
Vol. 51

Slawomir Duszynski

Analyzing Similarity
of Cloned Software Variants
using Hierarchical Set Models

10000

01000
00001

00100

11111

00010

Editor-in-Chief: Prof. Dr. Dieter Rombach
Editorial Board: Prof. Dr. Frank Bomarius

Prof. Dr. Peter Liggesmeyer
Prof. Dr. Dieter Rombach

FRAUNHOFER VERLAG

Ph
D

 Th
eses in

 Exp
erim

en
tal So

ftw
are En

g
in

eerin
g

PhD Theses in Experimental Software Engineering
Volume 51

Editor-in-Chief: Prof. Dr. Dieter Rombach

Editorial Board: Prof. Dr. Frank Bomarius
Prof. Dr. Peter Liggesmeyer
Prof. Dr. Dieter Rombach

Zugl.: Kaiserslautern, Univ., Diss., 2015

Printing:
Mediendienstleistungen des
Fraunhofer-Informationszentrum Raum und Bau IRB, Stuttgart

Printed on acid-free and chlorine-free bleached paper.

All rights reserved; no part of this publication may be translated, reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. The quotation of those designations in whatever way does not
imply the conclusion that the use of those designations is legal without the consent of the
owner of the trademark.

© by Fraunhofer Verlag, 2015
ISBN (Print): 978-3-8396-0860-9
Fraunhofer-Informationszentrum Raum und Bau IRB
Postfach 800469, 70504 Stuttgart
Nobelstraße 12, 70569 Stuttgart
Telefon +49 711 9 70 - 25 00
Telefax +49 711 9 70 - 25 08
E-Mail verlag@fraunhofer.de
URL http://verlag.fraunhofer.de

Analyzing Similarity of Cloned Software Variants
using Hierarchical Set Models

Beim Fachbereich Informatik
der Technischen Universität Kaiserslautern
zur Verleihung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

genehmigte Dissertation
von

M. Sc. Slawomir Duszynski

Fraunhofer-Institut für Experimentelles Software Engineering
(Fraunhofer IESE)

Kaiserslautern

Berichterstatter: Prof. Dr. Dr. h.c. H. Dieter Rombach
 Prof. Dr. rer. nat. habil. Gunter Saake

Dekan: Prof. Dr. rer. nat. Klaus Schneider

Tag der Wissenschaftlichen Aussprache: 09.01.2015

D 386

To my wife Basia and daughter Hania

 iii

Acknowledgements

A doctoral thesis has usually one author. However, a thesis is created not
by the work of just one person, but rather bases on the support and
collaboration of many people, provided on many different levels. I would
like to thank everyone who in any way contributed to this thesis.

I thank Prof. Dieter Rombach for the guidance and feedback he provided
along the whole thesis period, and for creating the applied research
environment of Fraunhofer IESE. I thank Prof. Gunter Saake for his
insightful questions and feedback, which provided a different
perspective on the thesis and improved it in many ways. I thank
Prof. Reinhard Gotzhein for chairing the dissertation committee.

During the thesis research, I received much support from the colleagues
at Fraunhofer IESE. I especially thank Dirk Muthig for pushing me in the
right direction in the very beginning, Martin Becker for his ongoing
support both as a discussion partner and as a department head, and Jens
Knodel for many in-depth discussions on the details of the approach.
During my time at IESE, I also much benefited from countless discussions
with Michalis Anastasopoulos, Thiago Burgos, Isabel John, Ralf Kalmar,
Thomas Patzke, Daniel Schneider, Adeline Silva Schäfer and Bo Zhang.

I thank Andreas Jedlitschka and Jessica Jung for their support in the
preparation of the empirical studies. I thank the students of the Software
Product Lines course who participated in the controlled experiment.
I thank Yael Dubinsky, Julia Rubin, Thorsten Berger and Krzysztof
Czarnecki for the joint work on the industrial cloning survey. I thank
Chanchal Roy and Jeffrey Svajlenko from the University of Saskatchewan
for the discussions and the analytical evaluation support. I also thank
Andreas Feldges and Jörg Wleklik for sharing their industrial experiences
with the practical approach use.

I thank the students who performed parts of the implementation work:
Selcuk Imal, Benjamin Precht, and Fatimah Zahra. I especially thank Vasil
Tenev for the substantial improvements and extensions of the tool, the
mapping algorithm, and the many algorithmic discussions. I thank Thomas
Forster, Dominik Rost and Balthasar Weitzel for their technical support.

Finally, I thank my wife Barbara for continuously supporting me during
the time of the thesis. She is the person who believed in me the most.
I also thank my daughter Hanna for reminding me that there are things
in life which are more important than work.

 v

Abstract

Software reuse approaches are known to enable considerable effort and
cost savings during the development of a group of software systems with a
significant overlap in functionality. In practice, however, the need for
systematic reuse often becomes apparent only after a number of product
variants have already been delivered. The existing literature and an industry
survey performed in the context of this dissertation indicate that in practice,
new product variants are often created by cloning the code of an existing
product and changing it according to the new requirements. In a long-term
perspective, this practice often leads to significant maintenance problems.

To counteract such maintenance problems, a systematic reuse approach
can be introduced afterwards by transforming the implementation of the
cloned product variants. However, successful transformation is a
challenging task because it requires precise and detailed information
about the distribution of implementation similarity between the product
variants. This information is usually not available, as the product variants
were modified independent of each other. The motivation for this
dissertation is hence to provide the needed similarity information and thus
support the migration of existing system variants towards software reuse.

The main contribution of this dissertation is a reverse engineering
approach for obtaining information about the source code similarity of
existing product variants. Compared to existing approaches, it delivers
more detailed similarity information, reduces the analysis effort, and allows
for improved correctness of similarity information understanding. The
approach models the variant products as hierarchical, intersecting sets of
uniquely identifiable elements, and expresses the similarity of the variants
using set algebra. The resulting similarity information is available on any
abstraction level, from a single code line to a whole product. The
approach proposes a generic analysis framework, which can be used for
diverse system representations, diverse similarity detection algorithms, and
diverse definitions of element similarity. Hence, the approach can be
instantiated in various contexts and adapted to a specific analysis goal.

The contributed approach supports simultaneous analysis of multiple
source code variants and proposes visualization concepts that enable
easy interpretation of the analysis results even for large systems and a
high number of variants. The benefits of the approach are evaluated
empirically by means of a controlled experiment and an industrial case
study, and analytically on a reference set of cloned system variants.
Furthermore, practical applications of the approach in an industrial
context are briefly presented.

vii

Table of Contents

Table of Contents

1 Introduction ..1
1.1 Research Approach ..3
1.2 Research Problems ...4
1.3 Scope and Contributions ..9
1.4 Outline ...14

2 Context and Related Work ..17
2.1 Software Reuse ..17

2.1.1 Software Product Line Engineering19
2.1.2 Software Product Line Adoption Strategies22

2.2 Reverse Engineering ...23
2.3 Similarity Analysis Approaches for Software Variants27

2.3.1 Comparison and Differencing Algorithms28
2.3.2 Clone Detection ...29
2.3.3 Other Approaches ...31

2.4 Summary ...32

3 Towards an Approach for Variant Similarity Analysis33
3.1 Cloning in Industrial Software Product Lines – An Exploratory

Survey ..33
3.1.1 Survey Results ..35
3.1.2 Discussion ..37

3.2 Application Scenarios and Analysis Goals for Code Similarity
Analysis ..38

3.3 Shortcomings of the Existing Approaches41
3.4 Research Hypotheses ..44
3.5 Summary ...48

4 Investigation and Formalization of the Variant Similarity
Analysis Problem ..49
4.1 Software Variants ...49

4.1.1 A Discussion on the Lack of Objective Variant Ordering .52
4.2 The Construction Requirements for Techniques Analyzing

Variant Similarity ..55
4.2.1 Consequences of the Lack of Variant Ordering56
4.2.2 Providing Detailed Result Information57
4.2.3 Result Presentation and Interpretation59
4.2.4 Other Requirements ...60

4.3 Assumptions Resulting from the Application Scenarios60
4.4 A Formal Definition of Variant Similarity Analysis......................63

ix

Table of Contents

4.5 Evaluating Quality of the Variant Similarity Analysis Results 66
4.5.1 Evaluating Results of Information Retrieval Problems 66
4.5.2 Definition of Precision and Recall Measures for Similarity

Analysis Results ... 67
4.6 The Conceptual Model of Variant Similarity Analysis 71

4.6.1 Software Asset Structure ... 71
4.6.2 Software Asset Similarity ... 73
4.6.3 Similarity Analysis of Software Asset Variants 75

4.7 Summary ... 76

5 Variant Similarity Analysis with Hierarchical Set Similarity
Models .. 77
5.1 The Set Similarity Model .. 78
5.2 Hierarchical Set Similarity Model .. 84

5.2.1 Asset Content Trees and Set Similarity Models 84
5.2.2 A Data Model for the Set Model Based Similarity Analysis

 ... 88
5.2.3 Representation of Equivalence Between Transformed Tree

Structures ... 89
5.2.4 Further Remarks on the Hierarchical Set Similarity Model

 ... 92
5.3 A Process for Hierarchical Set Model Construction and Usage . 92
5.4 Approaches for Set Similarity Model Construction 95

5.4.1 An Instantiation of Asset Content Decomposition 97
5.4.2 Mapping Correspondences in Structure Hierarchies 98
5.4.3 Definition of Atomic Content Element Equivalence

Relation .. 103
5.4.4 Discussion ... 107

5.5 Visualization .. 110
5.5.1 Set Bar Diagrams: Visualizing the Similarity of Multiple

Intersecting Sets .. 111
5.5.2 Visualization of Set Similarity in the Asset Structure

Hierarchy .. 114
5.5.3 Visualization of Similarity Distribution 116
5.5.4 Size-Preserving Set Intersection Visualization 119
5.5.5 Similarity Visualization with Phylogenetic Trees 121
5.5.6 Discussion ... 125

5.6 Metrics .. 127
5.7 Discussion ... 131
5.8 Summary ... 134

6 Analysis Tool Implementation Techniques 135
6.1 Supporting Performance Optimization with Data Redundancy 135
6.2 Efficient Evaluation of Subset Calculations 136
6.3 Ensuring Repeatable Results for Multiple Optimal Solutions... 140
6.4 Summary ... 141

 x

Table of Contents

7 Evaluation .. 143
7.1 Analytical Evaluation ... 144

7.1.1 Performance and Scalability .. 146
7.1.2 Input and Result Transitivity .. 148
7.1.3 Approach Instantiation Correctness: Precision and Recall

 ... 151
7.2 Controlled Experiment .. 153

7.2.1 Experiment Goal and Hypotheses 153
7.2.2 Experiment Design and Operationalization 155
7.2.3 Experiment Results .. 158
7.2.4 Threats to Validity ... 164

7.3 Industrial Case Study ... 166
7.4 Industrial Application Experiences ... 170
7.5 Summary .. 172

8 Summary and Outlook .. 173
8.1 Results and Contributions ... 173

8.1.1 Understanding Large-Scale Cloning: Reasons,
Consequences and Solutions 173

8.1.2 A Set Model Based Approach to Variant Similarity Analysis
 ... 174

8.1.3 Empiricism and Evaluation .. 175
8.1.4 Further Approach Benefits .. 177

8.2 Limitations .. 177
8.3 Future Work .. 179

8.3.1 Extending the Analysis Approach 179
8.3.2 Further Evaluation ... 180
8.3.3 Open Research Questions ... 180

8.4 Concluding Remarks ... 182

References ... 183

Appendix A Experiment Material .. 199
A.1 Experiment Infrastructure Setup .. 199

A.1.1 Analyzed Software Systems .. 199
A.1.2 Adaptations to the Variant Analysis Tool 199
A.1.3 Computing Infrastructure ... 200

A.2 Experiment Documents ... 201
A.2.1 Tool Tutorials .. 202
A.2.2 The Main Experiment Document 205

A.3 Raw Experiment Results .. 216
A.3.1 Briefing Questionnaire Results 216
A.3.2 Task Answers and Time Measurement 218
A.3.3 Debriefing Questionnaire Results 220

xi

Table of Contents

Appendix B Application Guidance ... 221
B.1 Reuse Potential Assessment and Software Consolidation 221

B.1.1 Similarity Properties Supporting the Scenarios 222
B.1.2 Prioritization of Consolidation Activities 222
B.1.3 Further Activities Supporting the Scenarios 223

B.2 Parallel Variant Maintenance ... 224

 xii

List of Figures

List of Figures

Figure 1 The research approach followed in this thesis 3
Figure 2 Example of system cloning: the history of BSD-based

operating systems [Yamamoto 2005] 4
Figure 3 The research context of the Variant Analysis approach 10
Figure 4 The role of code similarity analysis in an example reuse

migration process ... 11
Figure 5 Thesis contributions .. 13
Figure 6 The empirical investigations along the research cycle 14
Figure 7 Thesis chapters and contributions mapped to the research

approach structure .. 15
Figure 8 A schema of product line engineering (adapted from

[Muthig 2002]) ... 20
Figure 9 Forward engineering, reverse engineering, and reengineering

(adapted from [Chikofsky 1990])... 24
Figure 10 The relationships between data, information and knowledge

(from [Liew 2007]) .. 25
Figure 11 A generic reverse engineering process and its relation to data,

information and knowledge .. 26
Figure 12 Example presentation of multi-system similarity analysis results

in the form of pairwise similarity matrix (left; the values
indicate the degree of similarity) and a multi-system
scatterplot (right; the similarity is indicated by the cell color) . 31

Figure 13 Overview of the practical and scientific hypotheses and their
relations to the application scenarios 47

Figure 14 Versions and variants of a software asset 50
Figure 15 The basic analysis schema for software versions and variants 51
Figure 16 A schematic visualization of example content change across a

group of related asset variants ... 53
Figure 17 Two example intersecting sets A and B 56
Figure 18 The inadequacy of pairwise result presentation: identical

results are provided (middle) although the analyzed
situations (left, right) strongly differ 58

Figure 19 A schematic presentations of the similarity analysis input (left)
and the analysis result (right) ... 65

Figure 20 A model of an information retrieval problem and the four
possible result categories .. 66

Figure 21 An example of an incorrect analysis result 67

xiii

List of Figures

Figure 22 The incorrect result from Figure 21 (left) and its interpretation
according to the merge-based analysis result definition
(middle, with legend to the right). ... 69

Figure 23 The conceptual model of variant similarity analysis 72
Figure 24 Equivalence sets construction: the elements of the input asset

content sets are assigned to the equivalence classes (left). The
resulting equivalence sets, containing these classes, intersect
with each other (right). ... 79

Figure 25 The input sets (left) and the analysis result from Figure 19
(middle) represented with the set similarity model (right). 80

Figure 26 Example subset calculations. ... 81
Figure 27 A metamodel of the tree-based structure of asset content

hierarchy. .. 84
Figure 28 A set of asset content elements and an asset content tree. ... 85
Figure 29 Three assets are decomposed into asset content trees, with

atomic content elements stored in the tree leaves (left, middle).
A unified asset content tree is constructed from the asset
content trees, and its elements reference the set similarity
models of atomic content elements (right). 86

Figure 30 The construction of set models for parent elements of the unified
asset content tree based on the child element set models. 87

Figure 31 A data metamodel for the similarity analysis: the content
structure of each asset (left) is associated with two set models
(right), which store the asset content similarity information. .. 89

Figure 32 Three assets content trees from Figure 29 (left), with the node
moved inside the parent node in the second variant, are used
to construct a unified asset content tree. The tree (right)
contains hard links in all original locations of the node ,
which reference the same set similarity model. 90

Figure 33 The construction of set similarity models for the parent node
(left) and for the root node (right) of the unified asset
content tree from Figure 32. .. 91

Figure 34 The process for the set model based similarity analysis. 93
Figure 35 The similarity analysis input (left), the internal analysis process

using the customizable definitions of analysis mechanisms
(middle), and the resulting analysis output (right). 94

Figure 36 Abstract forms of input similarity data: gradual pairwise
similarity (left) and binary pairwise similarity (right). 95

Figure 37 The iterative Center Star method: in each iteration the star
center variant is determined, and its elements are mapped
using the center’s pairwise alignments. 102

Figure 38 Examples of non-transitive relation graphs constructed
from the diff results. ... 104

 xiv

List of Figures

Figure 39 Example relation graphs and their alternative solutions. 106
Figure 40 Solutions provided for the relation graphs from Figure 38. .. 107
Figure 41 A Venn diagram for five intersecting sets (left) and the

construction of a set bar diagram for these sets: the
intermediate form (top right) and the final diagram form
(bottom right). .. 112

Figure 42 The visualization of an example subset calculation in
the set bar diagram. .. 113

Figure 43 Hierarchy structure visualization showing similarity
information for each displayed element. 114

Figure 44 Visualization of code-level similarity with line background
coloring, category icons, and on-demand details. 116

Figure 45 Distribution diagram visualization: the illustration of the
construction principle, created for the io folder from Figure 43
(left), and a diagram screenshot for a large industrial system
group (right). ... 117

Figure 46 Tree map visualization: the illustration of the construction
principle, created for the src folder from Figure 43 (left), and
a screenshot for a code folder from three BSD systems (right).
The color intensity shows the proportion of core code in the
set union of a given element. ... 118

Figure 47 A Venn diagram for four industrial system variants, indicating
the intersection sizes (left). The same intersecting sets
visualized using a tree map set diagram (right). 119

Figure 48 Example hierarchy structures, created for four sets,
which can be used in a tree map set diagram. 120

Figure 49 Dendrogram constructed for the full source code of six BSD
systems [Tenev 2012]. The location of branching points
corresponds to the similarity of the respective tree branches. .. 122

Figure 50 The similarity of a group of versions (left) as compared to a
group of variants (right). The drawn Venn diagrams are area-
proportional, i.e. the size of an area indicates its cardinality. 124

Figure 51 Cladogram constructed for the full source code of six BSD systems
depicted in Figure 49 [Tenev 2012]. The length of branch sections
is proportional to the amount of common or unique code. 124

Figure 52 A data metamodel from Figure 31, with the additional attributes
storing redundant, performance-relevant set model information.136

Figure 53 A screenshot of the user interface for specifying subset
calculation condition (called a “query” in the tool). 137

Figure 54 The overview of the practical and scientific hypotheses and
the used evaluation means. .. 143

Figure 55 The transitivity measurements for subgroups of
Ind_Medium variants. ... 150

xv

List of Figures

Figure 56 The three measurement series for the evaluation of approach
precision and recall. .. 152

Figure 57 The experiment results: task time (left) and task errors (right). .. 160
Figure 58 The experiment results: cognitive load. 161

 xvi

List of Tables

List of Tables

Table 1 The results of an industry survey concerning product line
adoption strategies [Berger 2013] ... 4

Table 2 Two dimensions of product line adoption (based on
[Bosch 2002] and [Krueger 2002])... 22

Table 3 The properties of the existing approaches: + stands for
“supported”, (+) for “partially supported”, “–” for “not
supported” ... 43

Table 4 The practical hypotheses ... 44
Table 5 The scientific hypotheses ... 46
Table 6 The calculation formulas and example values for the measures

used in the merge-based precision and recall definition 70
Table 7 The metrics characterizing a group of intersecting sets 128
Table 8 The metrics characterizing the distribution of the variant sets

in the structure hierarchy .. 129
Table 9 The metrics characterizing similarity distribution in the

textual file content .. 130
Table 10 Truth table evaluating the correctness of the quick

evaluation expressions .. 139
Table 11 Example calculations using the quick evaluation expressions . 139
Table 12 The analyzed variant system groups 145
Table 13 A short description of the analyzed systems’ similarity 146
Table 14 The performance and scalability measurements 147
Table 15 The transitivity measurements for all variant groups 148
Table 16 The transitivity measurements for subgroups of

Ind_Medium variants .. 150
Table 17 Approach precision and recall, measured on the five

generated system variant groups ... 152
Table 18 The main metrics collected during the controlled experiment

and the associated hypotheses .. 155
Table 19 The experiment process: steps for controlled experiment

execution .. 157
Table 20 The briefing questionnaire results: participant background.. 158
Table 21 The briefing questionnaire results: participant experience 159
Table 22 The briefing questionnaire results: participant motivation 159
Table 23 Statistical testing of the experimental hypotheses 161
Table 24 The debriefing questionnaire results 163

xvii

List of Tables

Table 25 The case study questionnaire results 168
Table 26 Industrial applications of the analysis approach 171
Table 27 The experiment results: the briefing questionnaire 217
Table 28 The experiment results: time measurement and task answers .. 219
Table 29 The experiment results: the debriefing questionnaire 220

 xviii

List of Definitions

List of Definitions

Definition 1 Software reuse ... 17
Definition 2 (Reuse) asset .. 18
Definition 3 Systematic software reuse .. 18
Definition 4 Software product line .. 19
Definition 5 Reverse engineering ... 24
Definition 6 Reengineering .. 24
Definition 7 Data .. 25
Definition 8 Information .. 25
Definition 9 Knowledge .. 25
Definition 10 Software clones .. 29
Definition 11 Software version .. 50
Definition 12 Software variant ... 50
Definition 13 Precision ... 67
Definition 14 Recall ... 67
Definition 15 Similarity .. 73
Definition 16 Equivalence set ... 79
Definition 17 Equivalence set intersection .. 79
Definition 18 Equivalence set union ... 79
Definition 19 Set similarity model .. 80
Definition 20 Set model based similarity analysis 80
Definition 21 Asset content tree .. 85
Definition 22 Unified asset content tree... 85
Definition 23 Hierarchical set similarity model 88

xix

Introduction

1 Introduction

Software systems frequently need to fulfill the requirements of various
user groups and work in diverse technical environments on disparate
hardware platforms. An inevitable consequence of this variety of
requirements is that software systems are often developed not as
a singular instance, but rather as a family of similar system variants
which provide functionality customized for particular user groups
and environments. Software system customization is “unavoidable and
purposeful” [Parnas 1976], and it is currently being practiced in a broad
range of software-intensive industries [SPLC 2014].

As the system variants usually remain considerably similar despite the
customization, adopting large-scale reuse of software assets frequently
brings benefits in their development. First, as the software assets are
reused in multiple software projects, less code needs to be developed
anew, which results in a reduction of project development effort and
cost. Second, this reduction in effort helps to shorten project
development time. And third, the reused assets have already been
verified in past projects – hence they usually have higher quality than
freshly developed code, which leads to higher quality of the final system.
From the multitude of existing software reuse approaches, the software
product lines approach is especially being advocated for the
development of a group of similar software systems, and its adoption is
known to enable the achievement of the reuse benefits listed above
[Gacek 2001] [Clements 2002a] [Bass 2003] [Steger 2004] [SPLC 2014].

The adoption of a systematic reuse approach needs advance planning as
well as initial investment in the reusable asset base, and might also require
restructuring of the software-developing organization and redefinition of its
processes [Lim 1998] [Clements 2002a]. Hence, adopting software reuse
requires time, money and management commitment. In industrial
practice, however, factors such as lack of planning certainty, development
resource constraints, and tight deadlines in many cases prevent a
software-developing organization from adopting a systematic reuse
approach. In such situations, the existing system variants are frequently just
cloned and modified to create the next system variant [Dubinsky 2013].
The cloned system variants typically undergo further parallel development,
and reuse approaches are often not introduced until after the variants
have matured. As a consequence, the developing organization misses the
benefits of software reuse. Additionally, the organization faces increased
maintenance effort, as many tasks need to be duplicated between the
system variants, and each duplicated task needs to be carefully verified
due to a potentially different context in each of the systems [Ray 2012].

Software
customization

Software
reuse benefits
customization

Customization
via system
cloning

1

Introduction

In a system cloning situation such as described above, the adoption of a
systematic reuse approach remains a tempting proposition – particularly
as the development of further system variants and functionalities
escalates the maintenance challenges. When striving for reuse, the
developing organization faces a choice between building reuse-based
systems from scratch or migrating the existing system variants towards a
reusable form. This “rebuild or migrate” decision depends on many
factors, such as longevity of the systems, quality of the existing code,
and the degree of requirement and code similarity between the migrated
systems. In case the similarity and the quality of existing system variants
are high enough, and the maintenance is planned to continue in the
future, migration of the systems or at least their selected parts is
frequently the better option, because complete rebuilding would mean a
loss of the past investments already made into the development of the
systems [Simon 2002]. However, such a migration is a complex and
effort-intensive undertaking, as several variants of each migrated
software asset need to be understood and to be transformed correctly
into the new reusable form.

The motivation for this thesis is to support the migration of existing
system variants towards software reuse. In many cases, reuse migration
is impeded by the lack of sufficient similarity information about the
source code of the migrated software assets (see Section 1.2). In an
industrial survey, we observed that the similarity information tends to be
quickly lost during the development of cloned system variants
(Section 3.1). Moreover, the existing approaches for recovering that
information exhibit deficiencies (Section 3.3). Hence, this thesis
contributes a reverse engineering approach, named Variant Analysis, for
obtaining the similarity information from the source code of the
migrated system variants. Compared with the existing approaches,
Variant Analysis delivers more detailed similarity information, reduces the
analysis effort, and improves the correctness of similarity information
understanding. The approach definition is based on a formalization of
the variant similarity analysis problem (Chapter 4), and introduces a
generic analysis framework based on modeling the analyzed system
variants as hierarchical sets of uniquely identifiable elements having
known sizes (Chapter 5). The approach supports simultaneous analysis of
multiple source code variants and proposes visualization concepts that
enable easy interpretation of the analysis results, even for large systems
and a high number of variants. The benefits of the approach are
evaluated empirically by means of a controlled experiment and an
industrial case study, and analytically on a reference set of cloned system
variants (Chapter 7).

Before delving into the detailed content of the thesis, in this introduction
we discuss the followed research approach, present the addressed
research problems, describe the scope of this thesis, and outline its
contributions and structure.

Migration to
software reuse

Thesis
motivation
and content

Introduction
content

2

Introduction

1.1 Research Approach

This thesis follows the experimental software engineering paradigm
[Basili 1993] and the Fraunhofer method of addressing research
problems with industrial relevance [Rombach 2000]. The stages of the
resulting research approach, illustrated in Figure 1, are:

In the Practical Problem Identification stage, the state of the
industrial practice is analyzed, for example through observation of
organizations developing software or with the help of a literature
review, in order to identify existing problems.

The Scientific Problem Identification stage concerns an
investigation of the background of the practical problem to discover
the underlying reasons and formulate research questions. The
improvement hypotheses related to the identified practical and
scientific problems are stated.

In the Solution Development stage, a new approach, intended to
solve or mitigate the identified scientific and practical problems, is
researched.

The Scientific Benefit Evaluation stage is an (at best empirical)
assessment of whether the scientific hypotheses concerning the
developed solution can be confirmed.

The Practical Benefit Evaluation stage is likewise an (at best
empirical) evaluation of the practical hypotheses concerning the
solution.

Figure 1 The research approach followed in this thesis

In the following sections, we discuss the content and background of this
thesis according to the described approach stages. Afterwards, we map
the thesis contributions and chapters to the approach structure.

Practical
Problem

Identification

Scientific
Problem

Identification

Solution Development

Scientific Benefit
Evaluation

Practical Benefit
Evaluation

3

Introduction

1.2 Research Problems

Software customization realized via system cloning is frequently reported
in the literature. System cloning is applied both for open-source systems,
where it is known as forking [Ernst 2010] [Robles 2012], and for
commercial software in various industries [Dubinsky 2013]. We also
observed cases of system cloning in our industrial consultancy projects
[Duszynski 2008] [Duszynski 2011a]. Figure 2 presents a well-known
example of an open-source system fork, which resulted in the creation of
the BSD-based operating systems family.

Figure 2 Example of system cloning: the history of BSD-based operating systems [Yamamoto 2005]

Several successful migrations of cloned systems to software reuse have
been reported [Faust 2003] [Riva 2003] [Staples 2004] [Jepsen 2007]. In
a recent industrial survey [Berger 2013], reuse migration of independent
products was reported as the most frequent way of software product
line adoption: 50% of the 42 participants, each of whom was involved
in developing software product lines, stated that they created at least
one product line using this strategy (Table 1).

Product line adoption strategy
Proportion of participants
who applied the strategy

Proactive: product line was developed
before any product was derived

35.30 %

Reactive: a single product was evolved
into a product line

47.10 %

Extractive: multiple existing products
were reengineered into a product line

50.00 %

Any combination of the strategies above 26.50 %
Other 20.60 %

Table 1 The results of an industry survey concerning product line adoption strategies [Berger 2013]

4.4BSD Lite (1994/03)

NetBSD 1.0 (1994/10)FreeBSD 2.0 (1994/11)

FreeBSD 2.0.5 (1995/06) 4.4BSD Lite2 (1995/06)

FreeBSD 2.1 (1995/11) NetBSD 1.1 (1995/11)

NetBSD 1.2 (1996/10) OpenBSD 2.0 (1996/10)

FreeBSD 2.2 (1997/03) OpenBSD 2.1 (1997/06)

OpenBSD 2.2 (1997/12)

NetBSD 1.3 (1998/01)
OpenBSD 2.3 (1998/05)

FreeBSD 3.0 (1998/10)
OpenBSD 2.4 (1998/12)

NetBSD 1.4 (1999/05) OpenBSD 2.5 (1999/05)

OpenBSD 2.6 (1999/12)

OpenBSD 2.7 (2000/06)

OpenBSD 2.8 (2000/12)NetBSD 1.5 (2000/12)

FreeBSD 4.0 (2000/03)

Reuse
migrations
are frequent

System
cloning
is frequent

4

Introduction

However, reuse migration is usually a complex and effort-intensive
undertaking, which requires extensive restructuring of the system assets and
affects the organization’s structure and processes [Clements 2002a]. In
addition to the high effort and complexity, many reported reuse migrations
fail to fully exploit the reuse potential resulting from the similarity of the
migrated system variants – they miss the existing reuse opportunities. In
some cases, the migration of system variants, although potentially beneficial,
is not even attempted. As a consequence, the organization continues to
face the high maintenance effort resulting from many duplicated tasks,
which have increased difficulty as each of the involved code locations in the
variant systems might be slightly different due to past customizations [Ray
2012]. Hence, the practical problems related to reuse migration are:

missing reuse opportunities due to a risk-averse migration process,
where only the best-understood assets and systems are migrated,
and the remaining cloned variants continue to be maintained in
separate code bases [Jepsen 2007],
missing reuse opportunities due to a lack of knowledge about
whether assets similar to a given one exist [Dubinsky 2013],
incorrect assessment of the achievable degree of reuse, leading to an
overly optimistic migration plan [Yoshimura 2006] [Kolb 2006a],
a loss of the past investments made into the existing products
through rejection of migration plans and implementation of new
reusable products from scratch [Beyer 2008],
continued maintenance challenges and a deteriorating code base
resulting from the postponement or rejection of reuse migration
[Dubinsky 2013].

Hence, the lack of sufficiently detailed and dependable code similarity
information contributes to increased maintenance effort for cloned
system variants, and reuse migration, if attempted, might require more
restructuring effort and achieve a lower reuse rate than if this similarity
information were available. Therefore, we identified the following
practical problems:

To better characterize the initial situation related to software system
cloning, with a group of researchers we performed an exploratory survey
on six industrial system families developed with the use of cloning
[Dubinsky 2013] (see Section 3.1). One of our main findings was that
there are several justified reasons for cloning a software system, even
though cloning later causes the maintenance problems discussed above.
The initial effort investment is perceived by the survey participants to be

Practical
migration
problems
are severe

Migration of cloned software variants towards software reuse is effort-
intensive, and is likely to miss some of the existing reuse opportunities.

For the cloned asset variants that are not migrated, their continued
maintenance is also effort-intensive due to repetitive tasks applied in
varying contexts of different system variants.

Practical
problems

Industrial survey:
cloning can be
a valid strategy

5

Introduction

significantly lower for cloning than for a systematic reuse approach,
which makes cloning a preferred development approach in case the
available resources (effort, time) are scarce in the short term.
Furthermore, cloning increases planning independence and flexibility by
eliminating the need to coordinate the development across a group of
software variants, which would be necessary for reusable assets. And
finally, the lack of planning certainty, caused for example by unpredictable
market developments, may make it impossible to recognize the reuse
potential of the software system variants upfront. Only as the first,
experimental products turn out to be a success, and requirements for
further variants emerge, does the longer-term perspective of introducing a
software reuse approach become viable. Hence, the use of system cloning
is not a fault of the developers, but rather a pragmatic response to the
specific situation in which they find themselves. Therefore, it is
reasonable to expect that cloning will continue to be practiced as a
software customization approach for future software systems, and that
the need to support software-developing companies with suitable
responses to the stated practical problems will persist.

Furthermore, we found out in the survey that as the cloned software
variants are modified during evolution, their developers quickly lose the
overview of the similarities existing in the variant code. Naturally, each of
the clones is modified in a different way, as each of them realizes a
different functionality. However, we discovered that even those changes
that should be applied to all the clones are not always propagated
consistently. Also, the knowledge about the cloning activities and
subsequent changes was not managed in the surveyed organizations and
was therefore lost quickly. As a consequence, the developers were not
able to assess the degree of similarity between the code of different
software assets. For example, they could not determine which variants are
relevant for a specific code change, or had problems selecting a suitable
initial code variant that could be cloned to develop a new variant with the
lowest possible effort. Hence, we identified that the surveyed organizations
lack sufficient information on the similarity of their variant code – a finding
that we also observed in our industrial consultancy projects.

Dependable assessment of the degree of similarity between different
asset variants is crucial for reuse migration. Reuse migration typically
requires extensive restructuring of the system assets. Hence, in migration
planning it is essential to characterize with sufficient detail the starting
point – the state of the software at present – and the target state in
which the reuse approach is to be operational. Among other inputs, the
asset similarity information is crucial in a range of significant migration
decisions, for example:

the selection of assets to be migrated,

the choice of specific variants of the assets to be migrated,

the assessment of reuse potential, that is the achievable degree of reuse,

The importance
of similarity
information

Industrial survey:
loss of similarity
information

6

Introduction

the assessment of migration difficulty and effort for the particular asset,

the prioritization of the migration tasks,

the selection of the implementation-level migration approach, e.g.,
whether a group of asset variants is merged or whether a single
variant is extended to cover the functionality required by all systems.

Even if reuse migration is not attempted, code similarity information still
provides much help in maintenance activities for the cloned variants, as it
helps to classify the similar assets and supports correct change
propagation between the clones [Toomim 2004] [Nguyen 2012].

Based on these findings, our hypothesis is that the lack of sufficient code
similarity information contributes to the identified practical migration
problems such as high effort, missing reuse opportunities, or deferral of
the migration. Therefore, recovering the code similarity information is a
scientific problem with practical significance. In particular, the recovered
information should be sufficient for the practical needs of reuse migration
– it should dependably support the developers in the migration decisions
listed above. The similarity information should be sufficiently detailed,
should be available on any level of abstraction (from small code chunks to
whole systems), and should be available for any subgroup of the analyzed
system variant family. Moreover, the developers should be able to
understand the delivered information efficiently and correctly. Hence, the
scientific problems addressed by this thesis are:

The current approaches for recovering asset similarity information can be
divided into two categories:

Top-down similarity analysis involves an examination of the high-level
descriptions and representations of the software, and assesses whether
the functionality of the asset variants is identical or at least similar
enough to enable reuse. An example of a top-down functionality-based
similarity analysis approach is product line scoping [Schmid 2002a].

Bottom-up similarity analysis involves an examination of the low-level
implementation assets, most frequently the source code, in order to
determine if the variant implementations are similar enough to be
replaced by a single-copy, generic and reusable asset. Bottom-up
similarity analysis approaches are realized with reverse engineering
techniques [Chikofsky 1990] and are the focus of this thesis.

Existing
similarity
analysis
approaches

Scientific
problems

How to recover similarity information from the source code of multiple
similar software asset variants, in sufficient quality to support reuse
migration or parallel maintenance of these assets?

How to structure and present the recovered information in a way that
enables humans to understand it efficiently and correctly?

7

Introduction

In most cases, the functionality of the migrated software systems is well
known to its architects and developers. Hence, they have enough
information to perform a top-down functionality-based similarity
analysis. However, a top-down analysis is frequently not detailed enough
to account for minor, but purposeful differences in the asset functions,
e.g. due to differences in supported hardware platforms or the realized
non-functional requirements. As a result, the implementation similarity
of the analyzed assets might be significantly different than the similarity
of their functionality. For example, Yoshimura et al. analyzed two
variants of an automotive engine control system, and found that “the
portion of functional commonality among two products is about 60-
75%; their implementations, however, share as little as around 30% of
code” [Yoshimura 2006]. We also experienced a similar case when a
top-down functional analysis overlooked important differences between
system variants [Wleklik 2011]. Although understanding of the
functional similarity is necessary for the successful adoption of a
software reuse approach, it is not sufficient if the existing
implementation assets need to be migrated to a reusable form. The
result difference between the two similarity analysis approaches indicates
that obtaining the implementation-level similarity information is crucial
for correctly planning a reuse migration. However, this is a difficult task,
as software systems are frequently implemented using hundreds of
thousands or even millions of source code lines, and that amount of
code needs to be further multiplied by the number of analyzed system
variants. The large amount of code-level information cannot be
comprehended and analyzed directly by a human. As a result, software
architects and developers are often unable to assess the code similarity
of the developed system variants or their parts, as indicated by our
industrial survey.

The large amount of analyzed source code calls for automated reverse
engineering approaches developed to structure, abstract, and analyze
the code similarity information and to allow humans to understand the
analysis results correctly and efficiently. However, the results delivered by
the existing reverse engineering approaches are lacking important
details. For example, calculating similarity metrics on software system
variants [Yamamoto 2005] is not sufficient as there is no information
about the locations of code parts recognized as similar or different. On
the other hand, recovering detailed variant code similarity with the use
of clone detection techniques [Roy 2009a] creates a large number of
unstructured results for any non-trivial variant set [Svajlenko 2013].
Although these results technically contain all the relevant similarity data,
they require effort-intensive manual analysis, and the large amount of
data makes it impossible for a human to fully comprehend the analyzed
situation within a realistic period of time. Furthermore, the current
approaches for structuring and abstracting clone detection information
[Yoshimura 2006] [Mende 2008] are not satisfactory, as they only

Difference
between
function and
code similarity

Shortcomings
of existing
approaches

8

Introduction

provide results for any selected variant pair, but do not aggregate them
for larger groups of three or more variants. Finally, clone detection
techniques provide results that are recognized as similar enough
according to the specified threshold, but may still be different enough
for a developer to discard the possibility of reuse [Roy 2007]. This makes
clone detection results not fully dependable as the code identified as
similar cannot be classified as a reuse candidate with complete certainty
without manual verification. In Chapter 3, we discuss the shortcomings
of the existing approaches in more detail.

1.3 Scope and Contributions

To address the research problems described above, in this thesis we
contribute a reverse engineering approach for obtaining the similarity
information from the source code of software asset variants. In the
approach, we propose a generic analysis framework based on modeling
the analyzed system variants as hierarchical sets of uniquely identifiable
elements having known sizes. The hierarchical set similarity models
provide a data structure that, to a large extent, does not exhibit the
outlined deficiencies of other approaches. The set models can structure a
large amount of code similarity data containing the necessary degree of
detail, while the proposed abstraction and visualization concepts enable
easy interpretation of the analysis results with low manual effort – even for
large software systems (1 MLOC and more) and a high number of variants
(10 and more). The proposed approach is named “Variant Analysis”.

As the main purpose of the approach is to support the consolidation of
software variants in reuse migration, it focuses on detecting the similarity
between software asset variants. The similarity existing within a
particular variant is not addressed, as the detection of such similarity
presents a different kind of research problem (see Chapter 2). Also, the
approach assumes that a relatively high structural similarity exists
between the analyzed asset variants, for example due to their common
origin in a cloning process. Hence, it is less suitable for analyzing
functionally similar, but structurally different systems developed
independent of each other.

Figure 3 depicts the relation of our approach to the complementary
research concerns. Our approach focuses on structuring, abstracting,
and visualizing the cross-asset similarity information in order to enable
developers to understand this information efficiently and correctly. The
use of a similarity detection algorithm working with the detailed asset
content is needed to create the input similarity data. Hence, we provide
generic means for accommodating a range of such existing algorithms
depending on developer needs.

Hierarchical
set models

Scope of the
approach

Focus on
similarity
between
variants

9

Introduction

Figure 3 The research context of the Variant Analysis approach

The output of the approach is the structured, abstracted and visualized
similarity information. Although we discuss the interpretation of this
information and suggest possible resulting migration decisions, we do not
define a general migration methodology or guidance. The reason for that
is that the code similarity information, reflecting the available reuse
potential, is just one of many criteria influencing migration decisions
[Schmid 2005]. For example, Koskinen et al. [Koskinen 2005] identified
and empirically validated 45 different criteria influencing decisions on
software modernization, and still stated that their list is incomplete. The
decision criteria for reuse migration can be of a technical nature (code
quality [Wleklik 2011], functional similarity), but they may also concern the
organizational structures and processes supporting software reuse, the
economics of reuse decisions (future product development plans, available
resources, scheduling of reuse migration activities), and others. The role of
our approach is hence to provide similarity information as input for the
higher-level migration methods and frameworks integrating the various
technical aspects, such as the framework of Rubin et al. [Rubin 2013], which
in turn provide just the technical perspective to holistic reuse adoption
approaches such as the Carnegie Mellon Software Engineering Institute's
Adoption Factory [Clements 2002a] [Northrop 2004].

In our approach, we concentrate on the similarity of the source code, and
see approaches such as feature-based similarity analyses (e.g., scoping
[Schmid 2002a]) and software family architecture reconstruction
[Kang 2005] [Koschke 2009] as complementary, but not overlapping with
our approach. This view is consistent with several existing reuse
reengineering approaches that advocate the use of multiple information
sources, including the analysis of functionalities, architecture, and asset
implementation details [DeBaud 1998] [Bayer 1999] [Knodel 2005]
[Kolb 2006b]. Figure 4 depicts the role of our approach in an example
software reuse migration process. The Analysis and Evaluation process

Similarity Detection
Algorithms

[diff, clone detection, …]

Detailed asset
similarity

This Thesis Approach:

Variant Analysis
Feature Analysis,

Scoping
Architecture/Design

Reconstruction

Migration Frameworks
Transformation

Guidelines

Economical and Business
Considerations

Structured, abstracted
asset similarity

Reuse Migration and
Adoption Approaches

Management of
Software Reuse

Technical aspects
of a reuse migration

Organization and
process aspects

Economical aspects
of a reuse migration

Functional similarity Asset architecture

Role of the
approach

10

Introduction

phases can be repeated iteratively in case the evaluation uncovers new
information needs requiring an extension of the previously performed
analyses. Similarly, the migration process can be iterative itself – for
example, it can be used to periodically reassess the state of the managed
product portfolio and perform corrective migration actions if needed.

The purpose of our approach is to support reuse migration and parallel
maintenance of a group of similar, possibly cloned, software system
variants by delivering detailed code similarity information. As discussed
above, we found out in an industrial survey that the code similarity
information is usually not available for the migration stakeholders –
although its availability is crucial for the quality of migration decisions.
Our hypotheses concerning the identified practical migration problems
are therefore that the availability of detailed code similarity information
has the following effects:

it reduces migration effort,
it increases the degree of reuse achieved in the migration,
in case the migration is not attempted, it reduces the effort for
further parallel maintenance of system variants.

Consequently, a similarity analysis approach should support the
migration stakeholders by obtaining the needed information efficiently
and correctly. Hence, the hypotheses related to the identified scientific
problems state that our approach fulfills this purpose better than the
other related approaches:

it reduces the effort for analyzing and understanding the similarity
information,
the degree of effort reduction increases with an increasing number of
analyzed variants (i.e., for a higher number of variants, the
contributed improvement is greater),
it allows the migration stakeholders to understand the implemented
similarity with a higher degree of correctness.

Figure 4 The role of code similarity analysis in an example reuse migration process

AAsset
Similarity

Information

Initialization

Product
Portfolio
Analysis

Selection of
Analysis

Candidates

Architecture
(Re)Construc-

tion

Asset Quality
Analysis

Code
Similarity
Analysis

Source Code
of Asset Variants

[Unknown Similarity]

Architecture
Evaluation

Asset
Selection for

Reuse

Scoping and
Functional

Analysis

Architecture
Improvement

Asset
Migration

Variability
Modeling

Analysis MigrationEvaluation

Practical
hypotheses

Scientific
hypotheses

11

Introduction

Naturally, the basic prerequisite for applying any analysis approach is that
the obtained results are technically correct and complete. In Chapter 7, we
describe the analytical evaluation of the correctness and completeness of
our approach results.

We evaluated a subset of our practical and scientific hypotheses
empirically. In a controlled experiment, we investigated the effect of using
the set model on the effort and correctness of source code similarity
analysis. In an industrial case study, we asked the participating developers
to assess the effect of information delivered by the approach on reuse
migration. In both evaluations, the collected empirical results supported
our hypotheses. As the performed empirical evaluations provide just
singular data points, a further, more extensive evaluation of the stated
hypotheses remains to be performed as interesting future work. We
describe our hypotheses in more detail in Chapter 3, and provide the
details of the controlled experiment and of the case study in Chapter 7.

Although the main motivation for our approach is to support the
migration of cloned software variants towards a reuse approach, for
example software product lines, we do not assume or distinguish any
such specific reuse approach. The provided code similarity information
can be used for migration to any approach, as well as for other
informative or analytical purposes. For example, an analysis of an old,
discontinued system variant group that will not be maintained or
migrated anymore can still be helpful for the planning of its successor,
as similarities in the new variants are most likely to occur in the same
functional areas.

Taking a more general view, the set models provide a general-purpose
approach to structuring and presenting the results of any kind of
comparison, performed on hierarchical structures composed from any
kind of comparable atomic elements. Given suitable comparison
functions, the set models can be constructed and visualized not only for
code, but also for software models and even for non-software assets. In
Chapters 4 and 5, we specify and discuss the requirements on such
functions that are necessary and sufficient for defining a set model
based similarity analysis in a generic case.

Figure 5 presents the detailed contributions of this thesis and assigns
them to four main contribution categories: formalization, methodology,
instantiation, and evaluation and empiricism. In this thesis, we make the
following contributions:

Formalization of the variant similarity analysis. We define a
conceptual model that classifies and relates the concepts associated with
the variant similarity analysis problem. We discuss the general properties
of software variants and derive from them a group of formalized
requirements concerning the construction of the analysis technique.

Contributions

Approach use
beyond reuse
migration

Empirical
evaluation

Analytical
evaluation

Set models for
generic similarity
analysis

12

Introduction

Based on the requirements and the scope of our application
scenarios, we formally define a variant similarity analysis technique
and a method for evaluating the quality of its results. Although the
conceptual model, the requirements, and the definitions serve as a
theoretical foundation for our approach, we believe they are useful
for defining and evaluating any kind of multi-system similarity
analysis technique.

Variant similarity analysis method. We define a generic similarity
analysis method based on the hierarchical set similarity models. We
propose visualization concepts that help the interpretation of the
model information, and define metrics that provide additional
information to support migration decisions. The generic method can
be used to structure and present the results of various similarity
analysis algorithms applied to various types of content such as source
code, models, and non-software assets.

The core idea of the method is the use of hierarchical set
similarity models. The set models structure the similarity
information in a way that is both technically viable and easy to
understand for humans, even for a large number of analyzed
variants, and make it available on any abstraction level, from
a single code line to a whole system. We discuss the algorithms
and activities needed for set model construction. In a controlled
experiment, we show the benefits of the set models: reduced
effort and improved correctness of source code similarity
analysis. Furthermore, we analytically evaluate the high degree
of correctness and completeness of the provided analysis
results, and collect measures related to the potential drawbacks
of set model use, such as the proportion of original similarity
data ignored due to the requirement of result transitivity.
In conclusion, the proportion of ignored original similarity data
is not significant.

Figure 5 Thesis contributions

Formalization
Conceptual

model

Requirements
on

construction

Formal
definition

Methodology
Generic
analysis
method

Visualizations Set models

Evaluation and empiricismInstantiation

Controlled
experiment

Analytical
evaluation

Instantiation
for diff and

text

Application
guidance

Tool

based on

based on

Case study

Cloning
survey

Project
experiences

conducted for

13

Introduction

Instantiation of the similarity analysis method. We instantiate
the defined similarity analysis method for the longest common
subsequence (diff) algorithm applied to the textual representation of
software source code. Using a tool implementation, we perform the
analytical set model evaluation described above. Finally, we provide a
set of guidelines on performant and scalable set model
implementation techniques, on the result interpretation, and on the
practical application of our approach.

Empirical contributions. By performing a survey on the cloning
practices in industry, we contribute to a better understanding of the
origins of the practical problems: the large-scale cloning practices,
their benefits and drawbacks, and their consequences for reuse
migration. Hence, we characterize the problem and provide the
empirical basis for formulating related research hypotheses.
Furthermore, we evaluate the benefits of the core idea of our
solution, the set similarity model, in a controlled experiment. Finally,
we describe and evaluate the practical application of our similarity
analysis method in an industrial case study and in the consultancy
projects that used the implemented analysis tool. Hence, using these
three types of empirical investigations, we empirically support the
complete iteration of the research cycle, as depicted in Figure 6.

Figure 6 The empirical investigations along the research cycle

1.4 Outline

Figure 7 maps the chapters of this thesis and the particular contributions
to the research approach structure, described in Section 1.1. To
complement the chapters, we provide further information on specific topics
related to our approach in the appendices of this thesis.

The current, introduction chapter provides an overview of the scope of
this thesis, the addressed problems, the followed research approach,
the proposed solution ideas and the resulting contributions.

In Chapter 2, we describe the research context of this thesis: the basic
ideas of software reuse and of the product line approach, product line
adoption strategies, the fundamental concepts of reverse engineering,
and related approaches for similarity analysis of software variants.

SState of the Art
and Practice

Survey
Problem Characterization

Controlled Experiment
Scientific Solution Evaluation

Solution Development

Case Study
Practical Solution Evaluation

Solution
Application

14

Introduction

Figure 7 Thesis chapters and contributions mapped to the research approach structure

In Chapter 3, we focus on the practical and scientific problems
addressed by this thesis: we present the industrial survey of code
cloning practices, define the application scenarios and analysis goals
for our approach, discuss the shortcomings of existing related
approaches, and derive the practical and scientific hypotheses.

In Chapter 4, we describe the foundation of our approach: the basic
properties of software variants, the conceptual model of variant
similarity analysis, the requirements on the construction of variant
similarity analysis techniques, and the formal definitions of a variant
similarity analysis technique and of the quality of its results.

Chapter 5 contains the core of our solution: the definition of the
hierarchical set similarity models, the algorithms and activities used in
their construction, the visualization concepts, and the similarity metrics.

Chapter 6 describes techniques for the performant and scalable
implementation of our approach, with the main focus on the set model.

Chapter 7 describes the analytical evaluation of the developed
approach, the evaluation of the scientific hypotheses in a controlled
experiment, and practical application experiences regarding our
approach, including the industrial case study.

In Chapter 8, we conclude our thesis, summarize the contributions
and limitations of our approach, and outline future work.

Appendix A contains the full participant material used during the
execution of the controlled experiment described in Chapter 7 and
reports the raw data collected in the experiment.

Appendix B discusses our application guidance for the practical use of
the defined similarity analysis approach.

Chapter 3:
Towards the

Analysis
Approach

Scientific Problem

Recovering code
similarity

Solution Development

Set models and visualizations
Generic analysis framework

Cloning
SurveyChapter 2:

Context and
Related Work

Set Model
Experiment

Analytical
Evaluation

Industrial
Case Study

Project
Experiences

Formalization

Methodology InstantiationChapter 4:
Investigation

and
Formalization

Chapter 5:
Models and

Solutions

Chapter 6:
Tool

Implementation

Chapter 7:
Evaluation

Practical Benefit

Lower migration effort
Higher reuse

Practical Problem

Reuse migration

Scientific Benefit

Analysis effort
Understandability

Chapter 1:
Introduction

Chapter 8:
Summary and Outlook

15

Context and Related Work

2 Context and Related Work

This thesis contributes a reverse engineering1 approach for analyzing the
similarity of a group of cloned software system variants. In this chapter
we provide a short overview on the two main research areas constituting
the background of this work:

In Section 2.1 we introduce the basic concepts of software reuse and
describe the software product lines approach, which is a systematic
reuse-based approach used for development of a group of software
system variants.

In Section 2.2 we address the fundamental principles of reverse
engineering, and in Section 2.3 we present the reverse engineering
approaches used in the context of introducing software reuse in the
development of software system variants.

In the research background description we provide definitions of the
fundamental concepts of software reuse and reverse engineering, which
we will refer to in the remainder of the thesis. For space reasons, we do
not provide a complete presentation of the state of the art in these topics
– instead, we rather concentrate on their aspects which are the nearest to
the focus of this thesis. For interested readers, the provided references
lead to more comprehensive literature sources.

2.1 Software Reuse

The reuse of software assets has been proposed by McIlroy as early as in
1968 [McIlroy 1969], and that idea accompanied the software
engineering research ever since. The basic rationale behind software reuse
is that if a software asset solving a specific problem already exists, and a
related problem needs to be solved, it should be easier and faster to use
(and potentially adapt) the existing asset than to “reinvent the wheel” by
developing the new solution from scratch. Software reuse is defined as:

Definition 1 Software reuse

The use of an asset in the solution of different problems [IEEE 2010].

In particular, software reuse means that the same software asset is used
during the development of many other assets or software systems.
As software development creates a range of different asset types, reuse
is possible for any of these types.

1 As this thesis is related to software, it refers to software concepts unless explicitly
stated otherwise. Hence, the term “reverse engineering” means “software reverse
engineering”, “product lines” means “software product lines”, etc.

Basics of reuse

17

Context and Related Work

Definition 2 (Reuse) asset

An item, such as design, specification, source code, documentation,
test suites, manual procedures, etc., that has been designed for use
in multiple contexts [IEEE 2010].

The above definitions reflect two important properties of software reuse.
First of all, reuse involves two types of activity: the provision of assets,
i.e. their development for reuse, and the subsequent development of
software solving a particular problem, with reuse of the provided assets.
The distinction between development for reuse and development with
reuse is frequently applied in reuse approaches. Typically, development
for reuse requires an investment of additional effort, as generic assets
are more costly to develop than non-generic ones. Subsequently, the
reuse of the generic assets is expected to provide savings that outweigh
the initial investment [Barns 1991].

Second, the definitions reflect the fact that in most cases reuse is not
likely to occur as a matter of coincidence, but rather needs to be a result
of a plan. In the development for reuse, a software asset needs to be
generalized, and its interfaces carefully structured, to enable its use in
more than one context. Hence, the asset needs to be explicitly developed
for reuse. Furthermore, a reuse of an already existing asset also benefits
from a systematic plan. Development with reuse involves finding an
appropriate asset, understanding and evaluating it, and optionally
adapting the asset to the target context. If planned and structured
support is not available, the effort required for these steps can outweigh
the reuse savings: the appropriate asset can be hard to find [Henninger
1994], understanding the asset can be difficult without appropriate
documentation [Bayer 2004], and adaptation efforts can be significant
despite a seemingly minor mismatch between the provided and required
functionality [Thomas 1997]. Consequently, performing software reuse
in an unplanned and ad-hoc way might fail to achieve the promised
benefits. Hence, several systematic approaches, addressing the problems
of planning, structuring, managing, and financing a reuse program, have
been developed [Jacobson 1997] [Lim 1998] [Clements 2002a].

Definition 3 Systematic software reuse

Systematic software reuse is the purposeful creation, management,
support, and reuse of assets [Jacobson 1997].

Reusing software influences not only the technical development activities,
but has also implications for development processes, organization
structure, and even for the way the organization offers its products on the
market. The systematic software approaches address these issues, as
neglecting them can ultimately lead to a failure of the reuse program
[Sherif 2003]. Hence, the organizational and process issues need to be
carefully considered when reuse adoption is planned. A migration of existing
software assets towards a reusable form needs to unify the technical and
organizational aspects, and is therefore a complex undertaking.

Development
for and with
reuse

Reuse needs
planning and
management

18

Context and Related Work

In the 1960’s and 1970’s, reuse of source code was practiced mainly on
the level of algorithms and small routines, for example performing
calculations of mathematical functions. With a growing maturity of reuse
approaches, the typical size of a reusable asset increased: in the 1990’s,
component-based software engineering advocated the reuse of
components, which encapsulated semantically related functionalities of a
software system and were composed to form the final software products
[Jacobson 1997]. Finally, the software product line engineering approach
raises the granularity of reuse to the level of complete software systems.

2.1.1 Software Product Line Engineering

Software product line engineering is a systematic reuse approach for the
development of multiple similar software systems. The developed group
of similar software systems is called a software product line.

Definition 4 Software product line

A software product line is a set of software-intensive systems sharing
a common, managed set of features that satisfy the specific needs of
a particular market segment or mission and that are developed from
a common set of core assets in a prescribed way [Clements 2002a].

The software product line engineering approach can be seen as a further
specialization of component-based software engineering. In both
approaches, the software systems are developed by reusing a set of core
assets. However, product line engineering is adapted for the situation in
which the developed software products exhibit a high degree of
similarity as they satisfy the specific needs of a particular market
segment. Each of the products is tailored to best fit the needs of a
particular customer group in that segment, but at the same time, the
high similarity makes it possible to compose a major share of product
functionalities from reusable assets. Consequently, large-scale reuse
enables development of a potentially large family of individualized
products in a cost-effective way, a principle known in many industries as
mass customization [Tseng 2007].

The high similarity of the products is actively promoted by managing the
set of features provided by the product line: for example, development of
a feature beneficial to just one product might be rejected if it
compromises any quality attribute of the other products. The development
is optimized for achieving the global goals of the whole product line, and
the local goals of particular products can be sacrificed if necessary. The
management is also performed on the technical level: the reusable assets
are developed only if sufficient need for them, motivated by the product
features, exists. The assets are developed and composed in a prescribed
way, so that the asset interfaces and the architecture of the product line

Granularity of
reuse

Software
product line

Mass
customization
of software
systems

Management
of features
and assets

19

Context and Related Work

provide a “building plan” optimized for quick product assembly. Finally,
each asset is generic enough to support all products where it is reused.
This is assured by managing the variability of the assets, which is the set of
all characteristics which may vary from one product to another.

In product line engineering, the distinction between development for
reuse and development with reuse is reflected by the definition of two
main development activities: family engineering, which develops the
reusable assets and stores them in an asset base, and application
engineering, which reuses the assets to derive end-user products (see
Figure 8). The ultimate goal of both development activities is to satisfy the
requirements placed on the developed software products. The requirements
are managed in the scoping process in order to harmonize their alignment
between products and hence maximize the benefits of reuse
[Schmid 2002a]. Additionally, product line engineering establishes an explicit
feedback process, where application engineering provides information on
new product requirements, asset usage, and product-specific asset
adaptations back to family engineering. The feedback process, frequently
missing in the component-based approaches, ensures that the product line
evolves consistently with the newest product requirements.

Figure 8 A schema of product line engineering (adapted from [Muthig 2002])

The family engineering activity concerns the development of assets for
reuse. As in any other reuse approach, the development of reusable
assets requires an initial investment, which is paid back by the savings
resulting from reusing the assets in application engineering. In case the
complete process of establishing a product line is performed before the
delivery of the first product (a proactive adoption approach, see Section
2.1.2), the initial investment ranges between one and two times the cost
which would be required for developing a single software product
without reuse. Typically, the investment in product line engineering is
paid back after the third software system is delivered [Clements 2002a].
Hence, product line engineering is only justified and beneficial if a
sufficiently large number of sufficiently similar systems should be
developed [Böckle 2004] [Ganesan 2006].

Software Development Organization

Domain

Family Engineering

Application Engineering

Product Line
Infrastructure

(Domain
Artifact Base)

Feedback

Requirements C
Requirements B

Product
Requirements A

Product
Product

Requirements

Product line
economics

Structuring
product line
engineering

 20

Context and Related Work

Even if a group of similar systems is delivered, satisfying the market
demand for individually customized solutions, these systems do not
necessarily have to be developed as a product line internally. Depending
on the similarity of demanded features and the technical organization of
the assets, the systems can be developed using a range of techniques
with varying approach to asset reuse: from a standardized platform,
where just the underlying infrastructure components are reused, up to a
fully configurable generic product base where a complete product is
composed automatically from the reusable assets based on provided
feature selection. Several classifications of these approaches exist
[Bosch 2002][Riva 2003][Krueger 2004]. In particular, the similar systems
can be developed in completely independent software projects, with no
application of software reuse – this is considered to be the most
immature approach to implementation of a group of similar software
systems. In our thesis, we focus on the similarity analysis of such
independent software projects in order to support creation of reusable
assets, but we do not assume any specific target approach for
implementation of the restructured reuse-based systems.

Similarly, the variability supported by reusable assets can also be realized
in many ways with the use of many different technologies
[Anastasopoulos 2001]. Basically, the approaches for variant derivation,
that is for instantiating the generic asset for the use in a specific context,
can be classified into the following categories [Kästner 2010]:

Compositional approaches create the content of the asset by
composing it from a number of smaller content pieces such as files,
classes, modules or code fragments. The composition is usually
performed at the build time or during deployment. The possible
implementation technologies range from simple file selection to
advanced mechanisms such as aspects [Kiczales 1997] or feature-
oriented programming [Apel 2013].

Annotative approaches process a generic asset, which contains
annotated content sufficient to derive all intended asset variants, and
remove all content fragments except for those that correspond to the
single selected variant. The removal is typically performed at the build
time. An example of an annotative approach is the C preprocessor
[ISO/IEC 2011].

In duplication-based approaches the content of each asset variant
is stored separately in a permanent way, and new variants are
created by duplication of other already existing variant during the
development time and subsequent modification of that content. The
most popular duplication-based approaches are configuration
management branching [Conradi 1998] and cloning [Dubinsky 2013].

Other approaches include techniques not falling into the above
categories, such as generators and model-driven development
[Beydeda 2005] where the content of the asset is created
automatically based on a higher-level specification.

Implementation
approaches for
similar systems

Implementation
approaches for
reusable assets

21

Context and Related Work

In the compositional and annotative approaches, customized asset
instance is typically created in an automated process which reads a
correct configuration (i.e. a parameter or feature selection) as input and
produces the intended asset variant content as output. Hence, the
information concerning the parameters and features is explicitly
maintained. Moreover, the content of an asset variant only exists after
the automated process was run. In the duplication-based approaches,
the variant derivation process is typically not automated, as the changes
to the asset variant content, which eventually differentiate it from other
variants, are added in a human-based development process. Hence, the
information on possible parameters and features is not required for
variant derivation and in the practice is often not explicitly documented.

2.1.2 Software Product Line Adoption Strategies

An organization planning the development of a product line can be
situated in a variety of circumstances, and can accordingly select from a
variety of product line adoption strategies. A general classification of
these strategies is provided in Table 2.

Future product prediction approach
Revolutionary

(proactive)
Evolutionary

(reactive)

Deve-
lopment
starting

point

New product
line

(green field)

New assets are developed
to match all expected
products. Known as the
proactive approach.
[Clements 2002a]

New assets match the
current products and are
evolved as further
products emerge. Known
as the reactive approach.
[Clements 2002a]

Using
existing set
of products
(extractive)

New product line is
developed from existing
assets and matches all
existing and expected
products. Known as the
extractive approach.
[Krueger 2002]

Existing assets are
adapted for reuse in
existing products, and
evolved as further
products emerge. Known
as retroactive
[Staples 2004] or
extractive approach.

Table 2 Two dimensions of product line adoption (based on [Bosch 2002] and [Krueger 2002])

In many cases, the product line is developed in a green field scenario, as
no comparable products exist in the organization yet. Hence, the
development scope of the product line and the reusable assets needs to
be defined first. Depending on the market prediction possibilities and
domain stability, the development of reusable assets might encompass all
products foreseeable over the lifetime of the product line (revolutionary,
proactive approach), or it might just include the already ordered ones and
assume that products which would emerge later will be addressed by the
respective adaptation of the assets (evolutionary, reactive approach).

Adoption
strategy
classification

Adoption in
the green field
scenario

22

Context and Related Work

In case one or more projects addressing the market segment of the
product line already exist, these projects can be reengineered to form (a
part of) the new product line. Hence, the suitable assets are extracted
from the existing products and adapted for reusability [Schmid 2002b].
Again, the development might follow the revolutionary route and
encompass all foreseeable products, or limit itself to the currently
provided ones, assuming evolutionary adaptation to further
requirements which are not yet known or certain at the moment of
product line adoption.

As product line engineering requires an initial investment into the
reusable asset base, its adoption in the green field scenario requires
sufficient confidence that the reuse will pay off. Hence, it is applicable in
case when there is sufficient certainty that a number of similar products
will be developed, and the resources necessary for its initialization are
available. However, in many situations one or both of these
requirements are not fulfilled. The lack of resources (especially time) or
uncertainty of market development might justify the development of
products with little or no reuse [Dubinsky 2013] (see also Section 3.1).
Only in the longer perspective, if sufficient products proved successful
and their maintenance could be optimized by reuse adoption, the
organization can justify the introduction of a reuse approach and
restructure the existing products accordingly. In such situation, reverse
engineering can play an important role by delivering information
supporting the migration decisions [Hall 1992].

The choice of proactive or reactive approach to product line evolution
depends mainly on economical and risk management considerations.
Although the proactive approach is thought to enable a higher ultimate
payoff from reuse, it also requires a larger initial investment and sufficient
certainty of future product development [Clements 2002b]. If the certainty
is not given, or the resources available for product line adoption are
significantly limited, the reactive approach is preferred [Simon 2002].

2.2 Reverse Engineering

This thesis focuses on the analysis of asset similarity across a group of
software variants. Such an analysis is an example of a reverse
engineering task. In contrast to the regular, forward engineering
process, where high-level abstractions (requirements, design) are
transformed into low-level implementation of a system, reverse
engineering proceeds in the opposite direction in order to gain
knowledge of higher-level concepts from the lower-level implementation
assets, as depicted in Figure 9.

Adoption
using existing
products and
assets

Green field vs.
migration

Proactive vs.
reactive
evolution

Reverse
engineering
fundamentals

23

Context and Related Work

Definition 5 Reverse engineering

Reverse engineering is the process of analyzing a subject system to
identify the system’s components and their interrelationships and
create representations of the system in another form or at a higher
level of abstraction [Chikofsky 1990].

Reverse engineering is a recommended practice if the knowledge and
documentation of the system is not available or is insufficient, and the
source code remains the only reliable representation of the software
system [IEEE 1998]. The result of reverse engineering is the recovered
information and knowledge concerning the analyzed software system.
During this process, the analyzed assets are not altered – hence, reverse
engineering is a purely analytical activity. If the knowledge gained by
reverse engineering is subsequently used to plan and perform changes to
the subject system, starting a forward engineering process, the resulting
cycle is a reengineering process (see Figure 9), defined as:

Definition 6 Reengineering

Reengineering (...) is the examination and alteration of a subject
system to reconstitute it in a new form and the subsequent
implementation of the new form. Reengineering generally includes
some form of reverse engineering (to achieve a more abstract
description) followed by some form of forward engineering or
restructuring [Chikofsky 1990].

Figure 9 Forward engineering, reverse engineering, and reengineering (adapted from
[Chikofsky 1990])

Requirements
(constraints, objectives, business rules)

Implementation

Design

Forward
engineering

Forward
engineering

Reverse
engineering

Reverse
engineering

Reengineering

Reengineering

24

Context and Related Work

Reverse engineering aims at gaining knowledge from the existing assets.
However, this process cannot be fully automated, as knowledge is a
capacity of a human being. Therefore, knowledge has to be obtained by
a human through analysis and interpretation of information concerning
the analyzed system. The information, in turn, can be generated
automatically based on the available data.

Definition 7 Data

Data are discrete, objective facts or observations, which are
unorganized and unprocessed, and do not convey any specific
meaning [Awad 2004].

Definition 8 Information

Information is data that have been shaped into a form that is
meaningful and useful to human beings [Laudon 2006, p. 13].

Information is an aggregation of data that makes decision making
easier [Awad 2004, p. 36].

Definition 9 Knowledge

Knowledge is data and/or information that have been organized and
processed to convey understanding, experience, accumulated
learning, and expertise as they apply to a current problem or activity
[Turban 2005, p. 38].

Knowledge is information combined with understanding and
capability; it lives in the minds of people [Laudon 2006, p. 2].

Data are raw facts collected from the subject system. Information is
created by processing and structuring the data for a specific analysis
purpose. Data and information are not human-dependent and can be
created and processed automatically. Finally, knowledge is built by
humans interpreting the available information based on their goals and
experience (Figure 10).

Figure 10 The relationships between data, information and knowledge (from [Liew 2007])

Data

Information

Knowledge

Captured and
stored

Externalized:
verbalized and/or

illustrated

Internalized: absorbed
and understood

by the human mind

Processed and
analyzed

Data,
information,
knowledge

25

Context and Related Work

Figure 11 A generic reverse engineering process and its relation to data, information and knowledge

The hierarchy of data, information and knowledge shapes the structure
of any reverse engineering process. Typically, a reverse engineering
process (e.g. [Jarzabek 1998], [Mueller 2000]) consists of the following
generic phases, depicted in Figure 11:

Extraction: collects the raw data from system assets and stores them
in a repository or model. The data can be collected using a multitude
of automated techniques, such as for example parsing [Aho 2006],
and also by manual inspection [Demeyer 2008].

Abstraction: processes the collected data in order to derive
information. For that purpose, the data can be organized (e.g.
structured, filtered, aggregated), contextualized (e.g. categorized,
linked) and analyzed (e.g. to derive further information). Since many
different abstractions can be derived from the same data, it is
necessary for an efficient analysis to define the concrete analysis
goals and the intended users of the information. The abstraction
phase can be performed iteratively, as the information derived in the
recent abstraction step can be combined with preexisting data to
create new information.

Presentation: concerns the display of the created information to the
human analyst in a suitable form. Different views and visualization
techniques might be used to facilitate navigation and understanding
of the facts and correlations obtained in the reverse engineering
process [Eick 2002].

Interpretation: is performed by a human analyst based on the
analysis goals, available information, previous knowledge and
personal experience. In the result, new knowledge on the subject
system is derived. Depending on the analysis goals, the interpretation
of the same provided information can lead to creation of different,

Extraction

System artifacts

Abstraction

Presentation

Repository Result views

Data Information Knowledge

Interpretation

Analyst

Reverse
engineering
phases

26

Context and Related Work

goal-specific knowledge. Therefore, the quality of the gained
knowledge needs to be evaluated with respect to the analysis goal.
Subsequently, the knowledge can be used for [Knodel 2011]:

o Refinement of reverse engineering analyses, in case the
analysis results raises further questions regarding the subject system.

o Verification of existing assumptions with regard to the
subject system, resulting in confirmation of the status quo or
identification of discrepancies.

o Synthesis with the results of other analyses, in case the
reverse engineering analysis provides only one of many possible
viewpoints on the underlying problem.

o Definition of action items, based on the analysis goals and the
problems or risks identified during the analysis.

Typically, the phases of extraction, abstraction and presentation are
automated, while the interpretation phase necessarily remains a human-
based task. However, the interpretation of the information provided by
the reverse engineering approach might be supported by appropriate
guidance, for example in the form of rules, patterns, or heuristics
[Demeyer 2008].

2.3 Similarity Analysis Approaches for Software Variants

Reverse engineering techniques can be used to recover the information
about source code similarity of the system variants, which in turn is
required to support the decisions on reuse introduction. A large number of
reverse engineering techniques have been developed [Canfora 2007].
However, as each technique addresses one of a variety of specific analysis
goals, most of them cannot be directly applied to the variant similarity
analysis problem. A large proportion of reverse engineering techniques is
targeted at an analysis of only a single instance of a software asset or
system [Canfora 2007], for example to redocument that system or asset
[Benedusi 1992], recover its architecture [Koschke 2000], detect design
violations [Murphy 2001][Knodel 2011] or find code smells [van Emden
2002]. Moreover, the techniques which do aim at analyzing a group of
system instances are frequently developed with the goal of analyzing
system versions, for example to detect development trends or recover
information on system evolution [Kagdi 2007][D’Ambros 2008]. However,
the analysis of versions is based on a number of assumptions, which are
not fulfilled for system variants. Hence, in this section we provide an
overview of only these reverse engineering algorithms and techniques
which can be used for the analysis of variants. Subsequently, in Section
3.3 we analyze the drawbacks of these techniques in the context of a
system cloning scenario. The inherent differences between software
versions and variants are discussed in Section 4.1.

Focus on the
variants

27

Context and Related Work

2.3.1 Comparison and Differencing Algorithms

The basic prerequisite for analyzing similarity of any group of objects is
the ability to compare at least two objects and recognize the differences
between them. Several algorithms for differencing various types of data
structures exist:

A popular algorithm for comparison of text files is the Longest
Common Subsequence algorithm, also known as diff [Hunt 1976].
The algorithm compares two text files, treated as lists of text lines,
and determines the longest list containing text lines which are
identical in both files and occur in the same order. The remaining
lines in both files are considered to be different. An extended variant
of the algorithm can detect the differences between 3 files at once
[Khanna 2007].

Apart from text representation, source code can also be represented
as an abstract syntax tree (AST). Several algorithms for differencing
tree structures exist: for example, the Change Distiller algorithm
[Fluri 2007] compares two ASTs, matches the corresponding nodes,
and computes a minimal edit script transforming one tree into the
other.

Source code can be represented as a model, i.e. a typed graph.
Multiple algorithms for finding isomorphic subgraphs in two input
graphs exist. Examples of such algorithms directed at software
models are JDiff [Apiwattanapong 2007] and UMLDiff [Xing 2005].

Typically the differencing algorithms compare just two objects (files,
trees, models), and provide a list containing every difference they found.
Hence, they are suitable for an analysis of relatively small amount of
code, where the amount of found differences is low enough to be
comprehended by a human without the use of structuring, filtering, and
other abstraction mechanisms. Even though the advanced frameworks
using these algorithms, such as Beyond Compare [BeyondCompare
2014], do utilize an abstraction mechanism, based on the system folder
hierarchy, the current form of that mechanism still provides only little
abstraction. Only the existence of an unspecified difference inside the
system hierarchy is indicated, and no further information about the size
and nature of that difference is provided.

The differencing algorithms do not directly address simultaneous
comparisons of a larger number of objects – such a comparison would
need to be performed as a series of pairwise comparisons. A few file
differencing tools, e.g. Diffuse [Diffuse 2014], attempt such comparison
by selecting one file and comparing every other file with it – a so-called
“star comparison”. However, file pairs not involving the selected star
center are not compared.

Detailed
results,
only little
abstraction

No comparison
of a larger
number of
objects

28

Context and Related Work

2.3.2 Clone Detection

Software cloning, that is duplication of software assets and their use in
other context with or without modifications, has been extensively
researched [Koschke 2008]. However, depending on the intended usage
of the cloning information, various different notions of a software clone
are used. Clone detection experts frequently have varying opinions
whether a given code sample should be considered a clone or not
[Kapser 2007]. Hence, any definition of a software clone which is
general enough must necessarily be a vague one. We use the following
definition of a software clone, attributed to Ira Baxter [Koschke 2008]:

Definition 10 Software clones

Clones are segments of code that are similar according to some
definition of similarity.

The notion of a clone is therefore defined by referring to the concept of
similarity – which again can be defined in a multitude of ways. We
define and further discuss the concept of similarity in Section 4.6.2.

It is important to distinguish asset cloning from asset reuse. Although
both these activities result in the usage of an asset in more than one
context, in the case of reuse the same asset is used at all locations. Even
if adaptations and configurations of a local asset instance are needed,
conceptually all instances of the reused asset evolve together. In contrast
to that, software cloning is an activity of duplication: two or more
(initially identical) copies of the asset are created, which in their further
evolution are treated as different assets.

Software cloning is mostly studied as a small-scale phenomenon, where
an asset fragment such as a method is copied to a new location in the
same or different asset. Several approaches for small-scale clone
detection [Bellon 2007], removal [Rieger 1999], prevention [Lague 1997],
and management [de Wit 2009] have been proposed. A typical size of a
code clone ranges from a few code lines up to several hundreds of lines.
The search space of clone detection algorithms is large for any non-trivial
software system, as any code fragment can be potentially judged as a
clone of any other code fragment. Typically, code fragments are
reported as clones if the measured value of their similarity exceeds a
specified threshold [Mende 2008]. The clones can be detected as pairs as
well as groups of similar code fragments – such groups are called clone
classes. Hence, clone detection can be used to simultaneously analyze a
larger number of software systems.

In an analysis of a group of similar software systems, the extensive
search strategy of clone detection approaches results in reporting a large
amount of detailed clone data, which leads to two analysis problems.
First, the reported clones might concern very diverse configurations of

Definition of a
software clone

Cloning versus
reuse

Basics of
cloning

Clone detection
results need
filtering

29

Context and Related Work

similar code fragments, including clones found inside one system, clones
between unrelated fragments of the various systems, and finally the
clones in software assets which come from different systems and
semantically relate to each other. However, only the last category is
relevant to the later reuse migration activities. In an example analysis,
Svajlenko et al. generated and analyzed five similar software systems
containing 28 860 relevant function clone pairs. However, due to the
extensive search, a clone detection tool reported, in addition to the
expected clone pairs, over 2 million further clone pairs in these systems.
Hence, only 1.46% of reported function clone pairs corresponded to
similarities which were relevant from the reuse migration point of view
[Svajlenko 2013]. Although these results were technically correct from
the clone detection point of view, they need to be further filtered for
their use in a reuse migration.

A second analysis problem is caused by the fact that clone detection
results are represented as a list of code locations where the similar code
fragments were found. However, these detailed results are not suitable
for a human to directly estimate the degree of total similarity between
particular assets or the whole systems. Hence, abstracting the results by
calculating similarities of larger code structures is necessary.

The clone detection results can be abstracted by using the system
hierarchy structure (e.g. code files and folders) and calculating clone
coverage metrics, i.e. the proportion of total code of a given system part
(folder, file) covered by the detected clones. Furthermore, for
determining the similarity of two selected system parts the clone
detection results can be filtered – only the clones occurring between two
selected system parts need to be considered, that is, the clones where all
similar fragments are found inside only one system part can be
discarded. A system structure browser, based on these abstraction and
filtering techniques, can display several coverage metrics for clones
found between the selected system part and either the remainder of the
system or any other system part [Kapser 2006] [Jiang 2007]. The
browsing of clones in the system structure can also be facilitated by
interactive visualizations and user-specified filters [Zhang 2008]
[Asaduzzaman 2011].

The described abstraction and filtering techniques are also used in
similarity analyzes for a group of software systems. Yoshimura et al. used
clone coverage metrics to assess similarity of two software systems
[Yoshimura 2006] – here, the detected clones were filtered by only
considering these clones which had a counterpart in the other system. In
an analysis of a larger group of systems, Yamamoto et al. and Mende et
al. computed the similarity metrics for each pair of the systems and
presented them as a square matrix (see Figure 12 left) [Yamamoto 2005]
[Mende 2008]. Hemel et al. used clone detection to perform a “star
comparison” of a group of system branches and estimate their deviation

Clone
detection
results need
abstraction

Abstraction
and filtering
techniques

Multi-system
similarity
analyses

30

Context and Related Work

from the main development branch [Hemel 2012]. For visualization of
similarities between many systems, Kamiya et al. propose using
scatterplots (see Figure 12 right) [Kamiya 2002]. Cordy extends that idea
by proposing live scatterplots, which can aggregate several rows or
columns in the scatterplot based on the system hierarchy, and on user
demand provide detailed data for each scatterplot cell [Cordy 2011].

Figure 12 Example presentation of multi-system similarity analysis results in the form of pairwise
similarity matrix (left; the values indicate the degree of similarity) and a multi-system
scatterplot (right; the similarity is indicated by the cell color)

2.3.3 Other Approaches

Several other techniques related to assessing similarity of software system
or asset variants, based on reverse engineering, have been proposed.
However, as they have a different analysis focus than our technique, i.e.
they do not directly aim at assessing the similarity of source code, we only
categorize these approaches and provide example references:

Techniques for reverse engineering of product line architecture
recover the architectures of the particular similar systems and then
match the architectural elements between the systems in order to
identify common and variable architectural components [Kang 2005]
[Koschke 2009] [Wu 2011]. However, their focus remains at the
abstraction level of architectural components.

Several techniques for detecting features in the source code have
been proposed. Features are units of program functionality, and the
goal of feature location techniques is to establish a correspondence
between the features and the source code locations responsible for
their implementation [Kästner 2014]. These techniques can also be
applied to a group of cloned software systems in order to detect
optional features, i.e. functionalities supported by only a subset of
the systems [Rubin 2012].

CBA

0.380.331

0.310.33

10.30.38

A

B

C

X Y
X Y

A

Fi
le

1
Fi

le
2

Fi
le

3
Fi

le
4

Fi
le

5
Fi

le
6

Fi
le

7
Fi

le
8

Fi
le

9
Fi

le
10

Fi
le

11
Fi

le
12

File1
File2
File3
File4
File5
File6
File7
File8
File9

File10
File11
File12

A

B

C

B C

31

Context and Related Work

 Several approaches for recovery and evaluation of potentially
reusable assets exist [Bayer 1999] [Knodel 2005] [Kolb 2006b]. The
basic idea of these approaches is to select an asset from a single
product and identify the functionalities which are missing for
achieving full reusability of the asset across the product line.

 There are two approaches which propose expressing and measuring
the similarity of software system variants by using a set model:

o Peterson discusses sets constructed from requirements which are
posed on products in a product line [Peterson 2004]. These sets
typically intersect as some requirements are relevant to several
products. He measures the reuse potential of the product line
based on the degree to which the requirement sets overlap.
However, the requirements are specified manually and no reverse
engineering is involved.

o Berger et al. identify components in Simulink models which have
similar interface descriptions, mark them as variants, and model
the variant products as intersecting component sets
[Berger 2010]. However, only interfaces of components are
considered, and components are identified as variants if the
interface similarity exceeds a specified threshold. Hence, the
identified component variants can still significantly differ in the
implementation details. Also, there is no support for abstracting
larger models (e.g. in the form of model structure hierarchy), nor
there are any visualization concepts defined.

2.4 Summary

In this chapter we presented the context of our work: we discussed the
fundamental concepts of software reuse, including software product line
engineering (Section 2.1), and outlined the basics of reverse engineering
(Section 2.2). Subsequently, we presented the related approaches
analyzing similarity of software variants (Section 2.3).

We frequently refer to the fundamental concepts presented here in the
further chapters of this thesis. Moreover, in Section 3.3 we discuss the
deficiencies of presented existing analysis approaches in the context of
analysis goals related to reuse migration, and we motivate the need for
developing a solution overcoming these deficiencies.

 32

Towards an Approach for Variant Similarity Analysis

3 Towards an Approach for Variant Similarity
Analysis

In the Introduction we presented the existing literature reports which
document the existence of cloned software system variants, the reasons
for their creation, and the resulting maintenance challenges. As most of
these reports are punctual observations made in just one organization,
together with a group of other authors we contributed a broader
perspective by performing an exploratory survey, in which we investigated
the cloning practices in industrial software product lines [Dubinsky 2013].
In Section 3.1 we describe a subset of the observations we made in that
survey, concerning the benefits and drawbacks of cloning and the role of
code similarity information, and derive respective conclusions.

The results of the industrial survey motivate the practical need for
delivering the necessary similarity information, for example by
performing source code analysis. Hence, in Section 3.2 we define three
application scenarios where code similarity analysis is applicable and
derive from them the specific analysis goals which are addressed by our
approach. Subsequently, in Section 3.3 we discuss the shortcomings of
existing similarity analysis approaches which prevent them from fully
addressing the information needs of a reuse migration. Finally, the
expected benefits of using our approach in the defined application
scenarios are formulated as hypotheses in Section 3.4.

3.1 Cloning in Industrial Software Product Lines – An Exploratory
Survey

The practice of cloning complete software systems in order to provide
variants of their functionality was reported by many researchers
[DeBaud 1998] [Schmid 2002b] [Faust 2003] [Riva 2003] [Staples 2004]
[Yoshimura 2006] [Jepsen 2007] [Koschke 2009] [Duszynski 2011a].
Usually, these systems were cloned by either directly copying the source
code, or by creating separate branches in a configuration management
repository. Regardless of the technical mechanism however, the duplication
of the similar code ultimately resulted in increased maintenance effort and a
need to consolidate the variant systems into a reusable code base.

Despite the literature reports on maintenance problems, system cloning
is still a frequently used mechanism for implementation of system
variants. However, until now no systematic study has been conducted to
investigate the reasons of that contradiction. Hence, together with a

Singular
reports on
cloned
systems

Exploratory
survey goals

33

Towards an Approach for Variant Similarity Analysis

group of other researchers we performed a survey of industrial
organizations which clone large artifacts or complete systems to develop
new system variants [Dubinsky 2013]. The survey had an exploratory,
theory-building nature – we did not search to confirm or refute any
specific hypothesis. Instead, we aimed at characterizing the context of
the clone-based system development, the rationale behind cloning, and
its perceived positive and negative consequences. For space reasons, in
this section we only concentrate on the study findings directly related to
the context of this thesis. We omit other aspects investigated in the
survey, e.g. these related to organizational roles and processes, as well
as some details of the survey setup, as these aspects are described in the
conference paper [Dubinsky 2013].

In the survey we interviewed eleven participants, involved in developing
six groups of similar system variants realized with the use of cloning. The
participants were employed in three different software-developing
organizations, each belonging to a different industry: aerospace and
defense, data storage management, and automotive. The selection of
surveyed organizations and cloned system groups was limited to those
we had access to – we did not perform any further filtering of the
surveyed systems. Most of the participants were fulfilling senior technical
roles in the software development process: five of them described their
role as “software leader/technical leader”, three as “architect”, two as
“developer” and one as “integrator and QA engineer”. Among the
surveyed cloned system groups, the oldest was initially developed about
10 years before the time of our study, while the youngest emerged one
and a half years before the study. However, all of the system groups are
composed of products which are still actively offered on the market. The
teams responsible for the development of system groups numbered
between 26 and 100 people.

We collected the survey data using a questionnaire, followed by a
structured interview with predefined open-ended questions. The
questionnaire contained questions about the general setting of the
system group and the extent of the cloning practices. In the interview,
we first asked the interviewees to describe the system group and used
processes and tools in more detail. Then, we investigated the way the
cloned systems were created and maintained: e.g. who decides to create
a clone, which reasons are used to motivate a cloning case, and how the
information about existing clones is subsequently maintained. We also
asked the participants about their perception of advantages and
disadvantages of cloning in their specific situation. Finally, we analyzed
the findings using the grounded theory approach [Corbin 2008] to
detect and describe repeating concepts and link them to the collected
evidence. In the analysis, we only used the questionnaire and interview
data – we were given no access to the source code of surveyed system
groups, and hence we could not perform own measurements of the
extent and nature of the existing clones.

Surveyed
participants
and system
groups

Data
collection and
analysis

34

Towards an Approach for Variant Similarity Analysis

3.1.1 Survey Results

In the opinion of the survey participants cloning saves time and reduces
cost of the initial development of a new system variant. By cloning an
existing solution, a first code base version already supporting many of the
required features can be quickly created. Moreover, the original code, which
is cloned to obtain the new variant, is already trusted and validated and
can hence be assumed to have sufficient quality. Note that the same two
reasons, i.e. development speed and code quality, are also provided in the
case of proper software reuse, and constitute the main reuse benefits. In
fact, some study participants considered cloning to be a form of reuse and
wished to increase the amount and scope of the artifacts they cloned.

“It is easier to start with something. Cloning gives [us] an initial basis.”

“It saves time. These components were already used, tested, closed. A
kind of an off-the-shelf software.”

“We did something. It is ‘old’ and for most cases it is stable. The amount
of time to bring [new code] to the required level of quality is not easily
estimated.”

“We clone code and should do better with cloning requirements and design.”

In contrast to reuse, cloning has a low entrance barrier, as no special
skills or development methodologies are required. Moreover, the
development of the cloned variant is initially easier as in the case of reuse:
since no assets are shared with other existing systems, the dependencies
to these systems do not need to be considered. Hence, there is no
need to inform the other projects about code changes, to refine the
common code, or to consider the lifecycles, schedules and development
goals of the other systems. One participant also indicated that as the
cloned code is only used in the context of one system, it can be more
readable and understandable than a highly generic reusable code.
Consequently, his team decided to introduce file-level clones with the
purpose of improving code readability and maintainability.

 “It gives freedom to change, [when cloning] there is no damage to
existing products.”

“[In the past,] a new variant (…) was integrated back into the
mainstream by using preprocessor switches. This has made the code very
unreadable, so we wanted to go away from that and we started to
branch off the files that differ among variants.”

In the opinion of survey participants, the low initial effort makes cloning
to a suitable development approach when there is a strong pressure to
deliver the new software system variant quickly. Similarly, cloning
might be chosen if the additional resources necessary to set up the
reuse infrastructure are not available. The use of cloning can be

Short-term
efficiency

Advantages of
cloning
compared to
reuse

Rationale for
cloning

35

Towards an Approach for Variant Similarity Analysis

therefore justified or even imposed by the circumstances of the
development project, or might represent a “lesser evil” compared to the
consequences of delayed project completion. Moreover, in some cases
the knowledge of the number and required functionality of the
demanded system variants is not available upfront, but rather
emerges progressively as time passes. Hence, the scope of the system
group might only look suitable for reuse in the hindsight.

“When a new customer came, we needed to decide how to implement
his requirements in the fastest way. We do not have time to think
thoroughly about generic approaches.”

 “Maybe we can [think about reuse] from the beginning. Still this is easy
to say now, when we know that the first product is a success. At the
beginning, the other risks are more important.”

“At the beginning we did not know that we will have to support all the
controllers that we support now – this emerged over time.”

In the surveyed projects, cloning can also occur in an unplanned and
unorganized way, as a consequence of short-term thinking and
unawareness of reuse-based development approaches. In some
organizations, the lack of resources for setting up a systematic reuse
approach resulted not from the tight deadlines, but rather from the
missing organizational focus on reuse. As these organizations
provided no incentives or supporting structures for recognizing reuse
opportunities, and no funding scheme covering the initial costs of reuse
was available, the particular variant projects used cloning to optimize the
development costs in the short term.

“There is a lack in resources for an organized work and methodology
with respect to the product line engineering.”

“There is no place or procedure that asks to search for existing assets.”

“No one [is responsible for reuse]. One who requires an asset, takes it.”

The existence of many cloned systems and assets leaded in a longer time
to additional work and significant maintenance problems in the surveyed
projects. Repetitive maintenance tasks, for example propagating a
bug fix or a requirement change, need to be performed on each cloned
copy. Moreover, each task duplicate still requires a careful analysis, as
each clone has been modified for a specific context. Finally, the degree
of change required to make the cloned code compliant with new variant
requirements, and hence the adaptation effort, is sometimes much
higher than initially estimated.

“We need to perform many activities several times: for each variant, we
have to check the code and implement the change or fix. Then, the
design and documentation documents, as well as the test specification
need to be adapted for each variant. Tests need to be run.”

Short-term
thinking

Maintenance
problems

36

Towards an Approach for Variant Similarity Analysis

“If we find a bug then many times it can be here and also in other
places. The new product contains code that exists also in the old
product. So, if we fix the old one then we also fix the new or vice versa.”

“It is usually not possible to port without making changes to the code.”

“It is a copy and a lot of adaptation.”

A common characteristic of the surveyed system groups was the lack of
sufficient reuse-oriented development governance. On the technical
level, this manifested as the lack of management of reuse-related
and cloning-related information. First, the information about cloned
artifact origin was not tracked or stored, and instead existed mainly
in team member’s minds. Hence, the provenance of particular asset
clones might be forgotten due to passing time and staff turnover, and
the later bug fixes and feature changes could fail to address all relevant
asset clones. Second, the changes applied to particular clones were
not tracked or managed. As a consequence, assessing the similarity of
two clones or judging their suitability as a basis for a new variant
implementation was difficult without detailed code analysis. And third,
no measurements related to reuse or cloning were performed.
Hence, the organizations were not able to reliably assess the reuse
opportunities, nor were they objectively informed about the technical
benefits and drawbacks of their cloning choices.

“No one is in charge of the cloning knowledge – in practice, it is the one
who implements [a functionality] and the architect who is in charge of
the work item.”

 “(…) code that we cloned loses connection with the product which it is
cloned from, and then there is no sharing of new insights and innovations.”

“Sometimes, we find the same bug again in a different variant that
nobody thought about before.”

3.1.2 Discussion

The results of the survey indicate that the use of cloning, even at the level
of complete software systems, might be a justified development strategy.
Some of the surveyed software systems were cloned because the pressure
to deliver new system variants quickly at a low cost was stronger than the
incentives to optimize the development for longer-term goals such as
maintainability and reusability. As the tradeoff between speed and
reusability occurs frequently [Kolb 2010], many companies might be
tempted to clone and, after some time, consolidate only these assets and
products which proved to be successful on the market while abandoning
the rest (the grow-and-prune approach [Faust 2003]). Cloning can for a
certain period of time be beneficial, providing development speed and
flexibility [Riva 2003], or at least constitute a “lesser evil” compared to
other early development risks. Hence, cloning has to be considered as one

Lack of
governance
and of cloning
information

Cloning as a
development
strategy

37

Towards an Approach for Variant Similarity Analysis

of possible and justified strategies for development of multiple similar
software systems – even if it sometimes also results from the unawareness
of other, reuse-based development approaches. Interestingly, similar
conclusions were also formulated by Kapser and Godfrey with regard to
small-scale code clones [Kapser 2008].

However, although cloning might sometimes be considered to be
“good”, and it will likely be further practiced, the consolidation of
cloned systems should be performed early enough to prevent the long-
term maintenance problems resulting from code duplication. Moreover,
the collected results suggest that the maintenance problems occurring to
cloned systems are intensified because the reuse-related and cloning-
related information tends to be lost in the evolution process. Similarly to
the maintenance tasks, the consolidation of cloned systems also requires
a modification of their code, but on a larger scale. Hence, both the
maintenance and the consolidation of cloned systems would benefit
from the existence of current and accurate cloning information.
Therefore, the cloning organizations need to be supported by
approaches and tools for management (e.g. using documentation) and
recovery (e.g. using code analysis) of the code similarity information.
Also, methodical approaches utilizing that information for both clone
consolidation and cloned code maintenance are needed.

The surveyed system groups and their developers were selected because
of their availability to the survey authors. Hence, the survey results and
the derived conclusions need to be interpreted in due consideration of a
range of validity threats, especially of external nature (i.e., with regard to
the result generalizability). First, the number of surveyed subjects is
limited, and they can potentially be not representative of the general
software industry. Hence, the estimation of prevalence or significance of
the identified facts is not possible. Second, our only data sources were
the subjective answers provided in the questionnaires and the interviews.
We were not able to cross-check these answers by measuring the
artifacts belonging to the surveyed system groups, which leaves a possi-
bility that some of the answers could be inaccurate. To conclude, the
survey results can be mainly treated as a data point in the investigation
of industrial cloning practices, but not as their complete picture.

3.2 Application Scenarios and Analysis Goals for Code Similarity
Analysis

In the previous section we described the practical situations where
software products are cloned and separately maintained, and discussed
the resulting long-term maintenance problems. Furthermore, we motivated
the need for performing code-level similarity analysis on the created
software product variants. To complete the description of the practical
context of the variant similarity analysis problem, in this section we list

Scenario
background

Threats to
validity

The need for
information
management
and recovery

38

Towards an Approach for Variant Similarity Analysis

three concrete application scenarios for which the variant similarity
analysis technique provided in this thesis is intended, and derive from
them the goals that the analysis technique should fulfill. We define the
application scenarios on the basis of the industrial survey, a review of the
related literature, and our experience in industrial technology transfer
projects at Fraunhofer IESE (see Section 7.4). The application scenarios are:

[AS1] Reuse potential assessment: A group of software system or
software asset variants, maintained in parallel, is analyzed in order to
assess whether introduction of a systematic reuse approach is
appropriate for the analyzed variants or a subset of them. For that goal,
the parts of the analyzed software assets suitable for transformation into
a reusable form should be identified. The information delivered by
similarity analysis is used to guide the selection of system variants and
their constituent software assets for performing the transformation
activities, and enables discussion on implementation alternatives (e.g.
use the asset as is, modify it, or write a new version from scratch)
[Yoshimura 2006] [Koschke 2009] [Duszynski 2011a].

From the economical and risk management perspective, the migration of
existing system variants towards reuse frequently constitutes a better
choice compared to the development of the target reusable systems
from scratch [Simon 2002]. However, in some cases the organization
might decide to start a completely new development of the reusable
system variants and replace the old cloned products. The reason for such
a decision might be, for example, a wish to abandon outdated
implementation technologies or an insufficient general code quality of
the old product implementation [Wleklik 2011]. In this situation, a
similarity analysis performed on the old products still delivers important
information for the new implementation planning, as the similarities
between the new products, and hence their reuse potential, will likely be
analogous to the similarity found in the old analyzed products covering
the same markets and functionalities.

[AS2] Consolidation of existing reusable software: Even if a
software system uses a structured reuse approach, e.g. the software
product line approach, new functionalities of the particular system
variants can still emerge in various ways, including cloning [Staples 2004]
[Mende 2008] [Schulze 2013]. Therefore, the software system variants
are periodically analyzed in order to check whether new candidates for
reusable assets emerged after some evolution period. If such candidates
are identified, a merge can be performed to reconsolidate the reusable
implementation and assure achieving a high reuse rate. This scenario is
also known as the grow-and-prune approach [Faust 2003]: the explicitly
allowed uncontrolled growth of the software allows for quickly satisfying
customer demands, as discussed in Section 3.1, while the later pruning
phase consolidates the newly implemented assets and creates a generic
solution, counteracting the long-term maintenance problems.

 39

Towards an Approach for Variant Similarity Analysis

[AS3] Support for parallel variant maintenance: An organization
developing cloned variants in parallel might decide to not introduce
software reuse despite favorable similarity analysis results [Rubin 2013].
This can happen for a number of valid reasons, such as e.g. a high cost
of an already performed safety certification for the products which
would need to be repeated after reuse migration. However, the
organization can still regularly analyze the system variants for code
similarity in order to use the derived information for reduction of
maintenance effort. For example, similarity information is useful to
identify whether a specific code change (e.g. a bug fix) is relevant to
other system variants. Also, it helps reduce code inspection effort by
avoiding assessing the same code again in another variant. Finally, the
similarity information can be used at the planning and management
level, for example for verifying assumptions regarding similarity
distribution or for detecting development trends such as a growing
dissimilarity of a specific asset in a specific variant.

Although the described application scenarios target different practical
situations, they share a number of common characteristics:

In each scenario, the analysis users are interested in the similarity of
software assets between the analyzed system variants, while the
similarity inside the particular variants (e.g. code clones) is not relevant.

In each scenario, the information retrieved by the analysis concerns
software assets of different sizes: starting from the small scale, e.g.
single methods, up to whole potentially large software systems.
Because of that, providing both code-level similarity details as well as
suitable abstractions for similarity of large asset structures is an
important requirement for a similarity analysis technique satisfying
these scenarios.

In most cases a fairly high similarity among the analyzed software
system variants can be expected – otherwise, the intention of the
development organization to capitalize on the similarity existing in
the software assets, and the resulting wish to perform the similarity
analysis, would not emerge in the first place. The expectation of a
relatively high similarity is particularly reasonable if the analyzed
variants were developed in a cloning process.

The human effort for performing the analysis and interpreting its
results should not be overly high. As all the described application
scenarios occur in the context of development effort reduction
measures, this strived for effort reduction should not be canceled
out by an effort-costly analysis process, as this would nullify the
analysis purpose.

Requirements
resulting from
the scenarios

40

Towards an Approach for Variant Similarity Analysis

Moreover, it is important to note that while the application scenarios
differ in their intended use of the similarity information, they share
common requirements regarding the form and scope of that
information. Hence, common analysis goals with regard to the retrieved
similarity information can be derived from each application scenario.
These goals, specifying the variant similarity analysis problem addressed
by this thesis, are:

Identify software assets of any size, belonging to the analyzed software
system variants, which exhibit similarity across some or all of the variants.

Characterize the found similarity with regard to the properties that
enable well-founded decisions on further activities concerning the
similar assets (e.g. their transformation into a reusable form). These
properties are:

o the degree to which the assets are similar,

o the variants where assets similar to a given one are found,

o the distribution of the similarity in the system or in a particular
software asset,

o the deviations in the found similarity, describing which asset
elements are dissimilar, how they are dissimilar and where the
dissimilarities are located.

The commonality of the analysis goals, shared by the described application
scenarios, justifies the possibility to apply the same reverse analysis
technique for retrieving similarity information in all these different practical
cases. Although the interpretation of the retrieved information certainly
differs for each application scenario, the requirements on the form and
scope of the input information are essentially the same.

3.3 Shortcomings of the Existing Approaches

None of the existing reverse engineering techniques for analysis of variant
similarity (see Section 2.3) can fully address the requirements resulting
from the application scenarios described above. In particular, every of the
existing approaches exhibits one or more of the following shortcomings:

No abstraction mechanism for large systems. If a group of large
software systems is analyzed, suitable abstractions of the similarity
information are required. However, the comparison and differencing
algorithms, as well as some of the clone detection approaches, only
provide a detailed list of low-level analysis results [Hunt 1976]
[Roy 2009a]. Even the advanced differencing frameworks merely indicate
an existence of an unspecified difference inside a structure hierarchy,
without providing any further information about the size and nature of
that difference [BeyondCompare 2014]. Hence, deriving any statement
on the similarity of large code structures is not directly possible.

Analysis goals

41

Towards an Approach for Variant Similarity Analysis

No detailed code information available. Some approaches,
especially these providing similarity metrics aggregated on the level of
whole systems [Yamamoto 2005], exhibit a deficiency opposite to the
one described above. Although the aggregated metrics provide
instant similarity information even for large systems, the low-level
information on the particular similar code locations which
contributed to the calculated metrics values are not available. Hence,
this information is not sufficient to identify concrete reengineering
tasks for a reuse migration on the code level.

Imprecise similarity information. Clone detection techniques
frequently use a similarity threshold to decide whether two code
fragments are similar enough to be considered as clones [Mende
2008]. On a similarity scale ranging from 0 (no similarity) to 1 (identity),
frequently a threshold value of 0.7 is selected. The use of a similarity
threshold is helpful for finding cloned code fragments despite their
subsequent modification. However, in the context of reuse potential
assessment it introduces a significant imprecision in the analysis results.
First, a code asset which is in 50% covered by clones of other asset
code, assuming the 0.7 threshold value, can actually contain any
proportion of similar code between 35% and 50%. Second, the code
assets assessed as clones cannot be merged into a reusable form
without a manual code review, as their residual differences can be
large and meaningful enough to make them unsuitable for reuse
migration. A similar problem occurs also for model-based code
similarity analyses, e.g. using UML models, as two code fragments
having an identical model can still substantially differ on the code level,
e.g. due to the peculiarities of different hardware platforms.

No abstraction mechanism for a large number of asset
variants. Most of the existing approaches deliver similarity
information calculated for each pair of asset variants [Yamamoto
2005] [Mende 2008]. However, for n variants there exist n(n-1)/2
different variant pairs. Hence, the similarity of n asset variants is
reported as n(n-1)/2 partial results, which still need to be aggregated
together in order to understand the complete similarity distribution.
Already for 10 variants, 45 partial results are calculated. The lack of
suitable abstraction makes it difficult to analyze such complex
similarity analysis result.

No information on all variant combinations available. This
shortcoming is related to the previous one, as it is a consequence of
the pairwise similarity result presentation. Since only the information
about the pairs of compared variants is provided, the analysis
questions concerning larger groups of variants (three and more)
cannot be answered without further result processing. For example, a
simple question such as “what is the amount of code which is
identical across all the variants” cannot be answered based on the
pairwise similarity only, as each pair of variants can potentially share a
different selection of similar code fragments.

42

Towards an Approach for Variant Similarity Analysis

As discussed in the previous section, a similarity analysis technique
should facilitate a quick understanding of the provided results. The result
understanding should be supported for any level of abstraction in two
scalability dimensions: the asset size dimension, ranging from small code
fragments up to large systems, and the number of variants dimension,
ranging from two up to several tens of asset variants. At the same time,
the delivered information should be precise and accurate in both
dimensions, regardless of the asset size and the amount of its variants.
In Table 3, we map these requirements to the existing analysis approaches
presented in Section 2.3. Due to the discussed shortcomings, none of
the existing approaches fulfills all the requirements. Moreover, the last
two requirements, particularly relevant for a large number of analyzed
variants, are not adequately addressed by any of the approaches. Hence,
the objective of this thesis is to provide a similarity analysis approach
which does not exhibit the listed deficiencies and fulfills all requirements.

We further refer to the above discussion in Section 4.2, where we define
construction requirements for techniques analyzing variant similarity. As the
review of related approach shortcomings contributed to the requirement
definition, we provide there a deeper discussion of some of the listed
problems, in particular these related to pairwise analysis result presentation.

Requirements
Abstraction

for large
systems

Detailed
code-level

information

Precise
similarity

information

Abstraction
for a large
number of

variants

Information
on all variant

combi-
nations

State of the art
approaches

Comparison and
differencing algorithms
[Hunt 1976] [Fluri 2007]
[Xing 2005] [Diffuse 2014]

–
+ /

– (model
based)

+ /
– (model
based)

– –

Advanced differencing
frameworks
[BeyondCompare 2014]

(+) qualitative
only: amount

of change
not visible

+ + – –

“Bare” clone detection
[Koschke 2008] [Roy 2009a]

– + –
(+) local

only: clone
classes

(+) local
only: clone

classes
Clone detection with
hierarchical abstraction
[Kapser 2006] [Jiang 2007]

+ + –
(+) local

only: clone
classes

(+) local
only: clone

classes

Clone coverage metrics
[Yoshimura 2006] [Mende
2008] [Hemel 2012]

+ + – – –

System similarity metrics
[Yamamoto 2005]

+ – + – –

Cross-system scatterplots
[Kamiya 2002] [Cordy 2011]

+ + – – –

Table 3 The properties of the existing approaches: + stands for “supported”, (+) for “partially
supported”, “–” for “not supported”

Shortcomings
prevent the
fulfillment of
analysis goals

43

Towards an Approach for Variant Similarity Analysis

3.4 Research Hypotheses

The main goal of our approach is to counteract the identified practical
problems discussed in the thesis introduction: the migration of a group
of cloned system variants towards reuse is effort-intensive and is likely to
miss some of the reuse opportunities, while their continued parallel
maintenance, without the migration, also requires a high effort due to
the many repetitive tasks. Furthermore, in previous sections we discussed
that the information on code similarity is frequently missing or
insufficient in the organizations developing cloned system variants,
which is detrimental to cloned variant maintenance and migration.
Hence, our approach concentrates on providing the information on code
similarity in order to support the migration and maintenance activities. In
that context, we defined three application scenarios where code
similarity analysis can contribute (Section 3.2).

Based on these discussions, we postulate three practical hypotheses
concerning the role of code similarity information in the migration and
maintenance of cloned system variants (Table 4). In the following, we
discuss our understanding of these hypotheses.

Hypothesis name Hypothesis text
Postulated

improvement
measure

HP1: Migration Effort Reduction
Availability of detailed code similarity
information reduces the effort for
migration to reuse.

20% less
migration effort

HP2: Higher Degree of Reuse
Availability of detailed code similarity
information allows for achieving a higher
degree of reuse in the migration.

80% less missed
reuse opportunities

HP3: Effort Reduction in Parallel
Variant Maintenance

Availability of detailed code similarity
information reduces the maintenance
effort for variants developed in parallel.

10% less
maintenance effort

Table 4 The practical hypotheses

The practical hypotheses formulate the postulated improvements in the
migration and maintenance of cloned system variants, achieved by
providing the detailed code similarity information, as compared to the
situation where that information is not (or not sufficiently) available. As
discussed in the Section 1.2 and 3.2, the code similarity information
should be available on any level of abstraction (from small code chunks
up to whole systems), be available for any subgroup of the analyzed
system variant family, and should be sufficient to dependably support
the developers in the migration decisions (e.g. these listed in Section
1.2). Certainly, such information could in the practice encompass many
interesting categories: the syntactic similarity of code, the semantic
similarity of the program behavior, or even the similarity of created
runtime structures such as call graphs, function pointer hierarchies, and
data structures. Moreover, the usefulness of each such category could

Hypotheses
context

Practical
hypotheses

Detailed
similarity
information

44

Towards an Approach for Variant Similarity Analysis

strongly vary depending on the context: the system domain, code-level
implementation mechanisms, and even the used programming
language. It remains an open research question to determine which kind
of information provides the best support for the defined application
scenarios and what kind of context dependencies for that information
exist. In this thesis, we narrow our focus on the detailed code similarity
information to the syntactic similarity.

Consequently, we formulate the hypothesized improvements, which can
be achieved by providing the code similarity information, with relation to
the syntactic similarity only. The postulated practical improvement
measures, given in Table 4, indicate our intuition regarding the type and
significance of the improvement provided by our approach as compared
to the current state of the art (Section 2.3). Still, it needs to be recognized
that a reuse migration is a complex undertaking, involving many activities
and influenced by many context factors. The migration effort can be
divided into multiple constituent parts, for example such as:

the effort for planning the migration,

the effort for performing the analyses supporting the planning,

the effort for setting up the reuse infrastructure and implementing
the necessary changes in the assets,

unnecessary additional effort spent due to incorrect reuse decisions,
e.g. introducing reuse where it does not provide benefits,

other engineering effort (testing, verification, training),

management effort.

While for some of the listed categories no meaningful influence of a
code similarity analysis can be expected, we hypothesize that the effort
for supportive analyses and the unnecessary effort due to incorrect reuse
decisions can indeed be significantly reduced. Hence, in the hypothesis
HP1 (Migration Effort Reduction), we postulate that a migration effort
reduction by 20% can be achieved by using our approach. The possible
reduction is, however, heavily depended on the proportion of the different
effort categories and possibly on several other context factors. Therefore
we postulate that the 20% improvement should be achievable in most
cases, but can possibly fail to materialize in a particularly unfavorable
context. Naturally, the postulated improvement relates to a situation when
the availability of the similarity information is provided, but all other
factors influencing the improvement measure remain constant. The same
conditions apply likewise to the other hypothesized improvements.

The scientific problems addressed by this thesis are the recovery and
structuring of code similarity information, as well as the subsequent
presentation of that information to enable efficient and correct similarity
information understanding by human analysts (Section 1.2). Hence, we
hypothesize that the Variant Analysis approach provides an improvement

Postulated
practical
improvements

Scientific
hypotheses

45

Towards an Approach for Variant Similarity Analysis

in these areas. Naturally, the proposed similarity analysis approach
should also provide technically correct results and be suitable for
practical use in the context of defined application scenarios. Our
scientific hypotheses, listed in Table 5, reflect these conditions:

Hypothesis name Hypothesis text
Postulated

improvement
measure

HS1: Correctness
The Variant Analysis approach provides
correct results.

Precision > 0.99
Recall > 0.99

HS2: Analysis Effort Reduction
The Variant Analysis approach reduces
the effort for analyzing the similarity
information compared to other approaches.

Up to 4 variants:
30% less analysis effort

5 and more variants:
50% less analysis effort

HS3: Analysis Effort Scalability

The effort for analyzing the similarity
information using the Variant Analysis
approach grows slower with an
increasing number of analyzed variants
compared to other approaches.

For any m,n N,
where m>n>=2,
the effort fulfills:
VA(m)/VA(n) <

OTHER(m)/OTHER(n)

HS4: Understandability

The Variant Analysis approach allows for
understanding the implemented
similarity with a higher correctness
compared to other approaches.

50% less
false statements

HS5: Practicability
The Variant Analysis approach can be
successfully used by practitioners.

Successful industrial
applications: > 90%

positive feedback
Table 5 The scientific hypotheses

While the hypotheses HS1 (Correctness) and HS5 (Practicability) concern
the properties of the Variant Analysis approach only, the remaining three
hypotheses have a comparative character. Hence, the hypotheses HS2,
HS3 and HS4 concern the improvements provided by the Variant Analysis
approach compared to the currently existing analysis techniques – such as
the use of comparison algorithms or clone detection approaches
combined with their respective structural abstraction mechanisms. Below,
we further discuss the details of the particular scientific hypotheses:

The hypothesis HS1 (Correctness) concerns only the technical
correctness of the provided results and, in contrast to the other four
hypotheses, does not include any human-based factors.

The hypothesis HS2 (Analysis Effort Reduction) specifies two values of
the improvement measure, depending on the number of analyzed
variants. This is a result of the hypothesis HS3 (Analysis Effort
Scalability), which states that the effort savings achieved by the use
of the Variant Analysis approach increase with the increasing number
of analyzed variants. In other words, we postulate that with a
growing number of variants, our approach is more scalable in terms
of the involved human analysis effort than the other current
approaches. The hypothesis HS3 is based on the observation that the

Details of the
scientific
hypotheses

46

Towards an Approach for Variant Similarity Analysis

current approaches do not provide sufficient abstraction mechanisms
for a larger number of variants (see Section 3.3). Hence, the positive
effect of such mechanisms defined in the Variant Analysis approach
should be increasingly visible when the number of variants grows.

The hypothesis HS4 (Understandability) concerns humans who
analyze the information provided by an analysis approach and derive
from it higher-level statements concerning the similarity of analyzed
assets. With this hypothesis, we postulate that the results provided by
the other approaches are harder to understand (for example due to
their ambiguity – see Section 4.2.2, especially Figure 18) and might
hence lead to false statements concerning similarity. False statement
is a statement about code similarity which is formulated by a human
as a result of using a given analysis technique, and which is incorrect
because the real situation in the code is different.

The hypothesis HS5 (Practicability) implies not only that the
practitioners are technically able to understand and apply the Variant
Analysis approach, but also that they are satisfied with the use of the
obtained results in their migration and maintenance decisions.

As in the case of the practical hypotheses, the postulated improvement
measures are not absolute, but rather indicate our intuition regarding
the type and significance of the expected improvement. We postulate
that the specified improvements should be in general achievable, unless a
very unfavorable combination of other influencing context factors occurs.

In Figure 13, we provide a summarizing overview of the formulated
hypotheses and their relations to the defined application scenarios.
While some practical hypotheses are specific to a given application
scenario, the fulfillment of any scientific hypothesis contributes to the
fulfillment of every practical hypothesis.

Figure 13 Overview of the practical and scientific hypotheses and their relations to the application scenarios

Scientific
Hypotheses

HS1
Correctness

HS2
Analysis

Effort
Reduction

HS3
Analysis

Effort
Scalability

Practical
Hypotheses HP1

Migration Effort
Reduction

HP2
Higher Degree of

Reuse

HP3
Effort Reduction in

Parallel Variant
Maintenance

Application
Scenarios AS3

Support for Parallel
Variant Maintenance

AS1
Reuse Potential

Assessment

AS2
Consolidation of
Existing Reusable

Software

HS4
Understan-

dability

HS5
Practicabi-

lity

Hypotheses
summary

47

Towards an Approach for Variant Similarity Analysis

3.5 Summary

In this chapter we provided a consolidated description of the problem
area addressed by this thesis. First, in Section 3.1 we presented the
results of an industrial survey of code cloning practices performed in the
context of variant software system development. The study results
indicate that the existence of detailed information on the cloned
software asset similarity would be beneficial for solving the occurring
maintenance challenges – however, that information is frequently
missing in the practice. Subsequently, in Section 3.2 we defined three
application scenarios for a technique analyzing variant similarity, which
we derive from the study results, a literature review and own practical
experiences. By characterizing the information needs resulting from the
application scenarios, we defined the analysis goals for our asset variant
similarity analysis technique. In Section 3.3 we argument that the
existing similarity analysis approaches do not address the analysis goals
adequately, as they exhibit a range of shortcomings. Finally, in Section
3.4 we provide the improvement hypotheses, related to the application
scenarios, which describe the benefits we expect from the solution
described in this thesis. Hence, this chapter completed the description of
the addressed research problem and its scientific and practical context,
and set the scene for the following chapters which provide our solution.

48

Investigation and Formalization of the Variant Similarity Analysis Problem

4 Investigation and Formalization of the
Variant Similarity Analysis Problem

In the previous chapters, we motivated the practical need for analyzing
variant source code for similarity and defined application scenarios
where that need occurs. In general, the purpose of performing variant
code similarity analysis is to:

 recover the similarity information from the existing assets,
 support the human in understanding that information,
 and finally provide a fact base for decisions aimed at solving a

practical problem defined by the given application scenario.

However, different analysis techniques might fulfill that purpose to a
different degree. Therefore, this chapter provides a foundation to reason
about such techniques and to evaluate them. We start by characterizing
the specific properties of software variants, especially those which
distinguish them from software versions (Section 4.1). Based on these
properties, we define and motivate a group of construction requirements
that a variant similarity analysis approach should fulfill in order to achieve
its purpose (Section 4.2). The requirements provide means to compare
and evaluate variant similarity analysis techniques, and can serve as
guidance when defining a new technique.

Furthermore, in Section 4.3 we extend the defined construction
requirements by deriving a group of assumptions which concern the
nature of information needed in the specified application scenarios.
These assumptions motivate the design decisions structuring the analysis
approach described in this thesis. In Section 4.4 we formally define the
similarity analysis of software variants based on the stated construction
requirements and assumptions. In Section 4.5 we define an approach to
measure the result quality of a similarity analysis structured according to
our definition. Finally, in Section 4.6 we systematize the introduced
concepts by defining a conceptual model of variant similarity analysis.
Hence, the basis for reasoning about the analysis problem, the possible
solutions, and the quality of results provided by these solutions is defined.

4.1 Software Variants

Although software versions as well as software variants represent
distinguished states of a given software asset, they have a fundamentally
different nature. Basically, a version refers to an identified state assumed
by an asset at a specific point in time, while a variant refers to one of
multiple asset states which exist (or potentially exist, e.g. can be
automatically generated) at the same point of time (Figure 14).

Versions and
variants

 49

Investigation and Formalization of the Variant Similarity Analysis Problem

Definition 11 Software version

A version of a software asset is an identifiable, unique state of the
content of that asset (e.g. of its source code) created at a given point
in time. A change to the asset content results in a creation of a
subsequent version.

Definition 12 Software variant

A variant of a software asset is one from a group of identifiable,
unique states of the content of that asset (e.g. of its source code)
which exist or can potentially exist at the same point in time.

A group of software versions represent different states of a given
software asset that it assumed in time (Figure 14). Therefore, the
versions can be treated as points placed on the axis of time as they
represent the temporal change of the asset content. The time axis
defines an order on the group of versions, and allows treating that
group as a list, unambiguously ordered by creation time. This order has a
clear objective meaning as it represents a linear flow of changes
performed on the asset during its development history. Typically, two
asset versions which according to the time order are neighboring or
placed near each other (i.e. they are separated by only a low number of
other versions) are much stronger related or similar to each other than
two versions which are distant (i.e. separated by many other versions).

Figure 14 Versions and variants of a software asset

In contrast to that, every element of a group of software variants exists
and is valid simultaneously at the same point in time (Figure 14). Variants
represent the spatial variability of the asset content, due to the fact that
different forms of the asset content are used simultaneously at different
logical locations – for example in different products of a product line.
However, as the usage locations are of purely logical nature, there is no
objective way to define an order on the variants in a general case (see
Section 4.1.1). Hence, the group of variants needs to be treated as an
unordered set.

time

Time ordering
of versions

No objective
ordering of
variants

50

Investigation and Formalization of the Variant Similarity Analysis Problem

The reverse engineering techniques analyzing asset versions take
advantage of the linearly ordered nature of the analyzed data. Because
the versions represent a flow of changes made to the asset, it is valid to
assume that a change made to a given asset version is present in all the
subsequent versions of the asset unless another change modifies or
removes the affected content. Therefore, for the analysis techniques it is
sufficient to relate each asset version to its immediate predecessor to
fully characterize the differences across a group of analyzed asset
versions (see the left part of Figure 15). Hence, for n analyzed versions
the analysis needs to consider n-1 relations between versions. Since such
analysis depends on the defined order of analyzed versions, any
modification of that order can lead to a different analysis result.

Furthermore, the focus of the version analysis techniques is to
characterize the changes performed on the asset according to the
direction defined by time. Therefore, the time direction is relevant when
comparing two asset versions, and the time ordering of versions is used
in the presentation of comparison results. For example, a comparison of
versions V1 (predecessor) and V2 (successor) could produce a result such
as “15 code lines added, 2 deleted”. In this case, the presence of 15
code lines in V2 which are absent in V1 is interpreted as addition due to
the fact that the version V2 is the successor of V1 according to the time
ordering. Given an opposite ordering of these versions (i.e. if V1 would
be a successor of V2), the same comparison would produce a result with
an opposite interpretation of the found change: “2 code lines added, 15
deleted”. Hence, the direction of the version ordering is relevant in the
interpretation of version analysis results, as symbolized by directed
relation edges in Figure 15.

Figure 15 The basic analysis schema for software versions and variants

time

Version 1 Version 2 Version 3 Version 4 Version 5

Variant
UK

Variant
France

Variant
Germany

Variant
Spain

Variant
Italy

Legend

Artifact instance (version or variant)

Relation assuming a distinguished direction

Relation not assuming a distinguished direction

Implications of
version
ordering

51

Investigation and Formalization of the Variant Similarity Analysis Problem

Software variants have no objectively defined order that could be used
by a respective analysis technique. Therefore, a variant analysis technique
should not assume or depend on any variant order – such dependence
would mean that using different input orders of the same variants could
lead to different analysis outputs. Since none of the orders is
distinguished or correct, it would not be decidable which of the many
different analysis outputs is correct. Moreover, since all the analyzed
variants exist simultaneously at the same point in time, no assumption of
the content of a specific variant can be derived by only looking at the
contents of any other variant or group of variants. To fully characterize a
group of software variants, it is necessary to relate each asset variant to
every other analyzed variant. Hence, for n analyzed variants the analysis

technique needs to consider
2

)1(nn
 relations (Figure 15 right).

Moreover, the lack of order defined on the analyzed variants means that
there is no objective reason to interpret the differences between any two
of the variants by assuming a specific direction of the difference, as done
in the case of versions. For variants, both possible difference directions
are equally relevant. This is symbolized by undirected relation edges
connecting the variant nodes in Figure 15.

4.1.1 A Discussion on the Lack of Objective Variant Ordering

In some cases, the properties of the existing variant derivation
approaches (see Section 2.1.1) might suggest that an unambiguous
order on the derivable software variants can be defined. In this section,
we discuss and eventually refute the possibility of defining such order.
The possible criteria that could deceptively be proposed as a basis for
defining an order on the variants are:

The size of variant asset content, calculated in bytes or as the
amount of contained lower-level or higher-level elements (e.g. lines
of code or modules). This measure can be calculated for all variant
derivation approaches. However, the size of a variant does not
necessarily correspond to its functionality or other properties, so that
it is possible that variants having similar sizes might strongly differ
from each other due to implementing very different features.
Ordering variants by their size would in most cases not place the
more related or more similar variants in the neighborhood of each
other, as typically expected in the case of time-ordered software
versions. Finally, some variants could have an identical size, despite
different content, so that the decision on their ordering would need
to be subjective. Hence, the content size cannot be used as an
ordering criterion in the general case. The arguments provided above
apply analogically to the idea of ordering the variants by the number
of selected parameters or features.

Implications
of the lack
of variant
ordering

Examples of
incorrect
variant
ordering

52

Investigation and Formalization of the Variant Similarity Analysis Problem

The value of a certain configuration parameter, for example a
numeric parameter. This measure could be calculated for
compositional and annotative approaches, as they explicitly maintain
the configuration information. However, as the space of potential
variant assets is multi-dimensional due to the existence of many
parameters and many values for each parameter, there could be
more than one variant having the same value of the selected
configuration parameter. This would again result in the necessity of a
subjective ordering decision. An analogical case occurs in
mathematics, where there is no natural ordering definable on the set
of complex numbers. Furthermore, in a general case it is not
guaranteed that the parameter selected as an ordering criterion
corresponds or correlates to the properties analyzed by a given
reverse engineering approach.

Figure 16 A schematic visualization of example content change across a group of related asset variants

Variant creation time, which could be especially relevant in the
context of duplication-based approaches. For example, one could
argue that a variant that was derived (branched, cloned) from the
main development line at an earlier point in time should be less
related or similar to the main line than another variant derived from it
at a later point in time. Hence, the initial derivation time of the
variants would correlate with their similarity to the main line.
According to that ordering proposition, variant B in Figure 16 should
be the least related or similar to variant A, since it was derived from it
first, while variant C should be a little more similar and variant D
should be the most similar. However, there are several observations
that make this ordering idea invalid:

o Variants might evolve at different speeds, so that the content of a
younger variant might be changed faster than the content of an
older variant. Eventually, the amount of changes performed on the
younger variant might be greater than the amount of changes
performed on the older variant. Hence, the amount of change
relative to the first version of the given variant does not need to
correlate with its age. In Figure 16, variant B is more similar to
variant A than variant C, despite the fact that B is older than C.

time

A

B

C

D

53

Investigation and Formalization of the Variant Similarity Analysis Problem

o New variants might be derived not only from the main line, but
also from any other variant. For example, in Figure 16 variant D
was derived from variant B. In case a new variant is derived from
an existing variant which is the least similar to the main line, it
will, at least initially, also be one of the least similar variants,
despite being the youngest. In Figure 16, variant D is less similar
to variant A than variant B, despite being younger than variant B.

o If a new variant is derived from a non-mainline variant, and in a
short period of time a second new variant is derived from
another non-mainline variant, these new variants might be very
dissimilar to each other (depending on the similarity of the
original parent variants) despite having a proximate creation
time.

o Finally, the derived variants might develop in different
“directions”, that is, each of them might be extended by
different new features as illustrated in Figure 16. Moreover, the
similarity between the parent variant and the derived variant
does not only depend on the changes performed on the derived
variant, as the parent variant is typically developed further after
the derivation too (for example, in Figure 16 compare the latest
state of variant A to the state it had at the moment when variant
B was derived from it). Also, some variants which were initially
dissimilar might in the course of their evolution be extended by
the same or analogous features and become more similar (as in
the case of variants C and D in Figure 16). Some content parts
might also be exchanged at a later time between any groups of
the cloned variants (an activity known as porting). Hence, in a
general case the similarity of a group of variants does not need
to correspond to the order in which they were initially created.
As a consequence, also the approaches going in the opposite
direction by attempting to deduct the evolution history of a
group of software variants based on their code similarity
([Yamamoto 2005] [Tenev 2012] [Kanda 2013], see also Section
5.5.5) will not always produce a result identical to the actual
evolution history in the general case.

In some specific cases it might be possible to define a meaningful order
on a group of software variants. A precondition for such an order is that
there exists a known correspondence between the defined order and the
property analyzed by the reverse engineering technique. For example, a
software product can have a “Minimal”, “Standard” and “Extended”
variant, where each larger variant is created by only adding features to a
smaller one. In such a case, ordering the variants by size measured as
number of used features can be justified if the analyzed properties are
for example code similarity or memory footprint. A good understanding
of the analyzed products is necessary to recognize such a case. However,
in the general case techniques analyzing software variants cannot
assume that any specific order is definable.

Possible
meaningful
variant
ordering

54

Investigation and Formalization of the Variant Similarity Analysis Problem

4.2 The Construction Requirements for Techniques Analyzing
Variant Similarity

In the previous section we characterized a fundamental difference
between software versions and variants: while the versions are ordered
by time, and can therefore be treated as an ordered list of asset states,
the variants cannot be ordered in a general case and need therefore to
be treated as an unordered set. Because of that, a technique analyzing
software variants should not make any assumptions regarding the order
of variants and should treat each variant symmetrically: no variant
should be in any way distinguished in the analysis or in result
interpretation. In the following subsection, we elaborate on the
consequences of this important property by defining construction
requirements for any general-purpose technique analyzing similarity of
software variants. In the later subsections, we discuss further general
requirements, from which any such analysis technique would benefit.
The requirements provide means to compare and evaluate variant
similarity analysis techniques, and can serve as guidance when defining a
new technique.

The defined construction requirements are derived from theoretical
reflections on the variant similarity analysis problem, a review of the
existing approaches (see Sections 2.3 and 3.3), as well as from our
practical experiences in applying earlier versions of our Variant Analysis
technique in the industry ([Duszynski 2008] [Duszynski 2011a], see also
Section 7.4). In our experience, software architects and developers need
to be very well informed before they make a decision on a code
transformation as significant as it is needed for introducing software
reuse. Hence, the information provided by an analysis technique needs
to be sufficiently detailed – as the source code is their ultimate mean to
specify system functionality, the code-level facts as well as code-level
consequences of transformation are very important to the developers.
Naturally, the provided information needs to be highly trustable and
dependable – optimally the architects and developers should understand
or trust the analysis algorithm creating the information and be able to
verify the result manually. Finally, the developers demand a high control
over the process of code transformation – hence, the code
transformation activities should be performed or at least controlled by a
human, as a code automatically transformed to a reusable form might
be not trusted by the developers and might look unfamiliar to them,
hence inhibiting the attempted maintainability improvement. Therefore,
the code similarity information needs to be easily understandable by a
human to facilitate the manual code modification activities.

The above characteristics of technical stakeholder needs are not entirely
of a technical nature, but also include psychological and cultural factors
such as the tendency to risk avoidance. In a practical experience report
from industrial reengineering projects in the financial domain, Cordy

Symmetry of
a variant
analysis

Origin of the
construction
requirements

Non-technical
factors in the
analysis

 55

Investigation and Formalization of the Variant Similarity Analysis Problem

provides several observations from the perspective of an analysis tool
provider that well agree with our above experiences [Cordy 2003]. He
further notes that providing correct analysis answers are very important,
and having partial but correct information is better than no information
or incorrect information. Although Cordy stresses that his observations
might not be generalizable, which also applies to our experience, we
believe that accounting for the specific needs and attitudes of
stakeholders who use the provided information is important for any
reverse engineering technique.

4.2.1 Consequences of the Lack of Variant Ordering

The lack of defined order in the set of analyzed variants makes it
necessary to make the analysis and its results order-agnostic. Therefore,
the analysis needs to use:

[C1] Commutative analysis operations: consider two software
variants, abstractly represented by two intersecting sets A, B (Figure 17).
The sets contain respectively 5 and 7 elements, and three of these
elements are common to both sets. An example analysis operation,
denoted as , is commutative when for two analyzed sets A, B, the
analysis result is the same for A B and for B A, and non-commutative
otherwise. Since a non-commutative operation assumes a certain order
on the input sets, which is not defined for software variants, such an
operation would be unsuitable for an analysis of variants.

Figure 17 Two example intersecting sets A and B

The commutativity of operation concerns also the presentation of the
created result. For example, if were a comparison operation, a non-
commutative result presentation for sets A and B could be “60% of set
A elements also belong to set B”, because for the other order of
compared sets, we get a different result of “42.9% of set B elements
also belong to set A”. A commutative result presentation for these sets is
“3 elements of set A also belong to set B”, “33,3% (3 out of 9)
elements that belong to at least one of the sets A, B, belong to both
these sets”, or “the intersection of sets A, B contains 3 elements”.

A non-commutative result presentation is problematic because it can
potentially be different for any permutation of the analyzed sets. Since
none of the orders defined by such permutations is distinguished, it
would not be decidable which of the many different analysis outputs is

A B

2 3 4
Card(A) = 5
Card(B) = 7
Card(A B) = 3

Commutativity

Commutative
result
presentation

56

Investigation and Formalization of the Variant Similarity Analysis Problem

correct. Using only one of the different results can be misleading, while
using all of them makes the result interpretation complex and
ambiguous. In contrast to that, using a commutative presentation
produces just one analysis result, which helps interpretation.

[C2] Associative analysis operations: in the implementation of the
analysis technique, it might be necessary to perform some operations on
selected subgroups of the analyzed variant set first, and aggregate the
partial results later. Also, for some data parallel operations (i.e.
operations performed multiple times on different data, such as the
pairwise comparison of each pair of variants), the implementation might
require that these operations are performed in a sequence – for example
if a single program thread is used. However, the final result of the
analysis should not depend on the selection of such groupings or on the
order of the performed operations. The associativity property details the
previously stated condition that the result of the analysis must not
depend on the order in which the variants are provided in the analysis input.

4.2.2 Providing Detailed Result Information

The construction requirements described in this subsection support the
goal of providing result information in a possibly complete, detailed and
user-verifiable form.

[C3] Information on all possible variant combinations should be
provided in the analysis results. Several comparison approaches
performed on variants, for example [Yamamoto 2005] and [Mende
2008], present the analysis results as a square matrix of variant-to-variant
similarity metrics (see the example in Figure 18). Although this result
presentation might seem to be natural, as the comparison of many
variants is usually performed pairwise with each of the variants
compared to each other, it hides important information when used for
three or more variants, such as for example the size of the common
parts shared by all analyzed variants.

Consider the two situations depicted in Figure 18, where three variants
abstractly represented by sets A, B, C are analyzed for similarity. On the
left side of Figure 18, all the commonality between the three sets is
located in the subset A B C, while the other set intersections A B C’,
A B’ C, A’ B C are empty (A’ denotes the complement of set A, that
is the set’s negation). On the right figure side, each of these other set
intersections has a cardinality of 2, which is a sizable part of the sets A,
B, C, and the size of the subset A B C is reduced to one element.
However, for both situations the cardinalities of the three sets A, B, C
are identical, and the cardinalities of the two-set intersections A B, A C
and B C are also identical. Hence, despite the strong difference
between the two analyzed situations, for both of them identical pairwise

Associativity

Availability of
all variant
combinations

Incompleteness
of pairwise
result
presentation

57

Investigation and Formalization of the Variant Similarity Analysis Problem

comparison results and identical square similarity matrix are created (the
middle of Figure 18), which is of course undesirable. For more than three
variants, examples of much stronger differences which still lead to identical
results in the pairwise presentation can be constructed.

Figure 18 The inadequacy of pairwise result presentation: identical results are provided (middle)
although the analyzed situations (left, right) strongly differ

The above example illustrates the fact that pairwise result presentation
does not deliver full information about the analyzed variants. However,
result information about any possible combination of the variants, and
not only about the pairs, is needed. For example, a similarity analysis
might need to calculate the size of the asset content shared by all
variants – this information is not available in the square similarity matrix.
Moreover, providing the information on all possible variant combinations
is necessary to distinguish different analyzed situations such as those
depicted in Figure 18.

[C4] Information detail level should be sufficient with regard to the
analysis goals. For example, a similarity analysis technique that provides
input for planning code reengineering should be detailed enough to
detect even small, but meaningful, code-level differences between the
analyzed variants. In case the variants differ in any aspect that is relevant
to the developer, they should not be recognized as identical.

Some analysis techniques provide only low-detail results in the form of
metrics or abstracted code representation such as UML models. Such
result form is not detailed enough for use in implementation level
activities, as it is possible to define two assets or asset part variants with
identical metric values or model representations which still implement
very different functionalities. In such a case, a developer could not
depend on the analysis result and could not assume that the analyzed
asset variants are also identical on the code level. Thus, such low-detail
representations are not suitable for use in the planning and performing
of implementation level activities.

A B

2

3

4

C

CBA

0.380.331

0.310.33

10.30.38

A

B

C

X Y
X Y

3

0

00

Card(A) = 5
Card(B) = 7
Card(C) = 6

Card(A B) = 3
Card(A C) = 3
Card(B C) = 3 A B

0

1

2

C

1

2

22

Highly
detailed
results

58

Investigation and Formalization of the Variant Similarity Analysis Problem

[C5] Traceability to implementation is another aspect of the
information detail level. For each part of the analyzed asset
implementation, it should be possible to determine how that particular
part contributes to the analysis result. For example, in a similarity analysis
it is not sufficient to deliver a single similarity metric on the input asset
variants (such as, e.g., the Levenshtein distance [Levenshtein 1966] of
their textual representations). A similarity metric does not allow to
determine how exactly a given variant differs from the others and which
parts of the content contributed in which way to the calculated similarity
value. Optimally, it should be possible not only to determine the amount
or proportion of content identified as being similar or different in the
analyzed variants, but also to trace down which of the elementary
content elements are recognized as similar. Consequently, for any
content element the information about its similarity should be known,
reflecting the information detail level requirement.

4.2.3 Result Presentation and Interpretation

The construction requirements described in this subsection reflect the
requirements regarding the ease of result interpretation.

[C6] Proper result abstraction: although sufficient details should be
available in the analysis result, the user should not be overwhelmed with
these details unless they are demanded. A proper abstraction, allowing
uniform result presentation regardless of the analyzed asset size and the
number of analyzed asset variants, is needed. The human effort for
result preparation and abstract result interpretation should not grow
with increasing asset size, and should grow only moderately with
increasing number of analyzed asset variants.

For example, a result presentation in the form of square similarity matrix
(Figure 18) does not provide a good abstraction mechanism and is
complex to interpret. Even though the matrix is symmetric and its
diagonal can be ignored, for n compared variants it still contains

2
)1(nn

 significant numbers characterizing the overall similarity. Thus, a

human needs to relate all these numbers to each other in order to
understand the overall situation. However, even for low values of n the
amount of the numbers can be large – for example for 10 variants the
matrix already contains 45 significant values.

[C7] Indication of the relative size of variants and their elements is
helpful as the analyzed asset variants usually have different sizes. Also,
the sizes of their content parts (subsystems, files) are likely to vary
strongly. Because of this, the information about the degree of similarity
found in a particular asset or its part should be accompanied by an
indication of the size of that part. This enables better interpretation of
the result since it is, e.g., easier to understand how the differently sized
parts contribute to the total similarity of the asset.

Traceable
results

Abstraction
mechanisms

The need for
size infor-
mation

59

Investigation and Formalization of the Variant Similarity Analysis Problem

4.2.4 Other Requirements

The above list of requirements focuses on the aspects relevant for
similarity analysis of software variants. However, it does not cover
further, general principles which are relevant for any reverse engineering
technique, such as:

 result completeness, i.e. the extent to which all information relevant
to the goal is retrieved,

 result correctness,

 robustness, e.g. against unexpected or non-standard input data,

 efficiency (also covering scalability of the technique and even the
possibility to automate its steps).

Quality evaluation of a variant similarity analysis technique should
incorporate both the specific as well as the general construction principles.
For example, result correctness and completeness can be evaluated in
terms of precision and recall (see Section 4.5). Robustness concerns the
behavior of the analysis in untypical situations such as processing an asset
variant strongly dissimilar from the others or receiving multiple identical
variants in the analysis input. The scalability of a similarity analysis means
in the practice that it should be possible to perform the analysis for many
variants of a software asset (10 or more), and for assets as large as
software systems having millions lines of code. Efficiency means, among
others, that the analysis should be automatable and that the user should be
able to access result details or to validate hypotheses formulated upon result
investigation (e.g., by on-demand calculations) with low response times.

4.3 Assumptions Resulting from the Application Scenarios

The construction requirements described in the previous section provide a
general framework for discussing and evaluating any similarity analysis
technique for software variants. However, in the context of this thesis we
further assume that our specific similarity analysis technique should be
mainly used for the application scenarios defined in Section 3.2, which are:

 [AS1] Reuse potential assessment,

 [AS2] Consolidation of existing reusable software,

 [AS3] Support for parallel variant maintenance.

In Section 3.2 we characterized the common characteristics of these
three application scenarios and derived from them general goals
concerning the information provided by the similarity analysis. In this
section, we elaborate on the consequences of the selected application
scenarios by defining a group of construction assumptions for our
analysis technique. The assumptions play a complementary role to the
construction requirements described above, and together with them

General
analysis
requirements

Realization for
an analysis
of variants

The focus of
our analysis
technique

 60

Investigation and Formalization of the Variant Similarity Analysis Problem

form the basis on which our analysis technique is defined. In contrast to
the construction requirements, we do not postulate that the below
assumptions need to apply for other analysis techniques.

[A1] The analysis results should only concern similarities between
the variants of software assets, as this is the main interest of the
analysis users in the specified application scenarios. A search for
similarity inside the same asset variant is not necessary, and can be
sufficiently covered by already existing techniques applied to a single
software asset variant, such as clone detection.

[A2] A relatively high structural similarity of the analyzed variants
can be assumed. Since the ultimate goal of two application scenarios
AS1 and AS2 is to merge the analyzed software assets into a common
reusable form, the similarity found by the analysis technique needs to be
sufficiently high in order to allow such merge activities. Also for the third
scenario AS3, the intended maintenance tasks can only be repeated on
code parts having a high enough similarity. However, the similarity
reported by the analysis technique can only be as high as the similarity
actually existing in the analyzed assets. Therefore, while the analysis has
to provide high quality results in the scope of the application scenarios,
the asset groups with low similarity are not in that scope. Consequently,
it is acceptable for the analysis to exhibit reduced performance for input
assets having low similarity.

[A3] Use one-to-one correspondences between the parts of asset
variants recognized as similar. As the analyzed variants are in most
cases created in a cloning process, for many of their assets there exists a
single counterpart asset in another variant that shares a common
ancestor with the given asset in the cloning history. Even if the
properties of asset evolution history not always correspond to the
similarity of asset variants (see Section 4.1.1), the asset variants sharing a
common history are in most cases still more similar to each other than
assets developed independently. Moreover, identification of a single
counterpart to an analyzed asset is helpful for planning the cross-variant
code merging activities in the context of defined application scenarios,
while code merging inside one variant can be addressed using
information provided by clone detection techniques. Finally, this one-to-
one correspondence assumption is a direct consequence of the previous
assumptions A1 and A2. Since identifying similar assets inside one
variant is not necessary, also matching all these assets to some asset in
another variant is of limited use and can actually complicate the
interpretation of analysis results. Also, the assumed high structural
similarity makes it likely, for all but the smallest assets, that at most one
appropriate matching candidate exists in the other variant, even if its
content and the location in the structure hierarchy were modified in the
course of variant evolution.

Focus on the
similarity
between asset
variants

Focus on
highly similar
assets

One-to-one
correspon-
dences

61

Investigation and Formalization of the Variant Similarity Analysis Problem

[A4] Make the analysis results dependable – prefer higher
certainty results over providing more results. As the information
provided by the analysis greatly impacts decisions concerning code
transformation activities of a potentially large scale, it is crucial that this
information is as correct as possible. As discussed in Section 4.2, the risk
of making an incorrect reuse decision or of otherwise reducing code
quality has to be minimized. At the same time, the demand to minimize
the human effort for information analysis, resulting from the defined
application scenarios, implies that the human should be able to trust the
provided result and should not need to manually inspect the code to
verify the result correctness. Therefore, there should be a very high
certainty that the provided results accurately characterize the real state
of the analyzed assets, i.e. that the identified similar assets are indeed
similar. It is acceptable that the analysis uses techniques that maximize
the result certainty even at the cost of missing some relevant results: it is
better to miss some similarity than to report dissimilar assets as being
similar. Hence, although both the certainty and the quantity of result
information are important, the certainty takes precedence over the quantity.

The described concepts of result certainty and quantity are analogous to,
but more general than the information retrieval measures of precision
and recall (see Section 4.5). In information retrieval terms, the analysis
technique should strive for high result precision, and sacrifice the recall if
necessary. In addition to that, result certainty also means that providing
information which is known to potentially contain incorrect values, or
which requires further validation, should be avoided. For example, many
clone detection approaches such as the one of Mende et al. recognize
any two functions having a Levenshtein distance based similarity of 70%
or more as similar, regardless of the type of remaining dissimilarities
[Mende 2008]. Such a result is not certain enough as the remaining 30%
of code can potentially contain functionalities that still differ enough to
prevent a transformation of the analyzed functions to a reusable form.

[A5] Provide transitive similarity results. In case an asset A is
recognized by the analysis as similar to asset B, and asset B is recognized
as similar to asset C, the similarity of A to C should also be given.
Transitive similarity results are much easier to interpret than non-
transitive ones, as similarity of an asset to any element from a given
group implies that the asset is similar to every element of that group.
Hence, only the members of the group, and not the topology of the
recognized pairwise similarity relations among these group members,
need to be known in order to fully understand the reported similarity
result. As in the practice analyses of 20 and more asset variants are
possible, and hence groups of similar elements having 20 and more
elements can be found, an interpretation of a complex graph of up to
190 possible pairwise similarity relations among such 20 elements would
be a very complex task – which would need to be repeated several times
during a single analysis result interpretation as each variant would likely
contain several analyzable content elements. In contrast to that, a

High result
certainty

Transitivity

62

Investigation and Formalization of the Variant Similarity Analysis Problem

transitive result is simple to understand as it only needs to name the
similar elements and state the nature of similarity relation that bounds
any two of them. Hence, transitivity well supports the need to provide
easily interpretable analysis results.

Because of the assumption A4, demanding high result correctness, the
similarity reported by the analysis cannot be constructed as a transitive
closure of the actually found similarity relations, as this might result in
incorrectly reporting dissimilar asset pairs as similar. Hence, the analysis
should report a transitive form of the found similarity by either
constructing a transitive subset of the result, skipping the pairwise
relations that do not contribute to a transitive result form, or by relaxing
the assumed similarity definition, so that it fully and transitively applies to
the transitive closure of the previously found result. However, relaxing
the similarity definition should not conflict with the result correctness
assumption A4 – hence, skipping some of the detected non-transitive
relations is preferred. As there are several possible algorithms to perform
that step, which provide results optimized according to various criteria,
we defer further discussion on the possible alternatives to Chapter 5.

There are several advantages in processing and interpreting transitive
results of a similarity analysis. Apart from the already described easy
interpretation of the results, transitivity enables a stronger and more
focused definition of the analysis approach described in this thesis. At
the same time, the information loss due to the creation of a transitive
result subset is in the practice minor for our instantiation of the
approach (see Section 7.1).

4.4 A Formal Definition of Variant Similarity Analysis

Based on the considered application scenarios for variant similarity
analysis and on the construction assumptions derived from them, in this
section we formally define the notion of similarity analysis presented in
this thesis. The definition provided here is formal and abstract, as it does
not specify yet the exact form of the provided result, the quality of that
result, further information derivable from the result, or any other technical
aspects of the analysis. The details of the analysis approach conforming to
the given definition are described in Chapter 5.

The analysis approach definition is based on the construction
requirement C1 (commutative analysis operations), on the assumptions
A1 (only similarities between variants are considered), A3 (one-to-one
correspondences between similar assets), and A5 (result transitivity), and
it also assumes that any object is similar to itself (see the discussion in
Subsection 4.6.2). The construction assumption A3 implies that for a
given element of an analyzed asset variant, at most one corresponding
similar element can be identified in each other variant. Moreover, the
identified elements are transitively similar to each other (assumption A5),

Scope of the
analysis
definition

Definition
prerequisites

63

Investigation and Formalization of the Variant Similarity Analysis Problem

and they are not identified as similar to any other element of any variant
(consequence of assumption A1). Hence, for each element of any analyzed
asset variant, a similarity analysis should identify zero or one similar
elements respectively from each other variant. Finally, it is important to note
that the similarity relation between the identified elements is an equivalence
relation, as it is reflexive (any object is similar to itself, see Subsection
4.6.2), symmetric (requirement C1) and transitive (assumption A5).

Let’s define SV as the set of all analyzed software asset variants, and SV .
SV is the input data delivered to the variant similarity analysis. Furthermore,
each asset variant contains some internal elements, which can be tested for
similarity with the elements of any other variant (see Section 4.6). Therefore,
without further defining the nature and properties of the elements, let’s
assume that the asset variant can be treated as a set containing its content
elements. The assumed set can be correctly and unambiguously
constructed, as the asset variant content contains no two elements
recognized by the analysis as identical (assumption A1). Hence, SV is a set
containing non-empty sets of content elements from the analyzed variants:

SV = {S1, S2, …, SN}, where Si ={e1, e2, …, eKi} and N>0 and i (1..N):Ki>0

Equation 1 Analysis input: a set containing non-empty sets of asset variant content elements

Let’s define USV as the union of all sets {S1, S2, …, SN}, and let’s select an
element e from one of these sets, that is, e USV. For any given element e,
belonging to an analyzed asset variant, the similarity analysis should
identify zero or one similar elements respectively from each other variant.
To represent that selection of similar elements, we define a function
fSIMSEL on the input sets SV. For a given element e USV, the function fSIMSEL
assigns to each set Si in SV zero or one elements of that set Si which are
recognized as similar to e. Hence, the result of the function fSIMSEL,
returned for the sets SV and the element e USV, is a set of USV elements
which has the following properties:

fSIMSEL(SV, e) = {elem: elem USV},

where e fSIMSEL(SV, e) and Si {S1, S2, …, SN}: (card(Si fSIMSEL(SV, e)) 1).

Equation 2 The selection function identifying variant content elements similar to a given element e

Obviously, the result of the function fSIMSEL always contains the input
element e. In a special case, the returned set might contain only the
element e – such a result means that no element from other asset variants
was identified as similar to e. Moreover, note that the function fSIMSEL can
also be defined as a function returning the equivalence class of the input
element e. In this case, the equivalence class of e is specified by a similarity
relation defined on USV, which is an equivalence relation as discussed
above. In the remainder of this chapter, we use the term “similarity
selection” to refer to any result set returned by the function fSIMSEL.

Analysis input

Similarity
selection

64

Investigation and Formalization of the Variant Similarity Analysis Problem

The similarity selection, which is the output element set of fSIMSEL, should
not be confused with a tuple that lists similar elements from each set Si.
The mathematical definition of a tuple states that tuple elements are
ordered and that it contains no empty elements. However, we don’t
define any specific order on the sets of SV, and for some of these sets
there might be no identifiable element similar to the input element e.

Finally, we define the result of a variant asset similarity analysis
Sim_Analysis(SV) as the set of all outputs of the similarity selection
function fSIMSEL obtained for all content elements of all asset variants, that
is for all elements of the sets Si.

Sim_Analysis(SV) = { fSIMSEL(SV, e) : e USV }

Equation 3 Result of the similarity analysis for the input set of non-empty variant content sets SV

Because the similarity relation constructed by the analysis is an
equivalence relation, and hence the particular similarity function result
sets fSIMSEL(SV, e) represent equivalence classes containing elements of USV,
the analysis result has the following properties:

1. For any two similar elements, the function fSIMSEL returns the same result:

 e1 USV : e2 USV e2 fSIMSEL(SV, e1): fSIMSEL(SV, e1) = fSIMSEL(SV, e2)

2. The different fSIMSEL(SV, e) sets are pairwise disjoint:

 e1 USV : e2 USV e2 fSIMSEL(SV, e1): fSIMSEL(SV, e1) fSIMSEL(SV, e2) =

3. All elements of USV are covered: U { fSIMSEL(SV, e) : e USV } = USV

Equation 4 Properties of the similarity analysis result

Consequently, every input element e USV belongs to exactly one
similarity function result set fSIMSEL_i. Figure 19 schematically depicts the
analysis input as defined by Equation 1, and the analysis result as defined
by Equation 3. In the figure, the similar elements from each of the asset
variants are displayed as similar geometrical shapes.

Figure 19 A schematic presentations of the similarity analysis input (left) and the analysis result (right)

S1

S3 S4

S2 S1 S2 S3 S4

fSIMSEL_1

fSIMSEL_2

fSIMSEL_3

fSIMSEL_4

fSIMSEL_5

Properties of
the analysis
result

Analysis result

65

Investigation and Formalization of the Variant Similarity Analysis Problem

4.5 Evaluating Quality of the Variant Similarity Analysis Results

The definitions introduced in the previous section specify that the
similarity analysis result is a set of similarity selection sets. These
definitions describe the form of the analysis result, but do not define its
quality. In an ideal case, the similarity relation constructed by the analysis
should truly and fully correspond to the actual similarities of the analyzed
asset content elements. However, in a practical case the similarity
analysis, as well as many other reverse engineering approaches, can
produce information different from the ideal solution, for example due
to inaccuracies between the analyzed reality and the model of that
reality assumed by the analysis algorithm. Hence, a means for evaluating
the correctness and completeness of analysis algorithm result is needed
in order to assess the quality of a given algorithm in the practice.

4.5.1 Evaluating Results of Information Retrieval Problems

The variant similarity analysis problem is an example of an information
retrieval problem. Hence, in this subsection we briefly introduce the
information retrieval measures of precision and recall, which are used to
measure the correctness and completeness of analysis results.

The left part of Figure 20 describes an abstract model of an information
retrieval problem and of the result of an analysis solving that problem.
The analysis solves the problem by retrieving all the elements from a
given group that fulfill a specified criterion: in Figure 20, all circles which
are filled should be retrieved. The elements retrieved by the analysis are
called positives, and the not retrieved elements are called negatives.

Figure 20 A model of an information retrieval problem and the four possible result categories

To depict the most general case, the analysis result symbolized by the
large circle in Figure 20 missed some of the expected elements and also
returned some other elements not belonging to the correct result. This
illustrates that the input elements can be classified based on the analysis
result into four categories: true positive (TP), false positive (FP), false
negative (FN), or true negative (TN), as defined in the right part of Figure 20.
The measures of precision and recall, defining respectively the
correctness and completeness of the retrieved result, are based on these
four element categories and are defined as follows [Manning 2008]:

Relevant Not relevant

Retrieved

Not
retrieved

True positive
(TP)

False positive
(FP)

False
negative (FN)

True negative
(TN)

FPTP

TNFN

The need for
result quality
evaluation

Precision and
recall
measures

66

Investigation and Formalization of the Variant Similarity Analysis Problem

Definition 13 Precision

Precision (P) is the fraction of retrieved documents that are relevant:

P =
FPTP

TP

Definition 14 Recall

Recall (R) is the fraction of relevant documents that are retrieved:

R =
FNTP

TP

Hence, high recall means that most of the existing relevant results are
found, while high precision means that most of the found results are
relevant. In an ideal case, all the relevant results are returned, and none
of the returned results is irrelevant, resulting in the maximal possible
recall and precision values of 1.

4.5.2 Definition of Precision and Recall Measures for Similarity Analysis Results

Let’s assume that the analysis result depicted in Figure 19 presents the
ideal, correct solution of the similarity analysis problem. Consequently,
any other result provided by the analysis for the given input sets, such as
the result provided in Figure 21 (below), is not fully correct. Note that
any analysis result being different from the ideal one can be constructed
from the ideal result by applying, if necessary several times, one or both
of the following two operations:

 Some of the original similarity selection sets could be split into two or
more sets, incorrectly implying that there is no similarity between the
element of these new partial similarity selection sets,

 Some of the (partial or original) similarity selection sets could be
merged into larger sets, incorrectly implying that there is similarity
between the elements of the previously separate selection sets.

Figure 21 An example of an incorrect analysis result

S1 S2 S3 S4

fSIMSEL_1

fSIMSEL_2

fSIMSEL_3

fSIMSEL_4

fSIMSEL_5

S1

S3 S4

S2

Result cons-
truction by set
merging and
splitting

 67

Investigation and Formalization of the Variant Similarity Analysis Problem

For example, in Figure 21 the sets fSIMSEL_1 and fSIMSEL_3 were split in two
parts each, implying that there is no similarity between the elements of
these parts. Subsequently, the first part of fSIMSEL_1 was merged with
fSIMSEL_2, implying transitive similarity between the contained elements:
the light-gray triangle, the black triangle, the white square and the dark-
gray square. Finally, the second part of fSIMSEL_3 was merged with fSIMSEL_5.
To evaluate the degree to which the constructed result is incorrect, we
discuss now the definition of the measures of precision and recall for the
given form of the analysis result.

Because the analysis result is transitive, an existence of a similarity

selection set containing n elements means that there exist
2

)1(nn

pairwise similarity relations between the elements of that set. It seems
intuitive to define the result correctness based on these pairwise
similarity relations: an existing and found pairwise relation is a true
positive, an existing but not found relation is a false negative, and so on.
However, this intuitive definition is problematic in use, as it leads to
multiple undesired effects. These effects can produce precision and recall
values that are lower (worse) for some solutions although these solutions
are intuitively better than solutions which have higher (better) measure
values. The undesired effects are:

Incorrectly assigning a dissimilar element to an existing group of n
other elements creates n false positive relations (one for each
element in the group). As a result:

o For a group of 2 elements 2 false positives are created, while for
a group of 10 elements the addition of one incorrect element
creates 10 false positives. Hence, the second case is measured as
being much worse than the first, although in both cases there is
only one element which is placed incorrectly.

o Incorrectly matching 9 pairs of dissimilar elements produces 9
false positives, while incorrectly adding one element to a group
of 10 elements produces 10 false positives. Hence, the second
case is measured as being worse than the first, although
intuitively the opposite should be true.

o Merging two groups, having respectively n and k similar
elements, produces nk false positives. Very different numbers of
false positives can result from a single decision to merge two
groups. Again, a single merge of two large groups is valued as
much worse as multiple merges of small groups (e.g. consider
one merge for n=k=10 and 90 merges for n=k=1).

Analogically, incorrectly excluding one element from a group of n
elements creates n-1 false negative relations (one for each element
remaining in the group). Again, the number of false negatives

Problems of
evaluating
pairwise simi-
larity results

68

Investigation and Formalization of the Variant Similarity Analysis Problem

depends on the size of the initial group, which leads to
counterintuitive effects and measure values for the cases of element
removing and group splitting. We omit the discussion of these cases
here, as they are analogical to the cases occurring for false positives.

 Moreover, it is very hard to determine the number of true negatives,
which is needed for calculating further result correctness measures
beyond precision and recall [Manning 2008]. Theoretically, the sum
of false positives and true negatives should be constant, and the
worst possible analysis result should return the maximum possible
number of non-relevant elements. Hence, the sum of false positives
and true negatives should equal to the maximal possible number of
false positives. However, calculating that number is a complex task –
especially as the analysis can in the practice be used on more than 20
asset variants having millions of content elements each.

Because of the discussed problems, we don’t use the above definition of
positive and negative result elements based on pairwise similarity.
Instead, we introduce another, simpler definition that does not cause the
listed negative effects.

We define the result of the similarity analysis algorithm as a series of set
merge operations performed on the elements of the input systems.
Consequently, n-1 correct merge operations performed on single
elements construct a correct similarity selection set of size n, which
represents a result containing n-1 true positives. If a merge incorrectly
connects two sets, it is considered a false positive. If a correct merge is
not present in the analysis result, it is considered a false negative. Figure
22 depicts the true positives, false positives and false negatives existing
in the incorrect analysis result introduced in Figure 21. In the figure, any
two elements connected through one or more similarity relations (i.e. a
true positive or a false positive) are considered similar due to the
transitivity of the result.

Figure 22 The incorrect result from Figure 21 (left) and its interpretation according to the merge-
based analysis result definition (middle, with legend to the right).

S1 S2 S3 S4

True positive

False positive

False negative

True negative (no line)

S1 S2 S3 S4

Set merge
based result
quality
evaluation

 69

Investigation and Formalization of the Variant Similarity Analysis Problem

As discussed above, any incorrect analysis result can be constructed from
the correct similarity selection sets by a series of merge and split
operations. Hence, as a split is just an absence of merge, these
operations result in the creation of respectively one false positive (merge)
or false negative (split). The number of false positives and false negatives
can be therefore calculated by finding the minimal number of merges
and splits necessary to convert the ideal result into the evaluated one.

The merge-based analysis result definition does not introduce the
negative effects described above, and the precision and recall values
calculated for comparatively worse analysis results are consistently lower
(worse) than those obtained for better analysis results. Finally, the
number of true positives, false positives, true negatives and false
negatives is easy to calculate for any, even large, analysis result. Below,
we define the respective calculation formulas. For space reasons, we
omit the mathematical proofs of formula correctness.

Let’s denote R as the number of all relevant elements, and NR as the
number of all not relevant elements. Obviously, R = TP + FN and NR = FP
+ TN (see Figure 20). Furthermore, let’s denote U as the cardinality of the
union of all analyzed input sets USV, and SREF as the number of similarity
selection set in the ideal, reference solution. Finally, let’s denote SSOL as
the number of created similarity sets in the tested solution, and PSOL as
the number of all selection set parts from the ideal solution that are
found in the tested solution.

Measure Description Calculation Formula
Value in
Figure 22

U Cardinality of USv Count set elements 15
SREF Sim. sets in reference Count similarity sets 5
SSOL Sim. sets in solution Count similarity sets 5
PSOL Ref. set parts in solution Count set parts 7
R Relevant elements R = U – SREF 10
TP True positives TP = U – PSOL 8
FN False negatives FN = R – TP = PSOL – SREF 2
FP False positives FP = PSOL – SSOL 2
MAX_VAR Maximum size of a set

representing a variant
Count set elements,
select the largest set size

4

MAX_SIMREF Maximum size of a
selection set from the
reference solution

Count set elements,
select the largest set size 4

NR Not relevant elements U – MAX(MAX_VAR,
MAX_SIMREF)

11

TN True negatives TN = NR – FP 9
Precision in Figure 19 See Definition 13 1.0
Recall in Figure 19 See Definition 14 1.0
Precision in Figure 22 See Definition 13 0.8
Recall in Figure 22 See Definition 14 0.8

Table 6 The calculation formulas and example values for the measures used in the merge-based
precision and recall definition

Calculation of
merge-based
evaluation
measures

70

Investigation and Formalization of the Variant Similarity Analysis Problem

All these values are easy to determine by simply counting the number of
respective objects in the ideal or tested solution, and they are sufficient for
calculation of the precision and recall measures. Table 6 lists the
calculation formulas for the introduced values, provides their values for the
example presented in Figure 22, and lists further calculations of true
negatives as well as the precision and recall measures for the ideal and the
example solution. As the merge-based values of positive and negative
analysis results are easier to interpret and easier to calculate than the
values based on the pairwise similarity definition, we use the merge-based
definition in the evaluation of our approach discussed in Chapter 7.

4.6 The Conceptual Model of Variant Similarity Analysis

In the previous sections we characterized the specific properties of
software variants and created the basis for defining and evaluating
reverse engineering techniques for analyzing variant similarity. In this
section, we describe the conceptual model that systematizes and
interrelates the concepts used in the similarity analysis of software
variants. The purpose of the model is to provide a “big picture” overview
of the variant similarity analysis problem.

The presented conceptual model is general, as it applies to various
analyzes of similarity performed on various asset types. Hence, for many
concepts described in the model an inheritance hierarchy is defined,
listing some of the specific manifestations of the given concept. The lists
of specific manifestations are not intended to be exhaustive – their role is
to present the breadth of the spectrum of possible choices.

We describe the conceptual model in three subsections, related to the
Structure of the analyzed software asset, the concept of Similarity
defined on this structure, and to the Analysis itself. The complete
conceptual model is depicted in Figure 23.

4.6.1 Software Asset Structure

A Software Asset can exist in many Variants (see Definition 12), which
are the object of the variant similarity analysis. A Software Asset consists
of Asset Elements, which might in turn be composed from further Asset
Elements. The Software Asset can in a specific case be a Code Asset (e.g.
an implementation of a software system), a Design Asset (e.g. a model
of that system) or a Specification Asset (e.g. a description of system
requirements). Depending on the type of the Software Asset, the
contained Asset Elements can be implemented as Code Elements
(Packages, Compilation Units, Classes, Methods, and Tokens), Textual
Elements (Folders, Files, Line Blocks, and Lines) or Model Elements
(Model Nodes, Model Links and Model Attributes).

The role of the
conceptual
model

Software asset

71

Investigation and Formalization of the Variant Similarity Analysis Problem

Figure 23 The conceptual model of variant similarity analysis

Si
m

ila
rit

y

Id
en

tit
y

Id
en

tit
y

ex
ce

pt
 F

or
m

at
tin

g

Id
en

tit
y

of
 R

es
ul

t

Co
m

pl
et

e
Id

en
tit

y

Si
m

ila
rit

y
w

ith
 D

ev
ia

tio
n

So
ft

w
ar

e
As

se
t

Va
ria

nt ex
ist

s i
n

* 1

As
se

t E
le

m
en

t

1 *

1
*

Te
xt

ua
l E

le
m

en
t

Fo
ld

er

Fi
le

Li
ne

 B
lo

ck

Li
ne

Co
de

 E
le

m
en

t

Pa
ck

ag
e

Cl
as

s

M
et

ho
d

To
ke

n

Co
m

pi
la

tio
n

U
ni

t

*ex
hi

bi
ts *

Co
de

 A
ss

et

De
si

gn
 A

ss
et

Sp
ec

ifi
ca

tio
n

As
se

t

M
od

el
 E

le
m

en
t

M
od

el
 N

od
e

M
od

el
 L

in
k

Id
en

tit
y

of
 F

or
m

al
 D

ef
in

iti
on

Si
m

ila
rit

y
M

ea
su

re

Si
m

ila
rit

y
Co

m
pu

ta
tio

n

Si
m

ila
rit

y
An

al
ys

is

Si
m

ila
rit

y
w

ith
 S

ys
te

m
at

ic
 D

ev
ia

tio
n

Si
m

ila
rit

y
w

ith
 N

on
-S

ys
te

m
at

ic
 D

ev
ia

tio
n

El
em

en
ta

ry
 S

im
ila

rit
y

Co
m

p.

Ag
gr

eg
at

in
g

Si
m

ila
rit

y
Co

m
p.

1

qu
an

tif
ie

d
by *

1

de
fin

ed
 b

y
1

*

us
es *

Si
m

ila
rit

y
In

fo
rm

at
io

n

N
um

er
al

Ag
gr

eg
at

io
ns

As
so

ci
at

io
ns

Cl
as

si
fic

at
io

ns

cr
ea

te
s*

1

An
al

ys
is

 G
oa

l

*
de

fin
es

*
*

in
te

rp
re

te
d

fo
r

1

an
al

yz
es

*
1

de
fin

ed
 o

n
*

*

*

ba
se

d
on

*

M
od

el
 A

tt
rib

ut
e

Co
nt

en
t

Lo
ca

tio
n

1

1

St
ru

ct
ur

e
Hi

er
ar

ch
y

Pa
irw

is
e

Si
m

. M
ea

su
re

M
ul

ti-
O

bj
ec

t S
im

. M
ea

su
re

1
ex

ist
s a

t 1

*

is
at

om
ic

 in 0.
.1

*

is
st

ru
ct

ur
al

 in 0.
.1

re
la

tiv
e

to
1 *

de
fin

ed
 o

n
*

*

op
er

at
es

 o
n

1

*

Ap
pl

ic
at

io
n

Sc
en

ar
io

de
fin

es*
*

*
co

nc
er

ns
*

72

Investigation and Formalization of the Variant Similarity Analysis Problem

It is important to note here that the type assumed for a specific Asset
Element depends not only on its intrinsic properties, but is also a
function of the performed analysis – for example, in some cases the
same asset can be treated as Code Element (e.g. a Method) or a Textual
Element (e.g. a Line Block), depending on the specific analysis goal.

A Structure Hierarchy provides a mechanism for grouping the Asset
Elements. Frequently, the Structure Hierarchy is defined based on the
containment hierarchy of the Asset Elements – however, definitions
based on their other properties are possible. If for a given Asset Element
there exist some subordinate Asset Elements in the Structure Hierarchy,
we call such an element structural – consequently, an element having no
subordinates is atomic. The place that an element occupies in the
Structure Hierarchy is characterized by its Location.

Finally, an Asset Element contains its Content. The specific form of the
content strongly depends on the type of Asset Element and its role in the
Structure Hierarchy: for atomic elements the Content can frequently be
characterized as one or a group of primitive data type values (e.g. a
textual string for a Line, a numeric value for a Model Attribute), while for
structural elements the Content is usually composed from the
subordinate Asset Elements and, recursively, their own Content.

4.6.2 Software Asset Similarity

The Similarity between a group of Software Assets relates to the Content
and Structure Hierarchy of the Asset Elements placed in these assets.
Similarity is an abstract concept which we define as:

Definition 15 Similarity

Similarity between two or more objects is a relation of sharing
common properties. Similarity is gradual and relates to commonalities
and differences between objects: the more commonality the objects
share, the higher their similarity; the more differences the objects
have, the lower their similarity.

The above definition is necessarily abstract – in a concrete case, Similarity
needs to be further defined for the purpose of a particular Similarity
Analysis. Specifically, a Similarity Analysis needs to define which objects
it can analyze, which properties of these objects are relevant for
characterizing their Similarity, and what corresponding values or value
classes of these properties are accounted for as a commonality or
a difference.

Assets in the
structure
hierarchy

Asset content

Similarity

73

Investigation and Formalization of the Variant Similarity Analysis Problem

Identity is the maximal Similarity between a group of objects: the objects
are considered identical if all their relevant properties are common and
none of the properties is different. Consequently, an object is always
identical to itself. Depending on the choice of the object properties
relevant for the analysis, the Identity can be defined as Complete Identity
(all object properties are analyzed), Identity except Formatting (the
syntactic formatting and visual layout of the asset content is not
considered), Identity of Formal Definition (only the properties directly
relevant to the purpose of the asset are considered, and others, e.g.
comments or notes, are omitted), Identity of Result (e.g. the behavior
specified by the asset content is identical, even if the form of its
specification is not), or others.

Similarity with Deviation is a kind of Similarity weaker than Identity, as
differences in the analyzable properties are to a certain degree allowed.
Usually, a similarity threshold is defined that specifies the maximal
degree of difference that is still acceptable for the objects to be
considered similar. The differences might be allowed to exist for all types
of object properties (resulting in Similarity with Non-Systematic
Deviation) or only for certain property types or for properties fulfilling
specific conditions (resulting in Similarity with Systematic Deviation).

A Similarity Analysis can use different similarity definitions for different
Asset Elements. For example, Identity can in the practice only be
expected for rather small Asset Elements, such as e.g. Tokens and
Methods, while larger elements such as Packages and whole Software
Assets are rarely identical, but still can exhibit Similarity with Deviation.

Similarity can be quantified by a Similarity Measure which is a numeric
value assigned to the analyzed objects. If the measure only applies to
two objects, we call it a Pairwise Similarity Measure. Frequently, such
measure is calculated by a distance function which places the analyzed
objects in a metric space [Santini 1999]. Other Pairwise Similarity
Measures are confidence and correlation measures (e.g. Pearson
correlation [Rodgers 1988]). If more than two objects are considered, we
call such measure a Multi-Object Similarity Measure. Example Multi-
Object Similarity Measures are dispersion metrics (e.g. standard
deviation) and commonality metrics (quantifying the properties common
to all considered objects).

While a Similarity Measure represents a value quantifying the Similarity, a
Similarity Computation is an algorithm or formula used to calculate that
value. An Elementary Similarity Computation calculates the Similarity
based on the immediate properties of the analyzed Asset Elements
derived from its Content and Location. An Aggregating Similarity

Identity

Similarity with
deviation

Similarity
measures

Similarity
computation

 74

Investigation and Formalization of the Variant Similarity Analysis Problem

Computation operates additionally on the Structure Hierarchy of the
Asset Elements to calculate Similarity for structural elements by
aggregating the similarity values of their subordinate elements. For
example, a Similarity Analysis might use the Levenshtein distance as an
Elementary Similarity Computation to calculate Similarity of any two
Files. However, as Levenshtein distance is not defined for Folders, a
further Aggregating Similarity Computation needs to be defined that
specifies which File similarities should be used for Folder similarity
calculation (i.e. if all the possible pairs of Files, or only some of them,
should be considered), which formula should be used to calculate the
Folder similarity from the selected File similarity values, and how to
calculate similarity for nested hierarchies of Folders.

4.6.3 Similarity Analysis of Software Asset Variants

As described in the introduction to this Chapter, the purpose of
performing a Similarity Analysis on Variants of a Software Asset is to
recover the Similarity Information from these assets. For that purpose,
the Similarity Analysis uses the Similarity Measures calculated for Asset
Elements to create the Similarity Information, for example in the form of
Numerals (e.g. values of a particular Similarity Measure), Aggregations
(created by grouping of the Asset Elements or of the Information units
describing them), Associations (relating some Asset Elements or
Information units to each other) and Classifications (assigning the Asset
Elements or the Information units describing them to predefined abstract
categories). As the Similarity Analysis is defined with respect to certain
Analysis Goals, derived from an Application Scenario, the resulting
Similarity Information is also interpreted with regard to these goals.

The Application Scenario concerning the analyzed Variants plays a key
role in the similarity analysis process: by providing the Analysis Goals for
the Similarity Analysis, it defines the form and scope of the required
Similarity Information. Consequently, the type of the analyzed Similarity
and the proper Similarity Computations and Similarity Measures are
selected and defined accordingly to provide that Information. The
selection of the type of sought Similarity might also result in processing
the same analyzed Asset Elements in different ways, for example as
Textual Elements or Code Elements. Hence, two Similarity Analyses
performed on the same Software Assets but targeting different
Application Scenarios might differ in their use of the particular Asset
Elements, in the provided Similarity Information, as well as in the
definition of any of the underlying concepts of Similarity, Similarity
Computations and Similarity Measures.

The role of
similarity
analysis

Consequences
of application
scenario
selection

75

Investigation and Formalization of the Variant Similarity Analysis Problem

4.7 Summary

In this chapter we defined the foundations for the variant similarity
analysis approach described in this thesis. We started by discussing the
inherent properties of software variants, such as the lack of an
objectively definable variant ordering. Based on these properties and the
application scenarios described in Section 3.2, we defined the
construction requirements applicable to any variant similarity analysis
technique, which specify the necessary order independence of the
analysis, the information content of the results, and the need for user-
supporting result presentation. These requirements form the foundation
of our approach, further defined in Chapter 5, and can also be used to
reason about other, related analysis approaches. Subsequently, we
derived a number of further assumptions applying specifically to our
approach, such as the preference for high result certainty and result
transitivity, which we motivated by the stated application scenarios.

Based on the construction requirements and the defined assumptions, in
Section 4.4 we provided a formal definition of a similarity analysis
approach. Subsequently, in Section 4.5 we discussed the method for
evaluating the result quality of the approach by using the information
retrieval measures of precision and recall and introducing a set merge
based definition of the correct analysis result. Finally, in Section 4.6 we
systematized the concepts used in similarity analysis of software variants
by providing a conceptual model of software assets, their similarity, and
the analysis of that similarity. Hence, this chapter provided the
foundation for reasoning about the similarity analysis problem and for
defining and evaluating its possible solutions in the scope of the selected
application scenarios.

76

Variant Similarity Analysis with Hierarchical Set Similarity Models

5 Variant Similarity Analysis with Hierarchical
Set Similarity Models

As motivated in the previous chapters, an analysis of a potentially large
number of system variants, each of them having a potentially large code
basis, is frequently required in the practice. Despite the analysis difficulty,
resulting from the ordering independence of variants, the similarity
analysis results should provide a sufficient detail of information and be
available on any granularity level in the system structure hierarchy.
Hence, the defined application scenarios pose significant requirements
on detailed data collection, suitable result model structuring and
understandable and supportive result presentation. In this chapter we
describe the concepts, models, algorithms and visualizations constituting
our variant code similarity analysis approach, aimed at satisfying these
requirements. The approach is based on the idea of hierarchical set
similarity models and is defined in compliance with the construction
requirements, assumptions and formalizations presented in Chapter 4.

Using the analysis result formalization defined in Chapter 4, we derive in
Section 5.1 the basic idea of the set similarity model and discuss its
properties, such as the availability of similarity information for any
combination of the input variants. In Section 5.2 we integrate the set
model with the concept of a structure hierarchy, which together define
the hierarchical set similarity model and enable the provision of similarity
information of various granularity levels. On this basis, in Section 5.3 we
discuss the activities needed for hierarchical set model construction and
motivate the analysis process followed in our approach. Afterwards, in
Section 5.4 we proceed to the description of analysis algorithms used for
mapping corresponding elements between the structure hierarchies and
for the construction of set model based on input similarity data. In
Section 5.5, we introduce the visualization concepts defined for
presenting the set model information across the available variant
combinations and the system structure hierarchy, and discuss the
properties of these visualizations. In Section 5.6 we describe various
metrics calculated on the created set model, which further detail the
analysis results. Finally, in Section 5.7 we summarize the complete
analysis results, present the advantages and limitations of our approach,
and discuss the fulfillment of the previously stated requirements.
Subsequently, in Chapter 6 we describe a few implementation
mechanisms for the analysis approach, and in Chapter 7 we evaluate a
subset of the approach contributions.

 77

Variant Similarity Analysis with Hierarchical Set Similarity Models

5.1 The Set Similarity Model

In Chapter 4, we introduced several properties characterizing the
content of the asset variants for the purpose of our similarity analysis
approach. In particular, we postulated that:

An asset variant can be treated as a set containing the asset content
elements, which are the atomic units of the analysis.
(Assumption A1) The analysis only considers the similarities between
different asset variants, while the similarities inside a variant are
ignored. Hence, the set of variant content elements is a proper set
and not a multiset, because any two elements of that set are
considered to be different.
(Assumption A3) An asset element should have at most one
counterpart element, recognized as similar, in every of the other
variants. The analysis should therefore establish one-to-one
correspondences between the elements of any analyzed variant pair.
In case there are more than one suitable candidate elements in the
counterpart variant, the analysis should provide criteria to select the
most suitable candidate and discard the others.
(Assumption A5) If an asset element is recognized as similar to any
two (or more) other elements, these other elements should also be
recognized as similar to each other. In other words, the analysis
should deliver transitive similarity results.
In result of the above statements, the similarity analysis should, for
any given element of any variant, identify zero or one similar
elements respectively from each other variant.
The relation of similarity, defined on the asset content elements, is
reflexive (an element is similar to itself) and symmetric (which results
from the requirement C1). As it is also transitive, it is consequently an
equivalence relation.
The group of identified similar elements, which are in equivalence
relation to each other, is an equivalence class. Hence, the analysis
assigns the content elements of the input variants to equivalence
classes based on the defined similarity relation, so that every element
belongs to exactly one such class.

All elements assigned to a given equivalence class, constructed by the
analysis, are identified as similar to each other. Furthermore, each of these
elements belongs to a different input asset variant. Hence, all member
elements belonging to the same equivalence class can be treated as
variant manifestations of a single, abstract content element, which is
possibly instantiated with a slightly different content in the respective asset
variants. In other words, the proposed interpretation of the analysis result
is that the asset variants containing the elements of the equivalence class
actually contain variants of a single, abstract content element. The abstract
element and the variants are equivalent, that is, they can only differ up to
the degree allowed by the used similarity equivalence relation.

Properties of
asset variants
content

Interpretation
of an
equivalence
class

78

Variant Similarity Analysis with Hierarchical Set Similarity Models

Consider a group of sets S1, S2, …, SN, containing the atomic content
elements of N input variant assets, and an equivalence relation , defined on
the elements of the sets S1, S2, …, SN according to the above discussion,
i.e., such that no two elements belonging to the same set are equivalent.
For each set Si, we define a corresponding equivalence set SE

i as follows:

Definition 16 Equivalence set

An equivalence set SE
i corresponding to a set Si, constructed using the

relation , is the set of all equivalence classes of which contain an
element of the input set Si.

The construction of equivalence sets, using shape similarity as the similarity
equivalence relation, is depicted in the Figure 24. As some of the
equivalence classes contain elements from more than one of the input sets
S1, S2, …, SN, and hence they belong to more than one equivalence set,
the constructed equivalence sets intersect with each other. For any
subgroup of the sets S1, S2, …, SN, all content elements identified by as
similar across all the subgroup sets are placed into the equivalence classes
located inside the intersection of the corresponding equivalence sets (see
Figure 24 right). Consequently, the remaining content elements are placed
into equivalence classes located outside of that intersection.

Figure 24 Equivalence sets construction: the elements of the input asset content sets are assigned to
the equivalence classes (left). The resulting equivalence sets, containing these classes,
intersect with each other (right).

Hence, the analysis can express the similarity of the input sets by using
intersections and unions of the corresponding equivalence sets. The
equivalence set intersection and union are standard set operations.
Based on the sets S1, S2, …, SN and the relation , we define them as:

Definition 17 Equivalence set intersection

An equivalence set intersection, constructed for any subgroup (proper or
not) of the sets S1, S2, …, SN using the relation , is the set of all equivalence
classes of which for every subgroup set contain an element of that set.

Definition 18 Equivalence set union

An equivalence set union, constructed for any subgroup (proper or not) of
the sets S1, S2, …, SN using the relation , is the set of all equivalence classes
of which contain an element of any subgroup set.

A

B

A B

AE

BE

AE BE

Equivalence
sets

79

Variant Similarity Analysis with Hierarchical Set Similarity Models

The union of equivalence sets SE
1, S

E
2, …, SE

N contains, through the
equivalence classes, all content elements of the input sets S1, S2, …, SN.
Moreover, each content element is contained exactly once in the
equivalence set union. The equivalence set union models the similarity of the
input sets by storing the equivalence classes and presenting the intersections
of any subgroup of the equivalence sets. We call this model, being the result
of the similarity analysis, a set similarity model and define it as2:

Definition 19 Set similarity model

A set similarity model, built for the sets S1, S2, …, SN and the equivalence
relation , is the union of the equivalence sets SE

1, S
E
2, …, SE

N
corresponding to the sets S1, S2, …, SN and constructed using the relation .
The set model expresses the similarity of the input sets using the equivalence
classes of and the intersections of the equivalence sets.

In Figure 25 we provide an example of a set similarity model constructed for
the analysis result presented previously in Figure 19. Again, the analysis uses
the shape similarity as the similarity equivalence relation. Note that the right
part of Figure 24 (on the previous page) also presents a set similarity model.

Figure 25 The input sets (left) and the analysis result from Figure 19 (middle) represented with the set
similarity model (right).

Consequently, the task of the set model based similarity analysis, using the
provided similarity equivalence relation, is to form the equivalence classes
from elements of the input content sets and to build the set similarity model
by precisely determining how the resulting equivalence sets intersect:

Definition 20 Set model based similarity analysis

A set model based similarity analysis treats the input variant assets as sets
of comparable, atomic content elements. The analysis uses an equivalence
relation, defined on the atomic content elements, to construct the
equivalence sets corresponding to the input variant sets and to determine
their intersections, consequently building a set similarity model.

2 In the text of selected definitions in this chapter, we underline the concepts
introduced previously in earlier definitions to indicate that the respective previous
definition is necessary to fully understand the currently defined concept.

S1 S2 S3 S4

SE
1

SE
2

SE
3 SE

4

S1

S3 S4

S2

Set similarity
model

 80

Variant Similarity Analysis with Hierarchical Set Similarity Models

Note that the scope of element similarities recognized by the similarity
analysis fully depends on the provided equivalence relation. The
equivalence relation defines which properties of the analyzed elements are
relevant for their similarity, while their remaining properties are ignored.
For a different relation used on the same input sets, a different analysis
result might be constructed. For example, using the similarity of shape and
color on the sets from Figure 25 would lead to zero recognized similarities.
Hence, the similarity equivalence relation selected for the specific analysis
should always be known during the interpretation of the analysis result.

The described concept of a set similarity model has the following
properties, relevant in the processing and interpretation of similarity
analysis results, which distinguish it from the other related approaches:

For any content element of any input set, it is directly known which
other sets contain equivalent content elements, and which elements
these are. This information can be used to locate the elements
corresponding to each other among input sets, or to determine the
degree to which a given element exhibits reuse potential (e.g. by
counting the sets containing the element variants).
For any intersection of the equivalence sets, all the content elements
belonging to that intersection are directly known. For example, it is
straightforward to determine the content elements which are
recognized as common among all the input sets, or the content
elements which are unique to a given set.
The cardinality of any equivalence set and of any intersection can be
simply calculated by counting the contained elements. The cardinality
metric can be then used to define various metrics expressing the
similarity of the sets or their subsets – for instance, the similarity of
two sets A, B can be defined as card(A B)/card(A B).
The set model describes a set union of the code bases of all analyzed
variant products. Hence, it enables analysis and measurement of the
unified code base as a whole, without the need to assume the point
of view of a concrete product variant.
The set model can be further analyzed by retrieving all elements
fulfilling a given logical condition. The condition can be specified
directly, e.g. S1 S2 S3’, or indirectly, e.g. “all set intersections shared
by exactly k sets”. Such retrieval operation, which we call a subset
calculation, has the same properties as a set intersection: it provides a
group of elements which can be unambiguously identified and counted.

Figure 26 Example subset calculations.

SE
1

SE
2

SE
3 SE

4

SE
1

SE
2

SE
3 SE

4

S3 S4 Shared by at least 3 sets

The role of the
equivalence
relation

Properties of
the set similarity
model

81

Variant Similarity Analysis with Hierarchical Set Similarity Models

 Further logical conditions, defining new subset calculations, can take
as an input the results of already existing calculations and, for
instance, merge or intersect the provided element groups. The subset
calculations can be used to identify the elements fulfilling a specific
analysis goal – for example, in the right part of Figure 26 the
equivalence classes containing the elements shared by at least 3 sets,
and hence possibly having a high reuse potential, are selected.

 Moreover, the results of several subset calculations can be
automatically processed to answer more complex questions arising in
specific analysis settings – such as finding the most similar set pairs,
finding sets completely contained in other sets, clustering the input
sets into strongly similar groups, finding a minimal number of sets
covering almost the complete code, and further. The set model
provides a convenient basis for performing such calculations – they
only require the model itself, and no reanalysis of the underlying
code assets is needed. In contrast to that, the results of other
approaches do not directly allow for such follow-up analyses.

 The set model is an abstraction of the underlying variant products.
However, it contains more information than the other existing
abstraction mechanisms such as similarity metrics and pairwise
matrices. Consequently, the set model provides more support in
distinguishing different arrangements of similarity among the input
products, as it is much less likely that different analysis inputs will
result in the same analysis output (see the example in the Figure 18).

The set similarity model is simple to understand, and it has several
properties, discussed above, which are supportive for a similarity analysis.
It is defined in an abstract way, without specifying the exact type of
analyzed variant systems and their elements. Hence, the concept of set
similarity model, and the resulting further analysis mechanisms described
in the remainder of this chapter, can in theory be applied to any asset type
– the source code treated as text or as parse trees, software models, other
software-related assets such as documentation and test cases, abstract
asset descriptions such as requirement repositories, and also to any other
non-software assets. However, the prerequisite to defining a set similarity
model, and hence also to using the further analysis concepts, is the
conformance to the stated analysis assumptions. Consequently, there are
two basic analysis mechanisms which need to be thoroughly defined
before the set model can be constructed for a given asset type:

 The decomposition of the asset into atomic, comparable
elements. Optimally, the elements should represent roughly equally
sized or important pieces of the asset content. Defining elements of
varying importance (e.g. some elements represent single code
methods, while others represent single import statements) complicates
the interpretation of the analysis result, as e.g. counting the elements
belonging to a given set intersection does not provide a fully reliable
indication of the relative importance of that intersection anymore. If
the definition of unequally important elements cannot be avoided, the

Applicability to
diverse asset
types

 82

Variant Similarity Analysis with Hierarchical Set Similarity Models

elements might be assigned positive integer weights denoting their
relative importance to ensure that recognized element similarity is
proportionally reflected in the resulting similarity of the whole assets.

The definition of an equivalence relation on these elements, as
previously discussed in this section. The relation definition might be
supported by the rules for unambiguous assignment of equivalent
elements to the reported equivalence classes. In the most cases, a
definition of an equivalence relation which only considers the
element content (e.g. element content equality) results in equivalence
classes containing more than one element in some asset variants –
violating the assumptions A1 (only similarities between variants are
considered) and A3 (one-to-one correspondences). Hence, it is
necessary to extend that basic definition of an equivalence relation
with further rules, for example based on the location of the elements
in the system structure, in order to decide which of the potentially
equivalent element candidates should be finally reported in the
analysis result. In the Section 5.4 we provide an example of such
rules, which we defined for our implemented analysis instantiation.

Admittedly, the difficulty of defining the three stated analysis mechanisms,
as well as the quality of achievable analysis results, varies strongly
depending on the analyzed asset type. In Section 5.4 we define the
similarity analysis on textual assets, which are decomposed to atomic lines
of text and analyzed for syntactic equivalence. Analyses of more complex
asset types require solving various research problems: for example, finding
corresponding elements is more difficult for software models than for text
files. Furthermore, different asset types may require different processing of
input data in order to achieve the transitivity of similarity relation (see
Section 5.4 for discussion). Finally, analysis of asset types which should be
compared based on the semantics rather than syntax, such as e.g.
requirement descriptions, faces the difficulty of defining an automatically
evaluable equivalence function. Consequently, instantiating the set model
based similarity analysis for further asset types might require prior
research, and is part of the planned future work.

In the following sections, we define and discuss further concepts of our
analysis which are based on the set similarity model and extend the
possibilities of its use. In Section 5.2 we define the application of a set
model in hierarchical system structures, which enables a set-based
similarity assessment on any level of the system hierarchy. In Section 5.4
we present a concrete instantiation of the set model based analysis for
textual software artifacts and discuss the necessary steps for input data
processing and model construction. In Chapter 6 we describe ideas for
performant set model implementation. Finally, the understandability of
the set models, especially for a large number of sets and a large number
of set elements, is discussed in Section 5.5, where we propose the
respective visualization concepts. Set model understandability is also
evaluated in a controlled experiment in Section 7.2.

Open problems
for some asset
types

Further
discussions on
the set model

83

Variant Similarity Analysis with Hierarchical Set Similarity Models

5.2 Hierarchical Set Similarity Model

In this section we combine the idea of the set similarity model with the use
of trees representing the internal hierarchical structure of the asset
content. In the most cases, the internal structure of a software system or
asset can be represented as a tree-based hierarchy of its constituent parts.
For example, the source code is physically stored in files and organized in a
tree structure of folders. Several programming languages use a logical
structure of a package or namespace tree. Also in software models, a tree
package structure is frequently used. Finally, a tree hierarchy of assets is
constructed by many reverse engineering approaches [Lethbridge 2004].
The tree hierarchy supports decomposition of the asset into smaller
parts, grouping and categorization of these parts, and easy navigation in
the asset content. Depending on the specific asset type, many concrete
decompositions of the asset into the structure tree and the atomic
content elements can be defined. As discussed in the Section 5.1, this
decomposition constitutes an important analysis mechanism, and should
hence be defined to appropriately support the analysis goals. In this
section we define the data model expressing the decomposition and the
similarity of asset content, while in Section 5.4 we provide an example
decomposition for source code directories containing textual code files.

5.2.1 Asset Content Trees and Set Similarity Models

A metamodel of the asset content tree is presented in Figure 27. The
metamodel defines the decomposition of the asset into a tree of
Structure Tree Elements. In the tree structure, we distinguish between
Structural Containers (e.g. folders, packages), which can store other
Structure Tree Elements, and Content-Filled Elements (e.g. files, classes)
which can only be located at the tree leaves. A Content-Filled Element
can store a set of Atomic Content Elements, i.e. the basic analyzable
elements the asset is decomposed to.

Figure 27 A metamodel of the tree-based structure of asset content hierarchy.

According to the definition of set model based similarity analysis (Definition
20), an asset is treated as a set of atomic content elements. Consequently, for
a given set of asset content elements S we define the asset content tree T as:

Asset

«abstract»
Structure Tree Element

Structural Container Content-Filled Element

Atomic Content Element

1
*

1
*

1

*

Tree-based
asset content
hierarchy

A metamodel
of the asset
content tree

Asset content
tree

84

Variant Similarity Analysis with Hierarchical Set Similarity Models

Definition 21 Asset content tree

An asset content tree for a given set S is a tree graph T, in which the tree
leaves reference non-overlapping subsets of the set S, and the union of all
these subsets is equal to the set S.

Figure 28 A set of asset content elements and an asset content tree.

An example asset content tree is presented in Figure 28. The asset
content tree specifies the internal asset structure, defines a partition of
the asset content set, and assigns the content subsets created by the
partition to the tree leaves (Content-Filled Elements). Moreover, by using
the principle of hierarchical aggregation, any parent node in the tree
(i.e., a Structural Container) can also be associated with a subset of the
original asset content set. The parent subset is simply the union of all
leaf subsets existing in the subtree rooted by the selected parent node.

The analysis assumptions, described in the Section 4.3, prescribe that the
similarity of the Structure Tree Elements located in the different analyzed
asset variants should be expressed using one-to-one element
correspondences. Furthermore, these correspondences are subject to the
same conditions as in the case of Atomic Content Elements: no two
elements of the same tree are similar to each other, and their similarity
relations are transitive. Hence, the correspondence identification defines
an equivalence relation on the Structural Tree Elements and assigns the
elements of the input trees to equivalence classes.

For a group of input asset content trees T1, T2, …, TN, and an
equivalence relation defined on the elements of these trees such that
no two elements of the same tree are equivalent, we construct an unified
asset content tree. The unified asset content tree represents the structure
of all input content trees, expresses the correspondences between the tree
elements, but does not yet contain the asset content set elements:

Definition 22 Unified asset content tree

An unified asset content tree built for the input trees T1, T2, …, TN and
the equivalence relation , is a tree structure containing the equivalence
classes of the input tree elements constructed using the relation .

A
C
B

F

H
J
K

I

M
P
N

Q

M
P

N
Q

A
C B

F
HI

K J

Unified asset
content tree

Equivalence
relation on
asset content
tree elements

 85

Variant Similarity Analysis with Hierarchical Set Similarity Models

The construction principle of the unified asset content tree is analogical to
the creation of a set model from the asset content sets. The Structure Tree
Elements of the input asset variants are placed into the equivalence classes
of the unified asset content tree in the same way as the Atomic Content
Elements of these variants are placed into the equivalence classes of the
content set similarity model.

Let’s analyze three example variants of a software asset, represented in
Figure 29 by their asset content trees. The example equivalence relation of
the analyzed Structure Tree Elements is defined according to their location
in the asset structure tree, and indicated by the respective Greek symbols.
Note that as the variant structure trees are different, not all Structure Tree
Elements have a correspondence in each other variant (see for example
the element). Subsequently, a unified asset content tree, covering all
Structural Tree Elements from all asset variants, is constructed. The unified
asset content tree contains an equivalence class for any Structure Tree
Element which exists in at least one input tree variant.

Subsequently, for each identified group of corresponding Content-Filled
Elements, a set model is constructed from their Atomic Content Elements,
as depicted in the right part of Figure 29. In that process, the content
element equivalence relation (introduced in the Section 5.1) constructs
equivalence classes from elements of content sets which are assigned to the
elements of the same tree element equivalence class. After the set model is
constructed, each element of the unified asset content tree representing
the Content-Filled Elements references a related set model built from
Atomic Content Elements. Consequently, the unified asset content tree
and the set models represent the full analysis result, providing an overview
of all asset variants, their elements, and the identified similarity.

Figure 29 Three assets are decomposed into asset content trees, with atomic content elements stored in
the tree leaves (left, middle). A unified asset content tree is constructed from the asset content
trees, and its elements reference the set similarity models of atomic content elements (right).

1 2
A

C
D

3
E

B

GF

1 2
H

J
LK

I

1 2
M

P
O

3
R

N

Q

S

3
T U

3

3

3

C

3
E

GF

P

3
R

Q

3

3

S

3
T U

2

2

2

2

C
DB

G

2

J
LK

2

P
ON

2

2

1

1

1

1
A

C
B

F

1
H

J
K

I

1
M

P
N

Q

1

1

Asset variant 1 Asset variant 2 Asset variant 3
Unified asset content tree
and set similarity models

Unified asset
content tree
construction

Assigning set
models to the
leaf unified
tree elements

86

Variant Similarity Analysis with Hierarchical Set Similarity Models

Figure 30 The construction of set models for parent elements of the unified asset content tree based on
the child element set models.

Finally, the set models of the unified asset content tree elements
representing the Structural Containers can be constructed based on the
set models of their contained Content-Filled Elements. The construction
process, depicted in Figure 30, follows two simple principles. First, the set
model of a given Structural Container contains all Atomic Content
Elements from the Content-Filled Elements located inside it. Second, the
membership of any Atomic Element in the respective set intersection is
permanent, that is, in the parent sets representing the variant Structural
Containers the Element still belongs to the same set intersection (i.e., the
intersection expressing the same logical condition on asset membership,
e.g. S1 S2 S3’). Hence, the logically equivalent set intersections created
for the child tree elements can be simply added to obtain the respective
intersection for the parent tree element.

Figure 30 presents the construction of the parent set models for the
intermediate Structural Container and for the root Structural Container,
hence building the set model for the tree root representing the complete
analyzed asset. Consequently, for each element of the unified asset
content tree, representing either an equivalence class of Content-Filled
Elements or of Structural Containers, a set similarity model expressing the
similarity of all contained Atomic Content Elements is always available.

Another interesting property of the unified asset content tree is that the
tree fulfills all conditions necessary to create a set similarity model from
its elements (nodes). Hence, given a group of sets ST1, ST2, …, STN
containing the elements of the trees T1, T2, …, TN and the equivalence
relation ~, a second type of a set similarity model can be constructed.
The new model expresses the similarity of the given trees, but not the
similarity of the contained atomic content elements.

1 2
A

C
D

3
E

B

GF

1 2
H

J
LK

I

1 2
M

P
O

3
R

N

Q

S

3
T U

1 2
M

P
O

3
R

N

Q

S

3
T U

A

C
D

E

B

GF

H
I

K J
L

1 2

3

M

P

O

R

N

Q

S T U

A

C

D

E

B

GF

H
I

K J
L

1 2

3

Set model for
Structure Tree
Elements

Constructing
set models
for parent tree
elements

87

Variant Similarity Analysis with Hierarchical Set Similarity Models

The same set model construction principle can be applied to any group of
corresponding subtrees of the given trees T1, T2, …, TN, hence creating a
set similarity model for these subtrees. Consequently, for each element of
the unified asset content tree a set similarity model expressing the
similarity of the contained Structure Tree Elements is available. A set
similarity model of Structure Tree Elements can be analyzed and processed
in the same way as a set model of Atomic Content Elements, including the
computation of subset calculations and the use of set visualizations.

With all the above observations, we finally define the hierarchical set
similarity model. That model is a fundamental structure used by our
similarity analysis approach and enables the definition of the analysis
mechanisms described in the remainder of this Chapter:

Definition 23 Hierarchical set similarity model

Given a group of analyzed assets, a hierarchical set similarity model for
these assets is the unified asset content tree, where each node of the
tree references two set similarity models. These two set similarity models
express respectively the similarity of the Structure Tree Elements and of
the Atomic Content Elements located in the subtree of the unified asset
content tree rooted by the given node.

Accordingly, the term “hierarchical set similarity model” refers to the
presence of a hierarchy of set similarity models on the different
granularity levels of the asset content decomposition, as exemplified in
Figure 30. The construction of the hierarchical set similarity model for a
given group of assets requires that the asset content trees, the tree
element equivalence relation , and the atomic content element
equivalence relation are defined.

5.2.2 A Data Model for the Set Model Based Similarity Analysis

Based on the association between the unified content tree elements and the
set models constructed for the Atomic Content Elements and the Structure
Tree Elements, we extend the metamodel of asset structure hierarchy,
defined previously in Figure 27, by adding the asset similarity information.
Figure 31 presents the resulting metamodel of the data used in our analysis.

The metamodel is subdivided into the asset content structure metamodel
(left) and the asset content element similarity metamodel in the form of
two Set Models (right): one for the Structure Tree Elements of the
variant assets, and another one for their Atomic Content Elements.
Naturally, a Set Model is associated with all analyzed asset variants. The
similarity information is stored in the Equivalence Class objects, which
associate the content elements recognized by the analysis as equivalent.
Consequently, the metamodel specifies the data structure of the asset
content tree and the two respective equivalence relations, which is
sufficient for the construction of the unified asset content tree and the
set similarity models for each tree element. Hence, the presented
metamodel fully specifies the hierarchical set similarity model.

Associating the
asset structure
model with
set models

Hierarchical set
similarity model

88

Variant Similarity Analysis with Hierarchical Set Similarity Models

Figure 31 A data metamodel for the similarity analysis: the content structure of each asset (left) is
associated with two set models (right), which store the asset content similarity information.

5.2.3 Representation of Equivalence Between Transformed Tree Structures

The construction of the unified asset content tree and the hierarchical
set similarity model, described above, can be performed for any
arrangement of identified equivalences between the variant Content-
Filled Elements. For description simplicity, the above example used the
tree location equivalence – however, in the practice the asset content
parts represented by the Content-Filled Elements can be renamed,
moved to another Structural Container, and otherwise transformed
during the evolution of the particular asset variant. Despite the
transformations, the equivalence of the respective elements should still
be recognized. In this section, we describe the representation of such
equivalences in the hierarchical set similarity model, while in Section 5.4
we discuss the possible approaches to the equivalence identification.

The construction of the unified asset content tree for the location
identity approach is simple, as the unified tree is just a supertree of the
input asset content trees. In the other case, when a group of differently
located elements is recognized as equivalent, each of their respective
parent elements existing in the unified asset content tree should still be
able to contain all its child elements. To preserve that property, we use
the concept of hard links, commonly known in the file systems: a given
equivalence class of Structure Tree Elements can be referenced by more
than one location in the tree, and each of the referencing locations is
treated as a full representation of the given class. Hence, for the equivalent
elements having different tree locations, a hard link is inserted in the
unified tree at each location where one of the original elements existed,
and all these links refer to the same equivalence class of the Structure
Tree Elements and to the same Atomic Content Element set similarity
model. Consequently, also in the general case the unified asset content
tree is constructed as a supertree of the input asset content trees –
however, some of the supertree elements are replaced by hard links in
order to appropriately reflect the constructed equivalence relation.

Asset

«abstract»
Structure Tree Element

Structural Container Content-Filled Element

Atomic Content Element

1
*

1
*

1

*

Set Model

«abstract»
Equivalence Class

Tree Element
Equivalence Class

Atomic Element
Equivalence Class

1
*

* 2

*

1

* 1

Asset structure Asset similarity

Correspondence
identification
between tree
structures

Unified tree
construction
for moved tree
elements

89

Variant Similarity Analysis with Hierarchical Set Similarity Models

Figure 32 Three assets content trees from Figure 29 (left), with the node moved inside the parent node
in the second variant, are used to construct a unified asset content tree. The tree (right) contains
hard links in all original locations of the node , which reference the same set similarity model.

An example unified asset content tree using hard links is presented in
the right part of Figure 32 (above). The figure shows the construction of
the unified tree for the asset content trees which were introduced before
in Figure 29 – however, the second asset variant tree is modified as the
Content-Filled Element is moved into the Structural Container . The
element exists in two different locations in the original asset content trees.
Consequently, two hard links are created in the resulting unified asset
content tree, and both those links represent the same equivalence class of
Content Filled Elements and reference the same set similarity model.

When the equivalent Content-Filled Elements are hard-linked with each
other, the hard links are not needed for Structural Containers, as it is
sufficient to express the equivalence of the Structural Containers based
on their tree location identity:

In case a more complex equivalence relation of the differently located
Structural Containers was used, the identified containers would need
to be represented as hard links in each of their original locations in
the unified asset content tree. However, as only the Content-Filled
Elements can contain the Atomic Content Elements of the analyzed
asset, the same effect of Container representation can be achieved
by accordingly creating the hard links of the child Content-Filled
Elements wherever necessary, and leaving the non-linked Containers in
each of their original locations.

Moreover, avoiding hard Container links eliminates the possibility to
introduce cycles to the tree hierarchy structure, which would
complicate the processing of the hierarchical set similarity model.

3

3

3

C

3
E

GF

P

3
R

Q

3

3

S

3
T U

1

1

1

1
A

C
B

F

1
H

J
K

I

1
M

P
N

Q

1

1

Asset variant 1 Asset variant 2 Asset variant 3
Unified asset content tree
and set similarity models

2

2

2

2

C
DB

G

2

J
LK

2

P
ON

2

2
1 2
A

C
D

3
E

B

GF

1 2
H

J
LK

I

1 2
M

P
O

3
R

N

Q

S

3
T U

Structural
Container
equivalence

90

Variant Similarity Analysis with Hierarchical Set Similarity Models

Finally, using the Container equivalence relation based on the tree
location identity simplifies the respective equivalence algorithms, as
only the Content-Filled Element equivalence needs to be found.

To conclude this discussion on the tree element equivalence, let’s consider
the hierarchical aggregation of the set similarity models in a unified asset
content tree containing hard links. To obtain a correct set model, the
aggregation can follow one of two strategies, presented in Figure 33:

The exclusive aggregation strategy builds the set similarity model
of the parent tree element only from the models of these child
elements which are a child of the given parent node in each of their
variants. Hence, only non-linked elements and these of the hard
linked elements which only occur in the subtree rooted by the given
node are considered. The remaining hard linked elements, whose
instances also occur outside of the considered subtree, are excluded.

The inclusive aggregation strategy differs from the exclusive
strategy by including the set models referenced by the hard linked
elements having further instances outside of the considered subtree.
Hence, in the inclusive strategy the set similarity model is built from
the models of these child elements which are a child of the given
parent node in at least one of their variants. Consequently, the
models of every contained non-linked element and every contained
hard linked element are included.

Naturally, for each group of hard links referencing the same set similarity
model the given model is considered in the aggregation just once.
Furthermore, note that the result of both strategies is identical for the
root tree element, because as the root element is the parent of every other
tree element, no further hard link instances exist outside of its subtree.

Figure 33 The construction of set similarity models for the parent node (left) and for the root node
(right) of the unified asset content tree from Figure 32.

Root node

1 2
A

C
D

3
E

B

GF

1 2
H

J
LK

I

1 2
M

P
O

3
R

N

Q

S

3
T U

A

C
D

E

B

GF

H
I

K J
L

1 2

3

(1) Exclusive aggregation:

(2) Inclusive aggregation:

M

P

O

R

N

Q

S T U

A

C

D

E

B

GF

H
I

K J
L

1 2

3

M

P

O

R

N

Q

A

C

D

E

B

GF

H
I

K J
L

1 2

3

Both aggregations:

Parent node

Hierarchical
aggregation
in the presence
of hard links

91

Variant Similarity Analysis with Hierarchical Set Similarity Models

5.2.4 Further Remarks on the Hierarchical Set Similarity Model

The hierarchical set similarity model bases on several concepts commonly
used in the mathematics and its applications, such as element sets,
equivalence relations, tree graph structures, and tree-based hierarchical
data aggregation. Furthermore, the concept of an equivalence set,
defined in Section 5.1, bases on a well-known concept of a quotient set
and extends it for the case of a specific type of equivalence relation
defined on many element sets instead of just one set.

However, the introduced composition of the existing mathematical
concepts, resulting in the definition of the hierarchical set similarity
model, is to the best of our knowledge an original contribution of this
thesis, as no similar model structure was defined or used in other
published research works. Based on a survey of related approaches, we
are confident that no analogical structure was defined or used for the
purpose of reverse engineering software similarity, which is the
application area of this thesis. We are also not aware of the existence of
such structure in other areas of computer science. Finally, the existing
data structures which use similar names, such as “hierarchical sets” or
“nested set model” [Kamfonas 1992], describe in fact a different, much
simpler structure of an element set and its contained subsets, analogical
to the asset content tree.

As discussed in this section, the construction of the hierarchical set similarity
model requires inputs provided by three other activities: the decomposition
of the assets into the asset content trees, the construction of unified asset
content tree using Structure Tree Element equivalence relation, and the
construction of the Atomic Content Element set similarity models. Hence,
the process of performing the similarity analysis needs to include these three
analysis stages. With this observation, we continue to Section 5.3, where we
define the analysis process of our approach.

5.3 A Process for Hierarchical Set Model Construction and Usage

As discussed in Section 2.2, the purpose of reverse engineering is to
construct higher-level abstractions of the input data stored in the analyzed
assets, and to visualize these abstractions to support a human in building
asset-related knowledge. Hence, the most reverse engineering approaches
follow a typical analysis process consisting of four main phases: extraction,
abstraction, presentation, and interpretation (see Figure 11 in Section 2.2).
The above typical reverse engineering process applies as well to the similarity
analysis approach defined in this thesis. Accordingly, in the previous section
we already hinted at the necessity of introducing separate analysis phases,
which cover various aspects of the analysis and build the respective parts of
the defined data model. Hence, the set model based similarity analysis
process, depicted in Figure 34, consists of the following phases:

Implications
of the model
for the analysis
process

The process for
set model based
similarity
analysis

The use of the
mathematical
concepts

Originality of
the contribution

92

Variant Similarity Analysis with Hierarchical Set Similarity Models

Structure extraction phase constructs an asset structure model for
each input asset variant. As discussed in the previous sections, the
structural decomposition of an asset can include an identification of
internal content hierarchy structure, if applicable, and it results in the
creation of element sets which contain the basic analyzable Atomic
Content Elements for the further analysis. For now, the constructed
structure models of the asset variants are not yet related to each other.

Structure mapping phase takes as its input the created structure
models and uses the defined structure tree element equivalence
relation to determine the asset structure hierarchy elements which
correspond to each other across the compared asset variants. In the
result, a unified hierarchy structure is constructed, and the
correspondence information is stored in the structure tree set model.

Content set model construction phase analyzes the corresponding
sets of Atomic Content Elements, identified by the previous phases,
and in accordance to Definition 20 determines their set intersections.
Hence, by using the defined equivalence relation, the set model of
Atomic Content Elements is built. The constructed model expresses
the similarity of the input asset variants and is the basis for result
visualization and interpretation. Furthermore, on the analyst request
the computation of subset calculations and metrics can, at any
point in time, be performed on the both set models and used to
enrich the information basis for the subsequent analysis phases.

Figure 34 The process for the set model based similarity analysis.

Structure
extraction

Asset variants

Visualization

Asset structure model

Result views

Extraction Abstraction Presentation

Interpretation

Analyst

Structure
mapping

Asset structure model
Structure tree set model

Content set model
construction

Asset structure model
Structure tree set model

Content set model

Interpretation

Subset calculations
Metrics

Calculation request

93

Variant Similarity Analysis with Hierarchical Set Similarity Models

Visualization phase presents the calculated information in the form
of diagrams and tables. We defined several views, enabling the user
to explore and navigate through the created results. The user can
retrieve the information about the degree of asset similarity, the
distribution of similar elements in the asset content, and other conside-
rations for any structural and atomic element of the asset content.

Interpretation phase concerns the activities of a human analyst,
performed using the visualized results and related to the analysis
goals. As described in Section 2.2, these activities include analysis
refinement (e.g. by starting calculation requests or re-running the
analysis using a different definition of the equivalence relation),
verification of previous assumptions, synthesis with results of other
analyses, and finally definition of action items. These manual activities
are not in the explicit focus of this thesis – however, we partially
support them by providing the respective guidance in Appendix B.

Analogically to the other concepts of the set model based similarity
analysis, the described analysis process is generic and applicable to any
kind of software asset, as long as the basic analysis mechanisms listed
in Sections 5.1 and 5.2 are defined. Hence, Figure 35 presents the
analysis process on a higher abstraction level, and explicitly depicts the
analysis input, the analysis results, and the three mechanisms where the
generic analysis is customized for a specific asset type and analysis goal:
the definition of asset content decomposition, the definition of structure
element equivalence relation, and the definition of atomic element
equivalence relation.

Figure 35 The similarity analysis input (left), the internal analysis process using the customizable
definitions of analysis mechanisms (middle), and the resulting analysis output (right).

In the following sections, we discuss in more detail the concepts and
algorithms specific to each of the defined analysis phases. As the structure
extraction was already discussed in Section 5.2, we proceed now to the
topics of structural correspondence mapping and set model construction.

Definition of
asset content

decomposition

Analysis input Set model based similarity analysis Analysis results

Structure
element

equivalence
relation

Atomic
element

equivalence
relation

Structure extraction

Structure mapping

Set model construction

Calculations and metrics

Visualization Interpretation

Asset structure
decomposition

Set model of asset
content similarity

Metrics

Diagrams

Asset variants

Generic and
customizable
analysis process

Details of the
analysis phases

94

Variant Similarity Analysis with Hierarchical Set Similarity Models

5.4 Approaches for Set Similarity Model Construction

As discussed in the previous sections, a similarity analysis performed for a
group of hierarchically decomposed asset variants constructs two set
models: the first one for the Structure Tree Elements, expressing the
correspondences between the elements of different asset content
hierarchy trees, and the second one for the Atomic Content Elements,
expressing the content similarity of the asset or its parts. In both these
cases, for the construction of a set model it is necessary to define a
respective equivalence relation on the asset content elements. The
provided definition of the equivalence relation should, in particular,
allow for unambiguous selection of the best match for a given content
element, and guarantee the required result properties such as transitivity.
In this section, we discuss the concepts and algorithms used in the
construction of an equivalence relation on different forms of input
similarity data and present their example instantiation.

In a general case, the similarity between any two elements of the input asset
content can be calculated by applying a pairwise similarity measure (as
discussed in Section 4.6), for example calculated by a distance function.
Without loss of generality, we can assume that the resulting similarity
measure value is a real number from the [0;1] interval, where the value of 0
expresses the minimal or non-existing similarity, and the value of 1 expresses
the maximal possible similarity. Naturally, the similarity measure can only be
defined for element pairs which are comparable, e.g. when both elements
are of the same type. However, this condition does not reduce the
generality of the above similarity measure, as any pair of non-comparable
elements can be assigned the similarity measure value of 0.

The set model based similarity analysis does not consider the similarity
between comparable elements located inside the same asset variant.
Consequently, all such elements are treated as being different, and only the
similarity between elements of different asset variants is considered. As our
approach does not introduce any new similarity identification algorithm, the
input similarity data is provided by an external algorithm. For example, the
Levenshtein distance algorithm can be used to measure similarity of two files
treated as lists of text lines. The input similarity data, being the basis for the
construction of element equivalence classes, is typically provided in one of
the two following, abstracted data forms, illustrated in Figure 36:

Figure 36 Abstract forms of input similarity data: gradual pairwise similarity (left) and binary pairwise
similarity (right).

S1 S2S1 S2
0.34

0.750.91

0.35

0.170.14

0.82

0.710.46

The need for
equivalence
relation

Input element
similarity
measure

Forms of the
input similarity
data

95

Variant Similarity Analysis with Hierarchical Set Similarity Models

Gradual pairwise similarity provides a similarity measure value in
the [0;1] interval for any possible pair of input elements coming from
different variants. Hence, for a given content element all elements
from a different variant are initially considered as potential matches,
but the degree of their similarity varies. This data form is typically
produced for content elements having further internal structure,
where the simple similarity definitions such as identity are not
practically useful. Example similarity identification approaches
calculating such similarity measures are Levenshtein distance applied
to text files and common token coverage applied to code clones.

Binary pairwise similarity lists pairs of similar elements. The
element similarity is binary, as only the existence of similarity is
reported: a given pair of elements is either similar or not. Hence, for a
given content element a low number of potential matches, all having
the same degree of similarity, is proposed. This data form is typically
produced for simple content elements, having no meaningful internal
structure, where the similarity definition of identity can be used. For
example, the longest common subsequence (diff) algorithm identifies
matching lines from two analyzed text files, but does not further
investigate the similarity of non-identical lines.

Some similarity identification approaches initially collect the similarity
data in the gradual form, but subsequently process them to report a
result of the binary nature. This is done for example by many clone
detection approaches, which apply a similarity threshold value to report
the higher gradual similarity values as clone pairs and discard the
remaining ones. An example of a transformation of gradual pairwise
similarity to binary pairwise similarity is depicted in Figure 36, where the
gradual similarity data in the left part of the figure is processed using a
similarity threshold of 0.7 to receive the binary pairwise similarity data in
the right figure part. In a general case, the resulting similarity relation is
reflexive and symmetric, but not transitive. Hence, the construction of an
equivalence relation, specifying the set model, requires further
processing of the similarity data.

In our analysis we receive input similarity data of both gradual and binary
nature. Consequently, in the following subsections we discuss the
concepts used in the processing of both these data forms. However, to
support that discussion with respective analysis examples, in the
subsection 5.4.1 we first present the asset content decomposition
instantiated in our analysis implementation. Subsequently, in subsection
5.4.2 we describe the algorithms used for structure correspondence
identification, working on gradual similarity data, and in subsection 5.4.3
we present the atomic element equivalence algorithms, using binary
similarity data. Finally, in subsection 5.4.4 we discuss the consequences of
the selected asset decomposition and equivalence identification approaches.

Transformation
of the data
similarity form

Algorithms and
examples

96

Variant Similarity Analysis with Hierarchical Set Similarity Models

5.4.1 An Instantiation of Asset Content Decomposition

The objective of this thesis is to support the migration of variant
software assets towards software reuse. In the most cases, the
functionality of software assets is expressed in the form of source code.
Hence, it is worthwhile for a similarity analysis approach to support an
analysis on the source code level. However, multiple programming
languages exist, and the followed programming paradigms and defined
language grammars vary strongly. Consequently, an analysis which
involves parsing the source code faces a tradeoff between broad
applicability of the analysis and the technical difficulty of supporting the
structural and syntactic forms of various source code languages.

In the context of this thesis, we strive for both generality and simplicity
of the analysis instantiation. The provided instance of similarity analysis
should be applicable to a sufficiently broad range of software assets,
while its implementation should mainly focus on the concepts related to
the set similarity model and not on the peculiarities of a given
programming language or asset-derived data structure. For these
reasons, we define the following, language-independent decomposition
of the asset source code to structural and atomic content elements:

 The source code of the asset is decomposed according to the
structure of its file system tree. Hence, the source code folders
assume the role of Structural Containers, and the source code files
are treated as Content-Filled Elements.

 The content of each source file is treated as text, without considering
the used programming language. Hence, a file is decomposed into
text lines, which are the Atomic Content Elements of the analysis.

 Furthermore, the decomposition can filter out the asset content parts
which conform to the above decomposition rules but are not
considered relevant for the analysis. For example, the non-source files
located in the source folders, or empty text lines in the source files, can
be ignored and hence not treated as analyzable content elements.

The presented textual and file system based asset decomposition
determines the nature of applicable equivalence relation definitions, as
well as the scope of possible interpretations of the analysis result.
Consequently, the construction of the structure tree set model involves the
search for code files which correspond to each other across the asset variants.
The construction of atomic element set model involves the search for
corresponding text lines across the mapped source files. Finally, the results
of similarity analysis, applied to the given asset decomposition, measure the
textual similarity of asset implementation. The atomic content element set
model of an asset contains all of the asset’s text lines, and the intersections
of the asset element sets contain the text lines which are identified as
common across the respective asset variants. In subsection 5.4.4 we provide
a deeper discussion on the benefits and drawbacks of the above asset
content decomposition and the equivalence relations defined on top of it.

A tradeoff in
source code
analysis

Language-
independent
textual
decomposition

Equivalence
functions and
interpretations

 97

Variant Similarity Analysis with Hierarchical Set Similarity Models

5.4.2 Mapping Correspondences in Structure Hierarchies

The construction of Structure Tree Element set model requires an
identification of the tree elements which correspond to each other in the
asset content structure hierarchies. Hence, the role of the Structure Tree
Element equivalence relation is to construct a mapping of the variant
structure trees onto each other. In an analyzed group of cloned asset
variants, where each variant might further evolve after the cloning, a given
Structure Tree Element can be assigned to one of the following three groups:

The elements which existed in the original asset implementation and
were not moved in the structure hierarchy after the cloning.

The elements which existed in the original asset implementation, but were
moved to other location in the structure hierarchy after the cloning.

The newly created elements, which did not exist in the original
asset implementation and were added after the cloning.

Due to the cloning of the asset variants in the past, the corresponding
Structure Tree Elements which were not moved are still located at the
same asset root relative paths in their asset structure trees. Naturally, the
content of any Structure Tree Element might also be modified, possibly
to a significant degree, during the asset evolution. Hence, the
equivalence relation on the Structure Tree Elements can be constructed
based on two data sources. First, the similarity of the element location in
the structure tree needs to be considered. In particular, the Structure
Tree Elements having the same relative locations in the structure
hierarchies are likely the elements which were not moved, and hence
should correspond to each other – except if their content similarity is
very low and other, significantly more similar elements exist. Second, the
similarity of element content is also relevant for the equivalence relation:
the mapping should identify tree element groups having maximal
possible content similarity, and two cloned and subsequently modified
elements are likely to be much more similar to each other than two
unrelated elements. Hence, content similarity can be used to determine
the corresponding elements which were moved in the structure
hierarchy, or such newly created elements which are related despite
having no common ancestor element.

It is important to note that the input similarity of the variant structures and
the classification of Structure Tree Elements based on their location
similarity might not fully correspond to the original correspondences of
tree elements resulting from their evolution history. First, two variant
elements placed at the same tree locations could both represent the not
moved elements, but it is also possible that one or both of these elements
were moved or newly created and did not originally exist in their current
tree locations. As these cases cannot be distinguished based on the tree
structure alone, the content similarity can be used to justify whether such

Three categories
of Structure Tree
Elements

Use of location
and content
similarity

Element
similarity versus
their evolution
history

98

Variant Similarity Analysis with Hierarchical Set Similarity Models

elements should indeed be reported as related to each other. But, second,
also the content of a tree element could be significantly modified during
its evolution. Hence, corresponding files might be not recognized because
of strong content modification, while unrelated files might be strongly
similar due to e.g. using boilerplate code. In our analysis approach we are
interested in finding asset parts currently exhibiting reuse potential,
regardless of their evolution history. We accept the discrepancies listed
above, such as e.g. not recognizing two dissimilar elements having shared
history, since their low similarity would likely not allow for reuse introduction
anyway. Consequently, in the context of our approach the mapping should
represent the best possible result calculated solely on the basis of the
currently existing similarity of asset element location and content.

The Structure Tree Elements contain a potentially large number of
Atomic Content Elements, which can be modified during asset evolution.
Hence, a search for related tree elements having identical content would
typically not return many results – it is much more likely that the content
of the related elements is slightly different. Consequently, in case the
content similarity is used for the identification of corresponding tree
elements, their similarity should be expressed in the gradual pairwise form.

In the file system based asset structure decomposition, used in our
analysis instantiation, the role of the structure tree mapping is to verify
the similarity of files located at the same locations in the file system tree,
i.e. having the same paths and names, and to reconstruct the file
movement operations performed in the evolving asset variants. In result,
the mapping identifies the groups of similar files, which are likely to
represent cloned variants traceable to a single code file from the primary
asset implementation. Furthermore, strongly similar newly created files
should also be identified – in the practice such files might be created by
a subsequent small-scale cloning or they can otherwise represent
potentially reusable functionality.

Based on the above observations, our analysis instantiates the following
three approaches to the identification of corresponding Structure Tree
Elements across asset structure hierarchies:

Location identity approach does not consider the content of the
tree elements, but only their location. The elements placed at the
identical tree paths are reported as equivalent to each other – for
example, for the file system trees the approach would report files
having the same tree root relative paths and file names. This simple
approach can only provide good results when the analyzed asset
structures have not been significantly modified after the cloning.
However, in the practice it was suitable for about 70% of software
system groups we analyzed.

Manual mapping approach can be used when the structure element
correspondences are known to the analyst or system developers. As
an automatic approach cannot provide a better result in that case,

Mapping for
file system
trees

Mapping
approaches

Use of gradual
content
similarity

99

Variant Similarity Analysis with Hierarchical Set Similarity Models

the corresponding elements are marked by a human. Alternatively, to
reduce the effort, a human can review and modify the preexisting
results of an automatic approach. In the practice, we applied the
manual approach to about 10% of analyzed software system groups.

Algorithmic approach involves the use of a formal algorithm. Several
concrete algorithms are imaginable here. In the context of our
analysis approach, two algorithms were developed:

An algorithm matching isomorphic subtrees between given tree
structures [Valiente 2001] was adapted to the file system
structure by Zahra [Zahra 2010]. Hence, the algorithm analyzes
only the input tree structures, where the tree elements are
labeled using file system names. The rationale for using the tree
structure based algorithm is especially to detect folder-level
rename and move operations, and to perform the mapping
without potentially time-consuming element content
comparison. However, this algorithm did not provide sufficiently
good results and was therefore not used in the practical analyses.

Tenev developed an algorithm for mapping multiple variants of
a connected graph (not necessarily a tree), which uses a
predefined distance function calculating the similarity of any
two graph elements [Tenev 2011]. In the case of file system
structure, the Levenshtein distance was used to evaluate the
content similarity of any two files. We applied the algorithm to
about 20% of software system groups we analyzed, and
received very good results (see Chapter 7 for more information
on the algorithm’s evaluation). In the following paragraphs, we
briefly discuss the details of the algorithm.

For the reasons discussed above, an algorithm for tree element mapping
which relies on element content similarity needs to use gradual pairwise
similarity. Furthermore, as the algorithm maps many variants of a tree
structure, containing many tree elements, it should optimize its result in
the following way:

Local optimum for a given tree element in a pairwise mapping: when
mapping two tree structure variants, a given structure element
should be assigned to its most similar counterpart in the other
variant, unless the content similarity of even the best candidate is too
low to be meaningful.

Global optimum in a pairwise mapping: the achievement of the local
optimum for every tree structure element might be impossible, as the
proposed mapping choices might conflict with each other (e.g. two
elements might have the same most similar counterpart). Hence, the
globally optimal pairwise mapping should optimize the similarity of
the complete identified structure match, and might sacrifice the local
optimums of some elements, i.e. provide for them alternative less
similar counterparts, to achieve that goal.

Algorithm result
optimization
criteria

100

Variant Similarity Analysis with Hierarchical Set Similarity Models

 Global optimum in mapping many structure variants: the identified
pairwise element matches, calculated for each tree variant pair, might
conflict with each other when building the transitive equivalence
classes over all tree variants. For example, the two elements in a
given pairwise match might be, based on the other pairwise matches
involving these elements, optimally placed in two different
equivalence classes. Hence, it might again be necessary to discard or
correct some of the provided results, optimal from the point of view
of a given variant pair, in order to achieve the global optimum
similarity identified over all analyzed variants.

Tenev provides an algorithm following the above optimization strategy,
inspired by multiple alignment algorithms used in bioinformatics
[Gusfield 1993]. The algorithm has a time complexity of O(n3k2log (k))
and requires O(n2k2) memory space, where n is the number of analyzed
graphs (e.g. asset variants) and k is the number of graph elements
(e.g. source files).

In the first step, the algorithm computes the pairwise mapping for each
pair of input asset variants. To achieve that, the similarity of all possible
element pairs is computed using the defined distance function. Then, the
element pairs are selected for the pairwise mapping using a greedy
choice, starting from the most similar element pair. Naturally, every next
element pair can only be selected for the result if it does not contain any
of the elements already selected before. The selection process terminates
if there are no more candidate element pairs, having similarity above the
defined threshold, which can be added to the mapping result. In the
result, an approximation of the globally optimal pairwise mapping
is constructed.

In the second step, the algorithm uses the prepared pairwise mappings
to construct the final mapping for all input variants. This is done by
iterative use of the Center Star method [Gusfield 1993], illustrated in
Figure 37 on the next page. For each input graph variant, a cost function
is calculated on all pairwise mappings involving that variant. In this way,
a single variant having the strongest connections to all remaining
variants is determined. Subsequently, the selected variant is used as the
star center, that is, for each of its elements an equivalence class is built
which includes the given element and all the elements from the other
variants which were mapped to it in the pairwise mappings (even if these
elements were not transitively mapped to each other). Hence, for n input
variants only the n-1 pairwise mappings involving the star center variant
are used to construct the equivalence classes. In this way, the use of the
Center Star method is a form of global optimization, as it selects the
pairwise mappings which lead to a better global mapping result.

Tenev’s
mapping
algorithm

 101

Variant Similarity Analysis with Hierarchical Set Similarity Models

Figure 37 The iterative Center Star method: in each iteration the star center variant is determined,
and its elements are mapped using the center’s pairwise alignments.

After every element from the star center was mapped, the process is
iteratively repeated: the pairwise mappings between the remaining
variants, reduced by removing the elements already mapped to the
previous star center, are again input to a cost function which determines
the next star center. After n-1 iterations all input variants are processed
and the mapping result is complete.

Note that the created equivalence classes can contain element pairs not
included in the pairwise mappings (due to a possible transformation of a
non-transitive relation graph into an equivalence class), while they might
also miss some of the previously identified element pairs. However, as
the element pairs are also constructed as a result of the tradeoff
between the local and global pairwise mapping optimums, some of the
pairs might also include two non-related elements or miss the related
ones. To measure the consequent result quality, the algorithm should be
therefore evaluated based on its final results, as discussed in Section 4.5.
We discuss the algorithm evaluation in Chapter 7, using the text-based
instantiation of the analysis approach.

As defined in Section 5.2, the mapping of n input structure trees onto each
other constructs a set model on the Structure Tree Elements, and
consequently determines the form of the unified content tree representing
the union of all input asset variants. The mapping only determines the
equivalences of Content-Filled Elements, as the Structural Containers are
always mapped to each other using the location identity approach.
Consequently, the mapping algorithms described above only construct the
correspondences for Content-Filled Elements, i.e. the code files.

Center Center

Center

102

Variant Similarity Analysis with Hierarchical Set Similarity Models

5.4.3 Definition of Atomic Content Element Equivalence Relation

After the structure tree elements are mapped to each other across the
analyzed variants, the atomic element set models are built. For reasons
analogical as in the case of tree elements, the identification of
corresponding atomic content elements can be performed based on the
similarity of their location and content. As the atomic elements represent
small pieces of asset content, which usually do not have a meaningful
internal structure, their similarity is frequently expressed in the binary
pairwise form. This observation applies also to the atomic element
analysis of our textual asset content decomposition, as described in the
next paragraph. Hence, in this subsection we discuss the algorithms and
approaches dealing with the construction of a set model based on binary
pairwise similarity provided for the asset content elements.

The file system based asset structure decomposition, used in our analysis,
treats the source code files as text and divides the file content into text
lines, which are the atomic content elements. Hence, the construction of
the set model requires finding the text lines which correspond to each other.
In the case of two analyzed files, the Longest Common Subsequence
(diff) algorithm is most frequently used for this task in the practice. The
text lines inside a file are ordered, and the result of diff is the longest list
of lines which exist in both given files and occur there in the same order.
Hence, we decided to create the text line set model based on the results
of the diff algorithm. Using other algorithms, such as e.g. searching for
similar text lines without considering their order, would also be possible.
We prefer diff however, as its results, such as e.g. “these lines occur one
after another in the second file, potentially with gaps”, are easier to
interpret and more meaningful for developers than the results of line
order independent algorithms, e.g. “each of these lines exists at some
unspecified place in the second file”. In subsection 5.4.4 we present an
approach for improving the results of diff with regard to the detection of
non-identical, but still similar, text lines.

Diff creates the text line similarity results in the binary pairwise form –
that is, it identifies the line pairs containing the same text, while the
remaining line pairs are considered dissimilar. The use of line ordering
information allows for an unambiguous assignment of lines to each
other, as required in our approach: even if multiple text lines identical to
the sought line exist in the counterpart file, only one of these lines,
determined by its location, is reported by diff in the resulting similar line
pair. Moreover, no similarities between the lines of the same file are
identified. Consequently, diff results constructed for a pair of files can be
interpreted as a group of equivalence classes defined on the input text
lines, and directly used to construct a set model for the input file pair.
Finally, the results of diff contain no false positives, as no two different
text lines are reported as similar.

Analogies to
the tree
structure
mapping

Algorithms for
the textual
content
decomposition

Properties
of diff

103

Variant Similarity Analysis with Hierarchical Set Similarity Models

Figure 38 Examples of non-transitive relation graphs constructed from the diff results.

In the general case of n input files, the relation graphs created by
2

)1(nn

pairwise diffs performed on these files are in over 99% cases transitive
(see Chapter 7). The transitive graphs can be directly reported as
equivalence classes. The remaining graphs of identified pairwise similarities
are not only non-transitive, but they can also include more than one line
originating from the same file (see Figure 38 for examples). These kinds of
input irregularities can also occur for other similarity identification
algorithms besides diff. Hence, in the general case an algorithm
constructing equivalence classes out of non-transitive relation graphs is
needed. The algorithm can optimize its result according to at least the
following four, partially conflicting criteria:

[OC1] Maximizing the amount of identified element pairs included in
the equivalence classes. For example, each line pair identified by diff
is correct, so they are all worth to be included in the result. However,
including all element pairs requires a transformation of non-transitive
relation graphs into equivalence classes, adding element pairs not
occurring in the input to the result. Also, the set model construction
principles forbid such transformation for graphs containing more
than one element originating from the same asset variant.

[OC2] Minimizing the amount of element pairs, which were not
included in the input, in the reported result. In particular, it is possible
to not include such pairs at all – in such a case, the equivalence
classes need to be built from transitive subgraphs of the input relation

1 A

1.txt

2 B

3 C

1 A

2.txt

2 B

3 D

4 E

5 C

1 A

3.txt

2 D

3 E

4 B

5 C

2.txt

2 B

3.txt

4 B

1.txt

2 B

1 A

1.txt

2 B

3 D

1 A

2.txt

2 B

3 D

4 C

1 A

3.txt

2 E

3 B

4 C

2.txt

2 B

3.txt

3 B

1.txt

2 B

4 E

5 B

6 C

5 B

Result
optimization
criteria

104

Variant Similarity Analysis with Hierarchical Set Similarity Models

graph. Below, we discuss various possible solutions to that problem,
following to a different degree the other optimization criteria.

[OC3] Maximizing the size of identified equivalence classes. Large
equivalence classes are interesting in the context of reuse migration,
as the code parts recognized as shared by many asset variants
indicate more reuse potential than the code parts recognized as
shared by only few variants. However, defining possibly large
equivalence classes might conflict with the other criteria.

[OC4] Minimizing the amount of identified equivalence classes might
also help express the reuse potential. The minimal size of the
constructed equivalence set union can be used to estimate the
maximal reuse potential of the input assets, achieved when each
equivalence class is transformed to a reusable content element.
Again, this criterion in some cases conflicts with the others, as
discussed below.

Simultaneous optimization for the criteria OC1 and OC2 is addressed by
existing algorithms for correlation clustering [Bansal 2004]. However, the
assumption A4, discussed in Section 4.3, states that high certainty results
should be preferred. Consequently, we decided to focus on the criterion
OC2, and only include these element pairs in the result which were
provided in the input while not allowing any other element pairs. Hence,
we deal with the problem of covering the input relation graph with
disjoint transitive subgraphs (cliques). Note that with that problem
definition, the further problem of only creating equivalence classes that
do not contain two elements from the same variant can be ignored –
such two elements are not connected with a similarity relation, so they
are never included in the same clique anyway. The clique coverage
problem can be solved in the following ways:

To optimize the criterion OC3, an algorithm searching for the
maximum clique can be applied iteratively on the relation graph.
Hence, the maximum clique possible for the given graph is found,
and the remainder of the graph is then covered with further disjoint
maximum cliques. Our implementation uses two variants of that
algorithm: a faster, approximated one and an exact one based on the
work of Tomita et al. [Tomita 2006].

Algorithms optimizing the criterion OC4, that is partitioning the input
graph into a minimal number of cliques, also exist [Tseng 1986].

The optimization of criterion OC1 involves determining a minimum
graph cut created by partitioning the graph into disjoint cliques. An
algorithm which can be used for that goal was developed by Ji and
Mitchell [Ji 2007].

Transitivity
algorithms
for relation
graphs

105

Variant Similarity Analysis with Hierarchical Set Similarity Models

Figure 39 Example relation graphs and their alternative solutions.

 Simultaneous optimization for multiple stated criteria is harder than
for a single one. The listed algorithms can produce several solutions,
which are equivalent from their criterion point of view but are not
equivalent according to the other criteria. Listing all solutions optimal
with regard to one criterion, and then selecting from them the best
choice with regard to another criterion, might be in some cases
a suitable strategy:

 All solutions provided in the bottom left corner of Figure 39
contain the minimum possible amount of 3 tuples, but the
solutions denoted with (2) and (3) contain a larger maximum
tuple and have a lower graph cut.

 Both solutions provided in the bottom right corner of Figure 39
contain the maximal possible clique of size 2, but only the
solution denoted with (1) is optimal with regard to the amount
of tuples and to the graph cut.

 However, there exist cases where achieving a solution satisfying all
three criteria OC1, OC3 and OC4 is not possible. Hence, a
prioritization of the criteria is necessary:

 Consider the upper left corner of Figure 39, where either the
two criteria OC1 and OC3 or the single criterion OC4 can be
fully optimized. The solution denoted with (1) contains the
minimal number of equivalence classes, as specified by the criterion
OC4, while the different solution denoted with (2) includes the
maximum sized equivalence class and has the minimum graph cut.

A B C

D E
F

A B C

D E
F

A B C

D E
F

A B C D E F

A B C D E F(1)

(2)

A B C D E F

(1)

(2)

A B

G

C

E

D

F
H

I
JK

L

(1)

(2)

(1)

(2)

A B C

D E
F

(3)

A B

G

C

E

D

F
H

I
JK

L

A B

G

C

E

D

F
H

I
JK

L
Cliques: 4
Max clique: 2
Graph cut: 6

Cliques: 5
Max clique: 4
Graph cut: 4

Cliques: 3
Max clique: 2
Graph cut: 2

Cliques: 4
Max clique: 2
Graph cut: 3

Cliques: 5
Max clique: 4
Graph cut: 8

Cliques: 4
Max clique: 3
Graph cut: 6

Cliques: 3
Max clique: 2
Graph cut: 4

Cliques: 3
Max clique: 3
Graph cut: 3

A B F

CH

E

D
G

A B F

CH

E

D
G

A B F

CH

E

D
G

 106

Variant Similarity Analysis with Hierarchical Set Similarity Models

In the upper right corner of Figure 39, the criteria OC1 and OC4
can only be achieved for non-maximal clique size (hence missing
the criterion OC3), while satisfying the criterion OC3 by creating
a maximal clique of size 4 leads to non-optimal solutions for the
other two criteria.

Finally, in some cases multiple solutions, optimal with regard to all
three criteria, can exist. For example, consider the solutions denoted
with (2) and (3) in the bottom left corner of Figure 39. In such a case, a
further criterion is necessary so that only one of these solutions is
consistently selected each time the given graph appears. We use a
prioritization of graph vertices, hence determining an order on them,
and select solutions where the larger tuples are created for vertices
having a higher priority. For example, if the vertex priority is noted
using the alphabetical order, solution (2) is preferred over (3) as vertex
C appears in the order before vertex F. In Chapter 6 we describe the
possibilities to provide a graph vertex order, solving the presented
choice problem, without violating the variant order independence
mandated by the construction requirements of our approach.

Applying the similarity data processing approach described above, in
Figure 40 we provide solutions for the non-transitive diff relation graphs
presented in Figure 38. The transitivity of diff-based input and the result
quality of the maximum clique algorithm are evaluated in Chapter 7.

Figure 40 Solutions provided for the relation graphs from Figure 38.

5.4.4 Discussion

In the previous subsections we presented a range of possible approaches
and algorithms for constructing an equivalence relation out of initially
non-transitive similarity data. The resulting equivalence relation differs
from the input data: edges are removed or added to the input similarity
relation graphs, and in the case of gradual similarity the input similarity
values are not part of the result. Naturally, the difference between the
originally detected similarity and the returned equivalence relation
should be minimized. The degree of that difference depends primarily on
the transitivity of the input data, and, to a lesser extent, is influenced by
the applied transitivity algorithm. Hence, the type of the analyzed asset,
and the definition of its structure decomposition which determines the
applicable similarity detection approaches providing the input data,
significantly influences the generally achievable quality of analysis result.

2.txt

2 B

3.txt

4 B

1.txt

2 B

2.txt

2 B

3.txt

3 B

1.txt

2 B

5 B

Context
factors in
transitivity
identification

107

Variant Similarity Analysis with Hierarchical Set Similarity Models

In a specific case, the degree of difference can also be higher for strongly
dissimilar input asset variants, for example extensively modified during a
long parallel evolution. In that case, the mapping algorithm might miss
some corresponding structure element pairs (e.g. if their similarity degree
falls below the acceptance threshold), and the corresponding atomic
content elements might also be more difficult to find. This might cause
an input relation graph to become non-transitive, despite an existence of
a corresponding element group, and consequently lead to further
element pair omissions during equivalence class construction. In any
case, even if the provided input is highly transitive, it is still necessary to
consciously select a transitivity algorithm suitable for the defined analysis
goals. As discussed in the previous subsection, the form of the created
equivalence classes and their difference to the input data can be
optimized towards various criteria, affecting the meaning and interpreta-
tion possibilities of the analysis result.

The form of presented mapping and transitivity algorithms is strongly
influenced by the analysis assumptions listed in Section 4.3. First, the
assumptions A1 (only considering similarity between the variants), A3
(one-to-one correspondences), and A5 (transitivity), fundamental for the
definition of the set similarity model, create the need for the presented
algorithms and specify the form of their results. Second, the assumptions
A2 (focus on high similarity input) and A4 (high result certainty) drive the
design choices made while defining the algorithm details. Because the
motivation of analysis assumptions, described in Section 4.3, also applies
to the consequent set model algorithm choices, we do not repeat the
respective discussion here.

In our opinion, the disadvantages of ignoring a reasonably minor part of
the similarity input during the construction of equivalence classes are far
outweighed by the benefits of using the set model in result analysis. We
provide a deeper discussion of that topic in Section 5.7 at the end of this
chapter, when the full benefits of the set model usage are already
described. Hence, in the remainder of this subsection we concentrate on
the properties of the textual, file system based asset decomposition, and
on its consequences for the similarity analysis.

The textual asset content decomposition, and the choice of the diff
algorithm as the basis for text line equivalence function, is motivated by
its generality and simplicity. Regarding generality, the content of a broad
range of asset types is physically stored in textual files, and can hence be
processed by the analysis instantiation. Diff is frequently sufficient in the
practice for comparing text-based files, even if their internal syntax and
semantics is complex: a notable example is the use of diff by most
configuration management systems for comparing versions and variants
of source code files regardless of their programming language.
Regarding simplicity, uniform processing of text line lists is much simpler
than dealing with various structures of asset type specific abstract syntax

Advantages
of textual
decomposition

The role of
analysis
assumptions

Focus on the
textual system
decomposition

 108

Variant Similarity Analysis with Hierarchical Set Similarity Models

trees, for example depending on the programming language.
Consequently, the analysis instantiation can focus on the aspects
peculiar to the set model construction.

Analogically, the decision to use a file system based asset structure
hierarchy is also motivated by the concerns of generality and simplicity:
file system hierarchies are commonly used, and the construction of other
possible structures (e.g. namespace hierarchies) would require deriving
semantic information from the file content, which is bound to a specific
asset type. To provide results consistent with the text-based definition of
file content similarity, the provided mapping algorithms, identifying
corresponding similar files, also use text-based file similarity measures
such as the Levenshtein distance.

Finally, the simplicity of the defined decomposition, the high detail level
of text analysis, and the use of well-known diff algorithm for similarity
detection are likely to help technical stakeholders in understanding the
analysis process and trusting its results. As discussed in Section 4.2, the
factors of understandability and trustability are important for every
reverse engineering technique.

Alternatively, clone detection could be used for the similarity analysis of
textual assets, as several text-based clone detection approaches exist
[Roy 2007]. In that case, the mapping could measure file similarity using
common clone coverage, and the atomic element similarity could be
built using code clones expressed as blocks of corresponding lines or
tokens. Furthermore, some clone detection approaches directly report
clone classes instead of pairs, eliminating the need for transitivity
algorithms. However, the clone classes cannot be used directly in the
construction of a set model, as they might overlap (i.e. two classes can
partially cover the same lines or tokens). Moreover, the overlapping
clone classes might cover different file variant groups, and overlap only
in some of the involved variants. Hence, compatible non-overlapping
clone class coverage needs to be constructed. To retain a possibly high
proportion of the input similarity data, the detected clone classes might
be cut into smaller parts, possibly having different similarity relation
graphs. Solving that problem is possible [Tenev 2013], but the involved
algorithms and the interpretation of the constructed result are more
complex compared to diff.

The main disadvantage of text-based processing, ignoring asset content
syntax and semantics, is the sensitivity to non-meaningful content
changes. First, the content can be textually modified without syntactic
changes, for example by adding whitespace characters or by changing
the location or amount of line breaks. Second, the content might be
modified to a syntactically equal form by renaming identifiers, changing
variable types, or moving a line group to a different location in the same
file. And third, a modification can replace the old content with a
functionally equivalent, but syntactically and textually different form.

Disadvantages
of textual
decomposition

Use of clone
detection
results

109

Variant Similarity Analysis with Hierarchical Set Similarity Models

We support diff in detecting part of the above changes by performing
user-configurable in-memory normalization of the input text. The
simplest form of normalization performs line content modifications such
as removing unnecessary whitespaces, character case normalization,
string replacement (e.g. based on user-provided equivalent identifier list,
such as compiler-specific keywords), and other rule-based replacements
such as comment removal. Hence, we extend the pairwise equivalence
relation implemented by diff, as the non-identical text lines which are
equivalent with regard to the normalization can also be found. Further
normalization includes filtering out unnecessary text lines such as empty
lines or identifiable code blocks (e.g. multi-line comments). Finally,
advanced normalization of the input code, involving parsing and syntax-
based transformations, can be performed by an external tool before
running the diff algorithm [Roy 2009b]. The advanced normalizations
used by Roy include pretty printing (nullifying the formatting
differences), normalization of identifier names and data types,
normalization of constants and literal values, and normalization of
expressions (e.g. arithmetic operator changes). In this way, most
categories of local code changes detectable by clone detection can be
neutralized. In result, after normalization the code affected by these
categories of changes is recognizable as similar by diff.

There are two prominent remaining change categories not addressed by
the normalization approach. First, due to the line order dependence of
diff, it is still not possible to recognize an unmodified code part which was
moved to a different location in the file. This problem could be mitigated
by the use of a differencing algorithm detecting block moves, such as the
algorithm of Tichy [Tichy 1984]. Second, the detection of code parts which
remain semantically equivalent despite modification is not possible with
the normalization approach, as it requires building a detailed, asset type
specific model of the analyzed source code functionality [Gabel 2008].
Despite these deficiencies, a diff-based similarity analysis provides
practically useful results, as reported in Chapter 7.

5.5 Visualization

Proceeding to the next phase of the analysis process, in this section we
define various visualizations of the information stored in a hierarchical
set similarity model. The defined visualizations are intended to support
the human analyst in navigating and understanding the provided
similarity information. As noted by Eick et al., visualizations of abstract
data (i.e. non-physical objects) require effective visual metaphors [Eick
2002]. Consequently, for the defined visualization concepts we discuss
the analysis support rationale that led to their presented form.
Accompanying the graphical visualizations, we also briefly describe the
tables and data exports which provide a textual view on asset similarity.

Extending diff
with code
normalization

110

Variant Similarity Analysis with Hierarchical Set Similarity Models

The visualization of a hierarchical set model needs to include at least two
basic views: a view presenting the similarity of a group of intersecting
sets, and a view on the system structure hierarchy. We describe these
views and their coupling in the following two subsections. Afterwards
we describe further visualizations, which are aimed at the distribution
analysis of similarity – either with the goal of understanding the
distribution in general, or supporting the identification of specific asset
elements interesting in the context of analysis goals. Finally, we present
two views on the set model information answering specific analysis
questions and visualized with phylogenetic trees: a dendrogram, which
clusters the variant asset sets according to their similarity, and a
cladogram which reconstructs their probable evolution history.

5.5.1 Set Bar Diagrams: Visualizing the Similarity of Multiple Intersecting Sets

The visualization of a set model should present the information about all
analyzed sets and their similarity (i.e. their existing intersections) in a
compact and understandable form. The most common method for
visualization of a group of intersecting sets is a Venn diagram
[Venn 1880], where the sets are presented as partially overlapping
shapes (see the left part of Figure 41). A Venn diagram for n sets
contains 2n-1 areas, corresponding one-to-one to all possible set
intersections. The diagram displays hence the complete information
about set similarity. Moreover, the set intersections which differ only by
adding or removing one set are adjacent on the diagram, so that all
intersections fulfilling a simple logical statement such as S1 S2 are
conveniently grouped.

Venn diagrams are intuitive and easy to understand for up to five sets,
but for a higher number of sets the exponentially growing number of
displayed diagram areas, and the need to use complex irregular shapes
instead of ellipses [Ruskey 2005], makes them complex and difficult in
interpretation. Furthermore, area-proportional Venn diagrams, visually
indicating the relative sizes of the set intersections, were only
demonstrated to exist for a low number of sets [Ruskey 2005], and the
presented intersections still have varying shapes which hinders the visual
comparison of their size. Finally, the fixed layout of adjacent set
intersections prevents visual grouping of the intersections according to
arbitrary criteria (consider e.g. a group of all intersections belonging to
exactly two sets). Euler diagrams, which are a variant of Venn diagrams
not displaying empty intersections, are slightly less complex for suitable
data sets, but otherwise share the listed disadvantages. As in the practice
an analysis of 20 or more cloned asset variants might be required, we do
not consider Venn diagrams and Euler diagrams to be suitable for the
defined application scenarios.

Venn diagrams
and their
properties

Disadvantages
of Venn
diagrams

111

Variant Similarity Analysis with Hierarchical Set Similarity Models

Figure 41 A Venn diagram for five intersecting sets (left) and the construction of a set bar diagram
for these sets: the intermediate form (top right) and the final diagram form (bottom right).

Therefore, we define a visualization of a group of intersecting sets in the
form of a bar diagram, which eliminates most of the above disadvantages
of Venn diagrams at the cost of displaying only a part of the available
information at a time [Duszynski 2010a]. The construction principle of a
set bar diagram is presented in Figure 41. A set bar diagram contains a
single bar for each of the n sets, which represents all set elements, and
one additional bar displaying the elements of the complete set union. All
the bars in the diagram have equal width, and the length of each bar is
proportional to the number of elements in the respective set. We
categorize the set intersections (or, equivalently, the set elements) into
three groups: core (belonging to all sets), shared (belonging to not all, but
more than one set) and unique (belonging to exactly one set). Each
element category is displayed in an own section of the bar, sized
in proportion to its cardinality, and indicated by a distinct color. In the
figure, the cardinality of each set or element category is indicated by a
number placed on or near the bar section. These numbers can also be
hidden in the diagram, and displayed in a tabular form instead.

Due to the size-proportional visualization, a set bar diagram provides a
quick overview of the amount of set elements falling into each of the
defined categories, as well as over the sizes of the analyzed sets relative to
each other and to the set union. The relative proportions of the three
element categories allow for an initial estimation of the reuse potential of
the asset parts represented by the displayed sets: a bar with a high core
element proportion indicates a high reuse potential, while a bar with a high
unique element proportion does not. The shared element category can be
suitable for reuse to a different degree, as it contains elements shared by 2
sets as well as by n-1 sets. Hence, the use of subset calculations is necessary
to retrieve more information about these elements.

CD

E

A

B

A1

B1

A6

A7

A2

A3A4
A5

A8
A9

B4

C4
D1

D7
D8
D9

E1

2 5 2

2 6

2 4 1

2 3 4

2 5 1

2 7 8

E

D

A

B

C

UNION

9

8

7

9

8

17

A2 A3 A4 A5 A6 A8 A9 A1 A7

A2 A3 A4 A5 A8 A9 B1 B4

A2 A3 A6 A8 A9 B1 C4

A2 A3 A4 A5 A6 D1 D7 D8 D9

A2 A3 A4 A5 A8 A9 B4 E1

A2 A3 A4 A5 A6 A8 A9 B1 B4 A1 A7 C4 D1 D7 D8 D9 E1

E

D

A

B

C

UNION

Core

Shared

Unique

Calculation

Set bar
diagram
visualization

112

Variant Similarity Analysis with Hierarchical Set Similarity Models

Figure 42 The visualization of an example subset calculation in the set bar diagram.

Consequently, a fourth category of subset calculation elements can be
built from the elements of the above three categories fulfilling a
provided logical condition, and displayed on the diagram on demand.
The visualization of a subset calculation, showing the set intersections
specified by a logical condition, can be dynamically overlaid over the bar
diagram as presented in Figure 42. Note that the subset calculation bar
section is contiguous, except for a case when it is split into two parts for
a calculation including core and unique elements, but only some or none
of shared elements. Furthermore, it is possible to use different colors to
visualize a group of subset calculations on the same diagram, as long as
they are disjoint. This can be done for example to indicate the categories
of elements shared by a different number of sets.

In the practice, gaining an overview of the similarity of a group of sets
typically requires displaying a group of bar diagrams, as each of the
diagrams contains only partial information about the sets – unlike a Venn
diagram, which shows the complete set similarity. However, a bar diagram
can be also constructed and understandably visualized for a high number
of variants, including a graphical indication of the relative sizes of the sets
and their intersections, which is not possible for Venn diagrams.

As the set bar diagram is based on the set similarity information only, it
can be displayed for any set model constructed by the analysis. Hence, for
any Structure Tree Element a bar diagram displaying the atomic content
model of the element, as well as a bar diagram of the structure tree set
model for the subtree rooted in the selected element, are available.

A2 A3 A4 A5 A6 A8 A9 A1 A7

A2 A3 A4 A5 A8 A9 B1 B4

A2 A3 A6 A8 A9 B1 C4

A2 A3 A4 A5 A6 D1 D7 D8 D9

A2 A3 A4 A5 A8 A9 B4 E1

A2 A3 A4 A5 A6 A8 A9 B1 B4 A1 A7 C4 D1 D7 D8 D9 E1

E

D

A

B

C

UNION

5 2 2

4 4

3 3 1

5 4

4 3 1

5 4 8

E

D

A

B

C

UNION

9

8

7

9

8

17

CD

E

A

B

A1

B1

A6

A7

A2

A3A4
A5

A8
A9

B4

C4
D1

D7
D8
D9

E1

A D

Visualization of
subset
calculations

Comparison
to the Venn
diagrams

Availability for
any set model

113

Variant Similarity Analysis with Hierarchical Set Similarity Models

5.5.2 Visualization of Set Similarity in the Asset Structure Hierarchy

During a similarity analysis, the visualization of the tree-based asset
structure hierarchy should enable the analyst to explore the structure
tree, recognize the elements which might be interesting in the context of
the analysis goals, and request details for these elements. To provide the
diagram space needed for displaying summarized similarity information
for each currently visible tree element, we use a simple tree structure
visualization inspired by UML package diagrams, which presents the tree
elements in the form of nested rectangles (see Figure 43). In the
visualization, each element rectangle is divided into up to three areas:
the name area displaying the element type and name, the similarity
information area described in more detail below, and, for Structural
Containers, the content area displaying the child tree elements. As
typical for tree-based visualizations, the non-leaf element rectangles can
be expanded, displaying their immediate children at the next tree level,
or collapsed, hiding all their children.

Figure 43 Hierarchy structure visualization showing similarity information for each displayed element.

The similarity information area provides a condensed view on the set
model of the given structure element. It displays a single similarity bar,
which is identical with the union similarity bar of the respective set bar
diagram. Hence, the proportion of core, shared and unique elements
indicates the overall similarity of the contained sets. As in the case of bar
diagrams, the similarity bar can also display the proportion of set
elements returned by a similarity calculation. Although the bar section
proportions are preserved in each similarity bar, the bars belonging to
different elements are drawn with the same size. The reason for that is
that vast differences in possible element set sizes can exist on the same
diagram, conflicting with the decision to use a fixed-size information
area. Hence, additional textual information is provided below the

src

4 1104

–

msg.c

4 88

io

4 290

–

A

buffer.c

4 117A A

funct.c

3 85A

A

core +

4 478A

data +

4 336A

UML-like
tree structure
presentation

Similarity
information
area

114

Variant Similarity Analysis with Hierarchical Set Similarity Models

similarity bar: starting from the left side, the number of analyzed sets
(i.e. element variants), the type of the shown set model (atomic or
structural), and the size of the contained set union are displayed. Hence,
an indication of the relative size of each element is provided, albeit not
in a graphical form.

The UML package tree structure visualization supports a top-down result
exploration approach, where the user can start at the highest structure
level and proceed stepwise to the details by expanding the elements that
exhibit interesting concentrations of similarity. For each element, further
similarity details are available on demand: all other types of diagrams
defined in this section, for example the bar diagram, can be displayed for
the selected element in a separate view. Moreover, the structure and
similarity information can be filtered and otherwise configured before
visualization. First, the displayed tree can include only elements fulfilling
a predefined condition, for example the elements existing in a certain
variant, having large sizes, or associated with a metric value above
certain threshold. Second, the displayed similarity information can be
based not on the set union, but on a specific variant set, and show the
similarity bars corresponding to that set. Finally, the provided area can be
used for displaying other information, for example the values of
element-specific metrics defined in Section 5.6. Hence, the information
display can be adapted to consider a specific analysis goal.

The chosen visualization approach, providing an equally sized
information area for each displayed element, allows for presenting a
group of metric values or a small diagram for each displayed element.
However, it causes the relative importance of the elements to be not
directly recognizable in the visualization, preventing a quick analysis of
similarity distribution. Furthermore, the structure diagram is less
understandable when showing a large number of elements. In the
subsection 5.5.3, we present two visualization approaches having the
opposite properties – they graphically show relative element importance,
also for a large number of elements, at the cost of providing only a
limited information for each single element.

Visualization of Code-Level Similarity

For the analysis of text files, a text editor displaying the similarity
information of individual atomic content elements (i.e. text lines) is
provided in addition to the diagrams (see Figure 44). The editor can be
started by selecting a file in the system structure diagram. In the editor,
the similarity category of each text line (core, shared, unique, calculation)
is indicated with line background coloring and a category icon – except
for lines which were ignored during the analysis and consequently do
not represent set model elements. For each line, a tooltip showing
similarity information details is provided on user demand. Hence, the
defined visualization mechanisms allow for accessing the set model

Visualization
approach
properties

Code level
visualization

 115

Variant Similarity Analysis with Hierarchical Set Similarity Models

based similarity information on any level of system hierarchy – from the
system structure root, representing the complete asset, down to every
single atomic content element.

Figure 44 Visualization of code-level similarity with line background coloring, category icons, and
on-demand details.

5.5.3 Visualization of Similarity Distribution

The UML package tree structure visualization allows for navigating the
system hierarchy towards the elements that exhibit interesting
concentrations of similarity. Particularly, a non-leaf tree element can only
contain a high proportion of similar code if the majority of its child
elements are likewise composed of predominantly similar code. For
example, the core source folder displayed in Figure 43 only contains about
20% of non-core code. Hence, any of its child elements can only contain a
low amount of such code, and the proportion of non-core code can only
be high for small elements. However, the interactive exploration approach
requires the user to traverse the structure tree, collect the similarity
information, and reason about the relative element importance. In the
process, some high similarity elements located together with groups of
low similarity siblings can be overlooked, as their parent tree element
exhibits a low overall similarity. Furthermore, estimation of similarity
distribution inside a yet unopened tree branch is not possible. Hence, it is
for example not known whether the contained atomic core elements are
distributed proportionally among all child elements, or strongly
concentrated inside just a few of them. To counteract the above
deficiencies, we provide two visualizations of similarity distribution which
do not require hierarchy traversing: a distribution diagram and a tree map.

A distribution diagram for a given Structure Tree Element is constructed
using the union similarity bars of all Content-Filled Elements located in
the selected subtree (see Figure 45). The similarity bars are drawn
vertically and placed next to each other. All bars are displayed with equal

Line
background
coloringLine

category
icon

On-demand
line status

information

Filtered out lines:
no coloring

Status bar
summarizing all
lines in the file

Assessing
similarity
distribution
using package
view

Similarity
distribution
diagram

116

Variant Similarity Analysis with Hierarchical Set Similarity Models

height, still keeping the relative proportion of each similarity category in
the bar, while the size of the respective element set is indicated using its
width. Hence, the total width of the distribution diagram corresponds to
the set union size of the selected Structure Tree Element whose children
are displayed, and the area occupied by each element category on the
whole diagram is proportional to the cardinality of that category. The
bars building the similarity diagram can be sorted from left to right
according to various criteria, e.g. the proportion of contained core code
or the size of their element set. The sizes of presented elements can be
either displayed individually, or, as in Figure 45, successively added to
indicate the cumulative code size of all elements between the left
diagram edge and the current position.

Figure 45 Distribution diagram visualization: the illustration of the construction principle, created for the io
folder from Figure 43 (left), and a diagram screenshot for a large industrial system group (right).

The distribution diagram has two basic usage scenarios. First, large
structure elements containing e.g. strongly similar or dissimilar code can
be visually identified based on their width, without the need to browse
structure hierarchies. Second, the border lines separating the bars on the
diagram can be hidden (see the right part of Figure 45). In that case, the
similar code areas shown in the diagram present curves of total similarity
distribution inside the selected structure element. The analysis of these
curves might help in estimation of the reuse potential and in the size
assessment of element groups having certain degree of similarity. For
example, in the right part of Figure 45 the files containing 100% core
code, grouped near the left edge of the diagram, constitute about 5%
of the total code base, and the files containing 90% or more core code
constitute about 15% of the shown code. Hence, the example analyzed
systems contain about 300 KLOC of code which can be transformed to a
reusable form with a likely low effort.

Another visualization technique supporting a quick identification of
characteristic tree structure elements is a tree map [Bederson 2002].
A tree map displays all elements of a tree at once (see Figure 46). The
structure elements are visualized as rectangles, nested according to the
tree hierarchy, and having areas proportional to their cumulative element
size. Hence, a non-leaf element occupies exactly the same area as all its
children, which are overlaid over it. Furthermore, each rectangle can be
colored according to a metric value associated with the tree element.

msg.c

88 205 290

buffer.c funct.c
0%

50%

100%

file size

%
 c

o
d

e

Tree map
diagram

117

Variant Similarity Analysis with Hierarchical Set Similarity Models

Figure 46 Tree map visualization: the illustration of the construction principle, created for the src folder
from Figure 43 (left), and a screenshot for a code folder from three BSD systems (right). The
color intensity shows the proportion of core code in the set union of a given element.

Hence, a tree map integrates the display of the system structure hierarchy,
the relative element sizes, and an additional metric value shown for each
element. In this way, it supports quick identification of elements with
unusual sizes, unusual metric values, or both, while also indicating
whether these elements are located nearby in the system structure.

In our visualization, the size of the set union is used as displayed element
size, and the elements are grouped according to the system hierarchy.
The third category of visualized information, i.e. the metric, allows just
for color-coding single values of enumerative or numeric type. Hence,
the displayed element color can indicate either the proportion of a
certain code category (core, shared, unique, calculation) in the total
union code of the element, or it can be used for displaying other metrics
such as those defined in Section 5.6. However, the tree map is not
suitable for presenting values of more than one metric for the structure
elements [Bederson 2002], which is a disadvantage when compared to
the fixed-size package visualization.

As in the case of package system hierarchy visualization described in
subsection 5.5.2, the input similarity information displayed in the
distribution diagram and the tree map can be configured to reflect a
specific analysis goal. Hence, these visualizations support presenting
filtered or variant-specific perspectives on the analysis models.

A distribution diagram presents a compact high-level abstraction of the
overall similarity distribution inside the selected subtree of the system
hierarchy. Hence, it is suitable for gaining an initial overview of the
distribution. The tree maps, on the other hand, are suitable for finding
elements or element groups having a high value of the displayed metrics,
e.g. reflecting the element variant similarity. However, both these

io/buffer.c
(117)

io/msg.c
(88)

io/
funct.c

(85)

data/struct.c
(133)

data/list.c
(130)

data/customer.c
(73)

core/main.c
(259)

core/run.c
(119)

core/calc.c
(100)

Using tree map
for similarity
analysis

Properties of
different
diagram types

118

Variant Similarity Analysis with Hierarchical Set Similarity Models

visualizations, due to displaying all hierarchy elements at once, can only
present low amount of information for each element. Consequently, we
see these diagrams as complementary to the UML-like package hierarchy
visualization, as each of them provides a different perspective on the
hierarchical set similarity model. Finally, presenting the similarity
information of all elements in a tabular form, filtered and sorted
according to user-specified criteria such as the proportion of core code,
provides yet another perspective on the code similarity. While the tabular
form misses most of the graphical visualization advantages, it can be
used in a fashion similar to a database and quickly provide lists of sought
elements, such as e.g. the files with the highest core code proportion.

5.5.4 Size-Preserving Set Intersection Visualization

The tree map visualization exhibits three properties which are not
sufficiently supported by Venn and Euler diagrams. First, it presents a
high number of diagram areas in an understandable way. Second, it
graphically indicates the relative area sizes, which allows for quick visual
identification of the largest areas. And third, it uses similar shapes for the
shown areas, which facilitates their visual comparison.

During a set model based similarity analysis, it is interesting to identify
and compare the size proportions of the content element sets and their
intersections. Hence, to support that analysis, we exploit the tree map
advantages listed above by defining a tree map set diagram (see Figure
47). In the diagram, the tree map areas are used to display set
intersections instead of showing structure hierarchy elements. The name
of each area indicates its membership in the input sets (in Figure 47 we
use binary name coding for readability), and the area size corresponds to
the cardinality of the associated set intersection. Consequently, the
empty intersections are not displayed, analogically as in an Euler diagram.

Figure 47 A Venn diagram for four industrial system variants, indicating the intersection sizes (left).
The same intersecting sets visualized using a tree map set diagram (right).

S1

S2 S3

S4

663 618

18 679
54 964 171 573

99
893

914

104
887

193
502

15 738 8 162

561
999

237
799

53 346

3 417
23

257
bit coding

S1S2S3S4
1 1 1 1

0001
(193 502)

0100
(54 964)

0010
(171 573)

1000
(104 887)

1101 1110 0111

1010
(561 999)

0101
(237 799)

1100
(99 893)

1001
(53 346)

0110

1111
(663 618)

Advantages
of tree maps
compared to
Venn diagrams

Tree map set
diagram

 119

Variant Similarity Analysis with Hierarchical Set Similarity Models

Figure 48 Example hierarchy structures, created for four sets, which can be used in a tree map set diagram.

The standard tree map visualization utilizes the system structure
hierarchy to graphically group the elements which are located in the
same structural container. This property can also be used to facilitate the
understanding of the tree map set diagram. Naturally, a group of
intersecting sets does not specify a hierarchical structure. However, a
tree map cannot preserve the adjacency-based layout of a Venn
diagram, which groups all intersections belonging to a given set in a
contiguous area. To partially compensate for this disadvantage, an
artificial structure can be defined on the set intersections: for example,
all intersections fulfilling a specified condition can be grouped together
in a structural container. Figure 48 presents three example definitions of
a tree map set structure hierarchy. The first structure, grouping the
intersections shared by a specific amount of sets, is used in Figure 47.

Furthermore, the tree map area color can also be used to support the
diagram understanding. In Figure 47, we reuse the set element category
colors to emphasize the structure hierarchy and create a visual reference
to the coloring used in other diagram types. Naturally, as in the case of
the typical tree map visualization, the element color can also be used to
indicate the value of any other metric.

The tree map set diagram is in the practice suitable for visualizing code
similarity of even 20 to 30 asset variants. Although 30 sets can in theory
create over 109 intersections, the amount of non-empty intersections
cannot be larger than the cardinality of the set union, as each such
intersection contains at least one union element. Moreover, the existence
of set intersections having high cardinality, frequent in the case of cloned
asset variants, further limits the possible amount of remaining intersections.

All

Shared by 4
1111

Shared by 3
1110
1101
1011
0111

Shared by 2
1100
1010
1001
0110
0101
0011

Shared by 1
1000
0100
0010
0001

Shared by exactly k

All (Shared by at least 1)

Shared by at least 3
1110
1101
1011
0111

Shared by at least 2
1100
1010
1001
0110
0101
0011

Shared by at least k

1000
0100
0010
0001

Shared by at least 4
1111

All

True
1111
1101
1011
1001

False
1110
1100
1010
1000
0111
0110

Condition (S1 S4)

0101
0100
0011
0010
0001

Grouping set
intersections
with the tree
structure

Use of diagram
area color

Visualization of
a large amount
of sets

120

Variant Similarity Analysis with Hierarchical Set Similarity Models

In our experience, the analyzed asset element sets rarely create more than
100 000 set intersections, and the visualization of that amount of areas is
possible with the available tree map drawing tools. Finally, due to the size
proportional visualization of a tree map, the small set intersections
containing just a few elements are displayed as a single point or
completely disappear from the diagram, and large groups of such small
intersections are shown in the tree map as “boxes of sand” – areas densely
filled with point-sized fragments, with visually recognizable summary size.
Hence, typically a few hundreds of the largest set intersections remain
identifiable on the diagram, which is sufficient for the analysis goal.

The relation between the bar diagram and the tree map set diagram is
analogical as the relation between the similarity distribution diagram and
the structure tree map. While the bar diagram shows a compact high-
level abstraction of the set similarity, providing an initial overview, the
tree map set diagram delivers a detailed indication of the most relevant
set intersections. Hence, these two diagrams are based on the same
similarity information, but respond to different analysis needs.

The tree map set diagram allows the human to identify the most relevant
set intersections and subsequently formulate subset calculations to verify
the assumptions about overall set similarity. The results of the specified
subset calculations can be in turn visualized in other diagrams, such as the
package hierarchy diagram and the structure tree map, to provide the
information about relative distribution of the calculated element
categories in the system structure hierarchy. In this way, the visualizations
defined up to the present point provide two complementary perspectives
on the asset similarity, focusing either on the similarity of element sets, or
on the projection of that similarity onto the asset structure.

5.5.5 Similarity Visualization with Phylogenetic Trees

The information stored in the set model can be used to answer a range
of questions regarding the relative similarity of the input asset variants.
For the frequent questions, it is worthwhile to automate the typical user
steps leading to an answer and define suitable answer visualization. We
define two such visualizations, based on phylogenetic trees, in a joint
work with Vasil Tenev [Tenev 2012].

Similarity Clustering of Element Sets

A frequent analysis concern is the identification of input variant pairs or
groups which exhibit particularly high similarity. To automate the search
for similar variant groups, similarity based clustering of the variant sets
needs to be constructed and visualized. Dendrograms are a form of
phylogenetic trees frequently used for this purpose. Hence, we construct
a dendrogram using the set similarity information as input.

Relation to the
bar diagram

The set-based
and structure-
based
perspective

121

Variant Similarity Analysis with Hierarchical Set Similarity Models

Figure 49 Dendrogram constructed for the full source code of six BSD systems [Tenev 2012]. The location
of branching points corresponds to the similarity of the respective tree branches.

A dendrogram visualizes the input asset variants as branches of a tree
(see Figure 49). The construction algorithm starts from the top of the
tree, where all the branches exist separately. In each iteration the
algorithm finds two most similar branches and merges them, indicating
their relative similarity with the location of the drawn merge point.
Finally, only the tree trunk remains and the clustering is complete.

The constructed tree visualizes the identified variant groups, using the
branch layout, and indicates the relative similarities between and within
the groups, using the branch length. Hence, an analyst can intuitively
identify the similar variant groups, as well as the outlier variants with low
similarity (for example, see the outlier 386BSD 0.1 system in Figure 49).
Moreover, it is simple to assess whether the similarity of a variant group
is high enough for the analysis goal. A dendrogram can also be a
convenient starting point for formulating subset calculations,
subsequently visualized in other diagrams.

The dendrogram construction algorithm is based on the pairwise similarity
distance between the tree branches. Hence, the information stored in a
set model is sufficient for tree construction, and the dendrogram can be
drawn for any set model, available on any structure hierarchy level in the
analysis results. However, as discussed in Section 4.2.2, the pairwise
similarity information does not adequately reflect all details of the similarity
arrangement between the input sets. Moreover, several algorithms for
branch weighting exist. The calculated weighted similarity of two groups
can hide much higher or lower similarity values existing between some of
member variants, depending on the algorithm. Finally, two variants with a
minimally lower similarity value can be assigned to two different clusters, if
only other variants having minimally higher similarity to these variants
exist. Therefore, a dendrogram provides a helpful indication of the general
clustering tendency between the input variants, but the gained insights
need to be verified using more precise analysis means such as the
quantitative results of the respective subset calculations.

0% 100%

FreeBSD 2.0.5

NetBSD 1.1

NetBSD 1.2

OpenBSD 2.0

NetBSD 1.3

386BSD 0.1

Dendrogram
construction

Interpretation

Possible
inconsistencies

122

Variant Similarity Analysis with Hierarchical Set Similarity Models

Similarity-Based Reconstruction of Probable Evolution History

Another analysis concern, particularly relevant for asset variant groups
having a long evolution history, is the identification of evolutionary
relationships between the variants. Reconstruction of the past history of
variant cloning can provide important indications for subsequent reuse
migration decisions, regardless of the current variant similarity:

Estimation of the degree of change, experienced by a given variant
after the cloning, indicates the intensity of past maintenance
activities. Reuse introduction is more profitable for variants
experiencing intensive maintenance, as the reuse reengineering
investment pays off faster in their case.
It is helpful to identify whether the input assets group contains only
variants, developed in parallel, or if some of them are in fact asset
versions, developed one after another. In the embedded systems
domain, many versions of the same asset variant might need to be
maintained, as the customers using the earlier versions might
demand bug fixes while rejecting major version updates. However, in
most cases only the latest version of a given variant is relevant for
reuse migration – the maintenance of the earlier versions is typically
either planned to cease in the near future, or requires only a low
effort compared to the new version development.

As discussed in Section 4.1, the versions of an asset form a time-ordered
list, while the variants are developed in parallel and cannot be ordered
using an objective criterion. This property is also reflected in the similarity
existing in a group of versions as compared to a group of variants: versions
are similar to each other in a different way than variants. The last existing
version k is typically the most similar to version k-1, a little less similar to
version k-2, and so forth – the time ordering of versions can be hence
reconstructed based on their similarity. In contrast to that, the similarity of
variants is much more symmetrical and cannot be reduced to a linear form.

Figure 50 depicts an example of a set similarity model for three variants
and three versions, using area-proportional Venn diagrams. The version S1
was developed as the first, and the version S3 as the last. Consequently,
they are less similar to each other than to the intermediate version S2.
Furthermore, their set model is also characteristic, as explained by the
evolution-based interpretation of the particular set intersections:

The intersection S1 S2’ S3 represents code that existed in version S1,
was removed in S2, but was again added in S3. This is not typical, as the
majority of code which was once removed does not appear again in
subsequent versions. Consequently, this set intersection is very small.

Similarly, the intersection S1’ S2 S3’ represents temporary code, added
in S2 but removed in S3. Again, this intersection is relatively small.

In contrast to that, the intersection S1’ S2 S3 is much larger, as it
represents the code added in version S2 which remained in use in S3.

The role of
evolution
history
information

Differences
between
version and
variant
similarity

123

Variant Similarity Analysis with Hierarchical Set Similarity Models

Figure 50 The similarity of a group of versions (left) as compared to a group of variants (right).
The drawn Venn diagrams are area-proportional, i.e. the size of an area indicates its cardinality.

In contrast to the set model of versions, the model constructed for
variants is much more symmetrical due to their parallel evolution. For
example, in Figure 50 the set intersections S1 S2 S3’, S1 S2’ S3 and
S1’ S2 S3 have comparable sizes. While the set model of versions can be
linearized by filtering out the set intersections having negligible sizes, this
is not possible for the set model of variants. Hence, this property can be
used to distinguish asset variants from versions.

We use the set model information to identify the evolutionary
relationships among a group of input asset variants (or versions) by
constructing a cladogram, which is a type of phylogenetic tree designed to
visualize this type of information (see Figure 51). We start by filtering out
all set intersections with cardinality falling below a defined threshold – by
default, 1% of the union code size. Then, we construct a Hasse diagram
of the remaining intersections and lay out the diagram as a tree, with
branch lengths proportional to the sizes of particular intersections.

Figure 51 Cladogram constructed for the full source code of six BSD systems depicted in Figure 49 [Tenev
2012]. The length of branch sections is proportional to the amount of common or unique code.

S1 S2

S3

S1 S2

S3Old code existing in S1,
but removed

when developing S2

Versions

Code existing in S1,
removed in S2,

added again in S3

New code added
when developing S3

Temporary code,
added in S2

but removed in S3

Variants

dist(S1, S2) << dist(S1, S3)

dist(S2, S3) << dist(S1, S3)

dist(S1, S2) dist(S1, S3)

dist(S2, S3) dist(S1, S3)S3S1

S2

S3S1

S2

386BSD 0.1

NetBSD 1.1

NetBSD 1.2

OpenBSD 2.0

NetBSD 1.3

0 3 253 502 LOC

FreeBSD 2.0.5

Cladogram
construction

 124

Variant Similarity Analysis with Hierarchical Set Similarity Models

In most cases, the Hasse diagram can be unambiguously reduced to a
tree, although sometimes a higher value of the filtering threshold might
be needed to remove further intersections. If the transformation is not
possible, the alternative solutions can be displayed as parallel, alternative
tree branches, hence proposing more than one tree location for a given
variant. The existence of alternative tree branches indicates that the
involved assets are variants which contain large code parts shared by
some, but not all of the parallelized variants. This can happen for
example if significant code parts were exchanged between the variants
not having a direct common cloning ancestor.

The cladogram construction algorithm assumes that the software grows
with time, i.e. a later software version contains more code than an
earlier one. In most cases, this assumption is correct (see for example the
three consecutive versions of the NetBSD system in Figure 51), although
the opposite case of shrinking software can also exist. Moreover, in
some cases the difference between two analyzed variants or versions can
be smaller than the defined set intersection filtering threshold. In such a
situation, these assets are represented by a single tree location, labelled
accordingly with both asset names.

The cladogram helps to distinguish asset versions from variants, and
indicates the relative changes between them. However, as already
discussed in Sections 4.1.1 and 5.4.2, the similarity of asset variants and
versions might not always correspond to their real evolution history. For
example, the system OpenBSD 2.0 branched off from NetBSD 1.1 (see
Figure 2), and not from NetBSD 1.2 as indicated in Figure 51. Hence, the
information displayed by a cladogram should be mainly used as an
approximation of the evolution history when a reliable history record
cannot be provided from other sources. Analogically, the similarity
distance between two variants should not be confused with their
maintenance intensity, as different variants might have different
evolution paces. Instead, the maintenance intensity of a given variant
should be estimated by comparing the degree of change with the length
of time period a given variant exists.

5.5.6 Discussion

The visualizations presented in the current Section can be assigned to
three categories: visualizations of set similarity (set bar diagram, tree map
set diagram), projections of the set similarity onto the system structure
(package hierarchy diagram, code similarity view, distribution diagram,
tree map), and visualizations peculiar to a specific analysis question
(dendrogram and cladogram). The visualizations present the hierarchical
set model from various complementary perspectives, and are available for
any set model existing at any level of the system structure hierarchy.

Interpretation

Visualization
categories

125

Variant Similarity Analysis with Hierarchical Set Similarity Models

The set similarity and system structure visualizations can be modified by
the use of subset calculations, visually emphasizing the set elements
fulfilling a specified logical condition. Furthermore, the similarity
information used in the system structure visualizations can be filtered,
displaying e.g. only the structure elements having specified sizes,
similarity properties, or variant membership. Hence, a specific diagram
type can be used many times, also in an interactive way, to display
different perspectives on the input asset variant similarity.

The visualized information can be alternatively provided in a textual,
tabular form. For example, the bar diagram section cardinalities, lists of
hierarchy elements with associated similarity information and metric
values, and even the complete table of all identified element equivalence
classes can be displayed, exported, and processed with external tools
such as spreadsheets and databases. This enables the user to filter and
sort the information according to further criteria, also these which are
not supported in the defined visualizations.

Visualization of analysis results needs to comply with the same principles
and construction requirements as the analysis algorithms themselves. In
particular, the discussed diagrams were defined according to the analysis
construction requirements described in Section 4.2:

Complying with the requirements C1 (commutativity) and C2
(associativity), the visualizations do not distinguish any of the input
variants and treat all of them with equal importance, unless specified
otherwise by the user.

Information on all possible combinations of the variant intersections
is available (requirement C3), and it is provided on any system
hierarchy level down to the single atomic content elements
(requirement C5 – traceability).

The requirement C4 (information detail level) is achievable if the asset
structure decomposition distinguishes sufficiently detailed atomic
content elements. With this condition fulfilled, the defined
visualizations comply with the requirement C4.

The requirement C6, i.e. a result abstraction defined in a uniform and
scalable way regardless of the analyzed asset size and the number of
analyzed asset variants, is supported.

Indication of the relative size of variant sets and their intersections
(requirement C7) is supported.

Further visualizations of the hierarchical set similarity model information,
for example using statistical graphics techniques such as histograms or
scatterplots, can be defined. These diagram types could extend the
available perspectives on the set similarity, supporting the identification of
tendencies and correlations or the search for outlier elements. In the
future work we intend to investigate the further possible visualizations and
evaluate their resulting usefulness for the similarity analysis.

Customizable
and interactive
diagrams

Tabular
information
export

Realization of
the construction
requirements

Further
diagram types
for set models

126

Variant Similarity Analysis with Hierarchical Set Similarity Models

5.6 Metrics

The set model provides detailed information on input asset variant
similarity, which can be used in the context of the defined application
scenarios. The provided information is quantitative, and calculations
performed on that information such as e.g. the calculation of core content
proportion can be used to select the asset elements suitable for the
analysis goal. However, in some cases the set model information needs to
be further examined to provide a more precise basis for result
interpretation and reuse migration decisions, or to otherwise characterize
the set model and the system structure. Consider the following examples:

For a given source code file, containing e.g. 50% core code, the
estimated migration difficulty might depend on the distribution of
that code inside the file. A code composed of a single block, covering
50% of the file, is likely easier to migrate than strongly fragmented
core code located in every second line of the file.
Analogically, a file where the code belongs to many different set
intersections might be more difficult in the migration than a file
containing a low amount of intersections, despite the same degree of
overall similarity existing in both files.
The same observations apply to the higher structure level of source
folders and whole assets. For example, an asset containing 50% core
code, strongly concentrated in just a few files, might be easier to
migrate than an asset where the core code is distributed
proportionally and fills 50% of each code file.

Consequently, we define a group of metrics, characterizing the
fragmentation and distribution properties of the hierarchical set model,
which are intended to support the reuse decisions by providing additional
relevant information. Based on the metric calculation basis, we divide the
metrics into three categories: metrics characterizing a group of intersecting
sets, metrics characterizing the distribution of these sets in the structure
hierarchy, and metrics specific to the textual file system based asset
decomposition. For brevity, we only catalogue and discuss the primary
metrics, i.e. the metrics calculated directly on the model information.
Naturally, in the analysis the metric values can be further combined, and
their values can be aggregated (e.g. as the average or extreme values) and
related (e.g. as values relative to element size or other metrics). The values of
all three metric categories can be visualized on the structure diagrams
described in the previous Section. The metric values can also be exported in
a tabular form, processed (sorted, filtered) with external tools, and visualized
with other diagram types such as histograms and correlation charts.

Let’s denote the amount of analyzed variants as N, the variant sets as Si
(where 1 i N), the equivalence set union for the sets Si as U, the set
of all equivalence set intersections for the sets Si as P, and the set of all
elements of unified structure tree as T. Using that notation, in Table 7
we define four metrics characterizing a group of intersecting sets.

The need for
model metrics

Three metrics
categories

The set metrics

127

Variant Similarity Analysis with Hierarchical Set Similarity Models

Metric Calculation Formula Value Range
Number of Non-Empty
Set Intersections (NNESI)

Count the intersections:
card ({p P : card(p) > 0})

1..2N-1

Size of the Largest
Intersection (SLI)

Select the largest intersection:
MAX(card(p P))

1..MIN(card(Si))

Entropy of the Set
Intersection Sizes (ESIS)

[p P](– (card(p)/card(U)) /
log2(card(p)/card(U)))
Normalized: ESIS / log2(2N-1)

0..log2(2N-1)
Normalized: 0..1

Relative Set Union Size
(RSUS)

([i=1..N] card(Si)) / card(U)
Normalized: (RSUS-1) / (N-1)

1..N
Normalized: 0..1

Table 7 The metrics characterizing a group of intersecting sets

Number of Non-Empty Set Intersections expresses the amount of
different intersections which need to be considered to fully cover all
content elements. A high number of intersections indicates a relatively
higher complexity of the similarity arrangement and a higher migration
effort, as each intersection potentially needs to be dealt with separately.

Size of the Largest Intersection is also relevant for the estimation of
migration effort. In case even the largest set intersection is relatively
small, the variant code is strongly fragmented between different
intersections and hence more complex from the reuse point of view.

Entropy of the Set Intersection Sizes measures the relative distribution
of content elements among the set intersections using the Shannon
entropy [Shannon 1948]. The calculated entropy value equals 0 if all
elements belong to just one intersection, and achieves the maximal
value if the elements are distributed evenly, i.e. every set intersection
has the same size. The metric can consider either all 2N-1 set
intersections, or only the non-empty ones – naturally, this needs to
be indicated when reporting the metric value. A variant code
concentrated in just a few set intersections, i.e. having a low entropy,
is likely easier to transform into a reusable form.

Relative Set Union Size (RSUS) describes the theoretical reuse potential
of the analyzed sets, achievable when each equivalence class is
replaced by a single, reusable content element. The metric expresses
the maximal factor of the input content size reduction achievable
through reuse – hence, the higher values indicate more reuse potential.
The minimal RSUS value of 1 is only achievable for completely disjoint
input sets, containing only unique elements, while the value of N
indicates that each element of the N input sets is a core element. Note
that the RSUS metric is also influenced by the shared content
elements and the amount of sets these elements belong to.

The set metrics defined above can be applied to any group of
intersecting sets – for example, the metrics values can be listed for the
content sets of all hierarchy structure elements in order to support the
identification of the elements interesting for further analysis. The above
metrics are equally applicable to the atomic content element sets as well
as to the sets containing the structure tree elements.

128

Variant Similarity Analysis with Hierarchical Set Similarity Models

Metric Calculation Formula Value Range
Structure Elements
Containing the
Intersection (SECI)

Given p P, count the structure
elements containing p:
card({t T : card(p in t) > 0})

0..card(T)

Intersection Entropy in
the Tree Structure (IETS)

Given p P and denoting (p:t) as the
proportion of p in the content of t:

[t T](– ((p:t) / [t T] (p:t)) /
log2((p:t) / [t T] (p:t)))
Normalized: IETS / log2(card(T))

0..log2(card(T))
Normalized:

0..1

Table 8 The metrics characterizing the distribution of the variant sets in the structure hierarchy

In Table 8 we define two metrics characterizing the distribution of the
intersections of atomic content sets in the structure hierarchy. Both these
metrics are calculated for a specified set intersection – it can be a single
intersection, as well as a group of such intersections selected by a subset
calculation. Because only Content Filled Elements contain the atomic
content elements, the Structural Containers are not included in the
calculation of the metrics value. The distribution metrics can be calculated
for all Content Filled Elements in a tree, or for a specific selection of them,
for example for the elements located in a given tree branch.

Structure Elements Containing the Set Intersection counts the
Content Filled Elements in which at least one atomic content element
belonging to the given intersection is contained.

Intersection Entropy in the Tree Structure measures the relative
distribution of the intersection elements in the structure tree. The
entropy value equals 0 if the intersection only exists in one Content
Filled Element, and achieves the maximal value if the intersection is
distributed evenly, i.e. the atomic intersection elements proportionally
fill the content of all tree elements. The calculation uses the relative
proportions of the intersection size (p:t)/ [t T] (p:t), and not the
absolute cardinalities card(p in t)/card(p). The reason for that is that
Content Filled Elements have different sizes themselves. In case the
specified intersection has equal absolute cardinalities in the Content
Filled Elements having different sizes, these elements are filled with
the intersection content to a different proportion, and the
intersection is hence not distributed evenly.

Generally, set intersections having lower SECI and IETS values are
concentrated and located in only a part of the asset, and might be
therefore easier to manage in reuse migration.

Finally, in Table 9 we define three metrics which are specific to the textual
file system based asset content decomposition. In that decomposition, the
content lines in text files are ordered, and their order is meaningful for the
application scenarios as the small functionality fragments (e.g. methods)
are implemented using consecutive code lines. The fragmentation of the
text line list with regard to the similarity information is therefore relevant
for the assessment of reuse migration or parallel maintenance difficulty.

Set distribution
metrics

Textual
decomposition
metrics

129

Variant Similarity Analysis with Hierarchical Set Similarity Models

Metric Calculation Formula Value Range
Number of Fragments
(NF)

Count the fragments:
card(Fi)

1..card(Si)

Size of the Largest
Fragment (SLF)

Select the largest fragment:
MAX(card(f Fi))

1..card(Si)

Fragment Entropy (FE)
[f Fi](– (card(f)/card(Si)) /

log2(card(f)/card(Si)))
Normalized: FE / log2(card(Si))

0..log2(card(Si))
Normalized: 0..1

Table 9 The metrics characterizing similarity distribution in the textual file content

Consequently, in the defined metrics we use the concept of a fragment,
which is a group of consecutive lines belonging to the same set
intersection. Each file can be unambiguously divided into such fragments,
and there exists at least one fragment in each file. In the case of the set
union, the file fragments do not exist physically. Hence, the above metrics
are calculated separately for the elements of each variant tree, and their
values for the union tree are provided as the maximum or minimum of the
variant values, depending on the analysis goal. In Table 9, we denote the
set of all fragments located in the files belonging to the considered variant
structure tree or a tree branch as Fi. The defined metrics are:

Number of Fragments counts the fragments existing in a given file. For
a folder, it reports the sum of fragment counts of the contained files.

Size of the Largest Fragment reports the largest fragment in a file. For a
folder, it returns the sum of largest fragment sizes of the contained files.

Fragment Entropy measures the relative distribution of the file
content in the fragments: the entropy equals 0 if the code is
concentrated in one fragment, and achieves the maximal value if the
code is composed entirely from single-line fragments. Hence, it
expresses the overall fragmentation of the code. The metrics
calculation is identical for files and for folders.

The above fragmentation metrics are intended to support the estimation
of relative difficulty of the reuse migration and parallel maintenance
tasks. A lower code fragmentation and a larger fragment size might
indicate a lower transformation or maintenance effort, as the
arrangement of existing code similarities is in that case relatively less
complex and easier to understand and manage.

In general, the software metrics provide a convenient way to identify
locations or elements in a software system exhibiting a sought property
(e.g. complexity, maintainability). However, as the given property is usually
influenced by more context factors than these included in the metric
calculation, the elevated metric values might in the practice not always
correlate with the elevated occurrence of the sought software property
[Lanza 2006]. Hence, a review of the identified locations is still needed to
confirm their suitability for the analysis goal. This applies likewise to the
metrics defined in this section. Nevertheless, it is an interesting future
work to evaluate in the practice the predictive power of these metrics.

Interpretation

130

Variant Similarity Analysis with Hierarchical Set Similarity Models

5.7 Discussion

The generic similarity analysis approach, discussed in this Chapter, is
instantiated for a specific asset type by defining three analysis
mechanisms: a decomposition of the asset content into structural and
atomic content elements, an equivalence relation on the structural
elements, and an equivalence relation on the atomic elements. The
resulting analysis instantiation decomposes the content of input asset
variants and expresses their similarity in the form of a hierarchical set
similarity model. Accompanying the model, a group of defined
visualizations and metrics supports the navigation and interpretation of
the analysis results. The defined analysis and visualization concepts are
generic, i.e. independent of the analyzed asset type. The generic nature
of the approach is its strong advantage, since it broadens the possible
approach application scope and allows for customization of the analysis
according to the peculiarities of a given asset type.

The similarity analysis approach is defined in conformance with the
construction requirements discussed in Section 4.2. In particular, the
approach and the constructed set model do not distinguish any of the
analyzed variants, nor do they assume a specific variant order.
Furthermore, the set model based similarity analysis fulfills all the criteria
concerning the nature of the provided similarity information, discussed in
Section 3.3, which are not addressed in their entirety by the other
related approaches. In short, the stated criteria demand that full
information details, as well as suitable abstraction mechanisms, are
provided for the two dimensions of analysis problem complexity: the
asset size (which can range to millions of code lines) and the amount of
asset variants (where many tens of variants are possible):

Regardless of the size of a structural asset or asset element, and of its
location in the structure hierarchy, the similarity of the asset variants
can be uniformly presented in the form of intersecting content
element sets. At the same time, the similarity information is traceable
to each individual asset content element. Given a sufficiently
restrictive equivalence function, the stored similarity information is
also precise in the sense used in Section 3.3 and the construction
requirement C4, i.e. it enables distinguishing even small, but
meaningful differences between the asset variants.

The set model expresses the similarity of even a large number of
input variants in an understandable way. At the same time, the
similarity information concerning any subgroup of the analyzed
variants is readily accessible, and is available on any system hierarchy
level down to the single content element.

Benefits:
generality

Benefits:
abstraction
and detail level

131

Variant Similarity Analysis with Hierarchical Set Similarity Models

Consequently, we consider the hierarchical set model and the
visualizations defined on top of it to be the main factor which enables the
achievement of a scalable abstraction of the analysis result, despite
preserving the full information detail, for both dimensions of the system
size and the amount of variants. Furthermore, the scalable abstraction and
the fulfillment of the remaining similarity information criteria discussed in
Section 3.3 constitute the core reason for the benefits of our analysis
approach as compared to the current state of the art. Hence, the set
model is the main factor contributing to the fulfillment of practical and
scientific improvements specified in our hypotheses in Section 3.4:
reduced migration and maintenance effort, less missed reuse
opportunities, and a faster and more correct assessment of asset variant
similarity. In Chapter 7, we continue the discussion on the approach
benefits by presenting the evaluations of the research hypotheses.

The construction of the similarity model in the form of intersecting content
element sets is only possible due to the restriction of the analysis scope, as
defined by the analysis assumptions in Section 4.3. In particular, the set
model exhibits two properties which limit the type of the storable similarity
information: it does not consider similarities existing within a single set,
and it requires that the similarity relation between the content elements is
transitive. Therefore, the similarity expressed in the set model can differ
from the original similarity existing in the input assets in two ways: some
of the input similarity might be not reflected in the set model, while some
additional similarity might be artificially added to the model (e.g. by
constructing a transitive closure of the input similarity relation).

The divergence between the set model similarity and the input similarity
constitutes in our opinion an acceptable price paid in exchange for the
benefits of using the set model. Especially in the context of the application
scenarios intended for the analysis approach, which motivate the analysis
assumptions and the resulting limitation of the model usage scope, the
similarity divergence is either occurring mainly for non-relevant information,
or it can be influenced to reduce its effect on the analysis goals:

As discussed in Section 4.3, the similarities existing inside the same
set are not in the focus of the application scenarios – therefore their
absence in the set model is acceptable.

The amount of artificial similarity added to the result can be
minimized when choosing the analysis algorithms, at a possible cost
of ignoring a part of the original similarity information. The
optimization towards minimal or none artificial similarity leads to a
creation of analysis result which has a high certainty, which saves the
human effort as there is no need to verify the result manually. At the
same time, the possible omission of a small amount of similarity
relations, indicating potentially reusable element pairs, constitutes a
comparatively much lesser concern: although the reuse potential of
these elements is not exploited, overlooking their similarity does not
induce additional analysis or migration effort.

Limitations:
divergence
from the input
similarity

Benefits
described by
the hypotheses

132

Variant Similarity Analysis with Hierarchical Set Similarity Models

We consider the benefits of the set model to be much more significant
than its drawback of the restricted similarity information form, unless the
resulting divergence from the input similarity is large enough to hinder
the achievement of analysis goals. In the case of textual file system based
analysis instantiation, using the diff algorithm, the divergence is relatively
small (see Section 7.1) and the analysis goals are achieved in the practice
(Section 7.3 and 7.4). However, an analysis instantiation for any asset
type needs to be evaluated separately: the overall utility of the set model
might vary for different asset types, depending on the degree to which
the input similarity of these types is transitive. Furthermore, the
properties of the used content decomposition and equivalence relations
need to be known during result interpretation, as they likewise influence
the utility of the approach instantiation.

The property of transitivity, required in the construction of the set model,
significantly influences both the benefits and drawbacks of the
presented approach, and hence deserves a further discussion. The
divergence between the set model and the original similarity is, to a
large degree, created in the process of finding the transitive similarity
relation most closely resembling the provided input. Hence, the negative
consequences of that divergence can be to a large extent attributed to
the transitivity requirement. However, the construction of a set model is
not possible without transitive similarity, so that the set model benefits are
also only achievable due to the transitivity.

The main advantage of the transitive similarity form is that the
interpretation of a transitive similarity analysis result is much easier than
of a non-transitive one. Since any element of a transitively similar group
is similar to any other element from that group, knowing the group
members is sufficient to fully understand their similarity. In contrast to
that, interpretation of a result which is not known to be transitive
requires analyzing the topology of pairwise element similarity relations –
a tedious task, which is complex and likely to induce mistakes when the
group contains many tens of elements. In a controlled experiment,
described in Section 7.2, we evaluated the effect of using the set model
for presenting the similarity information of five source file variants as
compared to presenting the same information in the pairwise form. The
set model group performed the experimental tasks over twice as fast on
average, while making over 90% fewer mistakes (see Section 7.2 for
details and discussion). Between the two groups, the strategy of solving
the (identical) experimental tasks mainly differed in the usage of result
transitivity. Hence, in our opinion the experiment result supports the above
claim of better understandability of the transitive similarity results.
Admittedly, the experimental variable varied between the participant
groups had a broader scope, as the complete underlying similarity model
(set or pairwise) was varied. However, transitivity plays a central role in the
interpretation of the set model information, and it is likely that it
substantially contributed to the measured result.

The role of
transitivity

Transitivity
simplifies result
interpretation

133

Variant Similarity Analysis with Hierarchical Set Similarity Models

Furthermore, note that even for a large number of content elements the
similarity information stored in the set model is still available in its
entirety. In contrast to that, the existing approaches using non-transitive
similarity information, e.g. provided by clone detection, face the tradeoff
between presenting the complete input information, which cannot be
understood by a human in reasonable time when the number of elements
is large, and abstracting that information in the form of pairwise
similarity matrices or scatterplots, which by necessity ignore the topology
of the similarity relation graphs. Hence, in the abstracted pairwise result
it is not possible to recognize how the elements similar between variants
A and B relate to the elements similar between B and C, and whether in
both cases the same or different elements of variant B are reported (see
Section 4.2.2). Hence, although the information provided by the non-
transitive approaches is technically fully correct, their abstraction
mechanisms cannot express an important part of that information.

Finally, the further activities performed on the identified similar asset part
variants, such as merging their implementations to a single-copy
reusable asset, are in most cases transitive in their nature. Hence, the
transitive form of the analysis result corresponds to the nature of
similarity relations sought in the context of the given application scenarios,
and can be directly utilized in the consequent maintenance tasks.

5.8 Summary

Based on the formalization of variant similarity analysis described in
Chapter 4, in this chapter we presented the main contribution of this
thesis: the definition of the similarity analysis approach based on the idea
of hierarchical set similarity models. We described the construction of a set
similarity model with the use of an equivalence relation, and listed three
analysis mechanisms which need to be defined in order to make the
analysis applicable for a specific asset type. Subsequently, we integrated
the set model with a tree-based model of a system structure hierarchy,
hence creating the hierarchical set similarity model. The model uses set
algebra to express the similarity of both atomic content elements as well
as the system tree structures, and allows for evaluating the analyzed
variant asset similarity at any level of the structure hierarchy.

Using the properties of hierarchical set model, such as the need to establish
variant structure correspondences before analyzing the atomic content
elements, we motivated a generic similarity analysis process. In turn, we
described the concepts and algorithms used in the respective process
phases. We devoted particular focus to the set model construction, using
two forms of input similarity data, and to the visualization of intersecting set
similarity, allowing for understandable presentation of a high number of
intersecting sets and a high number of structure hierarchy elements.
Furthermore, we defined several metrics calculated on the set model
information, intended to support the interpretation of the analysis results in
the context of the application scenarios. Finally, we discussed the benefits
and drawbacks of the presented analysis approach.

Transitivity
enables
scalable
abstraction

Transitivity of
maintenance
activities

134

Analysis Tool Implementation Techniques

6 Analysis Tool Implementation Techniques

The purpose of this short Chapter is to present selected implementation
techniques for the Variant Analysis approach. As previously discussed, it
is required that the capabilities of the analysis tool scale according to the
problem dimensions occurring in the practice: the input asset variants
can contain millions of code lines, and many tens of variants can exist. At
that problem scale, the structure and processing of the analysis data
model need to be optimized to avoid performance problems. Hence, we
address the optimization of the data structures storing the set model in
Section 6.1, and the processing of these structures in Section 6.2.
Furthermore, in Section 6.3 we discuss a technique to ensure a
repeatable and consistent selection of analysis result despite the
presence of multiple optimal solutions to a given analysis problem.

6.1 Supporting Performance Optimization with Data Redundancy

The construction of the set model requires that the asset content
elements identified as similar are assigned to the same equivalence class.
In the further processing, that assignment information is accessed in
various ways. For a detailed analysis of the asset similarity, the exact
locations of all elements equivalent to a given one are needed.
Visualizations mainly use the statistical information on each equivalence
class, i.e. its cardinality and the set membership of contained elements.
Finally, subset calculations are also based on the set membership
information. The structure of forward and backward references between
the elements and their equivalence class, specified by the data
metamodel in Section 5.2, needs to be supported with additional,
redundant information to prevent performance problems:

A unique integer identifier from the 0..N-1 range is assigned to each
of the N input asset variants. This storage order of variants does not
influence the analysis result, but is only used to determine which
object in a given list refers to which input asset variant. For example,
the equivalence class object maintains a resizable array, storing
pointers to the member elements at the positions referring to their
asset identifiers (or null pointers if there is no equivalent element in a
given content set). Hence, the pointer structure has a size of N and
allows for constant-time access to any of its elements.
The membership information, listing the content sets where the
equivalence class elements belong to, can be efficiently processed when
stored in a bit vector. The vector abstracts the pointer array described
above: at the respective bit positions, only ones and zeroes remain to
represent the element pointers and null pointers. In our tool we use a
32-bit integer to encode the bit vector, as supporting the amount of up
to 32 variants was in the practice sufficient for all performed analyses.

135

Analysis Tool Implementation Techniques

Figure 52 A data metamodel from Figure 31, with the additional attributes storing redundant,
performance-relevant set model information.

Furthermore, each equivalence class explicitly stores its cardinality
value. Although that value is redundant, as it can be calculated using
the pointer array or the bit vector, the cardinality of an equivalence
class is constant and only needs to be calculated once. Consequently,
the acquisition of data is optimized by reading the cardinality value
instead of calculating it again.

Finally, every equivalence class object contains a second bit vector
storing the results of subset calculations. The inclusion or exclusion of
the equivalence class in the result of a given calculation is
represented by the value of one bit. The result needs to be stored for
performance reasons, as it is subsequently used in visualizations,
metrics, and further calculations. Again, our implementation uses a
32-bit integer to store that bit vector.

In total, each equivalence class stores three additional integers, using 12
bytes of memory. In other words, the additional information occupies
about 12 MB of memory for each million lines of set union code, which
is an acceptable overhead. In Figure 52 we show the data metamodel
containing the additional, redundant information needed for the
optimized set model processing.

6.2 Efficient Evaluation of Subset Calculations

The construction of the analysis data model is performed once, and it is
acceptable if it runs for a few minutes for large asset groups. However,
the subsequent browsing of the model should not involve noticeable
delays even for large data structures. Hence, the data acquisitions for
various diagrams and the subset calculations need to be performed in a
fraction of a second. Such an operation might need to visit each asset
content element from every variant, each equivalence class, or both,
iterating over millions of elements.

+storageOrder : int

Asset

«abstract»
Structure Tree Element

Structural Container Content-Filled Element

Atomic Content Element

1
*

1
*

1

*

Set Model

+members[] : bit
+cardinality : int
+calculations[] : bit

«abstract»
Equivalence Class

Tree Element
Equivalence Class

Atomic Element
Equivalence Class

1
*

* 2

*

1

* 1

Asset structure Asset similarity

The need for
fast iterations
over the
content

136

Analysis Tool Implementation Techniques

Figure 53 A screenshot of the user interface for specifying subset calculation condition (called
a “query” in the tool).

In our tool implementation, the data acquisition operations involving
only reading a group of variable values comfortably fit within the
specified time limit. However, the subset calculations needed further
optimization, described below, as they require that the membership and
cardinality information is evaluated with the use of a user-specified
logical condition. To retrieve any possible combination of the set
intersections, our implementation provides the following possibilities to
specify the logical condition (see Figure 53):

Primary calculations are specified using the input set names. For each
set, the condition can affirm the set, negate it, or ignore it. For
example, for input sets S1, S2, S3 the condition S1 S2’ affirms the set S1,
negates S2, and ignores S3.

Optionally, a criterion on the equivalence class cardinality SHARED BY
FROM … TO … can also be specified as a part of primary calculation.

In a given calculation, all atomic formulas are connected with the
same logical operator, which can be either AND or OR.

Secondary calculations can be used to construct more complex logical
conditions by using other, already existing primary or secondary
calculations. Again, each used calculation can be affirmed, negated,
or ignored, and all non-ignored calculations are connected using the
AND or OR operator.

The use of negation and the AND and OR operators is sufficient to
construct any combination of the input set intersections. The logical
conditions using both AND and OR operators need to be constructed as
secondary calculations, using the intermediate step of primary
calculations to specify the single-operator formulas. The use of only one
operator type in a given calculation has two advantages. First, it allows
for unambiguous recognition of the operator precedence, as the
operators of the previously existing calculations are evaluated first.
Second, it enables the performance optimizations described below.

Specification of
subset
calculations

137

Analysis Tool Implementation Techniques

The evaluation of the SHARED BY condition is quick, as the cardinality of
a given equivalence relation, stored as its attribute, needs to be simply
compared to the numbers specified in the condition. For the evaluation
of the remaining calculation parts, note that the relevant information is in
each case fully available in a single bit vector: the set membership vector
for primary calculations, and the past calculations vector for the secondary
calculations. To use that fact, we define further three helper bit vectors
based on the specified logical condition. The bit positions in the defined
vectors are analogical to the bit positions used in the original membership
or calculation vectors. In the calculations on the bit vectors, we use the
symbol | to denote bitwise OR operator, and the symbol & to denote
bitwise AND operator. The helper vectors need to be calculated just once
before iterating over the equivalence classes:

 AFFIRM vector bits are set to one if and only if the respective set (or
calculation) is affirmed by the specified condition.

 Likewise, the NEGATE vector bits are set to one if and only if the
respective set (or calculation) is negated by the condition.

 The USED vector bits are set to one if and only if the set (or calculation)
was not ignored by the query. Hence, USED = AFFIRM | NEGATE. As the
condition needs to reference at least one set, we always have USED != 0.

 Furthermore, we assume that a single condition does not affirm and
negate the same set or calculation, i.e. that AFFIRM & NEGATE = 0.
This assumption is not restrictive, as the calculations not fulfilling it are
only those which return all set union elements (for OR operator) or no
elements (for AND operator).

Using the above three bit vectors, the logical condition specified by the
calculation can be quickly evaluated on the respective bit vector
EC_VECTOR of each equivalence class in the following way:

 The equivalence class fulfills the condition using the AND operator if
and only if EC_VECTOR & USED = AFFIRM.

 The equivalence class fulfills the condition using the OR operator if
and only if EC_VECTOR & USED != NEGATE.

The EC_VECTOR bits which are not selected by the USED bit mask vector
do not influence the calculation result. Hence, to verify the correctness
of the above logical statements we only need to consider the
EC_VECTOR bits for which exactly one from the respective AFFIRM and
NEGATE bits are selected.

 First, let’s consider a single EC_VECTOR bit: in Table 10 we present
the evaluation of all possible single bit value combinations. The
evaluated conditions, listed in the two rightmost columns of the
table, provide correct results in all four cases. When the bit should be
AFFIRMED, they return the value of 0 for the 0 bit and 1 for the 1 bit.
When the bit should be NEGATED, they return the value of 1 for the
0 bit and 0 for the 1 bit.

Bit vectors
supporting
subset
calculations

Quick
evaluation
expressions

Correctness

 138

Analysis Tool Implementation Techniques

EC_VECTOR AFFIRM NEGATE USED
EC_VECTOR

& USED

EC_VECTOR
& USED

= AFFIRM

EC_VECTOR
& USED

!= NEGATE

0 0 0 Not evaluated: bit not used
0 0 1 1 0 1 1
0 1 0 1 0 0 0
0 1 1 Not evaluated: AFFIRM & NEGATE != 0
1 0 0 Not evaluated: bit not used
1 0 1 1 1 0 0
1 1 0 1 1 1 1
1 1 1 Not evaluated: AFFIRM & NEGATE != 0

Table 10 Truth table evaluating the correctness of the quick evaluation expressions

Now, let’s consider a multi-bit EC_VECTOR and a logical condition
using the AND operator. Every considered bit needs to fulfill the
condition. Hence, the vectors AFFIRM and EC_VECTOR & USED need
to be identical at every bit, and hence equal, as specified by the quick
evaluation expression.
For a multi-bit EC_VECTOR and a logical condition using the OR
operator, at least one bit needs to fulfill the specified condition. Hence,
there must be at least one bit where EC_VECTOR & USED differs from
the NEGATE vector. In other words, it is sufficient if these two vectors
are not identical, as specified by the inequality relation in the quick
evaluation expression.

Consequently, the fulfillment of a primary or secondary subset calculation
condition for a given equivalence class can be evaluated with two simple
operations, bitwise AND and equality testing, each of which is performed
in a single processor cycle. The resulting calculations are very fast even for
million lines of input code, as described in Section 7.1. Moreover, the
calculation time is not influenced by the complexity of the used logical
expression (e.g. the amount of used variables). In Table 11 we provide an
example calculation of the conditions S1 S2’ and S1 S2’, performed on the
input consisting of three asset variant content sets.

EC_VECTOR
(S1;S2;S3)

AFFIRM NEGATE USED
EC_VECTOR

& USED

EC_VECTOR
& USED

= AFFIRM
(S1 S2’)

EC_VECTOR
& USED

!= NEGATE
(S1 S2’)

000 100 010 110 000 0 1
001 100 010 110 000 0 1
010 100 010 110 010 0 0
011 100 010 110 010 0 0
100 100 010 110 100 1 1
101 100 010 110 100 1 1
110 100 010 110 110 0 1
111 100 010 110 110 0 1

Table 11 Example calculations using the quick evaluation expressions

Calculation
properties

139

Analysis Tool Implementation Techniques

6.3 Ensuring Repeatable Results for Multiple Optimal Solutions

As discussed in Section 5.4.3, some of the analysis problems have many
optimal solutions. For example, the transitivity algorithms described in
Section 5.4 might find several equally good partitionings of the input
similarity graph. Likewise, many longest common subsequences might
exist for two input element lists. As only one of the optimal solutions can
be stored in the analysis result, the tool implementation faces the
problem of selecting these results in a consistent and repeatable way: for
the same analysis input and parameters, the analysis should always
return the same result.

Frequently, an algorithm selects the first found optimal result and then
terminates. However, the selected result might depend on the order of
the input data or on other factors which are not directly related to the
solved problem. For example, we observed that the most
implementations of the diff algorithm might return a slightly different
(but still optimal) result when the order of the two compared files is
switched: they tend to maximize the length of contiguous line blocks
reported for the first input file. Hence, comparing the two sequences
“ABC” and “ACB”, these implementations return “AB” as the longest
common subsequence, while for the reversed order of the sequences the
result “AC” is reported. Hence, the use of the diff algorithm in variant
similarity analysis enforces a decision on the relative order of each input
variant pair. At the same time, as discussed in Section 4.1, the analysis
result should not depend on the order of the input variants.

To consistently return an identical analysis result despite input changes
which are not relevant from the similarity point of view (e.g. input data
order, names of assets or asset parts, etc.), we define a canonical order
on the input variants. Hence, the asset or asset parts which are provided
to an order-sensitive analysis algorithm are consistently ordered before.
To eliminate the influence of external factors, the ordering criteria are
based solely on the analysis-relevant information. For example, a group
of files is sorted based on the amount of relevant content lines, and for
equally sized files the lexicographical order of the first differing line pair
is used. If no differing line pair can be found, the files are identical from
the analysis algorithm point of view, and hence their relative order is
irrelevant. Using the canonical order for the above example of two string
sequences, the sequence “ABC” is ordered as the first, and the result
“AB” is always returned.

Using the canonical order, the analysis always returns the same result for
the given input file group, as long as no analysis-relevant information is
changed. The result is also identical for an identical file group which is
found elsewhere, e.g. at a different location or in a different selection of
input asset variants, as only the analysis-relevant file content is used when
determining the order. Note that the canonical order is determined
separately for each input file group belonging to the input asset variants.

Problem:
consistent
selection of a
single optimum

Input order
dependence
in the used
algorithms

The canonical
variant order

140

Analysis Tool Implementation Techniques

The use of a canonical order solves both problems described above. First,
in the case of externally implemented analysis algorithms it eliminates
the influences of input element order on the provided result, occurring
when the algorithms implicitly use the order to select one of the possible
optimal solutions. Second, in the case of an own algorithm
implementation the canonical order helps in an explicit selection of the
single optimal result, as discussed in Section 5.4.3. At the same time, the
canonical order does not violate the variant order independence
mandated by the construction requirements of our approach: the
provided analysis result is identical for any order of the input variants,
and the canonical order has no influence on the result interpretation.
Actually, the role of the canonical order is a positive one: it constitutes a
mechanism which enables the analysis to achieve the order
independence despite the use of order-dependent external algorithms
and the existence of multiple solution optimums. Furthermore, as the
provided analysis result is selected as one of a group of solutions optimal
with regard to the specified analysis criteria, there is no other analysis
problem solution better than the provided one, although there are many
solutions which are equally good and differ in some details.

On the implementation level, the repeatability of the provided analysis
result can be further influenced by the nondeterministic behavior of the
used data structures. For example, in the Java programming language
the iteration order over elements stored in a HashSet or a HashMap
might be different for two program executions run on the same data.
Consequently, the resulting differences in element iteration order might
override the canonical order, influence the order-dependent algorithms,
and cause them to choose a different optimal solution. To prevent that
influence, we avoid data structures with nondeterministic iteration order
and use their deterministic variants instead (in the case of Java, these are
the LinkedHashSet and the LinkedHashMap).

6.4 Summary

In this Chapter we discussed three selected implementation mechanisms
for our analysis approach: the use of data redundancy for improving the
data acquisition performance, the use of bitwise operations for a
performant computation of subset calculation results, and the definition
of a canonical order on the analysis elements which allows for a
consistent and repeatable selection of a single analysis result from
multiple optimal solutions. With these descriptions, we argue that the
set model based similarity analysis can deliver its results in a performant,
scalable and consistent way. Furthermore, in Chapter 7 we support that
statement with performance measurements of our analysis
implementation, performed for data sets of various sizes.

Consequences

Further
implementation
considerations

141

Evaluation

7 Evaluation

The set model based similarity analysis approach, defined in the previous
Chapters, is intended for the analysis of a group of cloned and modified
software asset variants. Depending on the application scenario, the
analysis results are subsequently used to plan a reuse migration of the
input variants, or to support their further parallel maintenance.
In contrast to the state of the art approaches, the hierarchical set model
provides a scalable abstraction of the analyzed similarity information for
both large software assets and a large amount of variants. Hence, we
hypothesize that the use of the approach reduces the analysis effort and
allows for better understanding of the similarity information.
Furthermore, these analysis-time benefits should allow for a reduction of
the overall migration or parallel maintenance effort, and lead to a higher
degree of reuse achieved in the migration. Finally, we postulate that the
results provided by the approach are correct and that the approach can
be successfully used by the software development practitioners.
A discussion of the above hypotheses was presented in Section 3.4.

To substantiate the stated hypotheses, we use a range of evaluation
means (see Figure 54). In an analytical evaluation (Section 7.1), performed
on industrial, open source, and artificial software systems, we check the
result correctness and collect measures concerning the input data
transitivity and analysis performance. With a controlled experiment
(Section 7.2), we investigate the differences in human analysis effort and
in human understanding correctness between two forms of presented
similarity information: pairwise and set model based. In an industrial case
study (Section 7.3), we mainly look at the fulfillment of the practical
hypotheses concerning the effort reduction and achievable reuse degree.
Finally, in Section 7.4 we report on five industrial application experiences,
where the approach was used by the author, other researchers, and
software practitioners on software system groups from various domains.

Figure 54 The overview of the practical and scientific hypotheses and the used evaluation means.

Scientific
Hypotheses

HS1
Correctness

HS2
Analysis

Effort
Reduction

HS3
Analysis

Effort
Scalability

Practical
Hypotheses HP1

Migration Effort
Reduction

HP2
Higher Degree of

Reuse

HS4
Understan-

dability

HS5
Practicabi-

lity

Analytical Evaluation Controlled Experiment

Application ExperiencesCase Study

HP3
Effort Reduction in

Parallel Variant
Maintenance

143

Evaluation

While the performed evaluations investigate the approach contributions
from a variety of viewpoints, they are all performed based on a realistically
available data input. Hence, the provided positive evaluation results are
not a decisive proof of the approach benefits, but rather constitute data
points which indicate that the hypotheses were confirmed in the example
encountered context. The positive evaluation results increase the
confidence that the defined approach indeed provides the stated benefits.
Nevertheless, we consider a further approach evaluation to be a necessary
part of the future work.

7.1 Analytical Evaluation

In this Section we report and discuss the results of a group of
measurements, targeting the transitivity of the similarity data provided
by the diff algorithm, the correctness of the overall approach result
(hypothesis HS1), and the tool performance. We collected the
measurements on three types of input software variant groups, having
varying sizes and varying amount of member variants:

Industrial software systems created with the use of cloning. The
selection of the system groups is limited to these for which we had a
sufficient source code access during the practical application projects at
Fraunhofer IESE. For anonymity reasons, we only provide the resulting
measurement data, but do not disclose the company names, product
names or other sensitive details.
Open source systems where multiple cloned variants exist and are
actively maintained. As the BSD Unix system family is the most
prominent case of a large-scale cloning of long-living systems, we
perform the measurements on selected groups of the BSD variants.
Artificial software systems generated by ForkSim, a cloned system
generation framework [Svajlenko 2013]. The sample data sets,
provided by the main ForkSim author Jeffrey Svajlenko, were created as
source clones of the JHotDraw 5.4 graphics framework and extended
by random injections of files and functions from the Java 7 SDK code.
The added code was modified in some variants and injected at same or
different locations. While the properties of artificial data sets might differ
from real system clones, their advantage is that the origin and location of
each code modification, and hence the information on all code
similarities, is exactly known. Using a group of artificially created systems,
the similarity analysis results can be evaluated for correctness against
the known similarity – which is not possible for real system clones.

The measurements were performed on a computer equipped with a
2.53 GHz Intel Core2 Duo processor, 2 GB RAM and 32-bit Windows 7
operating system. Our tool implementation, based on the Fraunhofer
SAVE framework [Duszynski 2009], is implemented in the Java 6
programming language, uses Eclipse Modeling Framework for data
model management, and runs as a set of Eclipse plugins under
Eclipse 3.7. All analysis procedures, except for the multiple alignments
mapping algorithm, use a single processing thread.

The analyzed
system types

Technical
configuration

144

Evaluation

In Table 12, we present the analyzed variant system groups in more detail.
We analyzed three industrial system groups of various sizes: the group
Ind_Small represents one of the smallest real-world analysis problems,
while the other two groups are typical for the analysis problem dimensions
occurring in the industry. Subsequently, we analyzed four BSD Unix
variants released in a similar time. Before that time, OpenBSD did not yet
exist, while the development of the “standard” BSD Unix ceased after the
4.4 Lite 2 release. Hence, only during the selected time as many as four
large BSD variants existed simultaneously. In addition, we analyzed the
BSD_15 system group – although these systems are both variants as well
as versions of each other, we analyzed that large group to test the
approach scalability. Finally, we analyzed five artificial system groups,
created using different generation settings (see Table 12 for details). The
reported code size does not include empty (whitespace-only) lines, while
all remaining file content (import declarations, comments, etc.) is included.
The file count considers only code files: configuration files and the
remaining textual files were ignored in the analysis.

System
Group Id

Description
Number of

Systems
LOC

(Min-Max)
Files

(Min-Max)
Ind_
Small

Industrial embedded software: 2 variants of
a machine controller driver for various hardware, C

2
 31,685
to 35,340

38

Ind_
Medium

Industrial embedded software: automotive controller
with variants for various customers, C/C++

12
 31,402

to 179,299
 139
to 534

Ind_
Large

Industrial embedded software: 4 variants of a
machine control system, various functionality, C/C++

4
 1,122,110
to 1,526,155

 3,540
to 4,555

BSD_4
The full usr/src code of four BSD Unix variants
released in 1995 and 1996: 4.4 BSD Lite 2,

FreeBSD 2.1.5, NetBSD 1.2, OpenBSD 2.0. C/C++
4

 2,275,711
to 3,604,446

 6,921
to 11,193

BSD_15

The full usr/src code of fifteen BSD Unix releases,
developed between 1992 and 1999, belonging to

four BSD variants: BSD (4.4, 4.4 Lite 2),
FreeBSD (2.0.5, 2.1.5, 2.2.5, 3.0), NetBSD (1.0, 1.1,
1.2, 1.3, 1.4.1), OpenBSD (2.0, 2.1, 2.3, 2.4). C/C++

15
 1,885,612
to 4,808,638

 6,302
to 15,730

Gen_4

4 generated variants based on JHotDraw (original
system size: 285 files and 34,513 lines). The new

code was injected into up to 3 variants and modified
with 50% probability. Java

4
 55,371

to 111,713
 361
to 636

Gen_5A
5 generated JHotDraw variants; new code injected into

up to 4 variants, 50% modification probability. Java
5

 45,313
to 82,681

 311
to 393

Gen_5B
5 generated JHotDraw variants; new code injected into

up to 4 variants, 50% modification probability,
increased number of injected files and folders. Java

5
 64,051

to 110,322
 413
to 671

Gen_5C
5 generated JHotDraw variants; new code injected into

up to 5 variants, 50% modification probability,
increased number of injected files and folders. Java

5
 98,145

to 114,258
 489
to 574

Gen_6
6 generated JHotDraw variants; new code injected into

up to 5 variants, 50% modification probability,
increased number of injected functions. Java

6
 57,352
to 79,273

 380
to 444

Table 12 The analyzed variant system groups

Analyzed
system groups

145

Evaluation

System
Group Id

Set Union
Size

Core
Code Size

Unique
Code in

the Union
Union Similarity Bar

Number of
Non-Empty
Intersections

Relative
Set Union

Size
Ind_Small 38,203 28,822 9,381 3 1.754

Ind_Medium 205,134 24,112 20,388 273 6.527
Ind_Large 2,215,140 663,618 534,853 15 2.382

BSD_4 5,687,835 932,767 2,846,787 15 1.954
BSD_15 16,240,391 292,789 6,744,827 3,251 2.921
Gen_4 136,421 34,616 31,170 15 2.524

Gen_5A 101,223 34,371 38,347 31 2.972
Gen_5B 151,175 34,936 36,036 31 3.172
Gen_5C 155,410 72,387 35,148 31 3.414
Gen_6 104,167 34,272 21,022 63 3.905

Table 13 A short description of the analyzed systems’ similarity

Table 13 presents a shortened description of the analyzed systems’
similarity. The system files were first matched to each other using the
mapping algorithm specified in Table 14, and subsequently the file
content was compared using diff. For the content comparison, the leading
and trailing white spaces were removed from content text lines to nullify
their influence of the reported similarity. Apart from that, no other text
filtering or normalization operations were used.

In the created results, note the high similarity of all three industrial systems
groups. The proportion of unique code is low in each industrial group.
In the Ind_Small group, the core code constitutes at least 80% of each
variant’s code. In the Ind_Medium group, the set union size is 6.5 times
smaller than the sum of variant sizes – despite a relatively small core, there
exist sizable code fragments shared by many variants. Finally, the core of
the Ind_Large group constitutes at least 43% of each variant’s code. The
high similarity of the presented system groups is in our experience typical
for the industrial cloned system variants, which motivates the design
decisions of our approach discussed in the previous Chapters.

7.1.1 Performance and Scalability

Table 14 presents the performance and scalability measurements of the
approach implementation. The run times and memory use were measured
by system function calls embedded in the tool code. Due to the use of the
Eclipse Modeling Framework data model, all measurements do not
concern the pure analysis algorithms measured in isolation, but rather by
necessity include the overhead of creating and iterating over the EMF
object structures. Hence, the measured run times are longer and the
memory use is larger than the values necessary for the analysis alone (for
example, see the mapping run time of the BSD_15 systems and the
memory use of the Ind_Small systems). Hence, the measurements should
be interpreted as the practical time and memory requirements of the
analysis tool realized in the given technology.

Analysis
settings

High industrial
system
similarity

Measurement
interpretation

146

Evaluation

 System
Group Id

Mapping
Algorithm

Mapping
Time

Total Analysis
Time

Total
Memory Use

Subset Calc.
Time

(Min-Max)
Ind_Small Location Identity 0.046 s 1.48 s 223 MB 1-4 ms

Ind_Medium Alignments 1,204 s 1,270 s 731 MB 8-12 ms
Ind_Large Location Identity 5 s 263 s 1,152 MB 94-102 ms
BSD_4* Alignments 13,069 s 13,611 s 65,101 MB 204-216 ms

BSD_15* Location Identity 189 s 3,374 s 43,822 MB 486-578 ms
Gen_4 Alignments 71 s 81 s 413 MB 7-11 ms

Gen_5A Alignments 63 s 71 s 320 MB 4-9 ms
Gen_5B Alignments 132 s 145 s 478 MB 6-12 ms
Gen_5C Alignments 138 s 150 s 425 MB 6-12 ms
Gen_6 Alignments 119 s 129 s 382 MB 4-9 ms

Table 14 The performance and scalability measurements

In the analysis, we used either the location identity or the multiple
alignments mapping algorithms. For industrial system groups, we used the
multiple alignments algorithm only if it resulted in a significantly higher
found similarity, which was the case for Ind_Medium systems. For the
artificial system groups, we always used the multiple alignments algorithm
as we also needed it for the evaluation of approach correctness, described
later in this Section. Finally, for BSD_4 systems the multiple alignments
algorithm resulted in a higher found similarity, but we were unable to use
that algorithm for BSD_15 systems due to its memory requirements.

The 32-bit Java virtual machine is only able to allocate about 1.5 GB of
memory, which is not sufficient for analyzing the BSD_4 and BSD_15
system groups. Hence, we analyzed these groups using a different
computer equipped with 64-bit Windows 2008 operating system, 24
processor cores running at 2.80 GHz, and 64 GB of memory. Note that as
only the multiple alignments mapping algorithm is parallelized, the high
amount of cores does not affect the comparability of the remaining time
measurements. In Table 14, we indicated the use of the different hardware
with a star symbol (*) placed next to the BSD system group names.

The measured results show that using a relatively modest contemporary
hardware configuration, an analysis of all except the largest system groups
is possible. Except for the alignment mapping or the large BSD system
groups, the similarity analysis and the construction of the hierarchical set
model is performed within few minutes. In case the multiple alignments
algorithm is used, it dominates the time and memory requirements of the
implemented tool. In the subsequent result interpretation phase, for all
system groups no user-noticeable delays were observed during result
browsing and diagram construction. This is exemplified by the measured
subset calculation times. For each system group, we performed 10
measurements, formulating different logical conditions and using both
primary and secondary calculations. The calculation time did not exceed 12
ms for medium-sized system groups, and the longest time of 578 ms was
measured for the BSD_15 system group having 16 MLOC of set union code.

(* used different hardware, see below)

Selection of
the mapping
algorithm

Different
hardware for
the BSD
systems

Good
implementation
performance

147

Evaluation

7.1.2 Input and Result Transitivity

In Table 15 we report the transitivity-related measurements performed
on the input similarity data provided by the diff algorithm. First, we
counted the provided similarity graphs, with nodes representing text lines
and edges representing their binary similarity relations identified by diff.
Second, we distinguished between the transitive and non-transitive graphs:
as each analyzed graph is contiguous, the transitive graphs are complete
and can be directly reported as equivalence classes. Third, we processed the
non-transitive graphs (see Section 5.4.3 for details) to split them into
transitive subgraphs. Consequently, the final amount of graphs reported in
the result (i.e. the amount of the equivalence classes, equal to the size of the
set union) is higher than the amount of input graphs. Finally, we counted
the edges belonging to each graph category. For the measured systems, at
least 99.56% of input graphs, containing at least 97.52% of input edges, are
transitive. The final analysis result contained at least 99.25% of input edges.
As discussed in Section 5.4.3, no artificial edges were added to the result.

Graphs Edges

System
Group Id

All Input
Input

Transitive

Input
Non-

Transitive
Result All Input

In
Transitive

Graphs

In Non-
Transitive

Graphs

Removed
from the

Result

Ind_Small 38,203
38,203
100%

0
38,203
+0%

28,822
28,822
100%

0 0

Ind_Medium 200,319
199,750
99.72%

569
0.28%

205,134
+2.40%

5,542,092
5,472,550
98.75%

69,542
1.25%

23,561
0.43%

Ind_Large 2,184,673
2,175,073
99.56%

9,600
0.44%

2,215,140
+1.39%

5,144,634
5,063,006
98.41%

81,628
1.59%

38,823
0.75%

BSD_4 5,658,176
5,639,487
99.67%

18,689
0.33%

5,687,835
+0.52%

8,984,972
8,875,337
98.78%

109,635
1.22%

39,415
0.44%

BSD_15 16,103,634
16,049,242

99.66%
54,392
0.34%

16,240,391
+0.85%

122,905,536
119,856,941

97.52%
3,048,595

2.48%
654,267
0.53%

Gen_4 136,333
136,268
99.95%

65
0.05%

136,421
+0.06%

345,351
345,007
99.90%

344
0.10%

142
0.04%

Gen_5A 101,005
100,858
99.85%

147
0.15%

101,223
+0.22%

455,040
453,669
99.70%

1,371
0.30%

478
0.11%

Gen_5B 151,003
150,879
99.92%

124
0.08%

151,175
+0.11%

686,227
685,129
99.84%

1,098
0.16%

381
0.06%

Gen_5C 155,035
154,799
99.85%

236
0.15%

155,410
+0.24%

863,365
861,286
99.76%

2,079
0.24%

745
0.09%

Gen_6 103,678
103,372
99.70%

306
0.30%

104,167
+0.47%

803,648
799,728
99.51%

3,920
0.49%

1,183
0.15%

Table 15 The transitivity measurements for all variant groups

100%

99%

98%
Result

Measurement
procedure

148

Evaluation

Considering the high proportion of transitive input graphs, the set similarity
model is in our opinion suitable for storing and analyzing the diff-based
similarity information. Furthermore, the high proportion of input edges
which are included in the final analysis result, and the lack of artificially
added edges, make the analysis result trustable and dependable for the
defined application scenarios. Naturally, the input system groups provide just
example data points and do not allow for a statistically significant analysis.

At this point, it is interesting to ask whether, and under which conditions,
the similarity provided by diff can be strongly non-transitive and hence
unsuitable for the analysis goals. Based on the data in Table 15, there
seems to be no single measured factor correlating with lower transitivity:

The proportion of non-transitive graphs is similar in all real-world
system groups (0.28% to 0.44%), regardless of their size and the
amount of member systems. The artificial systems contain less non-
transitive graphs (0.05% to 0.30%), which might be a side effect of
the generation process.
Naturally, the graphs created for a higher amount of systems contain a
larger number of edges (e.g. on average there are 5.9 edges for BSD_4
graphs, but 122.2 edges for Ind_Medium graphs). However, the data
suggests that there is no strong correlation between the amount of
non-transitive graph edges and the amount of removed edges. In
Table 15, between 21% and 48% of the input non-transitive graph
edges needed to be removed. The proportion of removed edges
varies strongly for groups containing a similar number of systems.
Interestingly, the proportion of removed edges is the highest for the
Ind_Large group, containing just 4 systems, and the lowest for
BSD_15 group containing 15 systems.
Furthermore, there seems to be no clear correlation between the
amount of analyzed systems and the transitivity of the result. Although
lower transitivity could be expected for a higher number of variants, the
lowest result transitivity value was measured for the Ind_Large group.
Consequently, we initially conclude that the individual content
topology of the analyzed system groups, defining the layout of the
non-transitive graphs, is a factor having much more influence on the
result transitivity than the amount of grouped variants or the proportion
of non-transitive edges. Hence, the result transitivity and the suitability
of the system group for a set model based similarity analysis cannot be
estimated in a simple way before the actual analysis.

To reduce the influence of the individual content topology on the
measurements of result transitivity, we performed a further analysis on a
single system group, the Ind_Medium systems. We selected that group as
it contains a high number of real-world variants. From the initial group of
12 systems, in each iteration we removed one system, performed a new
analysis, and measured the result transitivity, until two systems remained.
For consistency, we always preserved the initial analysis settings and we
reused the mapping previously constructed for 12 systems.

Consequences
of the high
measured
transitivity

A search
for factors
influencing
transitivity

Reducing
the topology
influence

149

Evaluation

When removing the single systems in the analysis iterations, we
effectively needed to define a removal order on the variants. However,
as no variant order can be distinguished (see Section 4.1), and there exist
12! possible orders for Ind_Medium systems, we decided to at least run
the analysis with two removal orders: based on the variant names
(the alphabetically last variant is removed) and on the variant code sizes
(the largest variant is removed). Table 16 contains the analysis results and
the transitivity measurements, which are visualized in Figure 55.

Name Ordered Ind_Medium Variants Size Ordered Ind_Medium Variants
Graphs Edges Graphs Edges

Systems All Trans All Trans Result All Trans All Trans Result

2 128,609
128,609
100%

79,376
79,376
100%

79,376
100% 98,020

98,020
100%

24,286
24,286
100%

24,286
100%

3 193,521
193,135
99.80%

272,494
271,133
99.50%

271,752
99.73% 159,870

159,838
99.98%

78,198
78,104
99.88%

78,144
99.93%

4 194,962
194,468
99.75%

579,671
575,484
99.28%

577,489
99.62% 189,595

189,563
99.98%

219,383
219,185
99.91%

219,301
99.96%

5 195,540
194,984
99.72%

1,005,035
996,097
99.11%

1,000,856
99.58% 189,621

189,589
99.98%

477,613
477,273
99.93%

477,503
99.98%

6 196,886
196,340
99.72%

1,544,935
1,529,727
99.02%

1,538,591
99.59% 190,094

190,043
99.97%

851,827
851,103
99.92%

851,620
99.98%

7 196,911
196,365
99.72%

2,200,539
2,178,030
98.98%

2,192,513
99.64% 191,785

191,358
99.78%

1,335,553
1,325,989
99.28%

1,332,886
99.80%

8 197,595
197,043
99.72%

2,972,069
2,940,218
98.93%

2,961,241
99.64% 192,430

192,046
99.80%

1,936,884
1,921,677
99.22%

1,932,897
99.79%

9 199,738
199,181
99.72%

3,853,182
3,809,426
98.86%

3,836,304
99.56% 193,711

193,307
99.79%

2,655,336
2,629,896
99.04%

2,648,592
99.75%

10 199,996
199,431
99.72%

4,852,784
4,796,342
98.84%

4,833,009
99.59% 194,325

193,852
99.76%

3,492,048
3,453,078
98.88%

3,481,628
99.70%

11 200,301
199,732
99.72%

5,212,881
5,150,654
98.81%

5,190,836
99.58% 197,047

196,514
99.73%

4,432,191
4,376,255
98.74%

4,414,509
99.60%

12 200,319
199,750
99.72%

5,542,092
5,472,550
98.75%

5,518,531
99.58% 200,319

199,750
99.72%

5,542,092
5,472,550
98.75%

5,518,531
99.58%

Table 16 The transitivity measurements for subgroups of Ind_Medium variants

Figure 55 The transitivity measurements for subgroups of Ind_Medium variants.

0,98

0,982

0,984

0,986

0,988

0,99

0,992

0,994

0,996

0,998

1

2 3 4 5 6 7 8 9 10 11 12
0,98

0,982

0,984

0,986

0,988

0,99

0,992

0,994

0,996

0,998

1

2 3 4 5 6 7 8 9 10 11 12

Name Ordered Ind_Medium Variants Size Ordered Ind_Medium Variants

Transitive Graphs

Result Edges

Transitive Edges

VARIANTS

TR
A

N
SI

TI
V

IT
Y

VARIANTS

TR
A

N
SI

TI
V

IT
Y

The use of
two variant
orders

150

Evaluation

For the two variant orders, two different results are created: while for the
name order the transitivity gently decreases with increasing amount of
variants, for the size order a sudden change occurs between the six-variant
and the seven-variant groups. In our opinion these two different results,
created by selecting different variants out of the same group, again indicate
that the individual topology of the variant content is the strongest factor
influencing the transitivity of both the input and the analysis result.
Nevertheless, based on the measurement data we observe that:

The proportion of non-transitive input graphs increases, but only slowly,
with the increasing size of the selected variant group.
The proportion of edges belonging to the non-transitive input graphs
increases moderately with the increasing size of the variant group.
Apparently, within the same system group selection the smaller input
graphs tend to be more frequently transitive than the larger ones.
The proportion of the input edges removed in the construction of
the analysis result increases, but only slowly, with the increasing size
of the variant group. Given the much faster growing proportion of
the non-transitive input edges, this means that with the increasing
graph size the transitivity algorithms are able to preserve an
increasing proportion of the input edges for the final result. This
property, effectively counteracting the growing proportion of non-
transitive input edges, is intuitively correct: for the smallest non-
transitive graph, having 3 nodes and 2 edges, 50% of the edges
need to be removed, while for the larger graphs having many tens of
edges a removal of just a few edges (and hence their lower
proportion) might be sufficient when the graph is dense.

As we have no access to a system group having more than 12 real
variants, we cannot measure how far the two observed counteracting
trends, i.e. the increasing proportion of non-transitive graphs and edges in
the input, and the decreasing proportion of the initially non-transitive
edges which are removed from the result, balance each other for a higher
number of variants. Hence, we cannot say whether the diff-created input
can be in a general case less transitive for a higher number of variants –
answering this question, and providing more generalizable measurements,
remains a future work. Nevertheless, the individual content topology of a
variant group seems to dominate the other factors influencing the result
transitivity: adding a new variant can drastically reduce the transitivity, as
well as improve it (e.g. consider the result transitivity of groups having three,
four and five variants in the size-ordered analysis). Hence, the proportion of
edges removed from the result cannot be estimated upfront – instead,
it needs to be measured individually for each analyzed variant group.

7.1.3 Approach Instantiation Correctness: Precision and Recall

In the last part of analytical evaluation, we measure the precision and recall
of our approach according to the method defined in Section 4.5. As the
evaluation can only be performed when the correct analysis result is exactly
known, we conducted the measurements on the generated system groups.

Observations:
two
counteracting
trends

Conclusion:
no transitivity
estimators

151

Evaluation

Figure 56 The three measurement series for the evaluation of approach precision and recall.

We performed three measurement series, illustrated in Figure 56. The first
series evaluated the result correctness of the multiple alignments algorithm,
considering only the corresponding files across the variants. The second
series used the reference, fully correct mapping to match the files and then
evaluated only the correctness of matching the corresponding content lines
using diff. Hence, the first two series tested in isolation the results of
respectively the structure element and the content element equivalence
functions. Finally, the third series compared the matched content lines of the
reference result to the analysis result constructed using alignments mapping
and diff – hence evaluating the combined correctness of both functions. The
measured precision and recall values for all series are provided in Table 17.

Series 1:
Alignments Mapping

Series 2:
Reference Mapping

Diff

Series 3:
Alignments Mapping

Diff

System
Group Id

True
Positives

False
Positives
[Precision]

False
Negatives

[Recall]

True
Positives

False
Positives
[Precision]

False
Negatives

[Recall]

True
Positives

False
Positives
[Precision]

False
Negatives

[Recall]

Gen_4 1,462
2

99.86%
2

99.86%
207,768

178
99.91%

122
99.94%

207,598
324

99.84%
292

99.86%

Gen_5A 1,297
3

99.77%
2

99.85%
199,230

181
99.91%

96
99.95%

198,964
604

99.70%
362

99.82%

Gen_5B 2,213
20

99.10%
15

99.33%
327,975

298
99.91%

158
99.95%

326,588
1,703

99.48%
1,545

99.53%

Gen_5C 1959
9

99.54%
7

99.64%
374,605

578
99.85%

224
99.94%

373,181
2,032

99.46%
1,648

99.56%

Gen_6 2050
2

99.90%
1

99.95%
301,794

784
99.74%

483
99.84%

301,773
823

99.73%
504

99.83%

Table 17 Approach precision and recall, measured on the five generated system variant groups

Known,
correct

mapping

The correct,
known

reference result

Multiple
alignments
mapping

Known, correct
content

correspondence

Content
correspondence
provided by diff

Multiple alignments
mapping result
(no diff used)

Diff used on files
matched by

the reference mapping

Complete analysis result:
diff used on files

matched by
multiple alignments

1

2

3

100%

99.5%

99%

Three
measurement
series

152

Evaluation

The measured diff result has a very high precision (0.9974) and recall
(0.9984), while the multiple alignments result has lower measured
values (precision 0.9910, recall 0.9933). Consequently, the combined
result constructed by the both equivalence functions has values slightly
lower than these of diff, but higher than these of multiple alignments
mapping (precision 0.9946, recall 0.9953). All measured precision
and recall values are larger than 0.99 – hence, the measured data
supports the hypothesis HS1 (Correctness).

However, there are two main threats to the validity of this conclusion.
First, the measured input systems are artificially generated, and might
differ from real-world cloned variants – the use of generated systems
was necessary though, as only for them the reference result is known.
Second, the measurement was performed on just five systems, having
the same origin, which limits the conclusion generalizability. While the
construction of difficult analysis examples, resulting in precision and
recall values well under 0.99, is possible, we do not know how often
such difficult cases occur in the practice. Hence, as discussed before in
Section 3.4, we assume that the stated hypotheses are true in the most
cases, but might be false in particularly unfavorable conditions.

7.2 Controlled Experiment

The scientific hypotheses HS2 (Analysis Effort Reduction), HS3 (Analysis
Effort Scalability) and HS4 (Understandability) address not the technical
side of the analysis approach, but rather the human-based effects
resulting from its use, i.e. the human effort and the similarity understanding.
Hence, they need to be evaluated based on the human-related measures
collected during the approach execution – either in a controlled
experiment, or in a case study. In the current and the next Section, we
report the respective results we collected by using both these evaluation
means. For brevity, we describe an aggregated view on experiment setup
and results here, while the further details of the experiment, including
the materials used by the participants, are provided in Appendix A.

7.2.1 Experiment Goal and Hypotheses

A definition of a controlled experiment, evaluating the benefits of the
presented approach, faces the difficulty of a proper isolation of the
factors influencing the experiment outcome. A precise identification of
the causes of an analysis effort reduction, achieved by using the
complete approach, is difficult as several analysis mechanisms,
differentiating the approach from the state of the art, are introduced
(e.g. the set model, the abstractions, the visualizations). Furthermore,
some types of information are automatically collected and quickly
available in the set model based approach, while in some other
approaches they need to be manually gathered. Additionally, the use of
different tools, instantiating the compared approaches, adds a further
influencing factor in the form of potentially different user interface concepts.

High values
of precision
and recall

Threats to
validity

Hypotheses
addressing
human-based
effects

Isolation of
the influencing
factors

153

Evaluation

Finally, a realistic analysis of a group of software systems necessarily
involves tasks of a very different granularity: from the analysis of single
code lines, up to the similarity assessment of whole systems having many
thousands of code lines. Hence, due to the differences in the used
abstraction mechanisms, the measured analysis effort reduction could
vary strongly depending on the task granularity. Summing up, an
experimental evaluation of the complete analysis approach would not
provide the means to determine whether, and to which degree, the
measured difference in the analysis effort was caused by the use of the
set model, the abstractions, the visualizations, or the different user
interface, but would only provide results for a combination of those.

Consequently, we decided to limit the scope of the experiment and evaluate
the core contribution of our approach, the set similarity model, in isolation
from the other factors such as the hierarchy abstractions and visualizations.
In this context, it is interesting to ask how far the similarity abstraction in the
form of a set model is easier for humans to analyze and understand as
compared to the most frequently used state of the art similarity abstraction,
provided by the pairwise comparison. The experiment goal [Briand 1996],
explained in more detail in the next subsections, is therefore to:

Analyze the pairwise and set-based similarity models
for the purpose of comparison
with respect to analysis efficiency, correctness and cognitive load
from the viewpoint of a software developer
in the context of Software Product Lines course, with students

analyzing file variants for code similarity.

To address the defined goal, we derived new experimental hypotheses,
targeting only the set model, by restating the original hypotheses HS2 and
HS4. We decided to not evaluate the hypothesis HS3 for effort and
participant availability reasons – such evaluation would require a much more
extensive experiment, performing a series of measurements for different
numbers of analyzed variants. The experimental hypotheses are therefore:

HSet1 Efficiency. The use of the set similarity model reduces the
effort for analyzing similarity information as compared to the use of
pairwise comparison model (30% time reduction for up to 4 variants,
50% time reduction for 5 and more variants).

HSet2 Correctness. The use of the set similarity model allows for
understanding the similarity information with a higher correctness
compared to the use of pairwise comparison model (50% less false
statements).

HSet3 Cognitive Load. The use of the set similarity model allows for
analyzing the similarity information with a lower cognitive load
compared to the use of pairwise comparison model (cognitive load lower
by at least one category on the SMEQ scale).

Experiment
focus:
the set model

Experimental
hypotheses

154

Evaluation

The hypotheses HSet1 and HSet2 directly restate the hypotheses HS2 and
HS4, with the scope reduced to the set model only. The intention of the last
hypothesis HSet3 is to provide more evaluation support for the both original
hypotheses HS2 and HS4. To evaluate HSet3, we use the Subjective Mental
Effort Question (SMEQ) scale [Zijlstra 1993], validated in usability research,
which is frequently used for cognitive load measurement [Albers 2012]. The
SMEQ presents a continuous scale, labeled in nine locations with categories
ranging from “absolutely no effort” to “extreme effort” (see the experiment
material in Appendix A). The respondents indicate their subjectively felt
cognitive load, experienced during the similarity analysis, by placing a mark
anywhere on the scale. The mark location is subsequently converted to an
integer value between 0 and 150. The SMEQ measurements are provided
on an interval scale, as the category locations were psychometrically
calibrated. This allows a convenient response analysis, as the calculation of
averages and distances is meaningful for interval scale data.

We added the hypothesis HSet3 to the experiment, as its positive evaluation
has two effects. First, the cognitive load measured by SMEQ for a group
of participants solving the same tasks was reported to highly correlate
with task time (r = -0.82, p < 0.01) and task errors (r = -0.72, p < 0.01)
[Sauro 2009]. Hence, the measurement of cognitive load reduction
provides another indication supporting the original hypotheses HS2 and
HS4. And second, we consider the cognitive load reduction to be a further
benefit provided by the set model. In Table 18 we list the metrics which
we collect in the experiment to evaluate the three stated hypotheses.

Metric Metric Name Associated Hypothesis Null Hypothesis
M1 Analysis time [min] HSet1: M1(Set)<M1(Pair) HSet10: M1(Set) M1(Pair)
M2 Number of correctly solved tasks
M3 Number of all tasks (constant)

M4 Incorrect answer ratio: M4 = HSet2: M4(Set)<M4(Pair) HSet20: M4(Set) M4(Pair)

M5 Cognitive load (measured using SMEQ) HSet3: M5(Set)<M5(Pair) HSet30: M5(Set) M5(Pair)
Table 18 The main metrics collected during the controlled experiment and the associated hypotheses

7.2.2 Experiment Design and Operationalization

To compare the effects of using the two evaluated similarity models,
we selected the between-subjects experiment design. Hence, the
participants were assigned to one of the two groups: the treatment
group, using only the set similarity model, or the control group, using
only the pairwise similarity model. Consequently, in the experiment we
compared the performance of the both groups.

The experiment was performed in January 2013. The experiment
participants were 23 students attending the Software Product Lines
course at the Technical University of Kaiserslautern: 19 master-level and
4 bachelor-level students, studying computer science or software
engineering. None of the students had a prior contact with the Variant
Analysis approach or tool. The experiment was performed during the
regular lecture hours, and the use of lecture time for the experiment was
announced in advance. The participation in the experiment was
voluntary, and almost all course attendants appeared for the experiment.

The rationale
and
measurement
of HSet3

Experiment
design

Student
participants

155

Evaluation

The 23 participants were assigned to the two experimental groups in a
random way. Before the experiment, the participants gathered in the
lecture room, and took the seats which were lined in rows. We assigned
every of 11 participants sitting on an even-numbered seat to the
treatment group, and the remaining 12 participants to the control group.
The intention of this randomization method was to split and evenly
distribute the groups of students having similar background, which would
be most probably sitting near each other in the lecture room. As presented
in the next subsection, this resulted in balanced experimental groups.

The experimental task, identical for both groups, was to answer 16
questions concerning the code similarity in the files belonging to five
software system variants. The questions were printed in the experiment
documents, distributed to each participant, and needed only a short
answer, such as stating the names of variants fulfilling a given condition.
As in the case of the analytical evaluation, the system variants analyzed
by the participants were generated by the ForkSim tool. The same five
variants, based on the Java code of the JHotDraw tool, were provided to
both groups. The use of the generated variants guaranteed that the
correct answers to the experimental questions, used to evaluate the
participant results, were determined without the need to use any of the
analysis methods investigated in the experiment.

The participants from both groups viewed the provided code files using
a variant of the Variant Analysis tool specifically adapted for the
experiment. In the tool, all visualizations and analysis mechanisms except
for the system hierarchy navigation and the code view were disabled (see
the Appendix A for details). Hence, the students were only able to locate
the files in the system structure diagram, identical for both groups, and to
view the code of file variants in the code editor. In the editor, the
background of the displayed code lines was colored according to the
similarity information provided by one of the similarity models: the pairwise
model for the control group and the set model for the treatment group.
The textual information provided for each line by the respective category
icons was also model-dependent. Except for these differences, all other
user interface mechanisms were identical for both groups. The participants
were asked to not use any other tools (e.g. operating system tools) during
the experiment, but they could take any necessary notes on the provided
paper sheets. The tool use was periodically controlled by experiment
supervisors walking around the laboratory – no deviations occurred.

The actual automatic analysis of the code similarity was not part of the
experiment – the students only viewed the similarity information,
provided by a previously performed analysis, and used that information
to answer the given questions. As the same system variants were
analyzed by both groups, the used similarity information was technically
the same – we verified that all the pairwise similarity relations were
included in the constructed set model.

Experimental
tasks

Similarity
viewed with
a tool

Assigning
participants
to the groups

156

Evaluation

As discussed above, the only independent variable varied between the
experimental groups was the similarity model used for accessing the
similarity information: the pairwise model or the set model. Every other
difference between the groups was removed as far as possible: the groups
solved identical analysis tasks, used identical tool to access the similarity
information (except for the underlying model), were given identical
experiment documents, and worked in parallel in two equivalent
computer laboratories. The dependent variables investigated in the
experiment are the analysis effort, the answer correctness, and the
cognitive load, as specified in Table 18 on the earlier page. Apart from
collecting the metrics related to the dependent variables, we also asked
each participant a range of identical briefing and debriefing questions to
characterize the participant background and check the impressions they
had immediately after the experiment completion.

Table 19 presents the experimental process, followed by both groups, and
lists the differences in particular process steps and artifacts caused by the
use of the respective similarity model. Each participant received an identical
main experiment document, containing the introductory information, the
briefing questionnaire, the experimental tasks, and the debriefing
questionnaire. Moreover, they received a printed tool tutorial, which was
also presented to them as a slide show. The tutorial was identical for both
groups, except for the part concerning the similarity model (see the
Appendix A for the complete experiment document and the tutorials).
After the tutorial, the participants familiarized themselves with the tool
and answered two sample warm-up questions, which had an identical
form as the actual experiment questions but concerned the different
example software variants, loaded into the tool for the tutorial purposes.

Step Step Description
Difference Between

the Groups
1. The experiment procedure is presented. None
2. The participants are split into two groups. None
3. The participants receive and read the

introductory material.
None

4. The participants fill out the briefing
questionnaire.

None

5. The participants listen to a tool tutorial
and receive it in a printed form.

Tutorial is identical except
for the similarity model parts.

6. To better understand the tool and the type
of the tasks, the participants use the tool on
an example and answer sample questions.

Identical example and
questions. Different similarity
models used.

7. The main experiment part: participants in
each group receive five software system
variants and answer a set of questions
concerning their similarity.

Identical software variants
analyzed. Identical
questions. Different
similarity models used.

8. The participants fill out the debriefing
questionnaire.

None

9. On a later day, the full information on
experiment setup and results is presented
to all participants.

None

Table 19 The experiment process: steps for controlled experiment execution

Independent
and dependent
variables

The
experiment
process

 157

Evaluation

In this way, the participants could clarify any doubts before the actual
experiment, and the influence of the first learning effects on the experiment
result was reduced. The experiment, including the introduction and the
tutorial, lasted in total about 90 minutes. The participants were not
interrupted, i.e. they worked on the given tasks until completion.

7.2.3 Experiment Results

During the initial viewing of the experiment results, we decided to
remove the answers given by one participant of the control group from
the further analysis. The reason for that is that the participant achieved
an exceptionally bad result (11 incorrect answers), and stated in the
debriefing questionnaire that he/she did not understand the tasks, nor
did he/she use the provided analysis tool to gather the information
required to solve them. This constitutes a high contrast to the answers of
all other participants, who achieved much better results and provided
consistently positive feedback on the task understanding and tool usage.
Hence, as the answers of the one untypical participant were not included
in the further analysis, the both experimental groups analyzed below
were equally sized and counted 11 member participants.

The Briefing Questionnaire

In the briefing questionnaire, we first asked about participant background:
the field of study, study level (bachelor, master, or other), study semester,
and color blindness. The answers are summarized in Table 20: both groups
had similar backgrounds, and the differences between them were not
statistically significant (all briefing and debriefing answer difference
significances were tested with two-tailed Mann-Whitney U test at p = 0.05).
In the treatment group, two participants indicated they were color blind –
however, in the debriefing questionnaire they both “strongly agreed” that
they could “easily see” the color differences in the code editor. Hence, we
assumed that the color blindness had no influence on their results.

Question
(shortened form)

Treatment Group
(Set Model) N = 11

Control Group
(Pairwise) N = 11

Field of study 8 x Computer Science
2 x Software Engineering
1 x Business

10 x Computer Science
1 x Software Engineering

Study level 8 x Master, 1 x Diploma,
2 x Bachelor

9 x Master, 2 x Bachelor

Study semester Average: 9.91 (10th semester) Average: 9.00 (9th semester)
Color blindness 9 x No

2 x Yes
11 x No

Table 20 The briefing questionnaire results: participant background

We further asked the participants about their experience in programming
and in the use of methods and tools similar to the evaluated ones. For all
questions, the responses were indicated on a five-point Likert scale, as
described in the legends in Table 21 and Table 22. The differences
between the groups, summarized in Table 21, were not statistically

Removal of
one participant

Participant
background

Participant
experience

158

Evaluation

significant except for one question: the control group had more
experience in using diff tools (median: 3, “medium experience”) than
the treatment group (median: 1, “no experience”). Hence, the control
group was more experienced in a method similar to the one they used in
the experiment. However, as reported in the next subsection, the control
group achieved consistently worse task results. Hence, we consider the
different experience to not influence the hypothesis evaluation, as the
result of the control group would be probably even worse if its members
had less experience, like the treatment group.

Question
(shortened form)

Treatment Group
(Set Model) N = 11

U Value
Significance

Control Group
(Pairwise) N = 11

General
programming
experience

60
No

Java language
experience

61.5
No

Eclipse
environment
experience

74
No

Code comparison
using a diff tool
(any kind)

96.5
Yes

Code comparison
using the Eclipse
Diff tool

75.5
No

Using the Variant
Analysis tool

55
No

Experience Likert scale:
No-Little-Medium-Significant-Professional

U+U’=121
Experience Likert scale:

No-Little-Medium-Significant-Professional
Table 21 The briefing questionnaire results: participant experience

Finally, we asked the participants about their motivation to perform well
in the experiment, and received from both groups a response with no
statistically significant difference, as shown in Table 22.

Question
(shortened form)

Treatment Group
(Set Model) N = 11

U Value
Significance

Control Group
(Pairwise) N = 11

Motivation to
perform well in
the experiment

70.5
No

Motivation Likert scale:
Highly unmotivated – Unmotivated – Neither motivated nor unmotivated – Motivated – Highly motivated

Table 22 The briefing questionnaire results: participant motivation

0
2
4
6
8

10

0
2
4
6
8

10

0
2
4
6
8

10

0
2
4
6
8

10

0
2
4
6
8

10

0
2
4
6
8

10

0
2
4
6
8

10

0
2
4
6
8

10

0
2
4
6
8

10

0
2
4
6
8

10

0
2
4
6
8

10

0
2
4
6
8

10

0
2
4
6
8

10

0
2
4
6
8

10

Participant
motivation

159

Evaluation

Hypothesis Testing

In Figure 57, we present the results of time and answer correctness
measurements. We use boxplots to visualize the data distribution and
additionally draw a circle representing the average value with error bars
showing the 95% confidence interval. In the result description, we use
the symbol A for the average (provided with the confidence interval),
M for the median, and for the standard deviation.

All participants from the treatment group, using the set model, finished
their tasks faster (maximum time: 18 minutes) than the fastest
participant from the control group (minimum time: 25 minutes). The
treatment group participants needed on average A=14.0 1.35 minutes to
complete the tasks (M=14.0 min, =2.28 min), while the control group
participants needed on average A=33.7 4.57 minutes (M=32.0 min,

=7.38 min). In the control group, one participant did not provide the
finishing time. However, according to the group supervisor, that
participant was neither the fastest, nor the slowest in the group. As the
total task time for this person is not known, we report and analyze the
time measurement results for a control group size of 10.

The task correctness was higher in the set group: one participant from that
group made two errors, while all others provided fully correct answers
(A=0.18 0.35, M=0.0, =0.60). In contrast to that, only three participants
from the control group provided correct answers for all 16 questions, while
the others made between 1 and 6 errors (A=2.27 1.21, M=2.0, =2.05).

In Figure 58, we present the cognitive load results provided by the
participants in the debriefing questionnaire. The treatment group
cognitive load (A=19.0 5.35, M=15.0, =9.06) was much lower than
the control group load (A=50.0 22.04, M=48.5, =35.56). In the control
group, one participant did not provide a numeric answer. Consequently,
we report and analyze the data for the remaining 10 group participants.

Figure 57 The experiment results: task time (left) and task errors (right).

0

5

10

15

20

25

30

35

40

45

50

Time [min]

Set Model
Treatment Group

N = 11
Pairwise

Control Group

N = 10

0

2

4

6

8

10

Errors
[for 16 tasks]

Set Model
Treatment Group

N = 11
Pairwise

Control Group

N = 11

Task time
results

Task
correctness
results

Cognitive load
results

Symbols and
notation

 160

Evaluation

Figure 58 The experiment results: cognitive load.

From the six above data series, only the task error series of the treatment
group does not pass the Shapiro-Wilk normality test. The time and error count
values are measured on a ratio scale, while the cognitive load data is provided
on an interval scale. Hence, we tested the task time and cognitive load data
series with the independent samples Student's t-test, as they fulfill the test
requirements: normality and at least interval scale. The task error series,
containing not normally distributed ratio scale data, were tested using the
Mann-Whitney U test. As all three tested hypotheses are directional, we
used one-tailed tests. The results of hypothesis testing are provided in Table
23. Furthermore, to estimate the measured effect size, we provide for all three
hypotheses the p value (calculated with the t-test for normally distributed
series pairs and with the U test for the task error series) and the Cohen’s d
[Cohen 1992]. Note that for the task error data series, which is not normally
distributed, the value of Cohen’s d might be unreliable. For this reason, we
additionally calculated the values of Cliff’s delta [Cliff 1993], as that
parameter is intended for effect size estimation on non-parametric data.
Finally, we quantified the observed improvement in two ways: by comparing
the averages for the both groups, as well as by comparing the maximum
value within the 95% confidence interval of the treatment group to the
minimum value within the 95% confidence interval of the control group.

Hypothesis
Accepted
at p<0.05

p
Effect size:
Cohen’s d

Effect size:
Cliff’s delta

Observed improvement

HSet1
Efficiency

Yes (t-test) 3.7e-08
3.30
Large

-1.0
Large

Avg.: 14.0 to 33.7 58.5%
Conf.: 15.35 to 29.13 47.3%

HSet2
Correctness

Yes (U test) 0.0048
1.32*
Large

-0.66
Large

Avg.: 0.18 to 2.27 92.1%
Conf.: 0.53 to 1.06 50.0%

HSet3
Cognitive load

Yes (t-test) 0.0057
1.29
Large

-0.52
Large

Avg.: 19.0 to 50.0 over 1 cat.
Conf.: 24.35 to 27.96 small

Table 23 Statistical testing of the experimental hypotheses

0

10

20

30

40

50

60

70

80

90

100

SMEQ scale

Set Model
Treatment Group

N = 11
Pairwise

Control Group

N = 10

120

110

Absolutely no effort 2

Almost no effort 13

Some effort 38

A little effort 26

Rather much effort 57

Considerable effort 71

Great effort 85

Very great effort 102

Extreme effort 112

Hypothesis
testing

161

Evaluation

All three evaluated hypotheses were accepted in the experiment, and the
measured effect sizes were in all cases large. The observed improvement,
calculated based on the measured average values, was in all cases larger
than initially stated in the hypotheses: the reduction in the task time and
task errors between the pairwise group and the set model group
amounted to respectively 58.5% and 92.1%, while the cognitive load
was lower in the set model group by more than one SMEQ category. The
improvement calculated with the more conservative method, by comparing
the minimum and maximum edges of the confidence interval, was still
substantial for time reduction (47.3%) and task errors reduction
(50.0%), and small, but positive for the cognitive load.

We observed in the experiment that the use of the set model indeed
results in the previously stated benefits: the similarity analysis which uses
the set model is faster, induces less cognitive load, and leads to a better
similarity information understanding as compared to the analysis based
on the pairwise similarity model. Hence, the original research hypotheses
HS2 (Analysis Effort Reduction) and HS4 (Understandability) are already
fulfilled when only one of the analysis mechanisms provided by our
approach, i.e. the set similarity model, is used. We expect that the other,
not yet evaluated approach mechanisms provide further positive
contributions to the research hypotheses. Consequently, the evaluation
of the improvements provided by the hierarchical abstraction and the
defined visualizations is needed to solidify the empirical evidence of the
benefits provided by the complete analysis approach.

The Debriefing Questionnaire

In the debriefing questionnaire, we first asked the participants about the
experienced cognitive load (analyzed in the previous subsection). Then,
we asked a number of control questions concerning the participant
views on the experiment tasks and procedures – whether the
participants understood these, used them as intended, and had sufficient
time. Furthermore, we asked the participants to evaluate the subjectively
felt correctness of their answers, as well as the support provided by the
used tool for a quick and correct task solution. The answers to the
control, correctness, and support questions, summarized in Table 24,
were indicated on a five-point Likert scale described in the table legend.
Finally, we asked two open questions concerning the participant
feedback on the experiment, the tasks, and the used analysis tool.

The majority of participants from both groups indicated a “strong
agreement” with the control questions statements, and there was no
statistically significant difference between the groups (tested with two-
tailed Mann-Whitney U test at p = 0.05). Hence, we conclude that the
participants performed the experiment tasks as intended, having a good
understanding of the tasks, the tool, and the provided similarity
information – which limits the respective validity threats.

Result
interpretation

Debriefing
questions

Control
questions
results

Conclusion

 162

Evaluation

Question
(shortened form)

Treatment Group
(Set Model) N = 11

U Value
Significance
(U+U’=121)

Control Group
(Pairwise) N = 11

I understood the
description of the
experimental tasks

49.5
No

I understood
how to use
the analysis tool

41
No

I understood the
meaning of the
code diff. inform.

53.5
No

I could easily see
the difference
between colors

49
No

I had enough
time for solving
the tasks

44
No

I only used the
specified tool for
solving the tasks

55
No

I think
my answers
were correct

38.5
No

I think the tool
supports solving
the tasks quickly

20
Yes

I think the tool
supports solving
the tasks correctly

33.5
No

Agreement Likert scale:
Strongly disagree – Disagree – Neither agree nor disagree – Agree – Strongly agree

Table 24 The debriefing questionnaire results

In the questions concerning the subjectively evaluated answer correctness
and tool support, the treatment group indicated a higher agreement with
the question statements (mostly “strongly agree”) than the control group
(mostly “agree”) – hence giving a more positive evaluation of the set model
based analysis method. The difference between the groups was statistically
significant for the question concerning the support for quick task solution.
We interpret that result as another indication of the set model benefits.

The open feedback question answers mainly contained various suggestions
concerning the tool improvement. However, all these ideas were already
covered by the full Variant Analysis tool, not known to the participants.

0
2
4
6
8

10

0
2
4
6
8

10

0
2
4
6
8

10

0
2
4
6
8

10

0
2
4
6
8

10

0
2
4
6
8

10

0
2
4
6
8

10

0
2
4
6
8

10

0
2
4
6
8

10

0
2
4
6
8

10

0
2
4
6
8

10

0
2
4
6
8

10

0
2
4
6
8

10

0
2
4
6
8

10

0
2
4
6
8

10

0
2
4
6
8

10

0
2
4
6
8

10

0
2
4
6
8

10

Correctness
and support
questions
results

Feedback

163

Evaluation

7.2.4 Threats to Validity

For every experiment, threats to the validity of its results exist. We describe
the validity threats of our experiment according to the framework of Cook
and Campbell [Cook 1979]. The four distinguished validity types correspond
to different stages of an experiment [Wohlin 2000] [Trochim 2006]:

Conclusion validity addresses the result analysis, and concerns the
existence of statistical relation between the treatment and the outcome.
Internal validity targets the experiment design. It concerns the degree
to which the experiment outcome was caused by the treatment.
Construct validity addresses the experiment measurements, i.e. whether
the hypothesized cause and its effect were adequately represented and
measured in the experiment by the treatment and the outcome.
External validity targets the sampling of experimental objects from the
general population, and hence concerns the generalizability of the result.

The identified threats to the conclusion validity are:

The moderate size of both experimental groups (11 participants).
Performing the experiment with larger groups would result in more
statistical support for the conclusions and would reduce the size of the
calculated confidence intervals. Nevertheless, the results of hypotheses
testing are already statistically significant, with very low p values and
non-overlapping confidence intervals. Recruiting a larger, but still
relatively homogenous group of participants was not possible.
The analyzed number of errors does not consider for which tasks the
errors were made. Although the experimental tasks were not identical,
each incorrect answer was assigned the same importance and counted
as one task error. We mitigated this threat by formulating tasks having
a similar difficulty. Furthermore, this threat does not influence the
result evaluation for participants which made no errors: as 10 out of 11
treatment group participants provided fully correct answers, the difference
observed between the two groups remains strongly significant.

The threats to the internal validity of the performed experiment include:

Experimental groups potentially unbalanced with regard to factors
influencing the outcome. In order to mitigate that threat, we used a
random assignment of participants to groups. In the consequence, the
randomly created groups were balanced (no statistically significant
differences), except for the experience in using diff tools which was
higher in the control group. Nevertheless, we consider that difference
to not endanger the validity, as the result of the control group,
already weaker than the result of the treatment group, would be
most probably worse if the group members had less experience.
After splitting the participants in two groups, the groups had different
supervisors. The approach author supervised the treatment group,
while the control group was supervised by another Fraunhofer IESE
researcher. This assignment was selected to avoid the possibility of
unintentional negative influence of the control group result by the

Threat
classification

Conclusion
validity

Internal
validity

164

Evaluation

approach author. Although there were no explicit or observed
differences in the supervision of the groups, a theoretical possibility of
an experiment result influence remains.

 The tool used in the experiment was new to the participants.
Moreover, the used similarity analysis method was also new to some
participants: four control group participants had “none” or “little”
experience in using diff-like code comparison tools, while the set
model based comparison was new to all treatment group participants.
We mitigated that threat by the use of a pre-experiment tutorial and
the example analysis tasks, which familiarized the participants with the
used methods and reduced the influence of the ease of method
learning on the experiment result (as the method learning occurred
mostly before, and not during the experiment).

The other differences between the analysis tasks, methods, or documents,
which were not caused by the choice of the similarity model, were
eliminated – as discussed previously in this Section. Moreover, no special
events, breaks, or other disturbing factors occurred during the experiment.

The identified threats to construct validity, affecting the appropriateness
of the experimental representations constructed for real-world similarity
analysis, the analysis effort, and analysis correctness, are:

 Hypothesis guessing by the experiment participants. We mitigated
this threat by not mentioning the hypotheses, the tasks and tools of
the other group, nor the role of a given group to the participants.
Furthermore, the groups worked in separate rooms and hence could
not communicate. On the other hand, the participants knew that
they participate in an experiment and could easily guess that their
results will be evaluated at least for solution time and correctness.

 The participant reaction to the situation of being evaluated. For some
people, a test situation might lead to stress and an increase or decrease
of individual performance. We mitigated that threat by making the
experiment participation voluntary, assuring participant evaluation
anonymity, stating that their results are only used for the experimental
purpose and not for individual evaluation, and performing the
supervision in a relaxed, non-intrusive way. On the other hand,
participation in a test is certainly a psychologically different situation
than performing a regular workplace task of code analysis.

 Mono-method bias caused by measuring the outcomes with single
metrics only. Especially, it can be argued that the correctness of
similarity information understanding, being a result of a complex
mental process, should be measured with more metrics than just the
task errors. Furthermore, the task answers were evaluated in a binary
way, i.e. they could only be correct or not. However, in a real-world
similarity analysis a partial understanding of similarity information,
resulting in an answer which is incomplete but otherwise not incorrect,
might be already of value. A form of mitigation of this threat is the use
of cognitive load measurement in addition to the task errors.

Construct
validity

 165

Evaluation

Finally, the threats to external validity, affecting the generalizability of
the experiment result, are:

The experiment participants, i.e. computer science students, might be
not representative for a general population of software developers,
especially as contrasted to experienced industry practitioners.
Furthermore, the familiarity of the participants with the analyzed
system variants, and their motivation to solve the analysis tasks, are
different than in the industrial case. The industry developers
frequently know the analyzed system code well, and the analysis
results are highly relevant for their other work tasks. In contrast to
that, the students did not know the experimental system variants,
and the analysis results were not relevant for their other assignments.
The analyzed software systems might be not representative for a
general population of cloned system variants. First, the systems were
generated, so that the resulting code similarities might be not typical
for the general case. Second, the analyzed systems were written in
the Java programming language, while other languages, especially
C/C++, are also used in the industry. And third, the size and number
of analyzed system variants might influence the scale of the
evaluated improvement – which is not addressed in the experiment,
as the evaluated system variants provide only a single data point.
Finally, the experimental tasks might be not representative for the
general population of similarity analysis tasks. Especially, a real similarity
analysis includes tasks of different granularity, addressing single code
lines as well as large modules composed of thousands or even millions
of code lines. In contrast to that, the experimental tasks had a similar
granularity and difficulty, as we wanted to assure their comparability.

In the future work, the listed external validity threats can be mitigated by
a replication of the presented experiment in different settings involving
other types of the participants, the analyzed system variants, and tasks.

7.3 Industrial Case Study

Although a controlled experiment provides a high degree of control over
the execution environment and the factors influencing the evaluated
result, the disadvantage of that artificial setting is that the
generalizability of the achieved result to real-world situations is
necessarily limited. Hence, we performed a case study, described in this
Section, to provide additional, practical evaluation input for the
hypotheses HS2 (Analysis Effort Reduction) and HS4 (Understandability).
Moreover, the case study was an opportunity for evaluating the practical
hypotheses HP1 (Migration Effort Reduction), HP2 (Higher Degree of
Reuse) and HP3 (Effort Reduction in Parallel Variant Maintenance).
Finally, the practical approach use allowed for evaluation of the hypothesis
HS5 (Practicability), also including the user satisfaction with the provided
results – a concern which is influenced by, but still orthogonal to, the
analytical correctness parameters such as recall and precision.

External
validity

Evaluated
hypotheses

166

Evaluation

A frequent issue in case study design is the difficulty of comparing the
newly introduced approach to the baseline state. In our case study, we did
not have baseline data concerning the similarity analysis efforts spent
without the use of our approach, as that task was subsumed as a part of
larger development activities. Hence, the differences between the
previously used analysis approach, based on pairwise file comparison, and
the introduced Variant Analysis approach were estimated by developers
who performed similarity analyses with both approaches during their
regular work activities. Furthermore, in the description of the case study
we deliberately use approximate numbers to protect sensitive information.

The Variant Analysis approach was applied in one software development
team at the Diesel Gasoline Systems unit of Robert Bosch GmbH, a large
automotive and electronics company. Bosch Diesel Gasoline Systems
develops a family of complex embedded software systems, realized in C
and C++, which is described in more detail by Tischer et al. [Tischer 2011]
[Tischer 2012]. The systems are composed from about ten thousands of
components realizing the particular system functions. Each component,
typically having a few thousands of code lines, is in turn realized in
multiple variants. A decision process is used to determine the realization
mechanism for component variants: preprocessor use, branching, or a
mixture of these two is possible. However, after some evolution time the
similarity properties of the component variant implementation, and the
resulting need for maintenance efforts, might lead the team to change the
decision concerning the preferred variant implementation mechanism.
Moreover, the size and complexity of the system make it difficult to assess
the implementation-level component similarity based on the domain
knowledge alone – hence creating a need for code analysis approach.
Consequently, each of the thousands of components potentially presents
a separate similarity analysis case for our approach. Within the whole
system, all three application scenarios of our approach occur (Reuse
Potential Assessment, Consolidation of Existing Reusable Software, and
Parallel Variant Maintenance) – however, in the performed analyses the
development team mainly concentrated on the first scenario, targeting
the reuse potential assessment among cloned variants.

At the time of case study data collection, the development team already
used the Variant Analysis approach for about three months. In a
questionnaire, we asked the team members to anonymously describe their
background and to assess the properties of similarity analyses, performed
on the typical analysis problems occurring in their daily work, with two
approaches: the baseline one, using pairwise comparison, and the Variant
Analysis approach. The questions were mainly targeted at the evaluation
of our hypotheses and at the satisfaction of the users with the approach
results. For some questions, we first explained the terms we asked for,
such as e.g. the “incorrectly understood similarity facts”. The questions
provided equal possibility to evaluate any approach as better or equivalent
to the other. From five approach users, four returned the questionnaires.
The participants indicated they had between 5 and 17 years of industrial
experience, and worked on the current project since 1 to 8 years.

Use of expert
estimations

Approach
application
context

Data collection

 167

Evaluation

Hypothesis
Questions

Participant Answers
N = 4

Satisfaction
Questions

Participant Answers
N = 4

HS2
Analysis effort for
a typical similarity
analysis task
(VA reduction %)

The analysis is
able to fully satisfy
the analysis goals

HS4
Incorrectly
understood
similarity facts
(VA reduction %)

The analysis is able
to retrieve the inf.
100% correctly

HP1
Reuse migration
effort
(VA reduction %)

The analysis is able
to retrieve the inf.
100% completely

HP2
Achieved reuse
degree
(VA increase %)

The analysis is
a simple and
uncomplicated task

HP3
Effort for parallel
variant
maintenance
(VA reduction %)

Legend
Agreement scale:

Strongly disagree(1) – Disagree(2) – Slightly disagree(3)
– Neither agree nor disagree (4) –

Slightly agree (5) – Agree (6) – Strongly Agree (7)
Table 25 The case study questionnaire results

The participant answers are summarized in Table 25, with individual
participants identified by the codes P1 to P4. For all hypothesis questions,
the developers indicated that the Variant Analysis approach provides in
their opinion an improvement over the previously used similarity analysis
method based on pairwise comparison. Hence, in Table 25 we visualize
their estimations as a percentage improvement brought by Variant
Analysis over the baseline approach. The developers estimated an average
of 57.5% reduction in analysis effort (hypothesis HS2) and 41%
reduction in the incorrectly understood similarity facts (hypothesis HS4).
Furthermore, they estimated that the total reuse migration effort for
their specific cases could be reduced by average 48% (hypothesis HP1).
In the case of hypothesis HP2, targeting the missed opportunities of
reuse, the theoretically achievable reuse degree is hard to assess in the
practice. Hence, we formulated the question differently and asked for
the actually achieved reuse degree. The participant estimation was that
on average 35% more code can be made reusable when the similarity
information provided by Variant Analysis is used. Finally, the participants
estimated an average 65% reduction in parallel variant maintenance effort
achievable thanks to the Variant Analysis information (hypothesis HP2).
Note that not all participants answered the practical hypothesis questions:
the missing answers are indicated in Table 25 with question marks.

P1

P2

P3

P4

0

%

20 40 60 80 100

90%

10%

80%

50%

Avg.: 57.5%

P1

P2

P3

P4

1 2 3 4 5 6 7

Median: 3.5 Median: 6

P1

P2

P3

P4

0

%

20 40 60 80 100

70%

25%

20%

50%

Avg.: 41%

P1

P2

P3

P4

1 2 3 4 5 6 7

Median: 4 Median: 6

P1

P2

P3

P4

0

%

20 40 60 80 100

60%

60%

25%

Avg.: 48%

?

P1

P2

P3

P4

1 2 3 4 5 6 7

Median: 5.5Median: 3.5

P1

P2

P3

P4

0

%

20 40 60 80 100

0%

80%

25%

Avg.: 35%

?

P1

P2

P3

P4

1 2 3 4 5 6 7

Median: 3.5 Median: 6.5

P1

P2

P3

P4

0

%

20 40 60 80 100

80%

50%

Avg.: 65%

?

?

Baseline approach Variant Analysis

Strongly disagree Neither Strongly agree

Hypothesis
questions

168

Evaluation

In the satisfaction questions, we related the two evaluated approaches to
an imaginably ideal one, indicating that with respective phrasing of the
questions (e.g. “fully satisfy the analysis goals”, “retrieve the information
100% completely”). Rating the two approaches, the developers indicated
their agreement with the provided question statements using a seven-
point Likert scale described in the legend of Table 25. The questions
addressed four types of practical approach benefits: the full satisfaction of
analysis goals, the 100% correct information retrieval (which targeted the
practically perceived equivalent of the theoretical parameter of precision),
the 100% complete information retrieval (i.e. the practically perceived
equivalent of recall), and the ease of approach use (i.e. whether the
approach use is a “simple and uncomplicated task”). The answers provided
by the developers were consistently much more positive for the Variant
Analysis approach than for the baseline approach, which supports the
hypothesis HS5. The median ratings of Variant Analysis concentrated around
the “agree” answer, while the median ratings of the baseline approach were
located between “slightly disagree” and “neither” (see Table 25 for details).

The provided answers, giving a consistently positive indication for Variant
Analysis in both hypothesis evaluation and use satisfaction areas, suggest
that the approach indeed provides the hypothesized benefits. However,
the performed case study has a limited validity. First, the provided
improvement numbers are not measured, but only estimated by the
developers – albeit based on their practical experience in the use of both
approaches. Second, the answers were provided by just four developers –
which limits the generalizability of the result. Finally, the developers might
interpret the questions in a different way than intended in the hypotheses.
This might be the case for participant P3: he/she did not provide practical
hypothesis estimations, and indicated identical satisfaction with both
approaches, but in the open feedback question he/she stated instead that
“the total effort is the same, but the benefit is in the improved quality and
less variants”. Our understanding of that answer is that the information
provided by Variant Analysis is regarded by that participant as more useful
than in the case of the baseline approach, but the resulting practical benefits
are in his/her opinion different than these mentioned in our hypotheses.

Currently, after about a year of approach usage, the team evaluated the
similarity of over 300 component groups having from 2 to 18 variants.
From these groups, about 130 contained variants suitable for merging –
this was decided, among other criteria, based on the detected code
similarity exceeding 90%. According to the internal measurements, the
analysis and code restructuring effort definitely pays itself off in the form
of reduced component maintenance needs. The yearly net effort savings,
calculated for combined maintenance and development efforts of the
addressed components, are estimated to exceed the worth of 100 000
euro. The team members indicated that the similarity analysis with the
Variant Analysis approach is convenient and very fast to perform. They also
stated that conducting the similarity analyses to the current extent, and
hence achieving the maintenance effort savings, would not be possible with
the other known approaches due to the prohibitive analysis effort needed.

Satisfaction
questions

Threats to
validity

Further
experiences

 169

Evaluation

7.4 Industrial Application Experiences

The similarity analysis approach developed in this thesis was used in the
context of a range of industrial consultancy projects conducted by
Fraunhofer IESE. In this Section, we briefly report on five analyses
performed in these projects. The presented analyses were all performed on
industrial software system variants created with the use of cloning, and
were conducted for a concrete project purpose. Hence, the list does not
include analyses which were performed for demonstrative or experimental
reasons. Furthermore, the list does not include the analyses performed in
our case study, as they are already described in the previous Section.

For each analysis, Table 26 lists the analysis application scenario, the
basic characteristics of the analyzed system group such as the domain,
size and number of variants, and their similarity, and it specifies the
person who performed the analysis. The five listed analysis cases cover all
three application scenarios, with scenario AS1 Reuse Potential
Assessment being the most frequent (three occurrences). The analyzed
system groups include medium-sized and large systems (group average
system sizes from 112 KLOC to 1319 KLOC), and contain from 4 to 14
cloned variants. All systems are realized in the C and C++ programming
languages, and are deployed as embedded software. In the listed cases,
the analyses were performed by the approach author, other IESE
researchers, as well as by the customer employees. This shows, as in the
case study, that the approach can be successfully applied by software
practitioners, supporting the hypothesis HS5 (Practicability).

In all cases, the performed analysis provided a new view on the customer
code, allowing for assessment of the variant system similarity which was,
according to customer feedback, not possible with other means:

In company J, the general high similarity of the four system variants
was suspected, but no respective measurements existed. The
performed analysis identified groups of strongly similar components
which were suitable for unification across the four variants with low
effort, and a range of further component groups with potentially
sufficient similarity. An initial planning for reengineering activities was
started – however, the company decided instead to develop a new
generation of products, not code-compatible with the current one,
and discontinued the analyzed variants.
Company D develops a product line of power electronics systems
since several years. The product line architect was interested how far
the existing code components, which are similar to each other across
the product variants, correspond to the planned reusable
components as documented by the software architecture. The
similarity analysis revealed that the components intended to be
reusable were indeed highly similar, and the other similar components
found in the code constituted exceptions previously known to the
architect. Hence, no further actions were performed after the analysis.

Origin of the
presented
system groups

Presented
information

Application
details

170

Evaluation

Company
name

(anonymized)
Domain

Application
scenario

Analysis
done by

Number
of

variants

Average
variant

system size

Core code
size

Average
unique

code size

J
Machine

construction
Reuse

assessment
Approach

author
4 1,319 KLOC 664 KLOC 131 KLOC

D
Power

electronics
Consolida-

tion
Customer 10 427 KLOC 161 KLOC 152 KLOC

H Automotive
Parallel

maintenance
Other IESE
researcher

14 186 KLOC 132 KLOC 2 KLOC

C Automotive
Reuse

assessment
Approach

author
12 112 KLOC 24 KLOC 2 KLOC

U
Telecommu-

nication
Reuse

assessment
Other IESE
researcher

6 202 KLOC 145 KLOC 36 KLOC

Table 26 Industrial applications of the analysis approach

 Company H develops a group of 14 cloned, similar software systems.
However, no code unification is intended, as the reuse introduction
was judged to conflict with system safety considerations.
Nevertheless, the company was interested in identifying groups of
highly similar components, and in identifying variants which nearly
fully cover the code of other, smaller variants. For example, it was
found that 3 of the 14 system variants cover over 99% of the
complete set union code. The provided similarity information was
used to improve the planning of code inspection efforts.

 Company C develops several product lines of controllers and drivers
used in automotive parts. The analyzed product line was intended to
be replaced by a new one. The similarity information provided in the
analysis was used in two further activities. First, in the context of
scoping, the similarity information supported the assessment of reuse
potential for newly developed components, functionally analogical to
the old ones. Second, a detailed review of code differences helped
the developers of selected components to understand fine-grained
implementation-level peculiarities of each variant, not large enough
to be visible at the level of whole features or functions.

 Company U intends to introduce the software product line approach
to its family of similar, cloned software variants. The similarity analysis
was performed to help assess whether the product line approach is
suitable for the system group. The analysis indicated a significant
reuse potential and identified groups of highly similar components.
The next reengineering steps are currently under consideration.

Generalizing the more detailed experiences gained in the above
industrial application cases, we also observed that:

 Typically the performed analyses confirm the fragments of similarity
information which are already known, and provide much more
information which was previously unknown to the participating
customer employees. This is consistent with the observations we
made in the industrial survey in Section 3.1, regarding the generally
low availability of code similarity information.

Further
experiences

 171

Evaluation

The high information detail level provided by the analysis due to the use
of the diff algorithm was considered by the developers to be very
helpful. In many cases, the presented differences in single code lines, not
sufficiently relevant for a high-level similarity assessment such as scoping,
were rated by the developers as highly important as they contained e.g.
hardware-specific mechanisms for component functionality realization.
In all cases the customers provided a positive feedback on the analysis
and its results, stating that it delivers an added value compared to the
previous state of the practice. The information provided by the analyses
was assessed by the customers as correct and useful in their
maintenance decisions. Hence, the customer feedback supports the
hypothesis HS5 (Practicability).

7.5 Summary

In this Chapter we evaluated the practical and scientific hypotheses
concerning the Variant Analysis approach. The performed evaluations
provided consistently positive outcomes, supporting the scientific and
practical hypotheses. The described results were all created based on a
realistically available data input – hence, the measured improvement
values are not absolute, but rather indicate the benefit achieved through
the approach use in the concrete context.

In the analytical correctness evaluation we measured that, for the analyzed
cases, the precision and recall of the approach results are higher than 0.99.
We also discussed that the transitivity of the input provided by the diff
algorithm is sufficient for the purposes of set model construction, with at
least 99.56% of input graphs, containing at least 97.52% of input edges,
being transitive, and at least 99.25% of the input edges being included in
the finally constructed set model. Furthermore, we have demonstrated that
the approach implementation is scalable and performant.

In the controlled experiment, we addressed the benefits of the set
similarity model relative to the most frequently used state of the art
approach, the pairwise comparison. We observed that the set model
group solved the similarity analysis tasks on average 58.5% faster, while
making 92.1% less errors than the pairwise comparison group.
Furthermore, the set model group reported a lower cognitive load when
solving the tasks and a higher satisfaction with the used analysis approach.

Finally, a case study demonstrated that the analysis approach can be
successfully integrated in the software maintenance activities in the
industrial context. The industrial approach users estimated that the
hypothesized practical improvements, such as migration effort reduction
and the increase of achieved reuse degree, do occur in the practice. The use
of the analysis results enabled net effort savings exceeding 100 000 euro
yearly. The usefulness of the approach results was further confirmed by the
described industrial application experiences in five different companies.

172

Summary and Outlook

8 Summary and Outlook

In this last Chapter we describe the concluding reflections over the thesis
content and the defined similarity analysis approach. We discuss the
provided contributions (Section 8.1) and the approach limitations
(Section 8.2), and we outline the possible future work areas (Section 8.3).

8.1 Results and Contributions

In the industrial practice, groups of functionally similar software systems
are frequently developed without considering software reuse approaches.
Instead, the code of existing systems is repeatedly cloned and adapted to
the specific customer’s needs, creating new system variants. This approach
results in short-term advantages such as reduced first development effort
and shortened time to market, but its long-term disadvantage is the
significantly increased maintenance effort. Hence, even if reuse
introduction was not intended or not possible in the short term, in the
longer term a consolidation of the variants into a reusable form is
beneficial. However, the consolidation is difficult: the practically occurring
problems are the high required effort and the possibility to miss the
reuse opportunities. One of the reasons for these problems is that the
cross-variant code similarity information, necessary in the consolidation
process, is not available. Hence, a related scientific problem is the recovery,
structuring and presentation of code similarity information, in quality and
detail sufficient to support the migration and maintenance activities. This
problem is open as the existing reverse engineering approaches, which can
be used to recover that information, exhibit deficiencies which prevent
them from fully addressing the respective information needs.

8.1.1 Understanding Large-Scale Cloning: Reasons, Consequences and Solutions

In this thesis, we contribute both to the understanding of the mentioned
practical and scientific problems, as well as to their solution. Our
contributions to the problem understanding are:

 A survey of the large-scale cloning practices in the industry,
performed on six groups of similar system variants. In the survey, we
investigated the reasons for cloning, the practically perceived benefits
and drawbacks, and the cloning consequences. The survey results show
that cloning causes long term-maintenance problems, and leads to the
loss of information on the similar assets – which hinders reuse adoption.
On the other hand, cloning is in many situations a justified or even
preferred approach, as its short-term advantages over software reuse
are a low entrance barrier, reduced first development effort,

Addressed
problems

Contributions
to problem
understanding

 173

Summary and Outlook

possibility of a quick reaction to unexpected market demands,
reduced cross-project synchronization requirements, and freedom to
perform experimental changes. We conclude that cloning will remain
a practically used development approach, and hence the need to
counteract the resulting maintenance problems will persist.
A characterization of the state of the art approaches to similarity
analysis of multiple cloned variants. First, we discussed that the missing
similarity information needs to be provided by a reverse engineering
approach, as the other alternative, a top-down human-based analysis,
overlooks detailed differences relevant to the asset functionality
implementation. Second, we discussed the properties of the existing
reverse engineering approaches with respect to provided abstraction
mechanisms and information detail level on two dimensions of analysis
problem complexity: the size of the analyzed software assets, and the
amount of their variants. We showed that while the approaches deliver
good support for the asset size dimension, the information provided
for the variant dimension is incomplete, and suitable abstraction
mechanisms supporting understanding and interpretation of the
variant similarity information are missing.

8.1.2 A Set Model Based Approach to Variant Similarity Analysis

Consequently, we analyzed the identified practical and scientific problems
and formulated application scenarios specifying the problem scope
addressed in the thesis. We address the scenarios of the reuse potential
assessment across the variants, the consolidation of already existing,
partially reusable software, and of the code similarity based support for
parallel variant maintenance. For the defined application scope, we
developed a reverse engineering approach to variant similarity information
recovery, which is the main contribution of this thesis. The core idea of the
approach is the use of hierarchical set similarity model to represent the
similarity of analyzed system variants. The set model is in turn constructed
and used by a generic analysis framework, specifying the analysis process
and the data model, and it is presented by a range of defined visualizations.
Hence, our scientific contributions to the problem solution are:

A definition of a conceptual similarity model, which classifies and
relates the concepts associated with the variant similarity analysis
problem and provides the basis for reasoning on the solutions.
A definition of construction requirements for variant similarity
analysis approaches, which are derived from the properties of software
variants – especially from the lack of objectively definable variant order.
The requirements are applicable to any general-purpose approach
analyzing variant similarity, provide means to compare and evaluate such
approaches, and can serve as guidance when defining a new approach.
A definition of the hierarchical set similarity model, based on a
formalization of the variant similarity analysis and its results. The set
similarity model represents the analyzed variants as sets of atomic,
comparable content elements. The sets intersect with each other,

Scientific
contributions
to problem
solution

174

Summary and Outlook

expressing the variant similarity: the elements similar across a group
of variants are placed inside the respective set intersection, while the
other elements remain outside. The set model is combined with the
use of tree structures, representing the asset content hierarchy, in
result defining the hierarchical set similarity model. This enables the
use of set model based similarity analyses, measurements and
visualizations on any granularity level in the asset structure. The
hierarchical set similarity model allows for understandable analysis
and presentation of similarity information for both large software
assets and a high amount of variants, while at the same time providing
the access to the lowest detail level of single content elements. The
model definition is generic, which makes it applicable for similarity
analysis of many asset types, also non-software ones.

A definition of a generic analysis framework using the hierarchical
set similarity model. The framework includes the data model, the analysis
process, and the requirements concerning the definition of three basic
analysis mechanisms used in our approach: an asset content
decomposition, a structure element equivalence relation, and an atomic
content element equivalence relation. These three basic analysis
mechanisms need to be defined for each specific asset content type and
analysis goal – hence, they constitute the customization points of the
generic framework and enable the use of the, likewise generic,
hierarchical set similarity model and its metrics and visualizations.
Consequently, the analysis framework can be used for diverse system
representations and diverse similarity detection algorithms. In the thesis
we provide an example instantiation of the framework for file system
based structures, with file content treated as text and analyzed with the
diff algorithm. That instantiation is suitable for analysis of assets
developed in the most of the currently existing programming languages.

A definition of hierarchical set model visualizations, presenting
the similarity of intersecting variant content sets, the distribution of
the similarity in the asset structure hierarchy, and the status of the
particular structure and content elements. Most of the defined
visualizations are applicable for any group of intersecting sets,
regardless of their origin – hence, they can be applied beyond the
context of this thesis, and even beyond the area of computer science.

8.1.3 Empiricism and Evaluation

We hypothesize that the defined similarity analysis approach provides a
range of benefits compared to the state of the art. We evaluated these
benefits empirically through a controlled experiment, a case study, and
industrial applications of our approach, with consistently positive results:

In the controlled experiment, we observed that the use of the set
model reduces the similarity analysis effort (experimental result: 58.5%
shorter analysis time) and leads to a better similarity information
understanding (experimental result: 92.1% less task errors) as
compared to the analysis based on the pairwise similarity model.

Empirical
contributions

175

Summary and Outlook

Although the experiment targeted the set model only, we
hypothesize that the improvement provided by the whole approach,
compared to the state of the art approaches, has a similar scale.
Moreover, we hypothesize that the scale of the improvement increases
with the increasing amount of the analyzed variants, due to the use of
the abstraction mechanisms defined in the approach.

In the case study, the approach was applied for over a year by one
development team in a large electronics company. The approach use
allowed for development and maintenance net effort savings exceeding
100 000 euro yearly. After initial three months of approach use, the
developers indicated that they were much more satisfied with our
approach than with the previously used approach based on pairwise
comparison. On average, they estimated that the practical analysis
effort is lower by 57.5% and the amount of incorrectly understood
similarity facts is reduced by 41% – providing a further support for
the hypotheses evaluated in the experiment. They also estimated that
the use of approach results allows for reducing the reuse migration
effort (average estimation: 48%), increasing the amount of reused code
(35%) and reducing the effort for parallel maintenance of non-migrated
variants (65%) – hence confirming all our practical benefit hypotheses.

The industrial application experiences demonstrated that the
approach results are useful in the practice in a variety of contexts,
and they showed that the defined approach can be successfully used
by software practitioners.

Additionally, we performed an analytical evaluation of the correctness
and performance of our approach. For the analyzed cases, the measured
precision and recall of the approach were very high (precision 0.9946,
recall 0.9953). Furthermore, performing the similarity analysis required
at most a few minutes, except for the largest system groups or the
system groups containing many renamed files.

Additionally, in the analytical evaluation we measured the transitivity of
the input similarity data provided by the diff algorithm and the proportion
of the input similarity data included in the resulting set model. As the
similarity represented by the set model is transitive, but the input data
might be not transitively similar, ensuring a minimal divergence between
the input similarity and the set model is necessary. In the measured
examples, at least 99.56% of the input graphs, containing at least
97.52% of input edges, were already transitive, and the processing of the
remaining graphs allowed for including at least 99.25% of the input
edges into the set model. No additional, artificial edges were included –
hence, the modeled similarity information is 100% correct, but not 100%
complete. We discussed that the small divergence in the represented
similarity information constitutes a low cost paid in exchange for the
several benefits of the set model, discussed above. This was confirmed by
the industrial developers using our approach, who were satisfied with the
correctness and completeness of the analysis results.

Analytical
approach
evaluation

176

Summary and Outlook

8.1.4 Further Approach Benefits

We consider the hierarchical set model and the visualizations defined on
top of it to be the main factor which enables the achievement of the
approach benefits. The hierarchical set model allows for a scalable
abstraction of the analysis result, while also preserving the full
information detail, for both dimensions of the system size and of the
amount of variants. The provided similarity visualizations and
measurements are easily understandable for both small and large code
structures, up to millions code lines and tens of variants. Consequently,
the identification of similar variant groups, similar component variants
and similar code fragments can be performed with low effort. Moreover,
the information stored in the set model is detailed and can be further
processed, for example by using subset calculations, metrics, and
aggregative visualizations such as phylogenetic trees.

The described instantiation of the approach for textual asset content,
and the choice of the diff algorithm as the content equivalence function,
have the advantages of generality and simplicity. The content of
a broad range of asset types is physically stored in textual files, and can
hence be processed by the analysis instantiation. At the same time, the
use of well-known and simple diff algorithm helps technical stakeholders
in understanding the analysis process and trusting its results.

Finally, the benefits of the approach application extend beyond the
performed analysis and its direct use in the migration tasks. In the case
study, as well as in the industrial experiences, the introduction of the
approach enabled performing the similarity analyses to a much larger
extent than realistically possible before, as the baseline approach effort
was previously considered to be prohibitively high. The new analysis
approach enabled the case study organization to not only achieve better
effort and reuse results in the particular analyses, but also to perform
more analyses and hence increase the scope of reuse migration. This
in turn is likely to strengthen the benefits which are typically associated
with software reuse introduction, such as maintenance effort reduction,
shorter development time, and better software quality – as already
expressed by the effort savings estimated in the case study organization.

8.2 Limitations

Before the construction of the analysis approach, we formulated a group
of assumptions concerning the form of the similarity information needed
in the context of the defined application scenarios. First of all, we
explicitly excluded from the analysis scope the similar code fragments
located within the same software asset. Consequently, only the similarity
between the variants is reported. Furthermore, we assumed that the
similar asset elements from different variants should be related to each
other with one-to-one and not many-to-many correspondences. In result,
instead of many potential matches, only a single most similar counterpart

Set model
benefits

Scope of the
approach

Textual
instantiation
benefits

Enabling
and extending
software reuse
benefits

177

Summary and Outlook

is reported for a given element. Finally, we assumed a high structural
similarity of the analyzed variants, motivated by the observation that low-
similarity code cannot be effectively merged into a reusable form. The
consequent design decisions might cause the approach to provide
reduced result quality for low-similarity analysis input. The defined
analysis approach is therefore particularly suitable for similarity analysis
of variant assets which were created via cloning and, due to the
common origin, still share structural similarity. Outside of the application
scenario scope, the defined approach likely does not provide the stated
benefits. Particularly if no assumptions concerning the properties of the
sought similarity can be made, and hence a search for many similar code
fragments within and across the variants is needed, the construction of
a respective hierarchical set model storing the analysis result is not possible.

A further limitation of the approach resulting from the analysis
assumptions is the potential divergence between the complete similarity
of the analyzed asset variants and the similarity analysis result stored in
the set model. As discussed in the previous Section, the input similarity
of analyzed variants might be not transitive, but the transitivity is
required in the set model construction, and a respective transformation
of the input similarity creates the stated divergence. Although in the case
of the diff algorithm that divergence is small, it can be potentially much
larger for other similarity detection functions or other asset types. Hence,
the size of the divergence needs to be measured in order to estimate
how far the consequent incompleteness of the analysis result reduces
the approach benefits for the concrete asset type.

Finally, any instantiation of the approach needs to consider that the most
functions recognizing the similarity of software assets target the syntactic
similarity, as its detection is much easier to automate than the detection
of semantic similarity. However, two asset content fragments which
realize the same functionality but were implemented in different ways
mostly do not look syntactically alike. In the context of clone detection in
program code, Juergens et al. discuss that semantically similar code
fragments occur frequently, but the current clone detection approaches
cannot be improved to detect them [Juergens 2010]. Hence, the
difference between the detectable syntactic similarity and the
reuse-relevant semantic similarity causes some potentially reusable asset
fragments to remain undetected. Although the syntax-based processing
of program code, performed by the described textual approach
instantiation, leads to the demonstrated practically useful results, the
difficulty in recognizing meaningfully similar asset content might be
significantly higher for more complex asset representations such as
models. In such a case, the defined approach would not be able to provide
its benefits, as it depends on the quality of the used equivalence relations,
fulfilling the similarity detection task. On the other hand, if a semantic
equivalence relation would be constructed in the future, it could be easily
incorporated into the existing generic analysis framework of our approach.

Result
similarity
divergence

Limitations
of syntactic
similarity

178

Summary and Outlook

8.3 Future Work

We discussed and demonstrated that the similarity analysis approach
defined in this thesis provides a contribution to the state of the art and of
the practice. Nevertheless, there are still many open points in the approach
development and evaluation which need to be addressed in the future.
Moreover, during the thesis research many new questions, related to the
research and practical context of the approach, emerged. We summarize
the open points and the research questions in the following subsections.

8.3.1 Extending the Analysis Approach

We instantiated the defined analysis approach for a textual, file system
based representation of the asset content, and constructed the asset
content equivalence relation by using the diff algorithm. In the future, it
is interesting to address other asset types and other equivalence
relations. Set model based analyses of code abstract syntax trees,
models (including executable models defined by visual programming
languages such as Simulink), and even non-software assets are
imaginable. To define these analyzes, additional work is needed in the
area of analysis mechanism definition (content decomposition,
equivalence relations), measurement of analysis result properties
(especially related to correctness and transitivity), and evaluation of
instantiation-specific approach benefits.

Moreover, the defined generic analysis mechanisms could be further
extended. On the one hand, the extensions could improve and
automate the support for addressing more specific analysis concerns.
For example, new visualizations such as histograms and scatterplots could
provide another view on the measured similarity values and the calculated
metrics, while new calculations could automatically provide answers to the
most frequent questions (e.g. finding top m similar variant groups of size k).
On the other hand, also the generic analysis mechanisms can be extended:
for example, it might be helpful for the users to offer size-proportional
Venn diagram visualizations when up to five variants are presented.

More information sources could be used during the analysis.
Especially the information provided by configuration management
systems, such as file cloning and renaming history, file maintenance
intensity, and co-change analysis, could be used either for improving the
analysis result quality, or for supporting the migration decision making.

Finally, the application guidance for the approach can be extended.
With more application experience, the guidance for analysis result
interpretation could be improved by adding further suitability criteria and
providing more decision suggestions supported by practical use cases. The
guidance could also address the migration process itself by helping the
user to decompose the high-level migration goals into finer-grained
migration activities and matching them with best practices and
reengineering patterns similar to these of Demeyer et al. [Demeyer 2008].

Definition and
evaluation
of further
instantiations

Improvements
of analysis
mechanisms

Use of context
information

Improvements
of user support

179

Summary and Outlook

8.3.2 Further Evaluation

The performed evaluations of the approach provide initial indications
regarding the contributed benefits. However, a further empirical and
analytical evaluation is needed to strengthen the existing evidence
and provide more understanding of the influencing context factors:

The performed experiment provided just a single data point for
evaluating the scientific hypotheses – hence, its replication for
different types of participants, variants and tasks is of much value.

The experiment addressed just the benefits of the set model, while other
approach mechanisms such as visualizations should also be evaluated.

Further experimental evaluations should also provide input for
validating the hypothesis HS3 Analysis Effort Scalability, stating that
the effort savings increase with the amount of analyzed variants.

Performing further case studies is important to extend the validation
of practical hypotheses. It would be also interesting to gather
experiences regarding approach utility for a very high number of
variants (30 and more).

The usefulness of the defined similarity metrics in the estimation of
reuse potential is likewise worth evaluating.

The correctness and transitivity measurements should be performed
for more systems, especially for real-world software variants.

Finally, collecting further practical experience will help to improve
the approach by providing a better understanding of the details of the
possible analysis goals, the usefulness of different similarity information
types in addressing these goals, the role of the similarity information in the
process of software reuse migration, and the suitable migration strategies.

8.3.3 Open Research Questions

The developed approach addresses different computer science areas,
such as software maintenance, reverse engineering and reengineering,
program understanding, and software reuse. Accordingly, the open
research questions address all these areas.

First of all, understanding of the large-scale cloning practices can be
improved by a comprehensive study of evolving cloned system variants. In
the context of our approach, the study results could be used especially to
extend the interpretation and migration guidance. The questions which
could be addressed are:

How do the differences between variants develop with time,
regarding their size, distribution, and granularity?

Do systems cloned by copying look differently than the systems
cloned using configuration management branches? Do industrial
cloned variants look differently than open source variants?

Evaluation
topics

Experience
collection

Understanding
maintenance
problems

180

Summary and Outlook

How long do the benefits of cloning prevail over its disadvantages?
When is it beneficial to consolidate the cloned systems, and when is
it better to keep them separated? What are the strategies to manage
the interplay of cloning and reuse, as attempted by some of the
industrial survey and case study organizations?
How fast is the original similarity information being lost?
Is there a point when is it too late for code consolidation, due to the
extent and complexity of the differences between the variants?

Furthermore, the reverse engineering of code similarity could be
potentially improved by using not only content comparison, but also
including the results of other analysis techniques for mutual benefit.
For example, techniques such as feature location could help in locating
similar content and in result interpretation, while the similarity
information could in turn help to better identify feature differences
between the variants. It is also interesting to investigate how the
semantic information about the analyzed systems (e.g. provided by
scoping or an existing feature model) could be used to better guide the
automatized analysis process.

Third, the visualization and understanding support for the created
similarity information should be deeper researched. We are convinced
that many more visualizations of the hierarchical set model information
can be defined. The existing visualizations can also be improved – for
example, further supportive hierarchy structures for the tree map set
diagram should be proposed and evaluated. It would also be interesting
to investigate the benefits of different similarity visualizations from the
psychology and program understanding point of view. These investigations
should include an evaluation of the color use in the diagrams, and could
propose other colors which better support similarity understanding.

Fourth, the reuse migration and the parallel variant maintenance,
including the role of the provided similarity information, need to be
better understood. From our point of view, the interesting questions are:

What are the estimators for migration difficulty and for migration
benefits which could be derived from the assets?
How should they influence the migration, considering that there are
many other factors influencing the migration decisions?
What would be, from the technical point of view, the best way to
merge the asset variants in a given specific case?
What other information could be reverse engineered to support reuse
migration and parallel variant maintenance?

Finally, the defined analysis approach is generic, and the hierarchical set
model can be used to represent the similarity of any group of elements. In
the future, it would be very interesting to investigate the applications
and benefits of the approach for a broader range of assets and
element representations, also beyond the scope of computer science.

Combining
reverse
engineering
techniques

Similarity
visualization
and
understanding

Reuse
adoption

Suitability for
further
applications

181

Summary and Outlook

Collections of overlapping hierarchical data, potentially suitable for our
approach, exist for example in biology (genome comparisons
[Kestler 2004] [Fouts 2005] [Argout 2011] [Madak-Erdogan 2013]) and
medicine (disease prevalence [Mapel 2004], comparison of different
diagnostic methods [Walline 2013]). Potentially suitable data collections
exist also in further contexts, where a population of persons,
hierarchically structured according to location, age, occupation, or other
partitioning attribute, is analyzed with the use of multiple binary
attributes describing their genetic [Willer 2013], economic [Noack 2011],
demographic [USCB 2014], behavioral [Utter 2007], medical [Viegi 2004]
or social [Zammit 2012] characteristics.

8.4 Concluding Remarks

The research topic of this thesis, that is the similarity analysis of cloned
asset variants, originated from our practical observations of industrial
problem cases which we encountered in the Fraunhofer IESE consultancy
projects. The first solution was already able to provide useful results to
the supported company [Duszynski 2008] – however, it also had several
drawbacks. Actually, we learned about the most of the approach
construction requirements listed in Section 4.2 by investigating the
reasons for the deficiencies of the first solution. Consequently, a next
version of the analysis approach was created, and refinements resulting
from further experiences were added successively.

This cyclical pattern of problem identification, solution development,
practical solution application and post-application reflection shaped this
thesis research. Hence, we consider the thesis to be an example of
empirically supported applied research: the thesis was influenced by
practical problems (investigated in the industrial survey), it developed
theoretical research results (evaluated in the controlled experiment), and
included practical result application (presented in the case study). In our
opinion, the possibility to apply the research ideas in a practical context
greatly contributed to the maturation of the defined approach, and the
successively added improvements resulting from the practical feedback
enabled the achievement of the approach benefits.

The positive outcomes of performed empirical evaluations, as well as the
successful experiences of industrial approach application, make us
convinced that this thesis provides a good contribution to the area of
software similarity analysis in the context of the defined application
scenarios. Moreover, the generic contributions of the approach,
especially the hierarchical set similarity model and its visualizations, can
be used in similarity analysis of any other objects fulfilling the set model
assumptions. Hence, investigating the suitability of the generic approach
contributions outside of their original, software-based context remains
an interesting open problem.

182

References

References

[Aho 2006] Aho, A.; Lam, M.; Sethi, R.; Ullman, J.; Compilers: Principles,
Techniques, and Tools (2nd Edition). Addison Wesley, 2006.

[Albers 2012] Albers, M.; Human-Information Interaction and Technical
Communication. Concepts and Frameworks. IGI Global, 2012.

[Anastasopoulos
2001]

Anastasopoulos, M.; Gacek, C.; Implementing Product Line
Variabilities. In Proceedings of the 2001 Symposium on Software
Reusability (SSR ‘01), 2001, Toronto, Canada, pp. 109—117.

[Apel 2013] Apel, S.; Kästner, C.; Lengauer, C.; Language-Independent and
Automated Software Composition: The FeatureHouse Experience. In
IEEE Transactions on Software Engineering, Vol. 39, Issue 1, January
2013, pp. 63—79.

[Apiwattanapong
2007]

Apiwattanapong, T.; Orso, A.; Harrold, M.J.; JDiff: A Differencing
Technique and Tool for Object-Oriented Programs. In International
Journal Automated Software Engineering, Vol. 14, Issue 1, March
2007, pp. 3—36.

[Argout 2011] Argout, X.; Salse, J.; Aury, J.M.; Guiltinan, M.J.; Droc, G.; Gouzy, J.;
Allegre, M. et al.; The Genome of Theobroma Cacao. In Nature
Genetics, Vol. 43, 2011, pp. 101—108.

[Asaduzzaman
2011]

Asaduzzaman, M.; Roy, C.K.; Schneider, K.; VisCad: Flexible Code
Clone Analysis Support for NiCad. In Proceedings of the 5th

International Workshop on Software Clones (IWSC 2011), 2011.

[Awad 2004] Awad, E.M.; Ghaziri, H.M.; Knowledge Management. Pearson
Education International, Upper Saddle River, NJ, 2004.

[Bansal 2004] Bansal, N.; Blum, A.; Chawla, S.; Correlation Clustering. In Machine
Learning Journal, Vol. 56, Issue 1-3, July 2004, pp. 89—113.

[Barns 1991] Barns, B.H.; Bollinger, T.B.; Making Reuse Cost-Effective. In IEEE
Software, Vol. 8, Issue 1, January 1991, pp. 13—24.

[Basili 1993] Basili, V.R.; The Experimental Paradigm in Software Engineering. In:
Rombach, H.D. (Ed.); Basili, V.R. (Ed.); Selby, R. (Ed.); Experimental
Software Engineering Issues: Critical Assessment and Future Directives.
LNCS Volume 706, Springer-Verlag, Berlin Heidelberg, 1993.

[Bass 2003] Bass, L.; Clements, P.; Kazman, R.; Software Architecture in Practice.
Second Edition. Addison-Wesley, 2003.

183

References

[Bayer 1999] Bayer, J.; Girard, J.F.; Würthner, M.; DeBaud, J.M.; Apel, M.;
Transitioning Legacy Assets to a Product Line Architecture. In
Proceedings of the 7th European Software Engineering Conference
(ESEC/FSE ‘99), LNCS Volume 1687, 1999, pp. 446—463.

[Bayer 2004] Bayer, J.; View-Based Software Documentation. Dissertation, PhD
Theses in Experimental Software Engineering, Vol. 15, Fraunhofer
Verlag, Stuttgart, Germany, 2004.

[Bederson 2002] Bederson, B.B.; Shneiderman, B.; Wattenberg, M.; Ordered and
Quantum Treemaps: Making Effective Use of 2D Space to Display
Hierarchies. In ACM Transactions on Graphics, Vol. 21, Issue 4,
October 2002, pp. 833—854.

[Bellon 2007] Bellon, S.; Koschke, R.; Antoniol, G.; Krinke, J.; Merlo, E.; Comparison
and Evaluation of Clone Detection Tools. In IEEE Transactions on
Software Engineering, Vol. 33, No. 9, 2007, pp. 577—591.

[Benedusi 1992] Benedusi, P.; Cimitile, A.; de Carlini, U.; Reverse Engineering
Processes, Design Document Production, and Structure Charts. Journal
of Systems and Software, Vol. 19, No. 3, 1992, pp. 225—245.

[Berger 2010] Berger, C.; Rendel, H.; Rumpe, B.; Busse, C.; Jablonski, T.; Wolf, F.;
Product Line Metrics for Legacy Software in Practice. In Proceedings
of the 14th International Software Product Line Conference (SPLC
2010), Volume 2, 2010, pp. 247—250.

[Berger 2013] Berger, T.; Rublack, R.; Nair, D.; Atlee, J.M.; Becker, M.; Czarnecki,
K.; Wasowski, A.; A Survey of Variability Modeling in Industrial
Practice. In Proceedings of the Seventh International Workshop on
Variability Modeling of Software-intensive Systems (VaMoS ’13),
2013, pp. 1—8.

[Beydeda 2005] Beydeda, S. (Ed.); Book, M. (Ed.); Gruhn, V. (Ed.); Model-Driven
Software Development, Springer-Verlag, Berlin Heidelberg, 2005.

[Beyer 2008] Beyer, H.; Hein, D.; Schitter, C.; Knodel, J.; Muthig, D.; Naab, M.;
Introducing Architecture-centric Reuse into a Small Development
Organization. In Proceedings of the 10th International Conference on
Software Reuse (ICSR 2008), 2008, pp. 1—13.

[BeyondCompare
2014]

Beyond Compare – a Commercial Tool for Comparing Files and
Folders. Information available under
http://www.scootersoftware.com/ (accessed on 4 May 2014).

[Böckle 2004] Böckle, G.; Clements, P.; McGregor, J. D.; Muthig, D.; Schmid, K.;
Calculating ROI for Software Product Lines. In IEEE Software, Vol. 21,
Issue 3, May-June 2004, pp. 23—31.

[Bosch 2002] Bosch, J.; Maturity and Evolution in Software Product Lines:
Approaches, Artefacts and Organization. In Proceedings of the 2nd
International Software Product Line Conference, LNCS Volume 2379,
Springer Verlag, 2002, pp. 257—271.

 184

References

[Briand 1996] Briand, L.C.; Differding, C.M.; Rombach, H.D.; Practical Guidelines for
Measurement-Based Process Improvement. In Software Process
Improvement and Practice, Vol. 2, Issue 4, Dec. 1996, pp. 253—280.

[Canfora 2007] Canfora, G.; Di Penta, M.; New Frontiers of Reverse Engineering. In
Proceedings of the 2007 Workshop on the Future of Software
Engineering (FOSE 2007), 2007, Minneapolis, MN, USA.

[Chikofsky 1990] Chikofsky, E.; Cross, J.; Reverse Engineering and Design Recovery: a
Taxonomy. In IEEE Software, Vol. 7, No. 1, Jan. 1990, pp. 13—17.

[Clements 2002a] Clements, P.; Northrop, L.; Software Product Lines: Practices and
Patterns. Addison-Wesley, 2002.

[Clements 2002b] Clements, P.; Krueger, C.W.; Point/Counterpoint: Being Proactive
Pays Off – Eliminating the Adoption Barrier. In IEEE Software, Vol. 19,
No. 4, July-August 2002, pp. 28—31.

[Cliff 1993] Cliff, N.; Dominance Statistics: Ordinal Analyses to Answer Ordinal
Questions. In Psychological Bulletin, Vol. 114, 1993, pp. 494—509.

[Cohen 1992] Cohen, J.; A Power Primer. In Psychological Bulletin, Vol. 112, No. 1,
July 1992, pp. 155—159.

[Conradi 1998] Conradi, R.; Westfechtel, B.; Version Models for Software
Configuration Management. In ACM Computing Surveys, Vol. 30,
Issue 2, June 1998, pp. 232—282.

[Cook 1979] Cook, T.D.; Campbell, D.T.; Quasi-Experimentation – Design and
Analysis Issues for Field Settings. Houghton Mifflin, 1979.

[Corbin 2008] Corbin, J.; Strauss, A.; Basics of Qualitative Research: Techniques and
Procedures for Developing Grounded Theory. 3rd Edition. Sage
Publications, 2008.

[Cordy 2003] Cordy, J.R.; Comprehending Reality - Practical Barriers to Industrial
Adoption of Software Maintenance Automation. In Proceedings of
the 11th IEEE International Workshop on Program Comprehension
(WPC 2003), 2003.

[Cordy 2011] Cordy, J.R.; Exploring Large-scale System Similarity Using Incremental
Clone Detection and Live Scatterplots. In Proceedings of the 19th

International Conference on Program Comprehension (ICPC 2011),
2011, pp. 151—160.

[D’Ambros 2008] D’Ambros, M.; Gall, C.; Lanza, M.; Pinzger, M.; Analysing Software
Repositories to Understand Software Evolution. In: Mens, T. (Ed.);
Demeyer, S. (Ed.), Software Evolution, Springer-Verlag, Berlin
Heidelberg, 2008, pp. 37—68.

185

References

[DeBaud 1998] DeBaud, J.M.; Girard, J.F.; The Relation between the Product Line
Development Entry Points and Reengineering. In Proceedings of the
2nd International ESPRIT ARES Workshop on Development and
Evolution of Software Architectures for Product Families, LNCS
Volume 1429, Springer Verlag, 1998, pp. 132—139.

[Demeyer 2008] Demeyer, S.; Ducasse, S.; Nierstrasz, O.; Object-oriented
Reengineering Patterns. Square Bracket Associates, Switzerland, 2008.

[de Wit 2009] de Wit, M.; Zaidman, A.; van Deursen, A.; Managing Code Clones
using Dynamic Change Tracking and Resolution. In Proceedings of
the International Conference on Software Maintenance (ICSM 2009),
2009, pp. 169—178.

[Diffuse 2014] Diffuse – Graphical Tool for Merging and Comparing Text Files.
Available under http://diffuse.sourceforge.net/ (accessed on 4 May
2014).

[Dubinsky 2013] Dubinsky, Y.; Rubin, J.; Berger, T.; Duszynski, S.; Becker, M.;
Czarnecki, K.; An Exploratory Study of Cloning in Industrial Software
Product Lines. In Proceedings of the 2013 17th European Conference
on Software Maintenance and Reengineering (CSMR 2013), 2013,
Genova, Italy, pp. 25—34, Best Paper Award.

[Duszynski 2008] Duszynski, S.; Knodel, J.; Naab, M.; Hein, D.; Schitter, C.; Variant
Comparison – A Technique for Visualizing Software Variants. In
Proceedings of the 15th Working Conference on Reverse Engineering
(WCRE 2008), 2008, Antwerp, Belgium, pp. 229—233.

[Duszynski 2009] Duszynski, S.; Knodel, J.; Lindvall, M.; SAVE: Software Architecture
Visualization and Evaluation. In Proceedings of the 13th European
Conference on Software Maintenance and Reengineering (CSMR
2009), 2009, pp. 323—324.

[Duszynski 2010a] Duszynski, S.; Visualizing and Analyzing Software Variability with Bar
Diagrams and Occurrence Matrices. In Proceedings of the 14th
International Software Product Line Conference (SPLC 2010), 2010,
pp. 481—485.

[Duszynski 2010b] Duszynski, S.; John, I.; Variability Introduction Strategies. Fraunhofer
IESE Report 026.10/E, 2010, Kaiserslautern, Germany.

[Duszynski 2011a] Duszynski, S.; Knodel, J.; Becker, M.; Analyzing the Source Code of
Multiple Software Variants for Reuse Potential. In Proceedings of the
18th Working Conference on Reverse Engineering (WCRE 2011), 2011,
Limerick, Ireland, pp. 303—307.

[Duszynski 2011b] Duszynski, S.; A Scalable Goal-Oriented Approach to Software
Variability Recovery. In Proceedings of the 15th International Software
Product Line Conference (SPLC 2011), 2011, Vol. 2.

186

References

[Duszynski 2012a] Duszynski, S.; Becker, M.; Recovering Variability Information from the
Source Code of Similar Software Products. In Proceedings of the 3rd

International Workshop on Product LinE Approaches in Software
Engineering (PLEASE 2012), 2012, pp. 37—40.

[Duszynski 2012b] Duszynski, S.; Becker, M.; Kalmar, R.; Variantenanalyse –
Wiederverwendungspotenzial auf Basis einer Quellcodeanalyse. In
ATZ Elektronik Vol. 7 (2012), Issue 6, 2012, pp. 440—445.

English variant: Variant Analysis – Reuse Potential Based on Source
Code Analysis. ATZ Elektronik worldwide, Edition: 2012-06.

[Eick 2002] Eick, S.; Graves, T.; Karr, A.; Mockus, A.; Schuster, P.; Visualizing
Software Changes. In IEEE Transactions on Software Engineering,
Vol. 28, No. 4, April 2002, pp. 396—412.

[Ernst 2010] Ernst, N.A.; Easterbrook, S.M.; Mylopoulos, J.; Code Forking in
Open-Source Software: A Requirements Perspective. eprint
arXiv:1004.2889, 2010.

[Faust 2003] Faust, D.; Verhoef, C.; Software Product Line Migration and
Deployment. In Software: Practice and Experience, Vol. 33, Issue 10,
August 2003, pp. 933—955.

[Fluri 2007] Fluri, B.; Wursch, M.; Pinzger, M.; Gall, H.C.; Change Distilling: Tree
Differencing for Fine-Grained Source Code Change Extraction. In IEEE
Transactions on Software Engineering, Vol. 33, Issue 11, November
2007, pp. 725—743.

[Fouts 2005] Fouts, D.E.; Mongodin, E.F.; Mandrell, R.E.; Miller, W.G.; Rasko, D.A.;
Ravel, J.; Brinkac, L.M. et al.; Major Structural Differences and Novel
Potential Virulence Mechanisms from the Genomes of Multiple
Campylobacter Species. In PLOS Biology, Vol. 3, No. 1, 2005.

[Fowler 1999] Fowler, M.; Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional, 1999.

[Gabel 2008] Gabel, M.; Jiang, L.; Su, Z.; Scalable Detection of Semantic Clones. In
Proceedings of the 30th International Conference on Software
Engineering (ICSE 2008), 2008, pp. 321—330.

[Gacek 2001] Gacek, C.; Knauber, P.; Schmid, K.; Clements, P.; Successful Software
Product Line Development in a Small Organization. A Case Study.
Fraunhofer Institute for Experimental Software Engineering (IESE),
Technical Report 013.01/E, 2001.

[Ganesan 2006] Ganesan, D.; Muthig, D.; Yoshimura, K.; Predicting Return-on-
Investment for Product Line Generations. In Proceedings of the 10th

International Software Product Line Conference (SPLC 2006), 2006,
pp. 13—24.

187

References

[Gusfield 1993] Gusfield, D.; Efficient Methods for Multiple Sequence Alignment with
Guaranteed Error Bounds. In Bulletin of Mathematical Biology, Vol.
55, Issue 1, January 1993, pp. 141—154.

[Hall 1992] Hall, P.A.V.; Software Reuse and Reverse Engineering in Practice.
Chapman & Hall, London, 1992.

[Hemel 2012] Hemel, A.; Koschke, R.; Reverse Engineering Variability in Source Code
Using Clone Detection: A Case Study for Linux Variants of Consumer
Electronic Devices. In Proceedings of the 19th Working Conference on
Reverse Engineering (WCRE 2012), 2012, pp. 357—366.

[Henninger 1994] Henninger, S.; Using Iterative Refinement to Find Reusable Software.
In IEEE Software, Vol. 11, Issue 5, September 1994, pp. 48—59.

[Hunt 1976] Hunt, J.W.; McIlroy, M.D.; An Algorithm for Differential File
Comparison. Computing Science Technical Report 41, Bell
Laboratories, June 1976.

[IEEE 1998] IEEE Standard 1219-1998: IEEE Standard for Software Maintenance.
IEEE Computer Society Press, Los Alamitos, CA, USA, 1998.

[IEEE 2010] IEEE Standard 1517-2010: IEEE Standard for Information Technology
– System and Software Life Cycle Processes – Reuse Processes. IEEE,
New York, USA, 2010.

[ISO/IEC 2011] ISO/IEC 9899:2011 Programming Languages – C (C11). ISO/IEC,
2011.

[Jacobson 1997] Jacobson, I.; Griss, M.; Jonsson, P.; Software Reuse: Architecture,
Process and Organization for Business Success. Addison-Wesley
Professional, 1997.

[Jarzabek 1998] Jarzabek, S.; Wang, G.; Model-based Design of Reverse Engineering
Tools. In Journal of Software Maintenance: Research and Practice,
No. 10, 1998, pp. 353—380.

[Jepsen 2007] Jepsen, H.P.; Dall, J.G.; Beuche, D.; Minimally Invasive Migration to
Software Product Lines. In Proceedings of the 11th International
Software Product Line Conference (SPLC 2007), 2007, pp. 203—211.

[JHotDraw 2014] JHotDraw – a Java GUI Framework for Technical and Structured
Graphics. Available under http://www.jhotdraw.org/ (accessed on 4
May 2014).

[Ji 2007] Ji, X.; Mitchell, J.E.; Branch-and-Price-and-Cut on the Clique
Partitioning Problem with Minimum Clique Size Requirement. In
Discrete Optimization, Vol. 4, Issue 1, March 2007, pp. 87—102.

[Jiang 2007] Jiang, Z.M.; Hassan, A.E.; A Framework for Studying Clones In Large
Software Systems. In Proceedings of the 7th IEEE International
Working Conference on Source Code Analysis and Manipulation
(SCAM 2007), 2007, pp. 203—212.

188

References

[Juergens 2010] Juergens, E.; Deissenboeck, F.; Hummel, B.; Code Similarities Beyond
Copy & Paste. In Proceedings of the 14th European Conference on
Software Maintenance and Reengineering (CSMR 2010), 2010, pp.
78—87.

[Kagdi 2007] Kagdi, H.; Collard, M.; Maletic, J.; A Survey and Taxonomy of
Approaches for Mining Software Repositories in the Context of
Software Evolution. In Journal of Software Maintenance and
Evolution: Research and Practice, Vol. 19, Issue 2, March/April 2007,
pp. 77—131.

[Kamfonas 1992] Kamfonas, M.J.; Recursive Hierarchies – The Relational Taboo. In The
Relational Journal, October-November 1992.

[Kamiya 2002] Kamiya, T.; Kusumoto, S.; Inoue, K.; CCFinder: a Multilinguistic
Token-based Code Clone Detection System for Large Scale Source
Code. In IEEE Transactions on Software Engineering, Vol. 28, No. 7,
July 2002, pp. 654—670.

[Kanda 2013] Kanda, T.; Ishio, T.; Inoue, K.; Extraction of Product Evolution Tree
from Source Code of Product Variants. In Proceedings of the 17th

International Software Product Line Conference (SPLC 2013), 2013,
pp. 141—150.

[Kang 2005] Kang, K.C.; Kim, M.; Lee, J.; Kim, B.; Feature-oriented Re-engineering
of Legacy Systems into Product Line Assets – A Case Study. In
Proceedings of the 9th International Software Product Line
Conference (SPLC 2005), 2005.

[Kapser 2006] Kapser, C.J.; Godfrey, M.W.; Supporting the Analysis of Clones in
Software Systems: A Case Study. In Journal of Software Maintenance
and Evolution: Research and Practice, Vol. 18, Issue 2, March-April
2006, pp. 61—82.

[Kapser 2007] Kapser, C.J.; Anderson, P.; Godfrey, M.W.; Koschke, R.; Rieger, M.;
van Rysselberghe, F.; Weißgerbe, P.; Subjectivity in Clone Judgment:
Can We Ever Agree? In Duplication, Redundancy, and Similarity in
Software, Dagstuhl Seminar Proceedings 06301, 2007.

[Kapser 2008] Kapser, C.J.; Godfrey, M.W.; ”Cloning Considered Harmful”
Considered Harmful: Patterns of Cloning in Software. In Empirical
Software Engineering, Vol. 13, Issue 6, December 2008, pp. 645—692.

[Kästner 2010] Kästner, C.; Virtual Separation of Concerns: Toward Preprocessors
2.0. Dissertation, Otto-von-Guericke-Universität Magdeburg,
Germany, 2010.

[Kästner 2014] Kästner, C.; Dreiling, A.; Ostermann, K.; Variability Mining:
Consistent Semi-automatic Detection of Product-Line Features.
In IEEE Transactions on Software Engineering, Vol. 40, Issue 1,
January 2014, pp. 67—82.

 189

References

[Kestler 2004] Kestler, H.A.; Müller, A.; Gress, T.M.; Buchholz, M.; Generalized
Venn Diagrams: a New Method of Visualizing Complex Genetic Set
Relations. In Bioinformatics, Vol. 21, Issue 8, pp. 1592—1595.

[Khanna 2007] Khanna, S.; Kunal, K.; Pierce, B.; A Formal Investigation of Diff3.
FSTTCS 2007: Foundations of Software Technology and Theoretical
Computer Science, LNCS Volume 4855, 2007, pp. 485—496.

[Kiczales 1997] Kiczales, G.; Lamping, J.; Menhdhekar, A.; Maeda, C.; Lopes, C.;
Loingtier, J.-M.; Irwin, J.; Aspect-oriented Programming. In
Proceedings of the European Conference on Object-Oriented
Programming (ECOOP 1997), 1997, pp. 220—242.

[Knodel 2005] Knodel, J.; John, I.; Ganesan, D.; Pinzger, M.; Usero, F.; Arciniegas, J.;
Riva, C.; Asset Recovery and Their Incorporation into Product Lines. In
Proceedings of the 12th Working Conference on Reverse Engineering
(WCRE 2005), 2005, pp. 120—129.

[Knodel 2011] Knodel, J.; Sustainable Structures in Software Implementations by
Live Compliance Checking. Dissertation, PhD Theses in Experimental
Software Engineering, Vol. 35, Fraunhofer Verlag, Stuttgart,
Germany, 2011.

[Kolb 2006a] Kolb, R.; John, I.; Knodel, J.; Muthig, D.; Haury, U.; Meier, G.;
Experiences with Product Line Development of Embedded Systems at
Testo AG. In Proceedings of the 10th International Software Product
Line Conference (SPLC 2006), 2006, pp. 172—181.

[Kolb 2006b] Kolb, R.; Muthig, D.; Patzke, T.; Yamauchi, K.; Refactoring a Legacy
Component for Reuse in a Software Product Line: a Case Study. In
Journal of Software Maintenance and Evolution: Research and
Practice, Vol. 18, Issue 2, March-April 2006, pp. 109—132.

[Kolb 2010] Kolb, R.; van der Linden, F.; Point/Counterpoint: The Need for Speed
– Why Do We Do Product Lines? In IEEE Software, Vol. 27, No. 3,
May-June 2010, pp. 56—59.

[Koschke 2000] Koschke, R.; Atomic Architectural Component Recovery for Program
Understanding and Evolution. PhD Thesis, University of Stuttgart,
Germany, 2000.

[Koschke 2008] Koschke, R.; Frontiers of Software Clone Management. Frontiers of
Software Maintenance (FoSM 2008), 2008, pp. 119—128.

[Koschke 2009] Koschke, R.; Frenzel, P.; Breu, A.; Angstmann, K.; Extending the
Reflexion Method for Consolidating Software Variants into Product
Lines. Software Quality Journal, Vol. 17, Nr. 4, December 2009, pp.
331—366.

190

References

[Koskinen 2005] Koskinen, J.; Ahonen, J. J.; Sivula, H.; Tilus, T.; Lintinen, H.;
Kankaanpaa, I.; Software Modernization Decision Criteria: An Empirical
Study. In Proceedings of the 9th European Conference on Software
Maintenance and Reengineering (CSMR 2005), pp. 324—331.

[Krueger 2002] Krueger, C.W.; Easing the Transition to Software Mass
Customization. In Proceedings of the 4th International Workshop on
Software Product Family Engineering, LNCS Volume 2290, Springer
Verlag, 2002, pp. 282—293.

[Krueger 2004] Krueger, C.W.; Towards a Taxonomy for Software Product Lines. In
Proceedings of the 5th International Workshop on Software Product
Family Engineering (PFE 2003), LNCS Volume 3014, 2004, pp. 323—
331.

[Lague 1997] Lague, B.; Proulx, D.; Mayrand, J.; Merlo, E.; Hudepohl, J.; Assessing
the Benefits of Incorporating Function Clone Detection in a
Development Process. In Proceedings of the International Conference
on Software Maintenance (ICSM 1997), 1997, pp. 314—321.

[Lanza 2006] Lanza, M.; Marinescu, R.; Object-Oriented Metrics in Practice.
Springer Verlag, 2006.

[Laudon 2006] Laudon, K.C.; Laudon, J.P.; Management Information Systems:
Managing the Digital Firm. 9th edn., Pearson Prentice Hall, Upper
Saddle River, NJ, 2006.

[Lethbridge 2004] Lethbridge, T.; Tichelaar, S.; Ploedereder, E.; The Dagstuhl Middle
Metamodel: A Schema For Reverse Engineering. In Electronic Notes in
Theoretical Computer Science, Volume 94, May 2004, pp. 7—18.

[Levenshtein 1966] Levenshtein, V.I.; Binary Codes Capable of Correcting Deletions,
Insertions and Reversals. In Soviet Physics Doklady, Vol. 10, No. 8,
February 1966, pp. 707—710.

[Liew 2007] Liew, A.; Understanding Data, Information, Knowledge And Their
Inter-Relationships. In Journal of Knowledge Management Practice,
Vol. 8, No. 2, June 2007.

[Lim 1998] Lim, W.C.; Managing Software Reuse. Pearson Prentice Hall, Upper
Saddle River, NJ, 1998.

[Madak-Erdogan
2013]

Madak-Erdogan, Z.; Charn, T.H.; Jiang, Y.; Liu, E.T.; Katzen-
ellenbogen, J.A.; Katzenellenbogen, B.S.; Integrative Genomics of
Gene and Metabolic Regulation by Estrogen Receptors and , and
Their Coregulators. In Molecular Systems Biology, Vol. 9, No. 1, 2013.

[Manning 2008] Manning, C.D.; Raghavan, P.; Schütze, H.; Introduction to
Information Retrieval. Cambridge University Press, 2008.

[Mapel 2004] Mapel, D.W.; Treatment Implications on Morbidity and Mortality in
COPD. In Chest Journal, Vol. 126, No. 2_suppl_1, 2004, pp. 150—158.

191

References

[McIlroy 1969] McIlroy, M.D.; Mass-Produced Software Components. In: Naur, P.
(Ed.), Randell, B. (Ed.), Software Engineering: Report of a Conference
Sponsored by the NATO Science Committee, Garmisch, Germany,
October 1968, pp. 138—155, January 1969.

[Mende 2008] Mende, T.; Beckwermert, F.; Koschke, R.; Meier, G.; Supporting the
Grow-and-Prune Model in Software Product Lines Evolution Using
Clone Detection. In Proceedings of the 12th European Conference on
Software Maintenance and Reengineering (CSMR 2008), pp. 163—172.

[Mueller 2000] Müller, H.; Jahnke, J.; Smith, D.; Storey, M.A.; Tilley, S.; Wong, K.;
Reverse Engineering: A Roadmap. In Proceedings of the Conference
on The Future of Software Engineering (ICSE 2000), Limerick, Ireland.

[Murphy 2001] Murphy, G.; Notkin, D.; Sullivan, K.; Software Reflexion Models:
Bridging the Gap between Design and Implementation. In IEEE
Transactions on Software Engineering, Vol. 27, No. 4, April 2001.

[Muthig 2002] Muthig, D.; A Light-weight Approach Facilitating an Evolutionary
Transition Towards Software Product Lines. Dissertation, PhD Theses
in Experimental Software Engineering, Vol. 11, Fraunhofer Verlag,
Stuttgart, Germany, 2002.

[Nguyen 2012] Nguyen, H.A.; Nguyen, T.T.; Pham, N.H.; Al-Kofahi, J.; Nguyen, T.N.;
Clone Management for Evolving Software. In IEEE Transactions on
Software Engineering, Vol. 38, No. 5, Sept.-Oct. 2012, pp. 1008—
1026.

[Noack 2011] Noack, A.M.; Vosko, L.F.; Precarious Jobs in Ontario: Mapping
Dimensions of Labour Market Insecurity by Workers’ Social Location
and Context. Commissioned by the Law Commision of Ontario,
November 2011.

[Northrop 2004] Northrop, L.; Software Product Line Adoption Roadmap. Technical
Report CMU/SEI-2004-TR-022, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, USA, 2004.

[Parnas 1976] Parnas, D.L.; On the Design and Development of Program Families. In
IEEE Transactions on Software Engineering, Vol. SE-2, No. 1, March
1976.

[Peterson 2004] Peterson, D.; Economics of Software Product Lines. In Proceedings of
the 5th International Workshop on Software Product-Family
Engineering (PFE 2003), LNCS Volume 3014, 2004, pp. 381—402.

[Ray 2012] Ray, B.; Kim, M.; A Case Study of Cross-System Porting in Forked
Projects. In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering (FSE ‘12),
article no. 53.

192

References

[Rieger 1999] Rieger, M.; Ducasse, S.; Golomingi, G.; Tool Support for Refactoring
Duplicated OO Code. In Proceedings of the Workshop on Object-
Oriented Technology (ECOOP ‘99), 1999. LNCS Volume 1743,
Springer Verlag, 1999.

[Riva 2003] Riva, C.; Del Rosso, C.; Experiences with Software Product Family
Evolution. In Proceedings of the 6th International Workshop on
Principles of Software Evolution (IWPSE ‘03), 2003.

[Robles 2012] Robles, G.; Gonzalez-Barahona, J.M.; A Comprehensive Study of
Software Forks: Dates, Reasons and Outcomes. In Proceedings of the
8th IFIP WG 2.13 International Conference on Open Source Systems,
IFIP Advances in Information and Communication Technology
Volume 378, 2012, pp. 1—14.

[Rodgers 1988] Rodgers, J.L.; Nicewander, W.A.; Thirteen Ways to Look at the
Correlation Coefficient. In The American Statistician, Vol. 42, No. 1,
February 1988, pp. 59—66.

[Rombach 2000] Rombach, D.; Fraunhofer: The German Model for Applied Research
and Technology Transfer. In Proceedings of the 22nd International
Conference on Software Engineering (ICSE ‘00), 2000, Limerick,
Ireland, pp. 531—537.

[Roy 2007] Roy, C.K.; Cordy, J.R.; A Survey on Software Clone Detection
Research. Technical Report 2007-541, School of Computing, Queen's
University, Canada, September 2007, 115 pp.

[Roy 2009a] Roy, C.K.; Cordy, J.R.; Koschke, R.; Comparison and Evaluation of
Code Clone Detection Techniques and Tools: A Qualitative Approach.
In Science of Computer Programming, Vol. 74, Issue 7, May 2009,
pp. 470—495.

[Roy 2009b] Roy, C.K.; Detection and Analysis of Near-Miss Software Clones.
Dissertation, Queen’s University, Kingston, Ontario, Canada, August
2009.

[Rubin 2012] Rubin, J.; Chechik, M.; Locating Distinguishing Features using Diff Sets.
In Proceedings of the 27th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2012), 2012, pp. 242—245.

[Rubin 2013] Rubin, J.; Czarnecki, K.; Chechik, M.; Managing Cloned Variants: A
Framework and Experience. In Proceedings of the 17th International
Software Product Lines Conference (SPLC 2013), 2013.

[Ruskey 2005] Ruskey, F.; Weston, M.; A Survey of Venn Diagrams. The Electronic
Journal of Combinatorics, Dynamic Surveys, DS#5, June 2005,
accessed on 4 May 2014, available under
http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS5.

193

References

[Santini 1999] Santini, S.; Jain, R.; Similarity Measures. In IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 21, No. 9, September
1999, pp. 871—883.

[Sauro 2009] Sauro, J.; Dumas, J.S.; Comparison of Three One-Question, Post-Task
Usability Questionnaires. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI '09), 2009, pp. 1599—1608.

[Schmid 2002a] Schmid, K.; A Comprehensive Product Line Scoping Approach and its
Validation. In Proceedings of the 24th International Conference on
Software Engineering (ICSE ‘02), 2002, pp. 593—603.

[Schmid 2002b] Schmid, K.; Verlage, M.; The Economic Impact of Product Line
Adoption and Evolution. In IEEE Software, Volume 19, Issue 4,
July/August 2002, pp. 50—57.

[Schmid 2005] Schmid, K.; John, I.; Kolb, R.; Meier, G.; Introducing the PuLSE
Approach to an Embedded System Population at Testo AG. In
Proceedings of the 27th International Conference on Software
Engineering (ICSE’05), 2005, pp. 544—552.

[Schulze 2013] Schulze, S.; Analysis and Removal of Code Clones in Software
Product Lines. Dissertation, Otto-von-Guericke-Universität
Magdeburg, Germany, 2013.

[Shannon 1948] Shannon, C.E.; A Mathematical Theory of Communication. In The
Bell System Technical Journal, Volume 27, No. 3, July 1948, pp.
379—423.

[Sherif 2003] Sherif, K.; Vinze, A.; Barriers to Adoption of Software Reuse: A
Qualitative Study. In Journal of Information and Management, Vol.
41, Issue 2, December 2003, pp. 159—175.

[Simon 2002] Simon, D.; Eisenbarth, T.; Evolutionary Introduction of Software
Product Lines. In Proceedings of the 2002 Software Product Lines
Conference, LNCS Volume 2379. Springer-Verlag, Berlin Heidelberg,
pp. 272—283.

[SPLC 2014] Software Product Line Conferences: Product Line Hall of Fame.
Available under http://splc.net/fame.html (accessed on 4 May 2014).

[Staples 2004] Staples, M.; Hill, D.; Experiences Adopting Software Product Line
Development without a Product Line Architecture. In Proceedings of
the 11th Asia-Pacific Software Engineering Conference, 2004, pp.
176—183.

[Steger 2004] Steger, M.; Tischer, C.; Boss, B.; Müller, A.; Pertler, O.; Stolz, W.;
Ferber, S.; Introducing PLA at Bosch Gasoline Systems: Experiences
and Practices. In Proceedings of the 2004 Software Product Lines
Conference, LNCS Volume 3154. Springer-Verlag, Berlin Heidelberg,
pp. 34—50.

 194

References

[Svajlenko 2013] Svajlenko, J.; Roy, C.K.; Duszynski, S.; ForkSim: Generating Software
Forks for Evaluating Cross-Project Similarity Analysis Tools. In
Proceedings of the 13th IEEE International Working Conference on
Source Code Analysis and Manipulation (SCAM 2013), 2013.

[Tenev 2011] Tenev, V.; Nebel, M. (Sup.); Duszynski, S. (Sup.); Directed Coloured
Multigraph Alignments for Variant Analysis of Software Systems.
Bachelor Thesis, Fraunhofer IESE Report 112.11/E, 2011,
Kaiserslautern, Germany.

[Tenev 2012] Tenev, V.; Duszynski, S.; Applying Bioinformatics in the Analysis of
Software Variants. In Proceedings of the 20th IEEE International
Conference on Program Comprehension (ICPC 2012), 2012, Best
Poster Paper Award.

[Tenev 2013] Tenev, V.; Duszynski, S.; Similarity Normalization of Clone Detection
Results for the Set Similarity Model. Fraunhofer IESE Report 029.13/E,
2013, Kaiserslautern, Germany.

[Thomas 1997] Thomas, W.M.; Delis, A.; Basili, V.R.; An Analysis of Errors in a Reuse-
Oriented Development Environment. In Journal of Systems and
Software, Volume 38, Issue 3, September 1997, pp. 211—224.

[Tichy 1984] Tichy, W. F.; The String-to-String Correction Problem with Block
Moves. In ACM Transactions on Computer Systems (TOCS), Vol. 2,
Issue 4, November 1984, pp. 309—321.

[Tischer 2011] Tischer, C.; Müller, A.; Mandl, T.; Krause, R.; Experiences from a
Large Scale Software Product Line Merger in the Automotive Domain.
In Proceedings of the 15th International Software Product Lines
Conference (SPLC 2011), 2011, pp. 267—276.

[Tischer 2012] Tischer, C.; Boss, B.; Müller, A.; Thums, A.; Acharya, R.; Schmid, K.;
Developing Long-Term Stable Product Line Architectures. In
Proceedings of the 16th International Software Product Lines
Conference (SPLC 2012), 2012, pp. 86—95.

[Tomita 2006] Tomita, E.; Tanaka, A.; Takahashi, H.; The Worst-Case Time
Complexity for Generating All Maximal Cliques and Computational
Experiments. In Journal Theoretical Computer Science – Computing
and Combinatorics, Vol. 363, Issue 1, October 2006, pp. 28—42.

[Toomim 2004] Toomim, M.; Begel, A.; Graham, S.L.; Managing Duplicated Code
with Linked Editing. In Proceedings of the 2004 IEEE International
Symposium on Visual Languages and Human-Centric Computing
(VLHCC ‘04), 2004, pp. 173—180.

[Trochim 2006] Trochim, W.; Donnelly, J.P.; The Research Methods Knowledge Base.
3rd Edition, Atomic Dog Publishing, 2006.

195

References

[Tseng 1986] Tseng, C.J.; Siewiorek, D.P.; Automated Synthesis of Data Paths in
Digital Systems. In IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 5, Issue 3, July 1986, pp. 379—
395.

[Tseng 2007] Tseng, M.M.; Jiao, J.; Mass Customization. In: Salvendy, G. (Ed.),
Handbook of Industrial Engineering: Technology and Operations
Management. 3rd Edition, Wiley, New York, 2007, pp. 684—709.

[Turban 2005] Turban, E.; Rainer, R.K.; Potter, R.E.; Introduction to Information
Technology. 3rd Edition, Wiley, New York, 2005.

[USCB 2014] United States Census Bureau. Survey and census data available under
http://www.census.gov/ (accessed on 4 May 2014).

[Utter 2007] Utter, J.; Schaaf, D.; Mhurchu, C.N.; Scragg, R.; Food Choices Among
Students Using the School Food Service in New Zealand. In Journal of
the New Zealand Medical Association, Vol. 120, No. 1248, 2007.

[Valiente 2001] Valiente, G.; An Efficient Bottom-Up Distance between Trees. In
Proceedings of the 8th International Symposium of String Processing
and Information Retrieval (SPIRE 2001), 2001, pp. 212—219.

[van Emden 2002] van Emden, E.; Moonen, L.; Java Quality Assurance by Detecting
Code Smells. In Proceedings of the 9th Working Conference on Reverse
Engineering (WCRE 2002), 2002, Richmond, VA, USA, pp. 97—107.

[Venn 1880] Venn, J.; On the Diagrammatic and Mechanical Representation of
Propositions and Reasonings. In The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science, Year 10, No. 59,
1880, pp. 1—18.

[Viegi 2004] Viegi, G.; Matteelli, G.; Angino, A.; Scognamiglio, A.; Baldacci, S.;
Soriano, J.B.; Carrozzi, L.; The Proportional Venn Diagram of
Obstructive Lung Disease in the Italian General Population. In Chest
Journal, Vol. 126, No. 4, 2004, pp. 1093—1101.

[Walline 2013] Walline, H.M.; Komarck, C.; McHugh, J.B.; Byrd, S.A.; Spector, M.E.;
Hauff, S.J. et al.; High-Risk Human Papillomavirus Detection in
Oropharyngeal, Nasopharyngeal, and Oral Cavity Cancers -
Comparison of Multiple Methods. In JAMA Otolaryngology Head and
Neck Surgery, Vol. 139, No. 12, 2013, pp. 1320—1327.

[Willer 2013] Willer, C.J.; Schmidt, E.M.; Sengupta, S. et al.; Discovery and
Refinement of Loci Associated with Lipid Levels. In Nature Genetics,
Vol. 45, 2013, pp. 1274—1283.

[Wleklik 2011] Wleklik, J.; Rombach, H.D. (Sup.); Duszynski, S. (Sup.); Analysis of
Migration Strategies from Individual Development to Product Line
Development on the Example of the Envisiontec Machine Control
Software. Master Thesis, Fraunhofer IESE Report 113.11/E, 2011,
Kaiserslautern, Germany.

196

References

[Wohlin 2000] Wohlin, C.; Runeson, P.; Höst, M.; Ohlsson, M.C.; Regnell, B.;
Wesslen, A.; Experimentation in Software Engineering – An
Introduction. Kluwer Academic Publishers, 2000.

[Wu 2011] Wu, Y.; Yang, Y.; Peng, X.; Qiu, C.; Zhao, W.; Recovering Object-
Oriented Framework for Software Product Line Reengineering. In
Proceedings of the 12th International Conference on Software Reuse
(ICSR 2011), LNCS Volume 6727, 2011, pp. 119—134.

[Xing 2005] Xing, Z.; Stroulia, E.; UMLDiff: an Algorithm for Object-Oriented
Design Differencing. In Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering (ASE
‘05), 2005, pp. 54—65.

[Yamamoto 2005] Yamamoto, T.; Matsushita, M.; Kamiya, T.; Inoue, K.; Measuring
Similarity of Large Software Systems based on Source Code
Correspondence. In Proceedings of the 6th International Conference
on Product Focused Software Process Improvement (PROFES 2005),
Oulu, Finland, pp. 530—544.

[Yoshimura 2006] Yoshimura, K.; Ganesan, D.; Muthig, D.; Assessing Merge Potential
of Existing Engine Control Systems into a Product Line. In Proceedings
of the 2006 International Workshop on Software Engineering for
Automotive Systems (SEAS ‘06), 2006, pp. 61—67.

[Zahra 2010] Zahra, F.; Rombach, H.D. (Sup.); Dodero, G. (Sup.); Duszynski, S.
(Sup.); Correspondence Identification Techniques for Multiple Similar
Software Systems. Master Thesis, Fraunhofer IESE Report 093.10/E,
2010, Kaiserslautern, Germany.

[Zammit 2012] Zammit, A.R.; Starr, J.M.; Johnson, W.; Deary, I.J.; Profiles of Physical,
Emotional and Psychosocial Wellbeing in the Lothian Birth Cohort
1936. In BMC Geriatrics, Vol. 12, 2012.

[Zhang 2008] Zhang, Y.; Basit, H.A.; Jarzabek, S.; Anh, D.; Low, M.; Query-based
Filtering and Graphical View Generation for Clone Analysis. In
Proceedings of the IEEE International Conference on Software
Maintenance (ICSM 2008), 2008, pp. 376—385.

[Zijlstra 1993] Zijlstra, F.; Efficiency in Work Behavior. A Design Approach for
Modern Tools. Dissertation, Delft University of Technology, Delft, The
Netherlands, 1993.

197

Appendix A - Experiment Material

Appendix A Experiment Material

The information and documents provided in this appendix can be used
to analyze the details of the controlled experiment performed for this
thesis and to replicate that experiment. For the description of experiment
goals, hypotheses, and design please refer to Chapter 7.

A.1 Experiment Infrastructure Setup

A.1.1 Analyzed Software Systems

The software systems analyzed by experiment participants were based
on the source code of JHotDraw, an open-source middle-sized Java
software system [JHotDraw 2014]. Five different variant systems were
generated from the original JHotDraw code by the ForkSim tool
[Svajlenko 2013] in a randomized generation process. In that process,
syntactically correct code parts were injected at random, but syntactically
correct locations into the original JHotDraw code, sometimes with and
sometimes without repetitions across the different variants. The inserted
code parts were in some cases modified for a subgroup of the target
variants, for example by changing the code formatting, removing some
code lines, renaming variables and other identifiers, or changing the
assigned variable values. The insertion and modification operations were
logged, so that the similarity of the generated system variants was
exactly known. Thus, correct answers to the experimental questions
were known without the need to use any of the analysis techniques
investigated in the experiment.

All files which were not relevant for the experiment were deleted from
the analyzed system variants in order to ease the code navigation and
thus reduce the amount of time the subjects needed to spend on
locating the respective files.

A.1.2 Adaptations to the Variant Analysis Tool

The experiment goal was not to compare any specific software tools, but
rather to compare two techniques for analyzing code similarity. However,
using software tools was necessary as they create and provide access to
the similarity data. Although the common pairwise comparison tools and
the Variant Analysis tool differ in several places, e.g. with regard to user
interface and data visualization, all these differences had to be removed in
the experiment in order to eliminate their influence on the experiment

199

Appendix A - Experiment Material

result. Therefore, to isolate the effect of using a different similarity model,
the tools used by both groups were made equal in all aspects – except the
similarity model used. Depending on the similarity model, the similarity
visualized in the tool was based either on pairwise comparison results or
on the set-based comparison results. Apart from that difference, both
tools used the same algorithm for pairwise comparison of code files, as
well as the same code navigation and visualization means. This was
achieved by providing adapted variants of the Variant Analysis tool to both
groups. Moreover, advanced functionalities of the Variant Analysis tool,
which could be used by the participants as an alternative way to obtain
the needed results, were disabled.

For the experimental group working with the set similarity model, the
Variant Analysis tool was adapted in the following way:

The Variant Analysis views were disabled and hidden. The only
interface elements the participants could interact with were the
system structure diagram and the colored code editor.

The similarity information was removed from the system structure
diagram elements. Hence, the similarity information was only
displayed in the code editor.

The model analysis menus were disabled and hidden.

The comparison result dialog, normally used for configuring and
opening the code editor, was reduced to only contain the basic
settings relevant for the experiment.

For the other group, working with pairwise similarity, the above
modifications were applied too. The tool for that group was further
adapted as follows:

The comparison result dialog was modified to enable the user to
specify a pair of file variants for analysis.

The textual line information and the code coloring, displayed in the
code editor, were adapted to reflect pairwise similarity results instead
of the set-based results.

A.1.3 Computing Infrastructure

Each participant received a workplace equipped with standard
Fraunhofer IESE student workstation hardware. Hence, all students
worked on identical or very similar hardware configurations. On each
computer, the Eclipse environment containing the group-specific
adaptation of the Variant Analysis tool was installed and started. The
systems for analysis were stored on the hard disk.

200

Appendix A - Experiment Material

The automated analysis phase, necessary to create the similarity
information for the analysis, was not part of the experiment. Instead, the
students received the results of an already completed analysis, and their
only task was to answer similarity questions based on the presented
information.

A.2 Experiment Documents

In the course of the experiment, each participant received two printed
documents:

The tool tutorial slides (specific for the given group).

Experiment document (identical for both groups), containing:

Introductory information

The briefing questionnaire

The description of the tasks to be solved

The debriefing questionnaire

These documents are stored in the following subsections.

201

Appendix A - Experiment Material

A.2.1 Tool Tutorials

The following tutorial slides were common for both experimental groups.

The Similarity Analysis Experiment

Tool Tutorial

1

Welcome to the Tool Tutorial!
This tutorial shows how to use the similarity analysis tool.

The analyzed software systems are already imported into the tool.

To start, please
expand the
Analysis
project tree

2

Basics: Loading Packages
There are three systems in the analysis: A, B and C.
The analysis results are stored in the Result package.
You need to load the packages in order to access the analysis results.

Select all
packages

Open the right-
click menu

Select the
Package ->Open
menu item

The package
icons change
color: the
packages are
loaded now

3

Basics: Opening the Diagram
The analyzed files will be displayed on a diagram. Please open the diagram to see
the files.

Open the „Result“
package

Double-click on
the diagram to
open it

4

Navigating the Diagram

5

Navigating the Diagram (1): Expand
The diagram visualizes the directory structure of the analyzed systems.

You can expand and collapse the directories to see the files inside.

The two plus icons
on the CH
component mean
„Expand“ and
„Expand all“

Please click
„Expand all“ to
see the whole
directory structure

6

202

Appendix A - Experiment Material

The following two slides were used only in the pairwise similarity group.

Navigating the Diagram (2): Folders and Files
The files are shown as yellow rectangles, contained in the respective parent folders.

For example, the file in the circle is CH/ifa/draw/framework/FigureChangeEvent.java

7

Navigating the Diagram (3): Scrolling and Outline
You can scroll through the diagram using the scroll bars or the Outline view

(bottom left).

You can also
collapse some of
the folders by
using one of the
minus icons
„Collapse“ and
„Collapse all“

8

Analyzing the Similarity

9

Analyzing the Similarity (1): Compare Menu
Open the code similarity results by right-clicking on a file and selecting the
“Compare” menu item. Let’s use the file CH/ifa/draw/contrib/ zoom/
/ScalingGraphics.java as an example.

Please find the file
ScalingGraphics

Right-click on it
and select
„Compare“

10

Analyzing the Similarity (2): Wizard
A wizard appears. Please select two of the existing file variants to be compared.

Select two file
variants in the lists
(for example A
and C)

Click the „Finish“
button to open the
selected file
variants

11

Analyzing the similarity (3): Editor
For each variant, a code editor is opened.

12

The editor showing the variant C of the ScalingGraphics.java
file, compared to its variant A

Code highlighting informs
about the similarity status:

Common (green) – identical
in the two variants
Unique (yellow) – different
between the two variants

Additionally, the status bar on
the right side provides an
overview over all the lines
in the file

The editor showing variant A compared to C

When mouse hovers over the
C or U icon, an explanation text
is shown

The C and U icons on the left
side of the text show again the
similarity information
(Common, Unique)

“Line: 436 Variants: A C”
means the line is identical in
variants A and C

Information which variants are compared

203

Appendix A - Experiment Material

The following four slides were used only in the set model similarity group.

The remaining tutorial slides were common for both experimental groups, except for
their slide numbers which differed due to a different number of preceding slides.

Analyzing the Similarity (2): Wizard
A wizard appears, informing that all existing file variants will be opened.

Click the „Finish“
button to open the
file variants

11

Analyzing the similarity (3): Editor
For each variant, a code editor is opened.

12

An editor showing the variant C
of the ScalingGraphics.java file

Code highlighting informs
about the similarity status
(see the next slide for
explanation)

Additionally, the status bar on
the right side provides an
overview over all the lines
in the file

Editors for variants A and B

When mouse hovers over the
C, S or U icon, an explanation
text is shown

The C, S and U icons on the
left side of the text show
again the similarity
information (see next slide)

The Set Similarity Model (1)

13

The information in the editor is based on a set similarity model.

Code existing only in one variant B

Code existing in A and B, but not in C

Code existing in A, B and C: identical in all variants

The code is colored according to the set information

Core (green): code identical in all the variants

Unique (yellow): code existing in only one variant

Shared (blue): code existing in more than one, but not all variants

The same coloring is also used for more than 3 sets (4,5, etc.)

The Set Similarity Model (2)

14

This is how the editor visualizes the set model for the code:

Code identical in all variants

Code existing only in variant C

The same type of information is shown in the editors for the variant A and B

Of course, the code existing only in variant A will only be shown in the editor A

The tooltip says “Line: 436 Variants: 3 Membership: A B C”
This means the line is identical in three variants, and these variants are A, B and C

After Analysis: Close the Files
When you finish analyzing a group of files, you can clean up your tool by closing all
the editors and leaving only the diagram open.

You can close
each editor‘s
window
individually

Or, you can go to
the diagram tab,
right-click on it,
and select the
„Close others“
option

13

Example Tasks

14

204

Appendix A - Experiment Material

The number of blank slides, placed after the example tasks slide, varied between the two
tutorial variants. The reason for that was that in both variants the example task answers
were placed on slide 19 to prevent the participants from seeing the answers prematurely.

A.2.2 The Main Experiment Document

The main experiment document was identical for both groups.

The questions asked in the document, except for the analysis task
questions, were not numbered in any way visible to the participants.
However, we numbered all questions internally in order to refer to them
in other documents such as result tables. Below, we indicate the
respective question numbers by using notes placed on the left document
margin. The same question numbers are used in Appendix A.3, where
the participant answers are reported.

Example Tasks
Please try to determine the correct answers to the following example tasks.

The next slide contains the answers, but try to solve the example tasks first!

In case you have any question about the tool or the tasks, please ask it now!

15

Example Question Answer

QEx1
Which two variants of the file
CH/ifa/draw/samples/Animator.java
are the most similar to each other?

� I don’t know

QEx2
Which variants of the file
CH/ifa/draw/framework/Tool.java
have identical code?

� I don’t know

QEx3
Which variant of the file
CH/ifa/draw/framework/FigureChangeEvent.java
contains only code which also exists in all other variants? � I don’t know

(intentionally left blank)

16

Example Tasks – Answers
In case you have any question about the tool or the tasks, please ask it now!

19

Example Question Answer

QEx1
Which two variants of the file
CH/ifa/draw/samples/Animator.java
are the most similar to each other?

A,B � I don’t know

QEx2
Which variants of the file
CH/ifa/draw/framework/Tool.java
have identical code?

A, B ,C � I don’t know

QEx3
Which variant of the file
CH/ifa/draw/framework/FigureChangeEvent.java
contains only code which also exists in all other variants?

B � I don’t know

205

Appendix A - Experiment Material

.11.01.2013,

1

The Similarity Analysis Experiment

Please read the experiment documents carefully. In case you have any problems in understanding the
given information, the experiment tasks or the tool usage, please contact the experiment supervisor.

The experiment is scheduled to last about 90 minutes.

Thank you for participating in the experiment, and good luck!

Experiment Goal

The goal of the experiment is to evaluate two methods which are used for analyzing the
similarity of software system implementation. The time you spend on solving the analysis tasks
and the correctness of your answers are measured. Please try to solve the tasks quickly, but also
make sure you solve them all correctly, as correctness is important here.

Please note that the experiment is evaluated anonymously. The goal is not to evaluate your
personal performance, but to evaluate the similarity analysis methods.

Your Role in the Experiment

 In the experiment, you take the role of a software architect who investigates a few variants of a
software product for similarity – for example, to determine the possibility of transforming the
variants to a software product line. The knowledge of software architecture or software product
lines concepts is not required for the experiment. Because the experiment has a limited time,
only a few selected locations in the software will be investigated.

Definition of Code Similarity used in the Experiment

The similarity of two source files is defined as the similarity of their source code:

 two files where only a few code lines differ have a high similarity,
 two files where a lot of code lines differ have a low similarity.

In the experiment, the whole content of the Java file, including comments and import
statements, is treated as source code. Therefore, differences in imports and comments affect
the similarity in the same way as the differences in Java code statements.

206

Appendix A - Experiment Material

.11.01.2013,

2

The Experiment Procedure

The analysis tool and the investigated systems are already installed on your computer. Additionally, the
tool documentation is attached to this document. Before the analysis starts, you will receive a short
training on the tool usage. During the experiment, you will use the tool to analyze the provided systems
and answer the provided questions.

Preparation Phase

 Please read the experiment description (Page 1 and 2).
 Please fill out the Briefing Questionnaire (Page 3).
 Read the task solution guidance (Page 4), and wait for the tool tutorial.
 Listen to the tool tutorial and perform the presented tool usage steps.
 Try out the tool on the example workspace. Make sure you understand how to

use the tool.
 When you are ready to start, tell it to the experiment supervisor. The execution

phase will start when all group members are ready.

Execution Phase

 All group members receive the name of the experiment workspace.
 Please switch Eclipse to the experiment workspace. Make sure that the system

packages and the diagram are opened.
 Write down the execution start time on Page 4.
 Conduct the experiment tasks (Pages 5 to 6).
 When you finish all the tasks, write down the execution stop time on Page 4.

Finalization Phase

 Please fill out the Debriefing Questionnaire (Pages 7 and 8).

207

Appendix A - Experiment Material

.11.01.2013,

3

Briefing Questionnaire

The purpose of this questionnaire is to characterize the background of the participants. The information
you provide will help in the analysis of experiment results. The answers will be treated anonymously.

Please answer the questions as complete and as honest as possible. Try to answer every question – if you
are not sure about the answer, just select the one you feel is the most likely. Thank you for your support!

Background information

- What is your major field of study?

- What is the degree you are currently studying for?

- In which semester of your study are you at the moment (counting from the beginning of the
bachelor studies)? ________

- Are you color blind?

- Please rate your experience in the following categories. For each category, please select only
one option.

How much experience do you
have in …

No
experience

Little
experience

Medium
experience

Significant
experience

Professional
experience

1 2 3 4 5
Programming in general � � � � �
The Java programming language � � � � �
Using the Eclipse environment � � � � �
Comparing source code using diff
tools (any kind) � � � � �

Comparing source code using the
Eclipse Diff tool � � � � �

Using the Variant Analysis tool � � � � �

Highly
unmotivated Unmotivated

Neither
motivated

nor
unmotivated

Motivated Highly
motivated

1 2 3 4 5
How motivated are you to
perform well in the experiment? � � � � �

� Bachelor
� Master
� Other, please specify ___________

� Computer Science
� Business Informatics
� Mathematics
� Other, please specify ___________

� Yes (which colors?) ___________________
� No

B1

B2

B3

B4
B4a

B5
B6
B7

B11

B8

B9
B10

208

Appendix A - Experiment Material

.11.01.2013,

4

Task Solution Guidance

You take the role of a software architect who investigates a few variants of a software product for
similarity. Please use the specified tool installed on your computer to analyze the five variants of the
JHotDraw system, named A, B, C, D and E. During the analysis, please answer the questions below. In
case you are unable to determine the correct answer, please instead mark the “�� I don’t know” field. If
there is no answer at all, the “I don’t know” explanation will be assumed, too. The questions answered
with “I don’t know” will be counted as answered incorrectly.

When answering the questions, it is enough that you write down the variant names or the number being
the correct answer. “A and B” or “5” are sufficient, for example:

Example Question Example Answer
QEx1 Which two variants of the file

package/File.java
are the most similar to each other?

A, B � I don’t know

QEx2 Which methods in the file
package/test/Test.java
exist only in variant A of that file?

runOnce() � I don’t know

Please remember to only use the provided tool to analyze the similarity. Do not use other tools such as
Notepad or Excel. If you need to take down notes, please use the empty sheet of paper attached at the
end of this document.

The Experiment

Please notify the experiment supervisor when you are ready to start. The execution phase will
start when all group members are ready.

After receiving the name of the experiment workspace, please switch Eclipse to that workspace.
Make sure that the system packages and the diagram are opened.

Then, write down the start time and turn the page to start working on the tasks. Please try to
solve the tasks quickly, but also make sure you solve them all correctly, as correctness is
important here.

Write down the execution start time here (e.g., 15:50) __________

Write down the execution stop time here (e.g., 16:50) __________

T1
T2

209

Appendix A - Experiment Material

.11.01.2013,

5

Tasks 1 – 12

Question Answer
Q1. Which two variants of the file

CH/ifa/draw/contrib/CommandMenuItem.java
are the most similar to each other?

� I don’t know

Q2. Which two variants of the file
CH/ifa/draw/contrib/CustomSelectionTool.java
are the most similar to each other?

� I don’t know

Q3. Which variants of the file
CH/ifa/draw/contrib/Helper.java
have identical code?

� I don’t know

Q4. Which variants of the file
CH/ifa/draw/contrib/AutoscrollHelper.java
have identical code?

� I don’t know

Q5. Which variant of the file
CH/ifa/draw/util/CommandButton.java
is strongly dissimilar from the others?

� I don’t know

Q6. Which variant of the file
CH/ifa/draw/util/UndoableAdapter.java
is strongly dissimilar from the others?

� I don’t know

Q7. Which variants of the file
CH/ifa/draw/util/UndoableTool.java
have identical code?

� I don’t know

Q8. Which variant of the file
CH/ifa/draw/standard/BoxHandleKit.java
contains the most unique code (code which doesn’t
exist in any other variant)?

� I don’t know

Q9. Which variant of the file
CH/ifa/draw/standard/HandleTracker.java
contains only code which also exists in all other
variants?

� I don’t know

Q10. Which variant of the file
CH/ifa/draw/samples/minimap/
MiniMapDesktop.java
is strongly dissimilar from the others?

� I don’t know

Q11. Which variant of the file
CH/ifa/draw/application/DrawApplication.java
contains the most unique code (code which doesn’t
exist in any other variant)?

� I don’t know

Q12. Which variants of the file
CH/ifa/draw/contrib/SVGDrawApp.java
have identical code?

� I don’t know

(continued on the next page)

210

Appendix A - Experiment Material

.11.01.2013,

6

Tasks 13 – 16

Question Answer
Q13. Which variant of the file CH/ifa/draw/standard/

FigureChangeEventMulticaster.java
contains the most unique code (code which doesn’t
exist in any other variant)?

� I don’t know

Q14. Which methods in the file
CH/ifa/draw/figures/FontSizeHandle.java
from variant C exist only in that variant of the file?

� I don’t know

Q15. Which two variants of the file CH/ifa/draw/figures/
EllipseFigure.java
are the most similar to each other?

� I don’t know

Q16. Which two variants of the file CH/ifa/draw/util/
StandardVersionControlStrategy.java
are the most similar to each other?

� I don’t know

Please remember to write down the stop time on Page 4 when you finish!

211

Appendix A - Experiment Material

.11.01.2013,

7

Debriefing Questionnaire

How difficult did you perceive the tasks? How much effort did it require to solve them?

Please draw a horizontal line or mark a cross on the following vertical scale. Select a location on the scale
that characterizes in the best way how you perceived the task difficulty. Then, write down the number
that corresponds to the location you selected. You can select any number between 0 and 150.

(continued on the next page)

Task difficulty: ___________ DB1

212

Appendix A - Experiment Material

.11.01.2013,

8

Debriefing Questionnaire (continued)

Please answer the following questions about the conducted experiment. For each question, please select
only one option.

To what degree do you agree with the
following statements?

Strongly
disagree Disagree

Neither
agree nor
disagree

Agree Strongly
agree

1 2 3 4 5
I understood the description of the
experiment tasks. � � � � �

I understood how I should use the analysis
tool to receive the source code difference
information.

� � � � �

I understood the meaning of the source code
difference information presented to me. � � � � �

I could easily see the difference between the
code highlighting colors in the code editor. � � � � �

I had enough time for solving the tasks. � � � � �
I only used the specified tool for solving the
tasks. � � � � �

I think my answers were correct. � � � � �

I think the tool I used provides a good support
for solving the tasks quickly. � � � � �

I think the tool I used provides a good support
for solving the tasks correctly. � � � � �

- What would you change to improve the experiment, the task description, or the tool you used?

- Do you have any additional comments or suggestions?

Thank you for participating in the experiment!

DB2

DB3

DB4

DB5

DB6
DB7
DB8

DB9

DB10

DB11

DB12

213

Appendix A - Experiment Material

.11.01.2013,

9

Notes

214

Appendix A - Experiment Material

.11.01.2013,

10

Notes

215

Appendix A - Experiment Material

A.3 Raw Experiment Results

The following tables report the raw results collected in the experiment.
The participants are sorted in the tables according to the order in which
they returned the filled experiment material in their groups, except for
participants P10 and P13, for whom that order could not be determined.
The participants identified as S {number} were assigned to the set model
group, and the participants identified as P {number} were assigned to the
pairwise comparison group.

In the initial result analysis, some participant answers were recognized as
implausible or incomplete. These answers are marked in the result tables
using gray cell background. For each table, the procedure applied to
these answers in the later analysis, as well as the answer abbreviations
used in the table, are explained.

The results of participant P4 were excluded from the experiment for
reasons discussed in Chapter 7. These results are retained here for
completeness, and are also marked using gray cell background.

A.3.1 Briefing Questionnaire Results

Table 27 presents the participant answers given to the briefing
questionnaire. The abbreviations used in the table are: CS – Computer
Science. Soft. Eng. – Software Engineering. M – Master. B – Bachelor.

Implausible answers: when answering questions B2 and B3, the
participants indicated their study level (bachelor, master) and their
current study semester, counted from the beginning of the bachelor
studies. However, four participants indicated that although they were
already in master studies, they currently studied in the 1st or 3rd semester.
This is not possible, as the Technical University of Kaiserslautern only
offers master studies to persons who hold the bachelor degree (and
hence already studied for about 8 semesters). These persons were
therefore either in bachelor studies at the moment, or they indicated by
mistake their current semester of the master study.

As the Product Line course, attended by all the participants, is an advanced
course offered mainly to master-level students, we assumed that the
marked participants indicated the current semester of their master studies
alone. Hence, in the further result processing, we added 8 semesters to each
of their answers to estimate the duration of their bachelor studies.

Answering the question B10, participant S14 indicated he/she had “little
experience” with using the Variant Analysis tool. This is implausible as,
according to our knowledge, none of the participants could have seen the
tool before. As we had no possibility to ask the participant for the reasons
of that answer, we assume it was given due to a misunderstanding.

216

Appendix A - Experiment Material

Participant
ID

B1 B2 B3 B4 B4a B5 B6 B7 B8 B9 B10 B11

S4 CS M 10 No 3 3 3 1 1 1 4
S6 CS M 11 No 5 5 5 2 1 1 4
S7 CS M 9 No 3 2 2 2 2 1 4
S15 Soft.

Eng.
M 3 No 5 3 2 2 1 1 4

S14 CS M 9 No 4 3 2 2 1 2 3
S8 CS M 9 No 4 4 3 1 1 1 5
S12 CS B 7 No 2 2 2 1 1 1 3
S10 CS M 11 Yes Green-

red
5 4 4 3 3 1 3

S13 Busin
ess

Diplo
ma

13 No 2 2 1 1 1 1 3

S9 CS B 8 No 2 3 3 1 1 1 3
S16 Soft.

Eng.
M 3 Yes Green

and red,
brown

3 3 3 1 1 1 3

P1 CS M 9 No 5 3 3 3 2 1 4
P16 CS M 8 No 4 4 4 3 2 1 4
P15 CS B 8 No 4 3 3 1 1 1 3
P11 CS M 9 No 4 1 2 4 1 1 4
P12 Soft.

Eng.
M 10 No 3 4 4 4 3 1 3

P6 CS M 1 No 3 3 2 2 1 1 5
P9 CS M 10 No 3 2 3 1 1 1 4
P3 CS M 1 No 3 3 3 2 1 1 4
P5 CS B 1 No 3 3 3 3 1 1 4
P4 CS M 2 No 3 3 3 1 1 1 4
P10 CS M 14 No 1 4 3 3 2 1 3
P13 CS M 12 No 4 3 3 3 2 1 3

Table 27 The experiment results: the briefing questionnaire

217

Appendix A - Experiment Material

A.3.2 Task Answers and Time Measurement

Participant
ID

T1 T2 T
[T2-T1]

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

S4 16:17 16:28 11 BE BC ACDE AD A D DE D
S6 16:17 16:31 14 BE BC ACDE AD A D DE D
S7 16:17 16:32 15 BE BC ACDE AD A D DE D
S15 16:17 16:30 13 BE BC ACDE AD A D DE D
S14 16:17 16:28 11 BE BC ACDE AD A D DE D
S8 16:18 16:31 13 BE BC ACDE AD A D DE D
S12 16:17 16:32 15 BE BC ACDE AD A D DE D
S10 16:17 16:32 15 BE BC ACDE AD A D DE D
S13 16:15 16:33 18 BE BC ACDE AD A D DE D
S9 16:17 16:29 12 BE BC ADE AD A D DE D
S16 16:19 16:36 17 BE BC ACDE AD A D DE D

P1 16:13 16:40 27 BE BC ACDE AD A D DE D
P16 16:15 16:46 31 BE BC ACDE AD A D DE D
P15 16:15 16:46 31 BE BC ACDE AD A D DE D
P11 16:15 16:40 25 BE BC ACDE AD A D DE D
P12 16:18 16:43 25 BE BC AC AD A D DE D
P6 16:21 17:01 40 BE BC ACDE AD A D DE D
P9 16:17 16:53 36 BC ACDE AD A D DE
P3 16:13 BE X ACDE AD A D DE D
P5 16:14 16:59 45 BE BC ACDE AD A D DE X
P4 16:00 17:03 63 BE, CE BC AC,

AD,
AE,
CD, DE

AD AB,
AC, AE

BD DE BD, X

P10 16:19 17:03 44 BE BC ACDE AD A D DE X
P13 16:14 16:47 33 BE AE ACDE AD A D DE D

Table 28 presents the participant answers provided for the experiment tasks
and the time measurements. The abbreviations used in the table are: X – the
“I don’t know” answer was selected. Empty cell – no answer was given.

Incomplete or implausible answers: participant P3 did not specify the
completion time for his/her tasks. Hence, the time measurement for that
participant could not be performed, and this time result could not be
considered in the further analysis. However, according to the group
supervisor, the participant P3 was neither the slowest, nor the fastest
person in the group.

Participant P4 stated that he/she measured the time difference
accurately, but did not record the actual starting time, and hence he/she
provided artificial results with correct time difference. As participant P4
was the last to finish the tasks in that group, the stated time difference is
considered plausible.

218

Appendix A - Experiment Material

Participant
ID

Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Correct
[Q1...Q16]

Errors
[Q1...Q16]

S4 C C D BDE D paramString() AD BC 16 0
S6 C C D BDE D paramString() AD BC 16 0
S7 C C D BDE D paramString() AD BC 16 0
S15 C C D BDE D paramString() AD BC 16 0
S14 C C D BDE D paramString() AD BC 16 0
S8 C C D BDE D paramString() AD BC 16 0
S12 C C D BDE D paramString() AD BC 16 0
S10 C C D BDE D paramString() AD BC 16 0
S13 C C D BDE D paramString() AD BC 16 0
S9 C C D BD D paramString() AD BC 14 2
S16 C C D BDE D paramString() AD BC 16 0

P1 C C D BDE D paramString() AD BC 16 0
P16 C C D BDE D paramString() AD BC 16 0
P15 C C BDE D paramString() AD BE 14 2
P11 C C D BDE D paramString() AD BC 16 0
P12 C C D BD D paramString() AD BC 14 2
P6 E C D BDE B paramString() AE BC 13 3
P9 C C D BDE D paramString() AD BC 14 2
P3 D None X BDE D X AD AE 10 6
P5 C X C BDE B X AD BC 11 5
P4 No X No No X paramString() X X 5 11

P10 C C X BDE X X AD BC 12 4
P13 C C D BDE D paramString() AD BC 15 1

Table 28 The experiment results: time measurement and task answers

219

Appendix A - Experiment Material

A.3.3 Debriefing Questionnaire Results

Table 29 presents the participant answers provided for the debriefing
questionnaire.

Participant
ID

DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10

S4 15 5 5 5 5 5 5 5 5 4
S6 10 5 5 4 5 5 5 4 5 5
S7 13 5 5 4 5 5 5 5 5 5
S15 26 5 5 5 5 5 5 5 5 5
S14 25 4 5 4 5 5 5 5 4 4
S8 15 5 5 5 4 5 5 4 4 4
S12 5 5 5 5 5 5 5 5 5 5
S10 26 5 5 5 5 5 5 5 4 4
S13 35 4 3 3 5 5 5 5 5 5
S9 13 4 5 5 5 5 5 5 5 4
S16 26 5 5 5 5 5 5 5 5 5

P1 101 5 5 5 5 5 5 5 2 4
P16 20 5 5 5 5 5 5 5 4 4
P15 1 5 4 3 5 5 5 5 5 5
P11 13 5 5 5 5 5 5 4 3 4
P12 5 5 4 5 5 5 4 5 5
P6 71 4 4 4 4 4 4 4 2 4
P9 57 4 5 5 5 5 5 4 4 4
P3 40 4 4 5 5 5 5 4 4 4
P5 71 4 4 4 4 4 5 5 3 3
P4 72 1 1 1 1 2 1 3 5 3
P10 100 4 4 3 3 2 5 4 2 2
P13 26 5 5 5 5 5 5 5 4 4

Table 29 The experiment results: the debriefing questionnaire

Incomplete answers: participant P12 did not provide any number
when answering the question DB1. Instead, he/she wrote that “the task
is easy, but time consuming”. This answer could not be used in the
further analysis.

The answers to questions DB11 and DB12, not provided in the above
table for space reasons, contained various suggestions for improvements
of the provided tool functionalities. However, these suggested
functionalities were already covered by the full Variant Analysis tool,
which was not known to the experiment participants.

220

Appendix B - Application Guidance

Appendix B Application Guidance

The information provided in this appendix concerns the practical use of
the results of the defined similarity analysis approach in the context of its
application scenarios. As discussed in Section 1.3, there are several context
factors influencing the software migration decisions. The concerns such as
functional similarity, future plans regarding the product variants
[Schmid 2005], the overall code quality [Wleklik 2011], and resource
availability play an at least as important role as the code similarity analysis
results. Furthermore, many different reverse engineering techniques can
be used on the analyzed asset variants to recover information not
necessarily concerning code similarity, but still relevant for the migration
[Knodel 2005] [Duszynski 2010b]. Hence, as our approach focuses on the
code similarity only, the application guidance described below is necessarily
rather an advice than a precise algorithm, and is intended to rather support
reuse decisions than to prescribe them. For each group of similar software
asset variants, the unique combination of context factors might require a
case-specific use of the analysis results, overriding the application guidance.

The existing guidance concerning software reengineering, such as the
refactoring methods [Fowler 1999], reengineering patterns [Demeyer
2008], or clone detection and removal approaches [Rieger 1999]
[Schulze 2013], applies also in the context of our application scenarios.
Hence, the application guidance discussed below complements these
approaches and does not override them.

B.1 Reuse Potential Assessment and Software Consolidation

In this section, we discuss the guidance concerning the application
scenarios AS1 (reuse potential assessment) and AS2 (consolidation of
existing reusable software). In both these scenarios, the analysis purpose
is to identify the variants of assets or their constituent parts which are
suitable for reuse introduction. Hence, from the similarity analysis point of
view the foremost concern is the identification of assets having high
similarity. For each asset or asset part, the following decisions can be made:

The asset can be consolidated and made reusable for all its variants.

The asset can be consolidated and made reusable for a subgroup of
its variants.

The asset can be left unconsolidated, and all its variants can be
further maintained in parallel.

The asset can be rewritten in a reusable form, abandoning the content
of existing variants but using the information on their similarity.

221

Appendix B - Application Guidance

B.1.1 Similarity Properties Supporting the Scenarios

From the code similarity point of view, a group of some or all variants of
the analyzed assets is particularly suitable for consolidation when the
following criteria are met:

High content similarity: the union of the content sets contains at
least 80% of core content, or 80% of such content which is common
(core or shared) within the selected variant subgroup.
High concentration of similar and unique content: the content
common to the selected variants, as well as the unique content, is
concentrated to over 90% in the Content Filled Elements belonging
to the analyzed asset. A high proportion of unique content is not
detrimental to reuse migration if whole Content Filled Elements are
unique. In such a case, these elements can be conveniently handled
by the compositional variability mechanisms regardless of their size.
In contrast to that, a migration of asset variants containing highly
dispersed unique content likely requires a higher effort.
Large fragments of similar code: the content fragments having
the same similarity are large, and only a low number of different set
intersections are represented in the Content Filled Elements (10 or
less in an element, while each element can contain a different group
of intersections).

Naturally, the consolidation is also possible for asset variants which do not
fulfill some or all of the above criteria – however, in such a case a relatively
higher consolidation effort is likely needed. Furthermore, in case the
specified criteria are met only for a specific part of the analyzed asset, the
analyst can decide to perform the consolidation only for that asset part,
achieving for it the reuse benefits, and leave the remaining asset content
unaffected. Finally, the asset variant consolidation might be not attempted
despite the fulfillment of the stated criteria: for example, due to a low
code quality the asset might be instead rewritten in a reusable form.

B.1.2 Prioritization of Consolidation Activities

The consolidation planning frequently needs to prioritize the activities
performed on the identified asset variants. In particular, the
consolidation activities should quickly provide a benefit in the form of
reduced asset maintenance effort – the saved effort can be then in turn
used for further extension of the consolidation scope. The following
criteria support the prioritization of consolidation activities:

Overall maintenance intensity: the assets experiencing heavy
maintenance should be prioritized in the consolidation activities for
two reasons. First, performing further changes on the candidate asset
variants before the consolidation might increase their complexity and
reduce their reuse potential. On the other hand, the changes
included after the consolidation might require less effort, due to the

222

Appendix B - Application Guidance

already existing reuse, and are likely implemented in a more reuse-
supportive way. Second, the introduction of reuse to the heavily
maintained variants provides a faster return on the consolidation
investment. In contrast to that, the consolidation of low-maintenance
asset variants might never pay off, as the achieved overall
maintenance savings might be low despite a high content similarity.

Near-time maintenance intensity: for the reasons analogical as
discussed in the previous point, an asset might be prioritized for
consolidation if a significant maintenance activity is planned for its
variants soon. Even if the average maintenance intensity of the asset
is low, the summary effort needed for the consolidation and the
subsequent phase of intensive maintenance, performed on the
already reusable content, might be lower than the effort required for
repetitive maintenance tasks performed on the non-consolidated
variants. Hence, this situation potentially provides a quick pay off for
the consolidation effort.

Very high code similarity: the consolidation of nearly-identical
asset variants requires likely a low effort. However, it provides a quick
benefit even if the average asset variants maintenance intensity is
low: the activities related to the management and quality assurance
of the variants, which are frequently effort-intensive, can afterwards
only be performed once for all previously independent asset variants.

The neighborhood of reusable content: it might be beneficial to
concentrate the consolidation activities on a few areas of the asset
content, and create a low number of relatively large “reuse islands”
instead of a high number of small, scattered reusable elements. The
larger reusable asset parts are easier to manage, and are more likely
to represent a semantically coherent subsets of asset functionality.
Hence, the candidate asset parts which contribute to increasing the
size of already existing commonalities should be prioritized.

B.1.3 Further Activities Supporting the Scenarios

The reuse consolidation can be performed using different approaches –
for example, the group of identified asset variants can be merged
together, or a single variant can be extended to cover the functionality
required by all other variants. In the case of merging, the following
complementary implementation level activities might be performed
before the actual consolidation:

Removal of non-significant differences: during the parallel variant
code maintenance, minor implementation differences not significantly
influencing the asset functionality can emerge. For example, a
refactoring or code commenting activity might be performed only on
some of the variants, or a propagation of a code change might not be
propagated consistently between the relevant variants. Furthermore,
the variant code might differ in the used file and identifier names.

223

Appendix B - Application Guidance

Because an unification of such differences is relatively simple, and there
is no reason to preserve and manage them in the resulting reusable
assets, the removal of non-significant differences can be performed as
one of the first consolidation steps, helping in the isolation of more
significant variant-specific asset content differences.

Dead code removal: particularly in the older asset groups the amount
of dead code can be relatively high. The creation of dead code can be
intensified due to the variant cloning, especially in case the ancestor
variant is not fully understood by the developer and the new clone is
used in a different context. Obviously, dead code is not reusable and
the effort spent on its removal pays off during the consolidation.

B.2 Parallel Variant Maintenance

In the application scenario AS3 (parallel variant maintenance) the similar
content is not intended to be consolidated. Instead of identifying
potentially reusable content parts, the analysis supports the developers in
understanding the similarity distribution in order to exploit that similarity
during the parallel maintenance activities. The main activities utilizing the
similarity information are hence the planning and verification of parallel
content changes as well as the content inspections. A prior removal of
non-significant content differences, as described in the previous
section, is beneficial for both these activities. Subsequently, the most
significant effort reduction in the parallel maintenance activities can be
expected for asset variants having the following properties:

Nearly identical content of asset or Content Filled Element variants
(98% or more common code). In that case, the further parallel
content changes implementing analogical functionality are likely to
be performed in a syntactically similar way for these nearly identical
variants. The similarity of both base code and the changes is also
supportive for change verification, which aims to ensure that the
changes were performed consistently in all variants, and all
differences between the particular change implementations are
intended and not accidental. Finally, a significant share of the content
inspection effort can be saved, as the reviewed content is already
known and only needs to be verified for the possibility of a yet
unconsidered usage context.
Asset or Element variant fully covering the content of another
variant, possibly with the exception of minor unique content parts.
In that case, the benefits occurring for nearly identical content, i.e.
the high syntactical similarity of functionally identical changes, can
also be expected. Hence, the results of maintenance activities
performed on the larger variant can be frequently transferred to the
smaller one after a short review of its usage context.
Large fragments of similar content, i.e. content fragments
belonging to the same set intersection, exhibit for the involved
variant content sets the same benefits as discussed above.

224

Appendix B - Application Guidance

The benefits of understanding the similarity distribution are not limited to
the nearly identical asset variants – however, they are the most significant
and visible for these assets. Reduction of content change and inspection
effort can also be achieved in the case if only specific asset parts, affected
by the given maintenance activity, exhibit a sufficiently high content
similarity. Admittedly, in the parallel maintenance scenario the content
similarity which results in a sufficient benefit needs to be higher compared
to the other two scenarios, which are focusing on reuse introduction.
While two asset variants with medium similarity (50-70% of common
content) can still be transformed to a reusable form in many cases, the
difference in their functionality is likely high enough to require a separate
change analysis and inspection performed for each of the asset variants.

225

Curriculum Vitae

Name S awomir Duszy ski

Address Konrad-Adenauer-Strasse 43
67663 Kaiserslautern

Date of Birth 16 September 1981

Place of Birth Wroclaw, Poland

Marital Status Married, 1 child

Education 1988–1996 Primary school

1996–2000 Adam Mickiewicz Lyceum in Wroclaw

2000–2005 Wroclaw University of Technology
Computer Science / Software Engineering
Degree: Master of Science

Professional
Experience

2002–2004 Co-founder of a small software company
Jawor, Poland

2004–2005 Software developer
Siemens sp. z o.o., Wroclaw

2005–2007 Software developer
sympat GmbH / evosoft GmbH, Nürnberg
(located at Siemens AG, Fürth)

2007–today Researcher
Fraunhofer Institute for Experimental Software
Engineering (IESE), Kaiserslautern

Kaiserslautern, 9th January 2015

227

PhD Theses in Experimental Software Engineering

Volume 1 Oliver Laitenberger (2000), Cost-Effective Detection of Software Defects
Through Perspective-based Inspections

Volume 2 Christian Bunse (2000), Pattern-Based Refinement and Translation of
Object-Oriented Models to Code

Volume 3 Andreas Birk (2000), A Knowledge Management Infrastructure for
Systematic Improvement in Software Engineering

Volume 4 Carsten Tautz (2000), Customizing Software Engineering Experience
Management Systems to Organizational Needs

Volume 5 Erik Kamsties (2001), Surfacing Ambiguity in Natural Language
Requirements

Volume 6 Christiane Differding (2001), Adaptive Measurement Plans for Software
Development

Volume 7 Isabella Wieczorek (2001), Improved Software Cost Estimation
A Robust and Interpretable Modeling Method and a Comprehensive
Empirical Investigation

Volume 8 Dietmar Pfahl (2001), An Integrated Approach to Simulation-Based
Learning in Support of Strategic and Project Management in Software
Organisations

Volume 9 Antje von Knethen (2001), Change-Oriented Requirements Traceability
Support for Evolution of Embedded Systems

Volume 10 Jürgen Münch (2001), Muster-basierte Erstellung von Software-
Projektplänen

Volume 11 Dirk Muthig (2002), A Light-weight Approach Facilitating an Evolutionary
Transition Towards Software Product Lines

Volume 12 Klaus Schmid (2003), Planning Software Reuse – A Disciplined Scoping
Approach for Software Product Lines

Volume 13 Jörg Zettel (2003), Anpassbare Methodenassistenz in CASE-Werkzeugen

Volume 14 Ulrike Becker-Kornstaedt (2004), Prospect: a Method for Systematic
Elicitation of Software Processes

Volume 15 Joachim Bayer (2004), View-Based Software Documentation

Volume 16 Markus Nick (2005), Experience Maintenance through Closed-Loop
Feedback

Volume 17 Jean-François Girard (2005), ADORE-AR: Software Architecture
Reconstruction with Partitioning and Clustering

Volume 18 Ramin Tavakoli Kolagari (2006), Requirements Engineering für Software-
Produktlinien eingebetteter, technischer Systeme

Volume 19 Dirk Hamann (2006), Towards an Integrated Approach for Software
Process Improvement: Combining Software Process Assessment and
Software Process Modeling

Volume 20 Bernd Freimut (2006), MAGIC: A Hybrid Modeling Approach for
Optimizing Inspection Cost-Effectiveness

Volume 21 Mark Müller (2006), Analyzing Software Quality Assurance Strategies
through Simulation. Development and Empirical Validation of a Simulation
Model in an Industrial Software Product Line Organization

Volume 22 Holger Diekmann (2008), Software Resource Consumption Engineering for
Mass Produced Embedded System Families

Volume 23 Adam Trendowicz (2008), Software Effort Estimation with Well-Founded
Causal Models

Volume 24 Jens Heidrich (2008), Goal-oriented Quantitative Software Project Control

Volume 25 Alexis Ocampo (2008), The REMIS Approach to Rationale-based Support
for Process Model Evolution

Volume 26 Marcus Trapp (2008), Generating User Interfaces for Ambient Intelligence
Systems; Introducing Client Types as Adaptation Factor

Volume 27 Christian Denger (2009), SafeSpection – A Framework for Systematization
and Customization of Software Hazard Identification by Applying Inspection
Concepts

Volume 28 Andreas Jedlitschka (2009), An Empirical Model of Software Managers’
Information Needs for Software Engineering Technology Selection
A Framework to Support Experimentally-based Software Engineering
Technology Selection

Volume 29 Eric Ras (2009), Learning Spaces: Automatic Context-Aware Enrichment of
Software Engineering Experience

Volume 30 Isabel John (2009), Pattern-based Documentation Analysis for Software
Product Lines

Volume 31 Martín Soto (2009), The DeltaProcess Approach to Systematic Software
Process Change Management

Volume 32 Ove Armbrust (2010), The SCOPE Approach for Scoping Software
Processes

Volume 33 Thorsten Keuler (2010), An Aspect-Oriented Approach for Improving
Architecture Design Efficiency

Volume 34 Jörg Dörr (2010), Elicitation of a Complete Set of Non-Functional
Requirements

Volume 35 Jens Knodel (2010), Sustainable Structures in Software Implementations by
Live Compliance Checking

Volume 36 Thomas Patzke (2011), Sustainable Evolution of Product Line Infrastructure
Code

Volume 37 Ansgar Lamersdorf (2011), Model-based Decision Support of Task
Allocation in Global Software Development

Volume 38 Ralf Carbon (2011), Architecture-Centric Software Producibility Analysis

Volume 39 Florian Schmidt (2012), Funktionale Absicherung kamerabasierter Aktiver
Fahrerassistenzsysteme durch Hardware-in the-Loop-Tests

Volume 40 Frank Elberzhager (2012), A Systematic Integration of Inspection and
Testing Processes for Focusing Testing Activities

Volume 41 Matthias Naab (2012), Enhancing Architecture Design Methods for
Improved Flexibility in Long-Living Information Systems

Volume 42 Marcus Ciolkowski (2012), An Approach for Quantitative Aggregation of
Evidence from Controlled Experiments in Software Engineering

Volume 43 Igor Menzel (2012), Optimizing the Completeness of Textual Requirements
Documents in Practice

Volume 44 Sebastian Adam (2012), Incorporating Software Product Line Knowledge
into Requirements Processes

Volume 45 Kai Höfig (2012), Failure-Dependent Timing Analysis – A New Methodology
for Probabilistic Worst-Case Execution Time Analysis

Volume 46 Kai Breiner (2013), AssistU – A framework for user interaction forensics

Volume 47 Rasmus Adler (2013), A model-based approach for exploring the space of
adaptation behaviors of safety-related embedded systems

Volume 48 Daniel Schneider (2014), Conditional Safety Certification for Open
Adaptive Systems

Volume 49 Michail Anastasopoulos (2013), Evolution Control for Software Product
Lines: An Automation Layer over Configuration Management

Volume 50 Bastian Zimmer (2014), Efficiently Deploying Safety-Critical Applications
onto Open Integrated Architectures

Volume 51 Slawomir Duszynski (2015), Analyzing Similarity of Cloned Software
Variants using Hierarchical Set Models

Ph
D

 T
h

es
es

 in
 E

xp
er

im
en

ta
l S

o
ft

w
ar

e
En

g
in

ee
ri

n
gSoftware Engineering has become one of the major foci of Computer

Science research in Kaiserslautern, Germany. Both the University of
Kaiserslautern‘s Computer Science Department and the Fraunhofer
Institute for Experimental Software Engineering (IESE) conduct
research that subscribes to the development of complex software
applications based on engineering principles. This requires system
and process models for managing complexity, methods and
techniques for ensuring product and process quality, and scalable
formal methods for modeling and simulating system behavior.
To understand the potential and limitations of these technologies,
experiments need to be conducted for quantitative and qualitative
evaluation and improvement. This line of software engineering

is referred to as ‘Experimental Software Engineering‘.
In this series, we publish PhD theses from the Fraunhofer Institute
for Experimental Software Engineering (IESE) and from the Software
Engineering Research Groups of the Computer Science Department at
the University of Kaiserslautern. PhD theses that originate elsewhere
can be included, if accepted by the Editorial Board.

Editor-in-Chief: Prof. Dr. Dieter Rombach
Director Business Development of Fraunhofer IESE and Head of the
AGSE Group of the Computer Science Department, University of
Kaiserslautern

Editorial Board Member: Prof. Dr. Peter Liggesmeyer
Executive Director of Fraunhofer IESE and Head of the SEDA Group
of the Computer Science Department, University of Kaiserslautern

Editorial Board Member: Prof. Dr. Frank Bomarius
Deputy Director of Fraunhofer IESE and Professor for Computer
Science at the Department of Engineering, University of Applied
Sciences, Kaiserslautern

Software Engineering Research Groups:
– Processes and Measurement (AGSE)
– Dependability (SEDA)

9 783839 608609

ISBN 978-3-8396-0860-9

