Precision and Recall 

In the last part of analytical evaluation, we measure the precision and recall 
of our approach according to the method defined in Section 4.5. As the 
evaluation can only be performed when the correct analysis result is exactly 
known, we conducted the measurements on the generated system groups. 
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two 
counteracting 
trends 
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no transitivity 
estimators 
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Figure 56 The three measurement series for the evaluation of approach precision and recall. 

We performed three measurement series, illustrated in Figure 56. The first 
series evaluated the result correctness of the multiple alignments algorithm, 
considering only the corresponding files across the variants. The second 
series used the reference, fully correct mapping to match the files and then 
evaluated only the correctness of matching the corresponding content lines 
using diff. Hence, the first two series tested in isolation the results of 
respectively the structure element and the content element equivalence 
functions. Finally, the third series compared the matched content lines of the 
reference result to the analysis result constructed using alignments mapping 
and diff – hence evaluating the combined correctness of both functions. The 
measured precision and recall values for all series are provided in Table 17. 

Series 1: 
Alignments Mapping 

Series 2: 
Reference Mapping 

Diff 

Series 3: 
Alignments Mapping 

Diff 

System 
Group Id 

True 
Positives 

False 
Positives 
[Precision] 

False 
Negatives 

[Recall] 

True 
Positives 

False 
Positives 
[Precision] 

False 
Negatives 

[Recall] 

True 
Positives 

False 
Positives 
[Precision] 

False 
Negatives 

[Recall] 

Gen_4 1,462 
2 

99.86% 
2 

99.86% 
207,768 

178 
99.91% 

122 
99.94% 

207,598 
324 

99.84% 
292 

99.86% 

Gen_5A 1,297 
3 

99.77% 
2 

99.85% 
199,230 

181 
99.91% 

96 
99.95% 

198,964 
604 

99.70% 
362 

99.82% 

Gen_5B 2,213 
20 

99.10% 
15 

99.33% 
327,975 

298 
99.91% 

158 
99.95% 

326,588 
1,703 

99.48% 
1,545 

99.53% 

Gen_5C 1959 
9 

99.54% 
7 

99.64% 
374,605 

578 
99.85% 

224 
99.94% 

373,181 
2,032 

99.46% 
1,648 

99.56% 

Gen_6 2050 
2 

99.90% 
1 

99.95% 
301,794 

784 
99.74% 

483 
99.84% 

301,773 
823 

99.73% 
504 

99.83% 

Table 17 Approach precision and recall, measured on the five generated system variant groups 
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Content 
correspondence 
provided by diff

Multiple alignments 
mapping result 
(no diff used)

Diff used on files 
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the reference mapping 
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diff used on files 
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2

3

100% 
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99% 
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The measured diff result has a very high precision (  0.9974) and recall 
(  0.9984), while the multiple alignments result has lower measured 
values (precision  0.9910, recall  0.9933). Consequently, the combined 
result constructed by the both equivalence functions has values slightly 
lower than these of diff, but higher than these of multiple alignments 
mapping (precision  0.9946, recall  0.9953). All measured precision 
and recall values are larger than 0.99 – hence, the measured data 
supports the hypothesis HS1 (Correctness). 

However, there are two main threats to the validity of this conclusion. 
First, the measured input systems are artificially generated, and might 
differ from real-world cloned variants – the use of generated systems 
was necessary though, as only for them the reference result is known. 
Second, the measurement was performed on just five systems, having 
the same origin, which limits the conclusion generalizability. While the 
construction of difficult analysis examples, resulting in precision and 
recall values well under 0.99, is possible, we do not know how often 
such difficult cases occur in the practice. Hence, as discussed before in 
Section 3.4, we assume that the stated hypotheses are true in the most 
cases, but might be false in particularly unfavorable conditions. 

7.2 Controlled Experiment 

The scientific hypotheses HS2 (Analysis Effort Reduction), HS3 (Analysis 
Effort Scalability) and HS4 (Understandability) address not the technical 
side of the analysis approach, but rather the human-based effects 
resulting from its use, i.e. the human effort and the similarity understanding. 
Hence, they need to be evaluated based on the human-related measures 
collected during the approach execution – either in a controlled 
experiment, or in a case study. In the current and the next Section, we 
report the respective results we collected by using both these evaluation 
means. For brevity, we describe an aggregated view on experiment setup 
and results here, while the further details of the experiment, including 
the materials used by the participants, are provided in Appendix A. 

7.2.1 Experiment Goal and Hypotheses 

A definition of a controlled experiment, evaluating the benefits of the 
presented approach, faces the difficulty of a proper isolation of the 
factors influencing the experiment outcome. A precise identification of 
the causes of an analysis effort reduction, achieved by using the 
complete approach, is difficult as several analysis mechanisms, 
differentiating the approach from the state of the art, are introduced 
(e.g. the set model, the abstractions, the visualizations). Furthermore, 
some types of information are automatically collected and quickly 
available in the set model based approach, while in some other 
approaches they need to be manually gathered. Additionally, the use of 
different tools, instantiating the compared approaches, adds a further 
influencing factor in the form of potentially different user interface concepts. 

High values 
of precision 
and recall 

Threats to 
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Hypotheses 
addressing 
human-based 
effects 

Isolation of 
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Finally, a realistic analysis of a group of software systems necessarily 
involves tasks of a very different granularity: from the analysis of single 
code lines, up to the similarity assessment of whole systems having many 
thousands of code lines. Hence, due to the differences in the used 
abstraction mechanisms, the measured analysis effort reduction could 
vary strongly depending on the task granularity. Summing up, an 
experimental evaluation of the complete analysis approach would not 
provide the means to determine whether, and to which degree, the 
measured difference in the analysis effort was caused by the use of the 
set model, the abstractions, the visualizations, or the different user 
interface, but would only provide results for a combination of those. 

Consequently, we decided to limit the scope of the experiment and evaluate 
the core contribution of our approach, the set similarity model, in isolation 
from the other factors such as the hierarchy abstractions and visualizations. 
In this context, it is interesting to ask how far the similarity abstraction in the 
form of a set model is easier for humans to analyze and understand as 
compared to the most frequently used state of the art similarity abstraction, 
provided by the pairwise comparison. The experiment goal [Briand 1996], 
explained in more detail in the next subsections, is therefore to: 

Analyze the pairwise and set-based similarity models 
for the purpose of comparison 
with respect to analysis efficiency, correctness and cognitive load 
from the viewpoint of a software developer 
in the context of Software Product Lines course, with students 

analyzing file variants for code similarity. 

To address the defined goal, we derived new experimental hypotheses, 
targeting only the set model, by restating the original hypotheses HS2 and 
HS4. We decided to not evaluate the hypothesis HS3 for effort and 
participant availability reasons – such evaluation would require a much more 
extensive experiment, performing a series of measurements for different 
numbers of analyzed variants. The experimental hypotheses are therefore: 

HSet1 Efficiency. The use of the set similarity model reduces the
effort for analyzing similarity information as compared to the use of
pairwise comparison model (30% time reduction for up to 4 variants,
50% time reduction for 5 and more variants).

HSet2 Correctness. The use of the set similarity model allows for
understanding the similarity information with a higher correctness
compared to the use of pairwise comparison model (50% less false
statements).

HSet3 Cognitive Load. The use of the set similarity model allows for
analyzing the similarity information with a lower cognitive load
compared to the use of pairwise comparison model (cognitive load lower
by at least one category on the SMEQ scale).

Experiment 
focus: 
the set model 

Experimental 
hypotheses 
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The hypotheses HSet1 and HSet2 directly restate the hypotheses HS2 and 
HS4, with the scope reduced to the set model only. The intention of the last 
hypothesis HSet3 is to provide more evaluation support for the both original 
hypotheses HS2 and HS4. To evaluate HSet3, we use the Subjective Mental 
Effort Question (SMEQ) scale [Zijlstra 1993], validated in usability research, 
which is frequently used for cognitive load measurement [Albers 2012]. The 
SMEQ presents a continuous scale, labeled in nine locations with categories 
ranging from “absolutely no effort” to “extreme effort” (see the experiment 
material in Appendix A). The respondents indicate their subjectively felt 
cognitive load, experienced during the similarity analysis, by placing a mark 
anywhere on the scale. The mark location is subsequently converted to an 
integer value between 0 and 150. The SMEQ measurements are provided 
on an interval scale, as the category locations were psychometrically 
calibrated. This allows a convenient response analysis, as the calculation of 
averages and distances is meaningful for interval scale data. 

We added the hypothesis HSet3 to the experiment, as its positive evaluation 
has two effects. First, the cognitive load measured by SMEQ for a group 
of participants solving the same tasks was reported to highly correlate 
with task time (r = -0.82, p < 0.01) and task errors (r = -0.72, p < 0.01) 
[Sauro 2009]. Hence, the measurement of cognitive load reduction 
provides another indication supporting the original hypotheses HS2 and 
HS4. And second, we consider the cognitive load reduction to be a further 
benefit provided by the set model. In Table 18 we list the metrics which 
we collect in the experiment to evaluate the three stated hypotheses. 

Metric Metric Name Associated Hypothesis Null Hypothesis 
M1 Analysis time [min] HSet1: M1(Set)<M1(Pair) HSet10: M1(Set) M1(Pair) 
M2 Number of correctly solved tasks 
M3 Number of all tasks (constant) 

M4 Incorrect answer ratio: M4 = HSet2: M4(Set)<M4(Pair) HSet20: M4(Set) M4(Pair) 

M5 Cognitive load (measured using SMEQ) HSet3: M5(Set)<M5(Pair) HSet30: M5(Set) M5(Pair) 
Table 18 The main metrics collected during the controlled experiment and the associated hypotheses 

7.2.2 Experiment Design and Operationalization 

To compare the effects of using the two evaluated similarity models, 
we selected the between-subjects experiment design. Hence, the 
participants were assigned to one of the two groups: the treatment 
group, using only the set similarity model, or the control group, using 
only the pairwise similarity model. Consequently, in the experiment we 
compared the performance of the both groups. 

The experiment was performed in January 2013. The experiment 
participants were 23 students attending the Software Product Lines 
course at the Technical University of Kaiserslautern: 19 master-level and 
4 bachelor-level students, studying computer science or software 
engineering. None of the students had a prior contact with the Variant 
Analysis approach or tool. The experiment was performed during the 
regular lecture hours, and the use of lecture time for the experiment was 
announced in advance. The participation in the experiment was 
voluntary, and almost all course attendants appeared for the experiment. 
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The 23 participants were assigned to the two experimental groups in a 
random way. Before the experiment, the participants gathered in the 
lecture room, and took the seats which were lined in rows. We assigned 
every of 11 participants sitting on an even-numbered seat to the 
treatment group, and the remaining 12 participants to the control group. 
The intention of this randomization method was to split and evenly 
distribute the groups of students having similar background, which would 
be most probably sitting near each other in the lecture room. As presented 
in the next subsection, this resulted in balanced experimental groups. 

The experimental task, identical for both groups, was to answer 16 
questions concerning the code similarity in the files belonging to five 
software system variants. The questions were printed in the experiment 
documents, distributed to each participant, and needed only a short 
answer, such as stating the names of variants fulfilling a given condition. 
As in the case of the analytical evaluation, the system variants analyzed 
by the participants were generated by the ForkSim tool. The same five 
variants, based on the Java code of the JHotDraw tool, were provided to 
both groups. The use of the generated variants guaranteed that the 
correct answers to the experimental questions, used to evaluate the 
participant results, were determined without the need to use any of the 
analysis methods investigated in the experiment. 

The participants from both groups viewed the provided code files using 
a variant of the Variant Analysis tool specifically adapted for the 
experiment. In the tool, all visualizations and analysis mechanisms except 
for the system hierarchy navigation and the code view were disabled (see 
the Appendix A for details). Hence, the students were only able to locate 
the files in the system structure diagram, identical for both groups, and to 
view the code of file variants in the code editor. In the editor, the 
background of the displayed code lines was colored according to the 
similarity information provided by one of the similarity models: the pairwise 
model for the control group and the set model for the treatment group. 
The textual information provided for each line by the respective category 
icons was also model-dependent. Except for these differences, all other 
user interface mechanisms were identical for both groups. The participants 
were asked to not use any other tools (e.g. operating system tools) during 
the experiment, but they could take any necessary notes on the provided 
paper sheets. The tool use was periodically controlled by experiment 
supervisors walking around the laboratory – no deviations occurred. 

The actual automatic analysis of the code similarity was not part of the 
experiment – the students only viewed the similarity information, 
provided by a previously performed analysis, and used that information 
to answer the given questions. As the same system variants were 
analyzed by both groups, the used similarity information was technically 
the same – we verified that all the pairwise similarity relations were 
included in the constructed set model. 
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As discussed above, the only independent variable varied between the 
experimental groups was the similarity model used for accessing the 
similarity information: the pairwise model or the set model. Every other 
difference between the groups was removed as far as possible: the groups 
solved identical analysis tasks, used identical tool to access the similarity 
information (except for the underlying model), were given identical 
experiment documents, and worked in parallel in two equivalent 
computer laboratories. The dependent variables investigated in the 
experiment are the analysis effort, the answer correctness, and the 
cognitive load, as specified in Table 18 on the earlier page. Apart from 
collecting the metrics related to the dependent variables, we also asked 
each participant a range of identical briefing and debriefing questions to 
characterize the participant background and check the impressions they 
had immediately after the experiment completion. 

Table 19 presents the experimental process, followed by both groups, and 
lists the differences in particular process steps and artifacts caused by the 
use of the respective similarity model. Each participant received an identical 
main experiment document, containing the introductory information, the 
briefing questionnaire, the experimental tasks, and the debriefing 
questionnaire. Moreover, they received a printed tool tutorial, which was 
also presented to them as a slide show. The tutorial was identical for both 
groups, except for the part concerning the similarity model (see the 
Appendix A for the complete experiment document and the tutorials). 
After the tutorial, the participants familiarized themselves with the tool 
and answered two sample warm-up questions, which had an identical 
form as the actual experiment questions but concerned the different 
example software variants, loaded into the tool for the tutorial purposes. 

Step Step Description 
Difference Between 

the Groups 
1. The experiment procedure is presented. None 
2. The participants are split into two groups. None 
3. The participants receive and read the 

introductory material. 
None 

4. The participants fill out the briefing 
questionnaire. 

None 

5. The participants listen to a tool tutorial 
and receive it in a printed form. 

Tutorial is identical except 
for the similarity model parts. 

6. To better understand the tool and the type 
of the tasks, the participants use the tool on 
an example and answer sample questions. 

Identical example and 
questions. Different similarity 
models used. 

7. The main experiment part: participants in 
each group receive five software system 
variants and answer a set of questions 
concerning their similarity. 

Identical software variants 
analyzed. Identical 
questions. Different 
similarity models used. 

8. The participants fill out the debriefing 
questionnaire. 

None 

9. On a later day, the full information on 
experiment setup and results is presented 
to all participants. 

None 

Table 19 The experiment process: steps for controlled experiment execution 
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In this way, the participants could clarify any doubts before the actual 
experiment, and the influence of the first learning effects on the experiment 
result was reduced. The experiment, including the introduction and the 
tutorial, lasted in total about 90 minutes. The participants were not 
interrupted, i.e. they worked on the given tasks until completion. 

7.2.3 Experiment Results 

During the initial viewing of the experiment results, we decided to 
remove the answers given by one participant of the control group from 
the further analysis. The reason for that is that the participant achieved 
an exceptionally bad result (11 incorrect answers), and stated in the 
debriefing questionnaire that he/she did not understand the tasks, nor 
did he/she use the provided analysis tool to gather the information 
required to solve them. This constitutes a high contrast to the answers of 
all other participants, who achieved much better results and provided 
consistently positive feedback on the task understanding and tool usage. 
Hence, as the answers of the one untypical participant were not included 
in the further analysis, the both experimental groups analyzed below 
were equally sized and counted 11 member participants. 

The Briefing Questionnaire 

In the briefing questionnaire, we first asked about participant background: 
the field of study, study level (bachelor, master, or other), study semester, 
and color blindness. The answers are summarized in Table 20: both groups 
had similar backgrounds, and the differences between them were not 
statistically significant (all briefing and debriefing answer difference 
significances were tested with two-tailed Mann-Whitney U test at p = 0.05). 
In the treatment group, two participants indicated they were color blind – 
however, in the debriefing questionnaire they both “strongly agreed” that 
they could “easily see” the color differences in the code editor. Hence, we 
assumed that the color blindness had no influence on their results. 

Question 
(shortened form) 

Treatment Group  
(Set Model) N = 11 

Control Group  
(Pairwise) N = 11 

Field of study 8 x Computer Science 
2 x Software Engineering 
1 x Business 

10 x Computer Science 
1 x Software Engineering 

Study level 8 x Master, 1 x Diploma, 
2 x Bachelor 

9 x Master, 2 x Bachelor 

Study semester Average: 9.91 (10th semester) Average: 9.00 (9th semester) 
Color blindness 9 x No 

2 x Yes 
11 x No 

Table 20 The briefing questionnaire results: participant background 

We further asked the participants about their experience in programming 
and in the use of methods and tools similar to the evaluated ones. For all 
questions, the responses were indicated on a five-point Likert scale, as 
described in the legends in Table 21 and Table 22. The differences 
between the groups, summarized in Table 21, were not statistically 
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significant except for one question: the control group had more 
experience in using diff tools (median: 3, “medium experience”) than 
the treatment group (median: 1, “no experience”). Hence, the control 
group was more experienced in a method similar to the one they used in 
the experiment. However, as reported in the next subsection, the control 
group achieved consistently worse task results. Hence, we consider the 
different experience to not influence the hypothesis evaluation, as the 
result of the control group would be probably even worse if its members 
had less experience, like the treatment group. 

Question 
(shortened form) 

Treatment Group 
(Set Model) N = 11 

U Value 
Significance 

Control Group 
(Pairwise) N = 11 

General 
programming 
experience 

60 
No 

Java language 
experience 

61.5 
No 

Eclipse 
environment 
experience 

74 
No 

Code comparison 
using a diff tool 
(any kind) 

96.5 
Yes 

Code comparison 
using the Eclipse 
Diff tool 

75.5 
No 

Using the Variant 
Analysis tool 

55 
No 

Experience Likert scale: 
No-Little-Medium-Significant-Professional 

U+U’=121 
Experience Likert scale: 

No-Little-Medium-Significant-Professional 
Table 21 The briefing questionnaire results: participant experience 

Finally, we asked the participants about their motivation to perform well 
in the experiment, and received from both groups a response with no 
statistically significant difference, as shown in Table 22. 

Question 
(shortened form) 

Treatment Group 
(Set Model) N = 11 

U Value 
Significance 

Control Group 
(Pairwise) N = 11 

Motivation to 
perform well in 
the experiment 

70.5 
No 

Motivation Likert scale: 
Highly unmotivated – Unmotivated – Neither motivated nor unmotivated – Motivated – Highly motivated 

Table 22 The briefing questionnaire results: participant motivation 
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Hypothesis Testing 

In Figure 57, we present the results of time and answer correctness 
measurements. We use boxplots to visualize the data distribution and 
additionally draw a circle representing the average value with error bars 
showing the 95% confidence interval. In the result description, we use 
the symbol A for the average (provided with the confidence interval), 
M for the median, and  for the standard deviation. 

All participants from the treatment group, using the set model, finished 
their tasks faster (maximum time: 18 minutes) than the fastest 
participant from the control group (minimum time: 25 minutes). The 
treatment group participants needed on average A=14.0 1.35 minutes to 
complete the tasks (M=14.0 min, =2.28 min), while the control group 
participants needed on average A=33.7 4.57 minutes (M=32.0 min, 

=7.38 min). In the control group, one participant did not provide the 
finishing time. However, according to the group supervisor, that 
participant was neither the fastest, nor the slowest in the group. As the 
total task time for this person is not known, we report and analyze the 
time measurement results for a control group size of 10. 

The task correctness was higher in the set group: one participant from that 
group made two errors, while all others provided fully correct answers 
(A=0.18 0.35, M=0.0, =0.60). In contrast to that, only three participants 
from the control group provided correct answers for all 16 questions, while 
the others made between 1 and 6 errors (A=2.27 1.21, M=2.0, =2.05). 

In Figure 58, we present the cognitive load results provided by the 
participants in the debriefing questionnaire. The treatment group 
cognitive load (A=19.0 5.35, M=15.0, =9.06) was much lower than 
the control group load (A=50.0 22.04, M=48.5, =35.56). In the control 
group, one participant did not provide a numeric answer. Consequently, 
we report and analyze the data for the remaining 10 group participants. 

 
Figure 57 The experiment results: task time (left) and task errors (right). 
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Figure 58 The experiment results: cognitive load. 

From the six above data series, only the task error series of the treatment 
group does not pass the Shapiro-Wilk normality test. The time and error count 
values are measured on a ratio scale, while the cognitive load data is provided 
on an interval scale. Hence, we tested the task time and cognitive load data 
series with the independent samples Student's t-test, as they fulfill the test 
requirements: normality and at least interval scale. The task error series, 
containing not normally distributed ratio scale data, were tested using the 
Mann-Whitney U test. As all three tested hypotheses are directional, we 
used one-tailed tests. The results of hypothesis testing are provided in Table 
23. Furthermore, to estimate the measured effect size, we provide for all three
hypotheses the p value (calculated with the t-test for normally distributed 
series pairs and with the U test for the task error series) and the Cohen’s d 
[Cohen 1992]. Note that for the task error data series, which is not normally 
distributed, the value of Cohen’s d might be unreliable. For this reason, we 
additionally calculated the values of Cliff’s delta [Cliff 1993], as that 
parameter is intended for effect size estimation on non-parametric data. 
Finally, we quantified the observed improvement in two ways: by comparing 
the averages for the both groups, as well as by comparing the maximum 
value within the 95% confidence interval of the treatment group to the 
minimum value within the 95% confidence interval of the control group. 

Hypothesis 
Accepted 
at p<0.05 

p 
Effect size: 
Cohen’s d 

Effect size: 
Cliff’s delta 

Observed improvement 

HSet1 
Efficiency 

Yes (t-test) 3.7e-08 
3.30 
Large 

-1.0 
Large 

Avg.: 14.0 to 33.7  58.5% 
Conf.: 15.35 to 29.13  47.3% 

HSet2 
Correctness 

Yes (U test) 0.0048 
1.32* 
Large 

-0.66 
Large 

Avg.: 0.18 to 2.27  92.1% 
Conf.: 0.53 to 1.06  50.0% 

HSet3 
Cognitive load 

Yes (t-test) 0.0057 
1.29 
Large 

-0.52 
Large 

Avg.: 19.0 to 50.0  over 1 cat. 
Conf.: 24.35 to 27.96  small 

Table 23 Statistical testing of the experimental hypotheses 
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All three evaluated hypotheses were accepted in the experiment, and the 
measured effect sizes were in all cases large. The observed improvement, 
calculated based on the measured average values, was in all cases larger 
than initially stated in the hypotheses: the reduction in the task time and 
task errors between the pairwise group and the set model group 
amounted to respectively 58.5% and 92.1%, while the cognitive load 
was lower in the set model group by more than one SMEQ category. The 
improvement calculated with the more conservative method, by comparing 
the minimum and maximum edges of the confidence interval, was still 
substantial for time reduction (47.3%) and task errors reduction 
(50.0%), and small, but positive for the cognitive load. 

We observed in the experiment that the use of the set model indeed 
results in the previously stated benefits: the similarity analysis which uses 
the set model is faster, induces less cognitive load, and leads to a better 
similarity information understanding as compared to the analysis based 
on the pairwise similarity model. Hence, the original research hypotheses 
HS2 (Analysis Effort Reduction) and HS4 (Understandability) are already 
fulfilled when only one of the analysis mechanisms provided by our 
approach, i.e. the set similarity model, is used. We expect that the other, 
not yet evaluated approach mechanisms provide further positive 
contributions to the research hypotheses. Consequently, the evaluation 
of the improvements provided by the hierarchical abstraction and the 
defined visualizations is needed to solidify the empirical evidence of the 
benefits provided by the complete analysis approach. 

The Debriefing Questionnaire 

In the debriefing questionnaire, we first asked the participants about the 
experienced cognitive load (analyzed in the previous subsection). Then, 
we asked a number of control questions concerning the participant 
views on the experiment tasks and procedures – whether the 
participants understood these, used them as intended, and had sufficient 
time. Furthermore, we asked the participants to evaluate the subjectively 
felt correctness of their answers, as well as the support provided by the 
used tool for a quick and correct task solution. The answers to the 
control, correctness, and support questions, summarized in Table 24, 
were indicated on a five-point Likert scale described in the table legend. 
Finally, we asked two open questions concerning the participant 
feedback on the experiment, the tasks, and the used analysis tool. 

The majority of participants from both groups indicated a “strong 
agreement” with the control questions statements, and there was no 
statistically significant difference between the groups (tested with two-
tailed Mann-Whitney U test at p = 0.05). Hence, we conclude that the 
participants performed the experiment tasks as intended, having a good 
understanding of the tasks, the tool, and the provided similarity 
information – which limits the respective validity threats. 
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Question 
(shortened form) 

Treatment Group 
(Set Model) N = 11 

U Value 
Significance 
(U+U’=121) 

Control Group 
(Pairwise) N = 11 

I understood the 
description of the 
experimental tasks 

49.5 
No 

I understood 
how to use 
the analysis tool 

41 
No 

I understood the 
meaning of the 
code diff. inform. 

53.5 
No 

I could easily see 
the difference 
between colors 

49 
No 

I had enough 
time for solving 
the tasks 

44 
No 

I only used the 
specified tool for 
solving the tasks 

55 
No 

I think 
my answers 
were correct 

38.5 
No 

I think the tool 
supports solving 
the tasks quickly 

20 
Yes 

I think the tool 
supports solving 
the tasks correctly 

33.5 
No 

Agreement Likert scale: 
Strongly disagree – Disagree – Neither agree nor disagree – Agree – Strongly agree 

Table 24 The debriefing questionnaire results 

In the questions concerning the subjectively evaluated answer correctness 
and tool support, the treatment group indicated a higher agreement with 
the question statements (mostly “strongly agree”) than the control group 
(mostly “agree”) – hence giving a more positive evaluation of the set model 
based analysis method. The difference between the groups was statistically 
significant for the question concerning the support for quick task solution. 
We interpret that result as another indication of the set model benefits. 

The open feedback question answers mainly contained various suggestions 
concerning the tool improvement. However, all these ideas were already 
covered by the full Variant Analysis tool, not known to the participants. 
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7.2.4 Threats to Validity 

For every experiment, threats to the validity of its results exist. We describe 
the validity threats of our experiment according to the framework of Cook 
and Campbell [Cook 1979]. The four distinguished validity types correspond 
to different stages of an experiment [Wohlin 2000] [Trochim 2006]: 

Conclusion validity addresses the result analysis, and concerns the
existence of statistical relation between the treatment and the outcome.
Internal validity targets the experiment design. It concerns the degree
to which the experiment outcome was caused by the treatment.
Construct validity addresses the experiment measurements, i.e. whether
the hypothesized cause and its effect were adequately represented and
measured in the experiment by the treatment and the outcome.
External validity targets the sampling of experimental objects from the
general population, and hence concerns the generalizability of the result.

The identified threats to the conclusion validity are: 

The moderate size of both experimental groups (11 participants).
Performing the experiment with larger groups would result in more
statistical support for the conclusions and would reduce the size of the
calculated confidence intervals. Nevertheless, the results of hypotheses
testing are already statistically significant, with very low p values and
non-overlapping confidence intervals. Recruiting a larger, but still
relatively homogenous group of participants was not possible.
The analyzed number of errors does not consider for which tasks the
errors were made. Although the experimental tasks were not identical,
each incorrect answer was assigned the same importance and counted
as one task error. We mitigated this threat by formulating tasks having
a similar difficulty. Furthermore, this threat does not influence the
result evaluation for participants which made no errors: as 10 out of 11
treatment group participants provided fully correct answers, the difference
observed between the two groups remains strongly significant.

The threats to the internal validity of the performed experiment include: 

Experimental groups potentially unbalanced with regard to factors
influencing the outcome. In order to mitigate that threat, we used a
random assignment of participants to groups. In the consequence, the
randomly created groups were balanced (no statistically significant
differences), except for the experience in using diff tools which was
higher in the control group. Nevertheless, we consider that difference
to not endanger the validity, as the result of the control group,
already weaker than the result of the treatment group, would be
most probably worse if the group members had less experience.
After splitting the participants in two groups, the groups had different
supervisors. The approach author supervised the treatment group,
while the control group was supervised by another Fraunhofer IESE
researcher. This assignment was selected to avoid the possibility of
unintentional negative influence of the control group result by the
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approach author. Although there were no explicit or observed 
differences in the supervision of the groups, a theoretical possibility of 
an experiment result influence remains. 

 The tool used in the experiment was new to the participants. 
Moreover, the used similarity analysis method was also new to some 
participants: four control group participants had “none” or “little” 
experience in using diff-like code comparison tools, while the set 
model based comparison was new to all treatment group participants. 
We mitigated that threat by the use of a pre-experiment tutorial and 
the example analysis tasks, which familiarized the participants with the 
used methods and reduced the influence of the ease of method 
learning on the experiment result (as the method learning occurred 
mostly before, and not during the experiment). 

The other differences between the analysis tasks, methods, or documents, 
which were not caused by the choice of the similarity model, were 
eliminated – as discussed previously in this Section. Moreover, no special 
events, breaks, or other disturbing factors occurred during the experiment. 

The identified threats to construct validity, affecting the appropriateness 
of the experimental representations constructed for real-world similarity 
analysis, the analysis effort, and analysis correctness, are: 

 Hypothesis guessing by the experiment participants. We mitigated 
this threat by not mentioning the hypotheses, the tasks and tools of 
the other group, nor the role of a given group to the participants. 
Furthermore, the groups worked in separate rooms and hence could 
not communicate. On the other hand, the participants knew that 
they participate in an experiment and could easily guess that their 
results will be evaluated at least for solution time and correctness. 

 The participant reaction to the situation of being evaluated. For some 
people, a test situation might lead to stress and an increase or decrease 
of individual performance. We mitigated that threat by making the 
experiment participation voluntary, assuring participant evaluation 
anonymity, stating that their results are only used for the experimental 
purpose and not for individual evaluation, and performing the 
supervision in a relaxed, non-intrusive way. On the other hand, 
participation in a test is certainly a psychologically different situation 
than performing a regular workplace task of code analysis. 

 Mono-method bias caused by measuring the outcomes with single 
metrics only. Especially, it can be argued that the correctness of 
similarity information understanding, being a result of a complex 
mental process, should be measured with more metrics than just the 
task errors. Furthermore, the task answers were evaluated in a binary 
way, i.e. they could only be correct or not. However, in a real-world 
similarity analysis a partial understanding of similarity information, 
resulting in an answer which is incomplete but otherwise not incorrect, 
might be already of value. A form of mitigation of this threat is the use 
of cognitive load measurement in addition to the task errors. 

Construct 
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Finally, the threats to external validity, affecting the generalizability of 
the experiment result, are: 

The experiment participants, i.e. computer science students, might be
not representative for a general population of software developers,
especially as contrasted to experienced industry practitioners.
Furthermore, the familiarity of the participants with the analyzed
system variants, and their motivation to solve the analysis tasks, are
different than in the industrial case. The industry developers
frequently know the analyzed system code well, and the analysis
results are highly relevant for their other work tasks. In contrast to
that, the students did not know the experimental system variants,
and the analysis results were not relevant for their other assignments.
The analyzed software systems might be not representative for a
general population of cloned system variants. First, the systems were
generated, so that the resulting code similarities might be not typical
for the general case. Second, the analyzed systems were written in
the Java programming language, while other languages, especially
C/C++, are also used in the industry. And third, the size and number
of analyzed system variants might influence the scale of the
evaluated improvement – which is not addressed in the experiment,
as the evaluated system variants provide only a single data point.
Finally, the experimental tasks might be not representative for the
general population of similarity analysis tasks. Especially, a real similarity
analysis includes tasks of different granularity, addressing single code
lines as well as large modules composed of thousands or even millions
of code lines. In contrast to that, the experimental tasks had a similar
granularity and difficulty, as we wanted to assure their comparability.

In the future work, the listed external validity threats can be mitigated by 
a replication of the presented experiment in different settings involving 
other types of the participants, the analyzed system variants, and tasks. 

7.3 Industrial Case Study 

Although a controlled experiment provides a high degree of control over 
the execution environment and the factors influencing the evaluated 
result, the disadvantage of that artificial setting is that the 
generalizability of the achieved result to real-world situations is 
necessarily limited. Hence, we performed a case study, described in this 
Section, to provide additional, practical evaluation input for the 
hypotheses HS2 (Analysis Effort Reduction) and HS4 (Understandability). 
Moreover, the case study was an opportunity for evaluating the practical 
hypotheses HP1 (Migration Effort Reduction), HP2 (Higher Degree of 
Reuse) and HP3 (Effort Reduction in Parallel Variant Maintenance). 
Finally, the practical approach use allowed for evaluation of the hypothesis 
HS5 (Practicability), also including the user satisfaction with the provided 
results – a concern which is influenced by, but still orthogonal to, the 
analytical correctness parameters such as recall and precision. 
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A frequent issue in case study design is the difficulty of comparing the 
newly introduced approach to the baseline state. In our case study, we did 
not have baseline data concerning the similarity analysis efforts spent 
without the use of our approach, as that task was subsumed as a part of 
larger development activities. Hence, the differences between the 
previously used analysis approach, based on pairwise file comparison, and 
the introduced Variant Analysis approach were estimated by developers 
who performed similarity analyses with both approaches during their 
regular work activities. Furthermore, in the description of the case study 
we deliberately use approximate numbers to protect sensitive information. 

The Variant Analysis approach was applied in one software development 
team at the Diesel Gasoline Systems unit of Robert Bosch GmbH, a large 
automotive and electronics company. Bosch Diesel Gasoline Systems 
develops a family of complex embedded software systems, realized in C 
and C++, which is described in more detail by Tischer et al. [Tischer 2011] 
[Tischer 2012]. The systems are composed from about ten thousands of 
components realizing the particular system functions. Each component, 
typically having a few thousands of code lines, is in turn realized in 
multiple variants. A decision process is used to determine the realization 
mechanism for component variants: preprocessor use, branching, or a 
mixture of these two is possible. However, after some evolution time the 
similarity properties of the component variant implementation, and the 
resulting need for maintenance efforts, might lead the team to change the 
decision concerning the preferred variant implementation mechanism. 
Moreover, the size and complexity of the system make it difficult to assess 
the implementation-level component similarity based on the domain 
knowledge alone – hence creating a need for code analysis approach. 
Consequently, each of the thousands of components potentially presents 
a separate similarity analysis case for our approach. Within the whole 
system, all three application scenarios of our approach occur (Reuse 
Potential Assessment, Consolidation of Existing Reusable Software, and 
Parallel Variant Maintenance) – however, in the performed analyses the 
development team mainly concentrated on the first scenario, targeting 
the reuse potential assessment among cloned variants. 

At the time of case study data collection, the development team already 
used the Variant Analysis approach for about three months. In a 
questionnaire, we asked the team members to anonymously describe their 
background and to assess the properties of similarity analyses, performed 
on the typical analysis problems occurring in their daily work, with two 
approaches: the baseline one, using pairwise comparison, and the Variant 
Analysis approach. The questions were mainly targeted at the evaluation 
of our hypotheses and at the satisfaction of the users with the approach 
results. For some questions, we first explained the terms we asked for, 
such as e.g. the “incorrectly understood similarity facts”. The questions 
provided equal possibility to evaluate any approach as better or equivalent 
to the other. From five approach users, four returned the questionnaires. 
The participants indicated they had between 5 and 17 years of industrial 
experience, and worked on the current project since 1 to 8 years. 
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Hypothesis 
Questions 

Participant Answers 
N = 4 

Satisfaction 
Questions 

Participant Answers 
N = 4 

HS2 
Analysis effort for 
a typical similarity 
analysis task 
(VA reduction %) 

The analysis is 
able to fully satisfy 
the analysis goals 

HS4 
Incorrectly 
understood 
similarity facts 
(VA reduction %) 

The analysis is able 
to retrieve the inf. 
100% correctly 

HP1 
Reuse migration 
effort 
(VA reduction %) 

The analysis is able 
to retrieve the inf. 
100% completely 

HP2 
Achieved reuse 
degree 
(VA increase %) 

The analysis is 
a simple and 
uncomplicated task 

HP3 
Effort for parallel 
variant 
maintenance 
(VA reduction %) 

Legend 
Agreement scale: 

Strongly disagree(1) – Disagree(2) – Slightly disagree(3) 
– Neither agree nor disagree (4) –

Slightly agree (5) – Agree (6) – Strongly Agree (7) 
Table 25 The case study questionnaire results 

The participant answers are summarized in Table 25, with individual 
participants identified by the codes P1 to P4. For all hypothesis questions, 
the developers indicated that the Variant Analysis approach provides in 
their opinion an improvement over the previously used similarity analysis 
method based on pairwise comparison. Hence, in Table 25 we visualize 
their estimations as a percentage improvement brought by Variant 
Analysis over the baseline approach. The developers estimated an average 
of 57.5% reduction in analysis effort (hypothesis HS2) and 41% 
reduction in the incorrectly understood similarity facts (hypothesis HS4). 
Furthermore, they estimated that the total reuse migration effort for 
their specific cases could be reduced by average 48% (hypothesis HP1). 
In the case of hypothesis HP2, targeting the missed opportunities of 
reuse, the theoretically achievable reuse degree is hard to assess in the 
practice. Hence, we formulated the question differently and asked for 
the actually achieved reuse degree. The participant estimation was that 
on average 35% more code can be made reusable when the similarity 
information provided by Variant Analysis is used. Finally, the participants 
estimated an average 65% reduction in parallel variant maintenance effort 
achievable thanks to the Variant Analysis information (hypothesis HP2). 
Note that not all participants answered the practical hypothesis questions: 
the missing answers are indicated in Table 25 with question marks. 
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In the satisfaction questions, we related the two evaluated approaches to 
an imaginably ideal one, indicating that with respective phrasing of the 
questions (e.g. “fully satisfy the analysis goals”, “retrieve the information 
100% completely”). Rating the two approaches, the developers indicated 
their agreement with the provided question statements using a seven-
point Likert scale described in the legend of Table 25. The questions 
addressed four types of practical approach benefits: the full satisfaction of 
analysis goals, the 100% correct information retrieval (which targeted the 
practically perceived equivalent of the theoretical parameter of precision), 
the 100% complete information retrieval (i.e. the practically perceived 
equivalent of recall), and the ease of approach use (i.e. whether the 
approach use is a “simple and uncomplicated task”). The answers provided 
by the developers were consistently much more positive for the Variant 
Analysis approach than for the baseline approach, which supports the 
hypothesis HS5. The median ratings of Variant Analysis concentrated around 
the “agree” answer, while the median ratings of the baseline approach were 
located between “slightly disagree” and “neither” (see Table 25 for details). 

The provided answers, giving a consistently positive indication for Variant 
Analysis in both hypothesis evaluation and use satisfaction areas, suggest 
that the approach indeed provides the hypothesized benefits. However, 
the performed case study has a limited validity. First, the provided 
improvement numbers are not measured, but only estimated by the 
developers – albeit based on their practical experience in the use of both 
approaches. Second, the answers were provided by just four developers – 
which limits the generalizability of the result. Finally, the developers might 
interpret the questions in a different way than intended in the hypotheses. 
This might be the case for participant P3: he/she did not provide practical 
hypothesis estimations, and indicated identical satisfaction with both 
approaches, but in the open feedback question he/she stated instead that 
“the total effort is the same, but the benefit is in the improved quality and 
less variants”. Our understanding of that answer is that the information 
provided by Variant Analysis is regarded by that participant as more useful 
than in the case of the baseline approach, but the resulting practical benefits 
are in his/her opinion different than these mentioned in our hypotheses. 

Currently, after about a year of approach usage, the team evaluated the 
similarity of over 300 component groups having from 2 to 18 variants. 
From these groups, about 130 contained variants suitable for merging – 
this was decided, among other criteria, based on the detected code 
similarity exceeding 90%. According to the internal measurements, the 
analysis and code restructuring effort definitely pays itself off in the form 
of reduced component maintenance needs. The yearly net effort savings, 
calculated for combined maintenance and development efforts of the 
addressed components, are estimated to exceed the worth of 100 000 
euro. The team members indicated that the similarity analysis with the 
Variant Analysis approach is convenient and very fast to perform. They also 
stated that conducting the similarity analyses to the current extent, and 
hence achieving the maintenance effort savings, would not be possible with 
the other known approaches due to the prohibitive analysis effort needed. 
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7.4 Industrial Application Experiences 

The similarity analysis approach developed in this thesis was used in the 
context of a range of industrial consultancy projects conducted by 
Fraunhofer IESE. In this Section, we briefly report on five analyses 
performed in these projects. The presented analyses were all performed on 
industrial software system variants created with the use of cloning, and 
were conducted for a concrete project purpose. Hence, the list does not 
include analyses which were performed for demonstrative or experimental 
reasons. Furthermore, the list does not include the analyses performed in 
our case study, as they are already described in the previous Section. 

For each analysis, Table 26 lists the analysis application scenario, the 
basic characteristics of the analyzed system group such as the domain, 
size and number of variants, and their similarity, and it specifies the 
person who performed the analysis. The five listed analysis cases cover all 
three application scenarios, with scenario AS1 Reuse Potential 
Assessment being the most frequent (three occurrences). The analyzed 
system groups include medium-sized and large systems (group average 
system sizes from 112 KLOC to 1319 KLOC), and contain from 4 to 14 
cloned variants. All systems are realized in the C and C++ programming 
languages, and are deployed as embedded software. In the listed cases, 
the analyses were performed by the approach author, other IESE 
researchers, as well as by the customer employees. This shows, as in the 
case study, that the approach can be successfully applied by software 
practitioners, supporting the hypothesis HS5 (Practicability). 

In all cases, the performed analysis provided a new view on the customer 
code, allowing for assessment of the variant system similarity which was, 
according to customer feedback, not possible with other means: 

In company J, the general high similarity of the four system variants
was suspected, but no respective measurements existed. The
performed analysis identified groups of strongly similar components
which were suitable for unification across the four variants with low
effort, and a range of further component groups with potentially
sufficient similarity. An initial planning for reengineering activities was
started – however, the company decided instead to develop a new
generation of products, not code-compatible with the current one,
and discontinued the analyzed variants.
Company D develops a product line of power electronics systems
since several years. The product line architect was interested how far
the existing code components, which are similar to each other across
the product variants, correspond to the planned reusable
components as documented by the software architecture. The
similarity analysis revealed that the components intended to be
reusable were indeed highly similar, and the other similar components
found in the code constituted exceptions previously known to the
architect. Hence, no further actions were performed after the analysis.
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Company 
name 

(anonymized) 
Domain 

Application 
scenario 

Analysis 
done by 

Number 
of 

variants 

Average 
variant 

system size 

Core code 
size 

Average 
unique 

code size 

J 
Machine 

construction 
Reuse 

assessment 
Approach 

author 
4 1,319 KLOC 664 KLOC 131 KLOC 

D 
Power 

electronics 
Consolida-

tion 
Customer 10 427 KLOC 161 KLOC 152 KLOC 

H Automotive 
Parallel 

maintenance 
Other IESE 
researcher 

14 186 KLOC 132 KLOC 2 KLOC 

C Automotive 
Reuse 

assessment 
Approach 

author 
12 112 KLOC 24 KLOC 2 KLOC 

U 
Telecommu-

nication 
Reuse 

assessment 
Other IESE 
researcher 

6 202 KLOC 145 KLOC 36 KLOC 

Table 26 Industrial applications of the analysis approach 

 Company H develops a group of 14 cloned, similar software systems. 
However, no code unification is intended, as the reuse introduction 
was judged to conflict with system safety considerations. 
Nevertheless, the company was interested in identifying groups of 
highly similar components, and in identifying variants which nearly 
fully cover the code of other, smaller variants. For example, it was 
found that 3 of the 14 system variants cover over 99% of the 
complete set union code. The provided similarity information was 
used to improve the planning of code inspection efforts. 

 Company C develops several product lines of controllers and drivers 
used in automotive parts. The analyzed product line was intended to 
be replaced by a new one. The similarity information provided in the 
analysis was used in two further activities. First, in the context of 
scoping, the similarity information supported the assessment of reuse 
potential for newly developed components, functionally analogical to 
the old ones. Second, a detailed review of code differences helped 
the developers of selected components to understand fine-grained 
implementation-level peculiarities of each variant, not large enough 
to be visible at the level of whole features or functions. 

 Company U intends to introduce the software product line approach 
to its family of similar, cloned software variants. The similarity analysis 
was performed to help assess whether the product line approach is 
suitable for the system group. The analysis indicated a significant 
reuse potential and identified groups of highly similar components. 
The next reengineering steps are currently under consideration.  

Generalizing the more detailed experiences gained in the above 
industrial application cases, we also observed that: 

 Typically the performed analyses confirm the fragments of similarity 
information which are already known, and provide much more 
information which was previously unknown to the participating 
customer employees. This is consistent with the observations we 
made in the industrial survey in Section 3.1, regarding the generally 
low availability of code similarity information. 
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The high information detail level provided by the analysis due to the use
of the diff algorithm was considered by the developers to be very
helpful. In many cases, the presented differences in single code lines, not
sufficiently relevant for a high-level similarity assessment such as scoping,
were rated by the developers as highly important as they contained e.g.
hardware-specific mechanisms for component functionality realization.
In all cases the customers provided a positive feedback on the analysis
and its results, stating that it delivers an added value compared to the
previous state of the practice. The information provided by the analyses
was assessed by the customers as correct and useful in their
maintenance decisions. Hence, the customer feedback supports the
hypothesis HS5 (Practicability).

7.5 Summary 

In this Chapter we evaluated the practical and scientific hypotheses 
concerning the Variant Analysis approach. The performed evaluations 
provided consistently positive outcomes, supporting the scientific and 
practical hypotheses. The described results were all created based on a 
realistically available data input – hence, the measured improvement 
values are not absolute, but rather indicate the benefit achieved through 
the approach use in the concrete context. 

In the analytical correctness evaluation we measured that, for the analyzed 
cases, the precision and recall of the approach results are higher than 0.99. 
We also discussed that the transitivity of the input provided by the diff 
algorithm is sufficient for the purposes of set model construction, with at 
least 99.56% of input graphs, containing at least 97.52% of input edges, 
being transitive, and at least 99.25% of the input edges being included in 
the finally constructed set model. Furthermore, we have demonstrated that 
the approach implementation is scalable and performant. 

In the controlled experiment, we addressed the benefits of the set 
similarity model relative to the most frequently used state of the art 
approach, the pairwise comparison. We observed that the set model 
group solved the similarity analysis tasks on average 58.5% faster, while 
making 92.1% less errors than the pairwise comparison group. 
Furthermore, the set model group reported a lower cognitive load when 
solving the tasks and a higher satisfaction with the used analysis approach. 

Finally, a case study demonstrated that the analysis approach can be 
successfully integrated in the software maintenance activities in the 
industrial context. The industrial approach users estimated that the 
hypothesized practical improvements, such as migration effort reduction 
and the increase of achieved reuse degree, do occur in the practice. The use 
of the analysis results enabled net effort savings exceeding 100 000 euro 
yearly. The usefulness of the approach results was further confirmed by the 
described industrial application experiences in five different companies. 
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8 Summary and Outlook 

In this last Chapter we describe the concluding reflections over the thesis 
content and the defined similarity analysis approach. We discuss the 
provided contributions (Section 8.1) and the approach limitations 
(Section 8.2), and we outline the possible future work areas (Section 8.3). 

8.1 Results and Contributions 

In the industrial practice, groups of functionally similar software systems 
are frequently developed without considering software reuse approaches. 
Instead, the code of existing systems is repeatedly cloned and adapted to 
the specific customer’s needs, creating new system variants. This approach 
results in short-term advantages such as reduced first development effort 
and shortened time to market, but its long-term disadvantage is the 
significantly increased maintenance effort. Hence, even if reuse 
introduction was not intended or not possible in the short term, in the 
longer term a consolidation of the variants into a reusable form is 
beneficial. However, the consolidation is difficult: the practically occurring 
problems are the high required effort and the possibility to miss the 
reuse opportunities. One of the reasons for these problems is that the 
cross-variant code similarity information, necessary in the consolidation 
process, is not available. Hence, a related scientific problem is the recovery, 
structuring and presentation of code similarity information, in quality and 
detail sufficient to support the migration and maintenance activities. This 
problem is open as the existing reverse engineering approaches, which can 
be used to recover that information, exhibit deficiencies which prevent 
them from fully addressing the respective information needs. 

8.1.1 Understanding Large-Scale Cloning: Reasons, Consequences and Solutions 

In this thesis, we contribute both to the understanding of the mentioned 
practical and scientific problems, as well as to their solution. Our 
contributions to the problem understanding are: 

 A survey of the large-scale cloning practices in the industry, 
performed on six groups of similar system variants. In the survey, we 
investigated the reasons for cloning, the practically perceived benefits 
and drawbacks, and the cloning consequences. The survey results show 
that cloning causes long term-maintenance problems, and leads to the 
loss of information on the similar assets – which hinders reuse adoption. 
On the other hand, cloning is in many situations a justified or even 
preferred approach, as its short-term advantages over software reuse 
are a low entrance barrier, reduced first development effort, 
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possibility of a quick reaction to unexpected market demands, 
reduced cross-project synchronization requirements, and freedom to 
perform experimental changes. We conclude that cloning will remain 
a practically used development approach, and hence the need to 
counteract the resulting maintenance problems will persist. 
A characterization of the state of the art approaches to similarity
analysis of multiple cloned variants. First, we discussed that the missing 
similarity information needs to be provided by a reverse engineering 
approach, as the other alternative, a top-down human-based analysis, 
overlooks detailed differences relevant to the asset functionality 
implementation. Second, we discussed the properties of the existing 
reverse engineering approaches with respect to provided abstraction 
mechanisms and information detail level on two dimensions of analysis 
problem complexity: the size of the analyzed software assets, and the 
amount of their variants. We showed that while the approaches deliver 
good support for the asset size dimension, the information provided 
for the variant dimension is incomplete, and suitable abstraction 
mechanisms supporting understanding and interpretation of the 
variant similarity information are missing. 

8.1.2 A Set Model Based Approach to Variant Similarity Analysis 

Consequently, we analyzed the identified practical and scientific problems 
and formulated application scenarios specifying the problem scope 
addressed in the thesis. We address the scenarios of the reuse potential 
assessment across the variants, the consolidation of already existing, 
partially reusable software, and of the code similarity based support for 
parallel variant maintenance. For the defined application scope, we 
developed a reverse engineering approach to variant similarity information 
recovery, which is the main contribution of this thesis. The core idea of the 
approach is the use of hierarchical set similarity model to represent the 
similarity of analyzed system variants. The set model is in turn constructed 
and used by a generic analysis framework, specifying the analysis process 
and the data model, and it is presented by a range of defined visualizations. 
Hence, our scientific contributions to the problem solution are: 

A definition of a conceptual similarity model, which classifies and
relates the concepts associated with the variant similarity analysis
problem and provides the basis for reasoning on the solutions.
A definition of construction requirements for variant similarity
analysis approaches, which are derived from the properties of software
variants – especially from the lack of objectively definable variant order.
The requirements are applicable to any general-purpose approach
analyzing variant similarity, provide means to compare and evaluate such
approaches, and can serve as guidance when defining a new approach.
A definition of the hierarchical set similarity model, based on a
formalization of the variant similarity analysis and its results. The set
similarity model represents the analyzed variants as sets of atomic,
comparable content elements. The sets intersect with each other,
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expressing the variant similarity: the elements similar across a group 
of variants are placed inside the respective set intersection, while the 
other elements remain outside. The set model is combined with the 
use of tree structures, representing the asset content hierarchy, in 
result defining the hierarchical set similarity model. This enables the 
use of set model based similarity analyses, measurements and 
visualizations on any granularity level in the asset structure. The 
hierarchical set similarity model allows for understandable analysis 
and presentation of similarity information for both large software 
assets and a high amount of variants, while at the same time providing 
the access to the lowest detail level of single content elements. The 
model definition is generic, which makes it applicable for similarity 
analysis of many asset types, also non-software ones. 

A definition of a generic analysis framework using the hierarchical
set similarity model. The framework includes the data model, the analysis
process, and the requirements concerning the definition of three basic
analysis mechanisms used in our approach: an asset content
decomposition, a structure element equivalence relation, and an atomic
content element equivalence relation. These three basic analysis
mechanisms need to be defined for each specific asset content type and
analysis goal – hence, they constitute the customization points of the
generic framework and enable the use of the, likewise generic,
hierarchical set similarity model and its metrics and visualizations.
Consequently, the analysis framework can be used for diverse system
representations and diverse similarity detection algorithms. In the thesis
we provide an example instantiation of the framework for file system
based structures, with file content treated as text and analyzed with the
diff algorithm. That instantiation is suitable for analysis of assets
developed in the most of the currently existing programming languages.

A definition of hierarchical set model visualizations, presenting
the similarity of intersecting variant content sets, the distribution of
the similarity in the asset structure hierarchy, and the status of the
particular structure and content elements. Most of the defined
visualizations are applicable for any group of intersecting sets,
regardless of their origin – hence, they can be applied beyond the
context of this thesis, and even beyond the area of computer science.

8.1.3 Empiricism and Evaluation 

We hypothesize that the defined similarity analysis approach provides a 
range of benefits compared to the state of the art. We evaluated these 
benefits empirically through a controlled experiment, a case study, and 
industrial applications of our approach, with consistently positive results: 

In the controlled experiment, we observed that the use of the set
model reduces the similarity analysis effort (experimental result: 58.5%
shorter analysis time) and leads to a better similarity information
understanding (experimental result: 92.1% less task errors) as
compared to the analysis based on the pairwise similarity model.
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Although the experiment targeted the set model only, we 
hypothesize that the improvement provided by the whole approach, 
compared to the state of the art approaches, has a similar scale. 
Moreover, we hypothesize that the scale of the improvement increases 
with the increasing amount of the analyzed variants, due to the use of 
the abstraction mechanisms defined in the approach.  

In the case study, the approach was applied for over a year by one
development team in a large electronics company. The approach use
allowed for development and maintenance net effort savings exceeding
100 000 euro yearly. After initial three months of approach use, the
developers indicated that they were much more satisfied with our
approach than with the previously used approach based on pairwise
comparison. On average, they estimated that the practical analysis
effort is lower by 57.5% and the amount of incorrectly understood
similarity facts is reduced by 41% – providing a further support for
the hypotheses evaluated in the experiment. They also estimated that
the use of approach results allows for reducing the reuse migration
effort (average estimation: 48%), increasing the amount of reused code
(35%) and reducing the effort for parallel maintenance of non-migrated
variants (65%) – hence confirming all our practical benefit hypotheses.

The industrial application experiences demonstrated that the
approach results are useful in the practice in a variety of contexts,
and they showed that the defined approach can be successfully used
by software practitioners.

Additionally, we performed an analytical evaluation of the correctness 
and performance of our approach. For the analyzed cases, the measured 
precision and recall of the approach were very high (precision  0.9946, 
recall  0.9953). Furthermore, performing the similarity analysis required 
at most a few minutes, except for the largest system groups or the 
system groups containing many renamed files. 

Additionally, in the analytical evaluation we measured the transitivity of 
the input similarity data provided by the diff algorithm and the proportion 
of the input similarity data included in the resulting set model. As the 
similarity represented by the set model is transitive, but the input data 
might be not transitively similar, ensuring a minimal divergence between 
the input similarity and the set model is necessary. In the measured 
examples, at least 99.56% of the input graphs, containing at least 
97.52% of input edges, were already transitive, and the processing of the 
remaining graphs allowed for including at least 99.25% of the input 
edges into the set model. No additional, artificial edges were included – 
hence, the modeled similarity information is 100% correct, but not 100% 
complete. We discussed that the small divergence in the represented 
similarity information constitutes a low cost paid in exchange for the 
several benefits of the set model, discussed above. This was confirmed by 
the industrial developers using our approach, who were satisfied with the 
correctness and completeness of the analysis results. 

Analytical 
approach 
evaluation 

176 



Summary and Outlook 

8.1.4 Further Approach Benefits 

We consider the hierarchical set model and the visualizations defined on 
top of it to be the main factor which enables the achievement of the 
approach benefits. The hierarchical set model allows for a scalable 
abstraction of the analysis result, while also preserving the full 
information detail, for both dimensions of the system size and of the 
amount of variants. The provided similarity visualizations and 
measurements are easily understandable for both small and large code 
structures, up to millions code lines and tens of variants. Consequently, 
the identification of similar variant groups, similar component variants 
and similar code fragments can be performed with low effort. Moreover, 
the information stored in the set model is detailed and can be further 
processed, for example by using subset calculations, metrics, and 
aggregative visualizations such as phylogenetic trees. 

The described instantiation of the approach for textual asset content, 
and the choice of the diff algorithm as the content equivalence function, 
have the advantages of generality and simplicity. The content of 
a broad range of asset types is physically stored in textual files, and can 
hence be processed by the analysis instantiation. At the same time, the 
use of well-known and simple diff algorithm helps technical stakeholders 
in understanding the analysis process and trusting its results. 

Finally, the benefits of the approach application extend beyond the 
performed analysis and its direct use in the migration tasks. In the case 
study, as well as in the industrial experiences, the introduction of the 
approach enabled performing the similarity analyses to a much larger 
extent than realistically possible before, as the baseline approach effort 
was previously considered to be prohibitively high. The new analysis 
approach enabled the case study organization to not only achieve better 
effort and reuse results in the particular analyses, but also to perform 
more analyses and hence increase the scope of reuse migration. This 
in turn is likely to strengthen the benefits which are typically associated 
with software reuse introduction, such as maintenance effort reduction, 
shorter development time, and better software quality – as already 
expressed by the effort savings estimated in the case study organization. 

8.2 Limitations 

Before the construction of the analysis approach, we formulated a group 
of assumptions concerning the form of the similarity information needed 
in the context of the defined application scenarios. First of all, we 
explicitly excluded from the analysis scope the similar code fragments 
located within the same software asset. Consequently, only the similarity 
between the variants is reported. Furthermore, we assumed that the 
similar asset elements from different variants should be related to each 
other with one-to-one and not many-to-many correspondences. In result, 
instead of many potential matches, only a single most similar counterpart 
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is reported for a given element. Finally, we assumed a high structural 
similarity of the analyzed variants, motivated by the observation that low-
similarity code cannot be effectively merged into a reusable form. The 
consequent design decisions might cause the approach to provide 
reduced result quality for low-similarity analysis input. The defined 
analysis approach is therefore particularly suitable for similarity analysis 
of variant assets which were created via cloning and, due to the 
common origin, still share structural similarity. Outside of the application 
scenario scope, the defined approach likely does not provide the stated 
benefits. Particularly if no assumptions concerning the properties of the 
sought similarity can be made, and hence a search for many similar code 
fragments within and across the variants is needed, the construction of 
a respective hierarchical set model storing the analysis result is not possible. 

A further limitation of the approach resulting from the analysis 
assumptions is the potential divergence between the complete similarity 
of the analyzed asset variants and the similarity analysis result stored in 
the set model. As discussed in the previous Section, the input similarity 
of analyzed variants might be not transitive, but the transitivity is 
required in the set model construction, and a respective transformation 
of the input similarity creates the stated divergence. Although in the case 
of the diff algorithm that divergence is small, it can be potentially much 
larger for other similarity detection functions or other asset types. Hence, 
the size of the divergence needs to be measured in order to estimate 
how far the consequent incompleteness of the analysis result reduces 
the approach benefits for the concrete asset type. 

Finally, any instantiation of the approach needs to consider that the most 
functions recognizing the similarity of software assets target the syntactic 
similarity, as its detection is much easier to automate than the detection 
of semantic similarity. However, two asset content fragments which 
realize the same functionality but were implemented in different ways 
mostly do not look syntactically alike. In the context of clone detection in 
program code, Juergens et al. discuss that semantically similar code 
fragments occur frequently, but the current clone detection approaches 
cannot be improved to detect them [Juergens 2010]. Hence, the 
difference between the detectable syntactic similarity and the 
reuse-relevant semantic similarity causes some potentially reusable asset 
fragments to remain undetected. Although the syntax-based processing 
of program code, performed by the described textual approach 
instantiation, leads to the demonstrated practically useful results, the 
difficulty in recognizing meaningfully similar asset content might be 
significantly higher for more complex asset representations such as 
models. In such a case, the defined approach would not be able to provide 
its benefits, as it depends on the quality of the used equivalence relations, 
fulfilling the similarity detection task. On the other hand, if a semantic 
equivalence relation would be constructed in the future, it could be easily 
incorporated into the existing generic analysis framework of our approach. 
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8.3 Future Work 

We discussed and demonstrated that the similarity analysis approach 
defined in this thesis provides a contribution to the state of the art and of 
the practice. Nevertheless, there are still many open points in the approach 
development and evaluation which need to be addressed in the future. 
Moreover, during the thesis research many new questions, related to the 
research and practical context of the approach, emerged. We summarize 
the open points and the research questions in the following subsections. 

8.3.1 Extending the Analysis Approach 

We instantiated the defined analysis approach for a textual, file system 
based representation of the asset content, and constructed the asset 
content equivalence relation by using the diff algorithm. In the future, it 
is interesting to address other asset types and other equivalence 
relations. Set model based analyses of code abstract syntax trees, 
models (including executable models defined by visual programming 
languages such as Simulink), and even non-software assets are 
imaginable. To define these analyzes, additional work is needed in the 
area of analysis mechanism definition (content decomposition, 
equivalence relations), measurement of analysis result properties 
(especially related to correctness and transitivity), and evaluation of 
instantiation-specific approach benefits. 

Moreover, the defined generic analysis mechanisms could be further 
extended. On the one hand, the extensions could improve and 
automate the support for addressing more specific analysis concerns. 
For example, new visualizations such as histograms and scatterplots could 
provide another view on the measured similarity values and the calculated 
metrics, while new calculations could automatically provide answers to the 
most frequent questions (e.g. finding top m similar variant groups of size k). 
On the other hand, also the generic analysis mechanisms can be extended: 
for example, it might be helpful for the users to offer size-proportional 
Venn diagram visualizations when up to five variants are presented. 

More information sources could be used during the analysis. 
Especially the information provided by configuration management 
systems, such as file cloning and renaming history, file maintenance 
intensity, and co-change analysis, could be used either for improving the 
analysis result quality, or for supporting the migration decision making. 

Finally, the application guidance for the approach can be extended. 
With more application experience, the guidance for analysis result 
interpretation could be improved by adding further suitability criteria and 
providing more decision suggestions supported by practical use cases. The 
guidance could also address the migration process itself by helping the 
user to decompose the high-level migration goals into finer-grained 
migration activities and matching them with best practices and 
reengineering patterns similar to these of Demeyer et al. [Demeyer 2008]. 
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8.3.2 Further Evaluation 

The performed evaluations of the approach provide initial indications 
regarding the contributed benefits. However, a further empirical and 
analytical evaluation is needed to strengthen the existing evidence 
and provide more understanding of the influencing context factors: 

The performed experiment provided just a single data point for
evaluating the scientific hypotheses – hence, its replication for
different types of participants, variants and tasks is of much value.

The experiment addressed just the benefits of the set model, while other
approach mechanisms such as visualizations should also be evaluated.

Further experimental evaluations should also provide input for
validating the hypothesis HS3 Analysis Effort Scalability, stating that
the effort savings increase with the amount of analyzed variants.

Performing further case studies is important to extend the validation
of practical hypotheses. It would be also interesting to gather
experiences regarding approach utility for a very high number of
variants (30 and more).

The usefulness of the defined similarity metrics in the estimation of
reuse potential is likewise worth evaluating.

The correctness and transitivity measurements should be performed
for more systems, especially for real-world software variants.

Finally, collecting further practical experience will help to improve 
the approach by providing a better understanding of the details of the 
possible analysis goals, the usefulness of different similarity information 
types in addressing these goals, the role of the similarity information in the 
process of software reuse migration, and the suitable migration strategies. 

8.3.3 Open Research Questions 

The developed approach addresses different computer science areas, 
such as software maintenance, reverse engineering and reengineering, 
program understanding, and software reuse. Accordingly, the open 
research questions address all these areas. 

First of all, understanding of the large-scale cloning practices can be 
improved by a comprehensive study of evolving cloned system variants. In 
the context of our approach, the study results could be used especially to 
extend the interpretation and migration guidance. The questions which 
could be addressed are: 

How do the differences between variants develop with time,
regarding their size, distribution, and granularity?

Do systems cloned by copying look differently than the systems
cloned using configuration management branches? Do industrial
cloned variants look differently than open source variants?
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How long do the benefits of cloning prevail over its disadvantages?
When is it beneficial to consolidate the cloned systems, and when is
it better to keep them separated? What are the strategies to manage
the interplay of cloning and reuse, as attempted by some of the
industrial survey and case study organizations?
How fast is the original similarity information being lost?
Is there a point when is it too late for code consolidation, due to the
extent and complexity of the differences between the variants?

Furthermore, the reverse engineering of code similarity could be 
potentially improved by using not only content comparison, but also 
including the results of other analysis techniques for mutual benefit. 
For example, techniques such as feature location could help in locating 
similar content and in result interpretation, while the similarity 
information could in turn help to better identify feature differences 
between the variants. It is also interesting to investigate how the 
semantic information about the analyzed systems (e.g. provided by 
scoping or an existing feature model) could be used to better guide the 
automatized analysis process. 

Third, the visualization and understanding support for the created 
similarity information should be deeper researched. We are convinced 
that many more visualizations of the hierarchical set model information 
can be defined. The existing visualizations can also be improved – for 
example, further supportive hierarchy structures for the tree map set 
diagram should be proposed and evaluated. It would also be interesting 
to investigate the benefits of different similarity visualizations from the 
psychology and program understanding point of view. These investigations 
should include an evaluation of the color use in the diagrams, and could 
propose other colors which better support similarity understanding. 

Fourth, the reuse migration and the parallel variant maintenance, 
including the role of the provided similarity information, need to be 
better understood. From our point of view, the interesting questions are: 

What are the estimators for migration difficulty and for migration
benefits which could be derived from the assets?
How should they influence the migration, considering that there are
many other factors influencing the migration decisions?
What would be, from the technical point of view, the best way to
merge the asset variants in a given specific case?
What other information could be reverse engineered to support reuse
migration and parallel variant maintenance?

Finally, the defined analysis approach is generic, and the hierarchical set 
model can be used to represent the similarity of any group of elements. In 
the future, it would be very interesting to investigate the applications 
and benefits of the approach for a broader range of assets and 
element representations, also beyond the scope of computer science. 
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Collections of overlapping hierarchical data, potentially suitable for our 
approach, exist for example in biology (genome comparisons 
[Kestler 2004] [Fouts 2005] [Argout 2011] [Madak-Erdogan 2013]) and 
medicine (disease prevalence [Mapel 2004], comparison of different 
diagnostic methods [Walline 2013]). Potentially suitable data collections 
exist also in further contexts, where a population of persons, 
hierarchically structured according to location, age, occupation, or other 
partitioning attribute, is analyzed with the use of multiple binary 
attributes describing their genetic [Willer 2013], economic [Noack 2011], 
demographic [USCB 2014], behavioral [Utter 2007], medical [Viegi 2004] 
or social [Zammit 2012] characteristics. 

8.4 Concluding Remarks 

The research topic of this thesis, that is the similarity analysis of cloned 
asset variants, originated from our practical observations of industrial 
problem cases which we encountered in the Fraunhofer IESE consultancy 
projects. The first solution was already able to provide useful results to 
the supported company [Duszynski 2008] – however, it also had several 
drawbacks. Actually, we learned about the most of the approach 
construction requirements listed in Section 4.2 by investigating the 
reasons for the deficiencies of the first solution. Consequently, a next 
version of the analysis approach was created, and refinements resulting 
from further experiences were added successively. 

This cyclical pattern of problem identification, solution development, 
practical solution application and post-application reflection shaped this 
thesis research. Hence, we consider the thesis to be an example of 
empirically supported applied research: the thesis was influenced by 
practical problems (investigated in the industrial survey), it developed 
theoretical research results (evaluated in the controlled experiment), and 
included practical result application (presented in the case study). In our 
opinion, the possibility to apply the research ideas in a practical context 
greatly contributed to the maturation of the defined approach, and the 
successively added improvements resulting from the practical feedback 
enabled the achievement of the approach benefits. 

The positive outcomes of performed empirical evaluations, as well as the 
successful experiences of industrial approach application, make us 
convinced that this thesis provides a good contribution to the area of 
software similarity analysis in the context of the defined application 
scenarios. Moreover, the generic contributions of the approach, 
especially the hierarchical set similarity model and its visualizations, can 
be used in similarity analysis of any other objects fulfilling the set model 
assumptions. Hence, investigating the suitability of the generic approach 
contributions outside of their original, software-based context remains 
an interesting open problem. 
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Appendix A Experiment Material 

The information and documents provided in this appendix can be used 
to analyze the details of the controlled experiment performed for this 
thesis and to replicate that experiment. For the description of experiment 
goals, hypotheses, and design please refer to Chapter 7. 

A.1 Experiment Infrastructure Setup 

A.1.1 Analyzed Software Systems 

The software systems analyzed by experiment participants were based 
on the source code of JHotDraw, an open-source middle-sized Java 
software system [JHotDraw 2014]. Five different variant systems were 
generated from the original JHotDraw code by the ForkSim tool 
[Svajlenko 2013] in a randomized generation process. In that process, 
syntactically correct code parts were injected at random, but syntactically 
correct locations into the original JHotDraw code, sometimes with and 
sometimes without repetitions across the different variants. The inserted 
code parts were in some cases modified for a subgroup of the target 
variants, for example by changing the code formatting, removing some 
code lines, renaming variables and other identifiers, or changing the 
assigned variable values. The insertion and modification operations were 
logged, so that the similarity of the generated system variants was 
exactly known. Thus, correct answers to the experimental questions 
were known without the need to use any of the analysis techniques 
investigated in the experiment. 

All files which were not relevant for the experiment were deleted from 
the analyzed system variants in order to ease the code navigation and 
thus reduce the amount of time the subjects needed to spend on 
locating the respective files. 

A.1.2 Adaptations to the Variant Analysis Tool 

The experiment goal was not to compare any specific software tools, but 
rather to compare two techniques for analyzing code similarity. However, 
using software tools was necessary as they create and provide access to 
the similarity data. Although the common pairwise comparison tools and 
the Variant Analysis tool differ in several places, e.g. with regard to user 
interface and data visualization, all these differences had to be removed in 
the experiment in order to eliminate their influence on the experiment 
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result. Therefore, to isolate the effect of using a different similarity model, 
the tools used by both groups were made equal in all aspects – except the 
similarity model used. Depending on the similarity model, the similarity 
visualized in the tool was based either on pairwise comparison results or 
on the set-based comparison results. Apart from that difference, both 
tools used the same algorithm for pairwise comparison of code files, as 
well as the same code navigation and visualization means. This was 
achieved by providing adapted variants of the Variant Analysis tool to both 
groups. Moreover, advanced functionalities of the Variant Analysis tool, 
which could be used by the participants as an alternative way to obtain 
the needed results, were disabled. 

For the experimental group working with the set similarity model, the 
Variant Analysis tool was adapted in the following way: 

The Variant Analysis views were disabled and hidden. The only
interface elements the participants could interact with were the
system structure diagram and the colored code editor.

The similarity information was removed from the system structure
diagram elements. Hence, the similarity information was only
displayed in the code editor.

The model analysis menus were disabled and hidden.

The comparison result dialog, normally used for configuring and
opening the code editor, was reduced to only contain the basic
settings relevant for the experiment.

For the other group, working with pairwise similarity, the above 
modifications were applied too. The tool for that group was further 
adapted as follows: 

The comparison result dialog was modified to enable the user to
specify a pair of file variants for analysis.

The textual line information and the code coloring, displayed in the
code editor, were adapted to reflect pairwise similarity results instead
of the set-based results.

A.1.3 Computing Infrastructure 

Each participant received a workplace equipped with standard 
Fraunhofer IESE student workstation hardware. Hence, all students 
worked on identical or very similar hardware configurations. On each 
computer, the Eclipse environment containing the group-specific 
adaptation of the Variant Analysis tool was installed and started. The 
systems for analysis were stored on the hard disk. 
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The automated analysis phase, necessary to create the similarity 
information for the analysis, was not part of the experiment. Instead, the 
students received the results of an already completed analysis, and their 
only task was to answer similarity questions based on the presented 
information. 

A.2 Experiment Documents 

In the course of the experiment, each participant received two printed 
documents: 

The tool tutorial slides (specific for the given group).

Experiment document (identical for both groups), containing:

Introductory information

The briefing questionnaire

The description of the tasks to be solved

The debriefing questionnaire

These documents are stored in the following subsections. 
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A.2.1 Tool Tutorials 

The following tutorial slides were common for both experimental groups. 

The Similarity Analysis Experiment

Tool Tutorial

1

Welcome to the Tool Tutorial!
This tutorial shows how to use the similarity analysis tool.

The analyzed software systems are already imported into the tool.

To start, please 
expand the 
Analysis 
project tree

2

Basics: Loading Packages
There are three systems in the analysis: A, B and C. 
The analysis results are stored in the Result package. 
You need to load the packages in order to access the analysis results.

Select all 
packages

Open the right-
click menu

Select the 
Package ->Open 
menu item

The package 
icons change 
color: the 
packages are 
loaded now

3

Basics: Opening the Diagram
The analyzed files will be displayed on a diagram. Please open the diagram to see 
the files.

Open the „Result“
package

Double-click on 
the diagram to 
open it

4

Navigating the Diagram

5

Navigating the Diagram (1): Expand
The diagram visualizes the directory structure of the analyzed systems.

You can expand and collapse the directories to see the files inside.

The two plus icons 
on the CH 
component mean 
„Expand“ and 
„Expand all“

Please click 
„Expand all“ to 
see the whole 
directory structure

6
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The following two slides were used only in the pairwise similarity group. 

Navigating the Diagram (2): Folders and Files
The files are shown as yellow rectangles, contained in the respective parent folders.

For example, the file in the circle is CH/ifa/draw/framework/FigureChangeEvent.java

7

Navigating the Diagram (3): Scrolling and Outline
You can scroll through the diagram using the scroll bars or the Outline view 

(bottom left).

You can also 
collapse some of
the folders by 
using one of the 
minus icons 
„Collapse“ and 
„Collapse all“

8

Analyzing the Similarity

9

Analyzing the Similarity (1): Compare Menu
Open the code similarity results by right-clicking on a file and selecting the 
“Compare” menu item. Let’s use the file CH/ifa/draw/contrib/ zoom/ 
/ScalingGraphics.java as an example.

Please find the file 
ScalingGraphics

Right-click on it
and select
„Compare“

10

Analyzing the Similarity (2): Wizard
A wizard appears. Please select two of the existing file variants to be compared. 

Select two file 
variants in the lists 
(for example A 
and C)

Click the „Finish“
button to open the 
selected file 
variants

11

Analyzing the similarity (3): Editor
For each variant, a code editor is opened.

12

The editor showing the variant C of the ScalingGraphics.java 
file, compared to its variant A

Code highlighting informs 
about the similarity status:

Common (green) – identical 
in the two variants
Unique (yellow) – different
between the two variants

Additionally, the status bar on 
the right side provides an 
overview over all the lines    
in the file

The editor showing variant A compared to C

When mouse hovers over the 
C or U icon, an explanation text 
is shown

The C and U icons on the left 
side of the text show again the 
similarity information 
(Common, Unique)

“Line: 436 Variants: A C” 
means the line is identical in 
variants A and C

Information which variants are compared
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The following four slides were used only in the set model similarity group. 

The remaining tutorial slides were common for both experimental groups, except for 
their slide numbers which differed due to a different number of preceding slides. 

Analyzing the Similarity (2): Wizard
A wizard appears, informing that all existing file variants will be opened. 

Click the „Finish“
button to open the 
file variants

11

Analyzing the similarity (3): Editor
For each variant, a code editor is opened.

12

An editor showing the variant C 
of the ScalingGraphics.java file

Code highlighting informs 
about the similarity status
(see the next slide for 
explanation)

Additionally, the status bar on 
the right side provides an 
overview over all the lines    
in the file

Editors for variants A and B

When mouse hovers over the 
C, S or U icon, an explanation 
text is shown

The C, S and U icons on the 
left side of the text show 
again the similarity 
information (see next slide)

The Set Similarity Model (1)

13

The information in the editor is based on a set similarity model.

Code existing only in one variant B

Code existing in A and B, but not in C

Code existing in A, B and C: identical in all variants

The code is colored according to the set information

Core (green): code identical in all the variants

Unique (yellow): code existing in only one variant

Shared (blue): code existing in more than one, but not all variants

The same coloring is also used for more than 3 sets (4,5, etc.)

The Set Similarity Model (2)

14

This is how the editor visualizes the set model for the code:

Code identical in all variants

Code existing only in variant C

The same type of information is shown in the editors for the variant A and B

Of course, the code existing only in variant A will only be shown in the editor A

The tooltip says “Line: 436 Variants: 3 Membership: A B C”
This means the line is identical in three variants, and these variants are A, B and C

After Analysis: Close the Files
When you finish analyzing a group of files, you can clean up your tool by closing all 
the editors and leaving only the diagram open.

You can close 
each editor‘s 
window 
individually

Or, you can go to 
the diagram tab,
right-click on it,
and select the 
„Close others“
option

13

Example Tasks

14

204 



Appendix A - Experiment Material 

The number of blank slides, placed after the example tasks slide, varied between the two 
tutorial variants. The reason for that was that in both variants the example task answers 
were placed on slide 19 to prevent the participants from seeing the answers prematurely. 

A.2.2 The Main Experiment Document 

The main experiment document was identical for both groups. 

The questions asked in the document, except for the analysis task 
questions, were not numbered in any way visible to the participants. 
However, we numbered all questions internally in order to refer to them 
in other documents such as result tables. Below, we indicate the 
respective question numbers by using notes placed on the left document 
margin. The same question numbers are used in Appendix A.3, where 
the participant answers are reported. 

Example Tasks
Please try to determine the correct answers to the following example tasks.

The next slide contains the answers, but try to solve the example tasks first!

In case you have any question about the tool or the tasks, please ask it now!

15

Example Question Answer

QEx1
Which two variants of the file 
CH/ifa/draw/samples/Animator.java
are the most similar to each other?

� I don’t know

QEx2
Which variants of the file 
CH/ifa/draw/framework/Tool.java
have identical code?

� I don’t know

QEx3
Which variant of the file 
CH/ifa/draw/framework/FigureChangeEvent.java
contains only code which also exists in all other variants? � I don’t know

(intentionally left blank)

16

Example Tasks – Answers
In case you have any question about the tool or the tasks, please ask it now!

19

Example Question Answer

QEx1
Which two variants of the file 
CH/ifa/draw/samples/Animator.java
are the most similar to each other?

A,B � I don’t know

QEx2
Which variants of the file 
CH/ifa/draw/framework/Tool.java
have identical code?

A, B ,C � I don’t know

QEx3
Which variant of the file 
CH/ifa/draw/framework/FigureChangeEvent.java
contains only code which also exists in all other variants?

B � I don’t know
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The Similarity Analysis Experiment 

Please read the experiment documents carefully. In case you have any problems in understanding the 
given information, the experiment tasks or the tool usage, please contact the experiment supervisor. 

The experiment is scheduled to last about 90 minutes. 

Thank you for participating in the experiment, and good luck! 

Experiment Goal 

The goal of the experiment is to evaluate two methods which are used for analyzing the 
similarity of software system implementation. The time you spend on solving the analysis tasks 
and the correctness of your answers are measured. Please try to solve the tasks quickly, but also 
make sure you solve them all correctly, as correctness is important here. 

Please note that the experiment is evaluated anonymously. The goal is not to evaluate your 
personal performance, but to evaluate the similarity analysis methods. 

Your Role in the Experiment 

 In the experiment, you take the role of a software architect who investigates a few variants of a 
software product for similarity – for example, to determine the possibility of transforming the 
variants to a software product line. The knowledge of software architecture or software product 
lines concepts is not required for the experiment. Because the experiment has a limited time, 
only a few selected locations in the software will be investigated. 

Definition of Code Similarity used in the Experiment 

The similarity of two source files is defined as the similarity of their source code:  

 two files where only a few code lines differ have a high similarity, 
 two files where a lot of code lines differ have a low similarity.

In the experiment, the whole content of the Java file, including comments and import 
statements, is treated as source code. Therefore, differences in imports and comments affect 
the similarity in the same way as the differences in Java code statements.  
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The Experiment Procedure 

The analysis tool and the investigated systems are already installed on your computer. Additionally, the 
tool documentation is attached to this document. Before the analysis starts, you will receive a short 
training on the tool usage.  During the experiment, you will use the tool to analyze the provided systems 
and answer the provided questions. 

Preparation Phase 

 Please read the experiment description (Page 1 and 2). 
 Please fill out the Briefing Questionnaire (Page 3). 
 Read the task solution guidance (Page 4), and wait for the tool tutorial. 
 Listen to the tool tutorial and perform the presented tool usage steps. 
 Try out the tool on the example workspace. Make sure you understand how to

use the tool. 
 When you are ready to start, tell it to the experiment supervisor. The execution 

phase will start when all group members are ready. 

Execution Phase 

 All group members receive the name of the experiment workspace. 
 Please switch Eclipse to the experiment workspace. Make sure that the system

packages and the diagram are opened. 
 Write down the execution start time on Page 4. 
 Conduct the experiment tasks (Pages 5 to 6). 
 When you finish all the tasks, write down the execution stop time on Page 4.

Finalization Phase 

 Please fill out the Debriefing Questionnaire (Pages 7 and 8). 
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Briefing Questionnaire 

The purpose of this questionnaire is to characterize the background of the participants. The information 
you provide will help in the analysis of experiment results. The answers will be treated anonymously.  

Please answer the questions as complete and as honest as possible. Try to answer every question – if you 
are not sure about the answer, just select the one you feel is the most likely. Thank you for your support! 

Background information 

- What is your major field of study?  

- What is the degree you are currently studying for?  

- In which semester of your study are you at the moment (counting from the beginning of the 
bachelor studies)? ________ 

- Are you color blind? 

- Please rate your experience in the following categories. For each category, please select only 
one option. 

How much experience do you 
have in … 

No 
experience 

Little 
experience 

Medium 
experience  

Significant 
experience 

Professional 
experience 

1 2 3 4 5 
Programming in general � � � � � 
The Java programming language � � � � � 
Using the Eclipse environment � � � � � 
Comparing source code using diff 
tools (any kind) � � � � � 

Comparing source code using the 
Eclipse Diff tool � � � � � 

Using the Variant Analysis tool � � � � � 

Highly 
unmotivated Unmotivated

Neither 
motivated 

nor 
unmotivated 

Motivated Highly 
motivated 

1 2 3 4 5 
How motivated are you to 
perform well in the experiment? � � � � � 

�  Bachelor 
�  Master 
�  Other, please specify ___________ 

�  Computer Science 
�  Business Informatics 
�  Mathematics 
�  Other, please specify ___________ 

�  Yes (which colors?) ___________________ 
�  No 

B1 

B2 

B3 

B4 
B4a 

B5 
B6 
B7 

B11 

B8 

B9 
B10 
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Task Solution Guidance

You take the role of a software architect who investigates a few variants of a software product for 
similarity. Please use the specified tool installed on your computer to analyze the five variants of the 
JHotDraw system, named A, B, C, D and E. During the analysis, please answer the questions below. In 
case you are unable to determine the correct answer, please instead mark the “�� I don’t know” field. If 
there is no answer at all, the “I don’t know” explanation will be assumed, too. The questions answered 
with “I don’t know” will be counted as answered incorrectly. 

When answering the questions, it is enough that you write down the variant names or the number being 
the correct answer. “A and B” or “5” are sufficient, for example: 

Example Question    Example  Answer 
QEx1 Which two variants of the file  

package/File.java  
are the most similar to each other? 

A, B � I don’t know 

QEx2 Which methods in the file  
package/test/Test.java  
exist only in variant A of that file? 

runOnce() � I don’t know 

Please remember to only use the provided tool to analyze the similarity. Do not use other tools such as 
Notepad or Excel. If you need to take down notes, please use the empty sheet of paper attached at the 
end of this document. 

The Experiment 

Please notify the experiment supervisor when you are ready to start. The execution phase will 
start when all group members are ready. 

After receiving the name of the experiment workspace, please switch Eclipse to that workspace. 
Make sure that the system packages and the diagram are opened. 

Then, write down the start time and turn the page to start working on the tasks. Please try to 
solve the tasks quickly, but also make sure you solve them all correctly, as correctness is 
important here. 

Write down the execution start time here (e.g., 15:50)  __________ 

Write down the execution stop time here (e.g., 16:50)  __________ 

T1 
T2 
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Tasks 1 – 12 

Question      Answer 
Q1. Which two variants of the file 

CH/ifa/draw/contrib/CommandMenuItem.java  
are the most similar to each other? 

� I don’t know 

Q2. Which two variants of the file 
CH/ifa/draw/contrib/CustomSelectionTool.java 
are the most similar to each other? 

� I don’t know 

Q3. Which variants of the file 
CH/ifa/draw/contrib/Helper.java 
have identical code? 

� I don’t know 

Q4. Which variants of the file 
CH/ifa/draw/contrib/AutoscrollHelper.java 
have identical code? 

� I don’t know 

Q5. Which variant of the file 
CH/ifa/draw/util/CommandButton.java 
is strongly dissimilar from the others? 

� I don’t know 

Q6. Which variant of the file 
CH/ifa/draw/util/UndoableAdapter.java 
is strongly dissimilar from the others? 

� I don’t know 

Q7. Which variants of the file 
CH/ifa/draw/util/UndoableTool.java 
have identical code? 

� I don’t know 

Q8. Which variant of the file  
CH/ifa/draw/standard/BoxHandleKit.java 
contains the most unique code (code which doesn’t 
exist in any other variant)? 

� I don’t know 

Q9. Which variant of the file  
CH/ifa/draw/standard/HandleTracker.java 
contains only code which also exists in all other 
variants? 

� I don’t know 

Q10. Which variant of the file 
CH/ifa/draw/samples/minimap/ 
MiniMapDesktop.java 
is strongly dissimilar from the others? 

� I don’t know 

Q11. Which variant of the file  
CH/ifa/draw/application/DrawApplication.java 
contains the most unique code (code which doesn’t 
exist in any other variant)? 

� I don’t know 

Q12. Which variants of the file 
CH/ifa/draw/contrib/SVGDrawApp.java 
have identical code? 

� I don’t know 

(continued on the next page) 

210 



Appendix A - Experiment Material 

.11.01.2013, 

6 

Tasks 13 – 16 

Question      Answer 
Q13. Which variant of the file CH/ifa/draw/standard/ 

FigureChangeEventMulticaster.java 
contains the most unique code (code which doesn’t 
exist in any other variant)? 

� I don’t know 

Q14. Which methods in the file 
CH/ifa/draw/figures/FontSizeHandle.java  
from variant C exist only in that variant of the file? 

� I don’t know 

Q15. Which two variants of the file CH/ifa/draw/figures/ 
EllipseFigure.java 
are the most similar to each other? 

� I don’t know 

Q16. Which two variants of the file CH/ifa/draw/util/ 
StandardVersionControlStrategy.java 
are the most similar to each other? 

� I don’t know 

Please remember to write down the stop time on Page 4 when you finish! 
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Debriefing Questionnaire 

How difficult did you perceive the tasks? How much effort did it require to solve them? 

Please draw a horizontal line or mark a cross on the following vertical scale. Select a location on the scale 
that characterizes in the best way how you perceived the task difficulty. Then, write down the number 
that corresponds to the location you selected. You can select any number between 0 and 150. 

(continued on the next page) 

Task difficulty: ___________ DB1 
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Debriefing Questionnaire (continued) 

Please answer the following questions about the conducted experiment. For each question, please select 
only one option. 

To what degree do you agree with the 
following statements? 

Strongly 
disagree Disagree 

Neither 
agree nor 
disagree 

Agree Strongly 
agree 

1 2 3 4 5 
I understood the description of the 
experiment tasks. � � � � � 

I understood how I should use the analysis 
tool to receive the source code difference 
information. 

� � � � � 

I understood the meaning of the source code 
difference information presented to me. � � � � � 

I could easily see the difference between the 
code highlighting colors in the code editor. � � � � � 

I had enough time for solving the tasks. � � � � � 
I only used the specified tool for solving the 
tasks. � � � � � 

I think my answers were correct. � � � � � 

I think the tool I used provides a good support 
for solving the tasks quickly. � � � � � 

I think the tool I used provides a good support 
for solving the tasks correctly. � � � � � 

- What would you change to improve the experiment, the task description, or the tool you used? 
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_______________________________________________________________________________ 

- Do you have any additional comments or suggestions? 
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_______________________________________________________________________________ 

Thank you for participating in the experiment! 
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A.3 Raw Experiment Results 

The following tables report the raw results collected in the experiment. 
The participants are sorted in the tables according to the order in which 
they returned the filled experiment material in their groups, except for 
participants P10 and P13, for whom that order could not be determined. 
The participants identified as S {number} were assigned to the set model 
group, and the participants identified as P {number} were assigned to the 
pairwise comparison group. 

In the initial result analysis, some participant answers were recognized as 
implausible or incomplete. These answers are marked in the result tables 
using gray cell background. For each table, the procedure applied to 
these answers in the later analysis, as well as the answer abbreviations 
used in the table, are explained. 

The results of participant P4 were excluded from the experiment for 
reasons discussed in Chapter 7. These results are retained here for 
completeness, and are also marked using gray cell background. 

A.3.1 Briefing Questionnaire Results 

Table 27 presents the participant answers given to the briefing 
questionnaire. The abbreviations used in the table are: CS – Computer 
Science. Soft. Eng. – Software Engineering. M – Master. B – Bachelor. 

Implausible answers: when answering questions B2 and B3, the 
participants indicated their study level (bachelor, master) and their 
current study semester, counted from the beginning of the bachelor 
studies. However, four participants indicated that although they were 
already in master studies, they currently studied in the 1st or 3rd semester. 
This is not possible, as the Technical University of Kaiserslautern only 
offers master studies to persons who hold the bachelor degree (and 
hence already studied for about 8 semesters). These persons were 
therefore either in bachelor studies at the moment, or they indicated by 
mistake their current semester of the master study. 

As the Product Line course, attended by all the participants, is an advanced 
course offered mainly to master-level students, we assumed that the 
marked participants indicated the current semester of their master studies 
alone. Hence, in the further result processing, we added 8 semesters to each 
of their answers to estimate the duration of their bachelor studies. 

Answering the question B10, participant S14 indicated he/she had “little 
experience” with using the Variant Analysis tool. This is implausible as, 
according to our knowledge, none of the participants could have seen the 
tool before. As we had no possibility to ask the participant for the reasons 
of that answer, we assume it was given due to a misunderstanding. 
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Participant 
ID 

B1 B2 B3 B4 B4a B5 B6 B7 B8 B9 B10 B11 

S4 CS M 10 No 3 3 3 1 1 1 4 
S6 CS M 11 No 5 5 5 2 1 1 4 
S7 CS M 9 No 3 2 2 2 2 1 4 
S15 Soft. 

Eng. 
M 3 No 5 3 2 2 1 1 4 

S14 CS M 9 No 4 3 2 2 1 2 3 
S8 CS M 9 No 4 4 3 1 1 1 5 
S12 CS B 7 No 2 2 2 1 1 1 3 
S10 CS M 11 Yes Green-

red 
5 4 4 3 3 1 3 

S13 Busin
ess 

Diplo
ma 

13 No 2 2 1 1 1 1 3 

S9 CS B 8 No 2 3 3 1 1 1 3 
S16 Soft. 

Eng. 
M 3 Yes Green 

and red, 
brown 

3 3 3 1 1 1 3 

P1 CS M 9 No 5 3 3 3 2 1 4 
P16 CS M 8 No 4 4 4 3 2 1 4 
P15 CS B 8 No 4 3 3 1 1 1 3 
P11 CS M 9 No 4 1 2 4 1 1 4 
P12 Soft. 

Eng. 
M 10 No 3 4 4 4 3 1 3 

P6 CS M 1 No 3 3 2 2 1 1 5 
P9 CS M 10 No 3 2 3 1 1 1 4 
P3 CS M 1 No 3 3 3 2 1 1 4 
P5 CS B 1 No 3 3 3 3 1 1 4 
P4 CS M 2 No 3 3 3 1 1 1 4 
P10 CS M 14 No 1 4 3 3 2 1 3 
P13 CS M 12 No 4 3 3 3 2 1 3 

Table 27 The experiment results: the briefing questionnaire 
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A.3.2 Task Answers and Time Measurement 

Participant 
ID 

T1 T2 T 
[T2-T1]

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

S4 16:17 16:28 11 BE BC ACDE AD A D DE D 
S6 16:17 16:31 14 BE BC ACDE AD A D DE D 
S7 16:17 16:32 15 BE BC ACDE AD A D DE D 
S15 16:17 16:30 13 BE BC ACDE AD A D DE D 
S14 16:17 16:28 11 BE BC ACDE AD A D DE D 
S8 16:18 16:31 13 BE BC ACDE AD A D DE D 
S12 16:17 16:32 15 BE BC ACDE AD A D DE D 
S10 16:17 16:32 15 BE BC ACDE AD A D DE D 
S13 16:15 16:33 18 BE BC ACDE AD A D DE D 
S9 16:17 16:29 12 BE BC ADE AD A D DE D 
S16 16:19 16:36 17 BE BC ACDE AD A D DE D 

P1 16:13 16:40 27 BE BC ACDE AD A D DE D 
P16 16:15 16:46 31 BE BC ACDE AD A D DE D 
P15 16:15 16:46 31 BE BC ACDE AD A D DE D 
P11 16:15 16:40 25 BE BC ACDE AD A D DE D 
P12 16:18 16:43 25 BE BC AC AD A D DE D 
P6 16:21 17:01 40 BE BC ACDE AD A D DE D 
P9 16:17 16:53 36 BC ACDE AD A D DE 
P3 16:13 BE X ACDE AD A D DE D 
P5 16:14 16:59 45 BE BC ACDE AD A D DE X 
P4 16:00 17:03 63 BE, CE BC AC, 

AD, 
AE, 
CD, DE 

AD AB, 
AC, AE 

BD DE BD, X 

P10 16:19 17:03 44 BE BC ACDE AD A D DE X 
P13 16:14 16:47 33 BE AE ACDE AD A D DE D 

Table 28 presents the participant answers provided for the experiment tasks 
and the time measurements. The abbreviations used in the table are: X – the 
“I don’t know” answer was selected. Empty cell – no answer was given. 

Incomplete or implausible answers: participant P3 did not specify the 
completion time for his/her tasks. Hence, the time measurement for that 
participant could not be performed, and this time result could not be 
considered in the further analysis. However, according to the group 
supervisor, the participant P3 was neither the slowest, nor the fastest 
person in the group. 

Participant P4 stated that he/she measured the time difference 
accurately, but did not record the actual starting time, and hence he/she 
provided artificial results with correct time difference. As participant P4 
was the last to finish the tasks in that group, the stated time difference is 
considered plausible. 
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Participant 
ID 

Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Correct 
[Q1...Q16]

Errors 
[Q1...Q16]

S4 C C D BDE D paramString() AD BC 16 0 
S6 C C D BDE D paramString() AD BC 16 0 
S7 C C D BDE D paramString() AD BC 16 0 
S15 C C D BDE D paramString() AD BC 16 0 
S14 C C D BDE D paramString() AD BC 16 0 
S8 C C D BDE D paramString() AD BC 16 0 
S12 C C D BDE D paramString() AD BC 16 0 
S10 C C D BDE D paramString() AD BC 16 0 
S13 C C D BDE D paramString() AD BC 16 0 
S9 C C D BD D paramString() AD BC 14 2 
S16 C C D BDE D paramString() AD BC 16 0 

P1 C C D BDE D paramString() AD BC 16 0 
P16 C C D BDE D paramString() AD BC 16 0 
P15 C C BDE D paramString() AD BE 14 2 
P11 C C D BDE D paramString() AD BC 16 0 
P12 C C D BD D paramString() AD BC 14 2 
P6 E C D BDE B paramString() AE BC 13 3 
P9 C C D BDE D paramString() AD BC 14 2 
P3 D None X BDE D X AD AE 10 6 
P5 C X C BDE B X AD BC 11 5 
P4 No X No No X paramString() X X 5 11 

P10 C C X BDE X X AD BC 12 4 
P13 C C D BDE D paramString() AD BC 15 1 

Table 28 The experiment results: time measurement and task answers 
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A.3.3 Debriefing Questionnaire Results 

Table 29 presents the participant answers provided for the debriefing 
questionnaire. 

Participant 
ID 

DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 

S4 15 5 5 5 5 5 5 5 5 4 
S6 10 5 5 4 5 5 5 4 5 5 
S7 13 5 5 4 5 5 5 5 5 5 
S15 26 5 5 5 5 5 5 5 5 5 
S14 25 4 5 4 5 5 5 5 4 4 
S8 15 5 5 5 4 5 5 4 4 4 
S12 5 5 5 5 5 5 5 5 5 5 
S10 26 5 5 5 5 5 5 5 4 4 
S13 35 4 3 3 5 5 5 5 5 5 
S9 13 4 5 5 5 5 5 5 5 4 
S16 26 5 5 5 5 5 5 5 5 5 

P1 101 5 5 5 5 5 5 5 2 4 
P16 20 5 5 5 5 5 5 5 4 4 
P15 1 5 4 3 5 5 5 5 5 5 
P11 13 5 5 5 5 5 5 4 3 4 
P12 5 5 4 5 5 5 4 5 5 
P6 71 4 4 4 4 4 4 4 2 4 
P9 57 4 5 5 5 5 5 4 4 4 
P3 40 4 4 5 5 5 5 4 4 4 
P5 71 4 4 4 4 4 5 5 3 3 
P4 72 1 1 1 1 2 1 3 5 3 
P10 100 4 4 3 3 2 5 4 2 2 
P13 26 5 5 5 5 5 5 5 4 4 

Table 29 The experiment results: the debriefing questionnaire 

Incomplete answers: participant P12 did not provide any number 
when answering the question DB1. Instead, he/she wrote that “the task 
is easy, but time consuming”. This answer could not be used in the 
further analysis. 

The answers to questions DB11 and DB12, not provided in the above 
table for space reasons, contained various suggestions for improvements 
of the provided tool functionalities. However, these suggested 
functionalities were already covered by the full Variant Analysis tool, 
which was not known to the experiment participants. 
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Appendix B Application Guidance 

The information provided in this appendix concerns the practical use of 
the results of the defined similarity analysis approach in the context of its 
application scenarios. As discussed in Section 1.3, there are several context 
factors influencing the software migration decisions. The concerns such as 
functional similarity, future plans regarding the product variants 
[Schmid 2005], the overall code quality [Wleklik 2011], and resource 
availability play an at least as important role as the code similarity analysis 
results. Furthermore, many different reverse engineering techniques can 
be used on the analyzed asset variants to recover information not 
necessarily concerning code similarity, but still relevant for the migration 
[Knodel 2005] [Duszynski 2010b]. Hence, as our approach focuses on the 
code similarity only, the application guidance described below is necessarily 
rather an advice than a precise algorithm, and is intended to rather support 
reuse decisions than to prescribe them. For each group of similar software 
asset variants, the unique combination of context factors might require a 
case-specific use of the analysis results, overriding the application guidance. 

The existing guidance concerning software reengineering, such as the 
refactoring methods [Fowler 1999], reengineering patterns [Demeyer 
2008], or clone detection and removal approaches [Rieger 1999] 
[Schulze 2013], applies also in the context of our application scenarios. 
Hence, the application guidance discussed below complements these 
approaches and does not override them. 

B.1 Reuse Potential Assessment and Software Consolidation 

In this section, we discuss the guidance concerning the application 
scenarios AS1 (reuse potential assessment) and AS2 (consolidation of 
existing reusable software). In both these scenarios, the analysis purpose 
is to identify the variants of assets or their constituent parts which are 
suitable for reuse introduction. Hence, from the similarity analysis point of 
view the foremost concern is the identification of assets having high 
similarity. For each asset or asset part, the following decisions can be made: 

The asset can be consolidated and made reusable for all its variants.

The asset can be consolidated and made reusable for a subgroup of
its variants.

The asset can be left unconsolidated, and all its variants can be
further maintained in parallel.

The asset can be rewritten in a reusable form, abandoning the content
of existing variants but using the information on their similarity.
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B.1.1 Similarity Properties Supporting the Scenarios 

From the code similarity point of view, a group of some or all variants of 
the analyzed assets is particularly suitable for consolidation when the 
following criteria are met: 

High content similarity: the union of the content sets contains at
least 80% of core content, or 80% of such content which is common
(core or shared) within the selected variant subgroup.
High concentration of similar and unique content: the content
common to the selected variants, as well as the unique content, is
concentrated to over 90% in the Content Filled Elements belonging
to the analyzed asset. A high proportion of unique content is not
detrimental to reuse migration if whole Content Filled Elements are
unique. In such a case, these elements can be conveniently handled
by the compositional variability mechanisms regardless of their size.
In contrast to that, a migration of asset variants containing highly
dispersed unique content likely requires a higher effort.
Large fragments of similar code: the content fragments having
the same similarity are large, and only a low number of different set
intersections are represented in the Content Filled Elements (10 or
less in an element, while each element can contain a different group
of intersections).

Naturally, the consolidation is also possible for asset variants which do not 
fulfill some or all of the above criteria – however, in such a case a relatively 
higher consolidation effort is likely needed. Furthermore, in case the 
specified criteria are met only for a specific part of the analyzed asset, the 
analyst can decide to perform the consolidation only for that asset part, 
achieving for it the reuse benefits, and leave the remaining asset content 
unaffected. Finally, the asset variant consolidation might be not attempted 
despite the fulfillment of the stated criteria: for example, due to a low 
code quality the asset might be instead rewritten in a reusable form. 

B.1.2 Prioritization of Consolidation Activities 

The consolidation planning frequently needs to prioritize the activities 
performed on the identified asset variants. In particular, the 
consolidation activities should quickly provide a benefit in the form of 
reduced asset maintenance effort – the saved effort can be then in turn 
used for further extension of the consolidation scope. The following 
criteria support the prioritization of consolidation activities: 

Overall maintenance intensity: the assets experiencing heavy
maintenance should be prioritized in the consolidation activities for
two reasons. First, performing further changes on the candidate asset
variants before the consolidation might increase their complexity and
reduce their reuse potential. On the other hand, the changes
included after the consolidation might require less effort, due to the
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already existing reuse, and are likely implemented in a more reuse-
supportive way. Second, the introduction of reuse to the heavily 
maintained variants provides a faster return on the consolidation 
investment. In contrast to that, the consolidation of low-maintenance 
asset variants might never pay off, as the achieved overall 
maintenance savings might be low despite a high content similarity. 

Near-time maintenance intensity: for the reasons analogical as
discussed in the previous point, an asset might be prioritized for
consolidation if a significant maintenance activity is planned for its
variants soon. Even if the average maintenance intensity of the asset
is low, the summary effort needed for the consolidation and the
subsequent phase of intensive maintenance, performed on the
already reusable content, might be lower than the effort required for
repetitive maintenance tasks performed on the non-consolidated
variants. Hence, this situation potentially provides a quick pay off for
the consolidation effort.

Very high code similarity: the consolidation of nearly-identical
asset variants requires likely a low effort. However, it provides a quick
benefit even if the average asset variants maintenance intensity is
low: the activities related to the management and quality assurance
of the variants, which are frequently effort-intensive, can afterwards
only be performed once for all previously independent asset variants.

The neighborhood of reusable content: it might be beneficial to
concentrate the consolidation activities on a few areas of the asset
content, and create a low number of relatively large “reuse islands”
instead of a high number of small, scattered reusable elements. The
larger reusable asset parts are easier to manage, and are more likely
to represent a semantically coherent subsets of asset functionality.
Hence, the candidate asset parts which contribute to increasing the
size of already existing commonalities should be prioritized.

B.1.3 Further Activities Supporting the Scenarios 

The reuse consolidation can be performed using different approaches – 
for example, the group of identified asset variants can be merged 
together, or a single variant can be extended to cover the functionality 
required by all other variants. In the case of merging, the following 
complementary implementation level activities might be performed 
before the actual consolidation: 

Removal of non-significant differences: during the parallel variant
code maintenance, minor implementation differences not significantly
influencing the asset functionality can emerge. For example, a
refactoring or code commenting activity might be performed only on
some of the variants, or a propagation of a code change might not be
propagated consistently between the relevant variants. Furthermore,
the variant code might differ in the used file and identifier names.
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Because an unification of such differences is relatively simple, and there 
is no reason to preserve and manage them in the resulting reusable 
assets, the removal of non-significant differences can be performed as 
one of the first consolidation steps, helping in the isolation of more 
significant variant-specific asset content differences. 

Dead code removal: particularly in the older asset groups the amount
of dead code can be relatively high. The creation of dead code can be
intensified due to the variant cloning, especially in case the ancestor
variant is not fully understood by the developer and the new clone is
used in a different context. Obviously, dead code is not reusable and
the effort spent on its removal pays off during the consolidation.

B.2 Parallel Variant Maintenance 

In the application scenario AS3 (parallel variant maintenance) the similar 
content is not intended to be consolidated. Instead of identifying 
potentially reusable content parts, the analysis supports the developers in 
understanding the similarity distribution in order to exploit that similarity 
during the parallel maintenance activities. The main activities utilizing the 
similarity information are hence the planning and verification of parallel 
content changes as well as the content inspections. A prior removal of 
non-significant content differences, as described in the previous 
section, is beneficial for both these activities. Subsequently, the most 
significant effort reduction in the parallel maintenance activities can be 
expected for asset variants having the following properties: 

Nearly identical content of asset or Content Filled Element variants
(98% or more common code). In that case, the further parallel
content changes implementing analogical functionality are likely to
be performed in a syntactically similar way for these nearly identical
variants. The similarity of both base code and the changes is also
supportive for change verification, which aims to ensure that the
changes were performed consistently in all variants, and all
differences between the particular change implementations are
intended and not accidental. Finally, a significant share of the content
inspection effort can be saved, as the reviewed content is already
known and only needs to be verified for the possibility of a yet
unconsidered usage context.
Asset or Element variant fully covering the content of another
variant, possibly with the exception of minor unique content parts.
In that case, the benefits occurring for nearly identical content, i.e.
the high syntactical similarity of functionally identical changes, can
also be expected. Hence, the results of maintenance activities
performed on the larger variant can be frequently transferred to the
smaller one after a short review of its usage context.
Large fragments of similar content, i.e. content fragments
belonging to the same set intersection, exhibit for the involved
variant content sets the same benefits as discussed above.
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The benefits of understanding the similarity distribution are not limited to 
the nearly identical asset variants – however, they are the most significant 
and visible for these assets. Reduction of content change and inspection 
effort can also be achieved in the case if only specific asset parts, affected 
by the given maintenance activity, exhibit a sufficiently high content 
similarity. Admittedly, in the parallel maintenance scenario the content 
similarity which results in a sufficient benefit needs to be higher compared 
to the other two scenarios, which are focusing on reuse introduction. 
While two asset variants with medium similarity (50-70% of common 
content) can still be transformed to a reusable form in many cases, the 
difference in their functionality is likely high enough to require a separate 
change analysis and inspection performed for each of the asset variants. 
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