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Abstract. This report describes how the finite-dimensional marginal
distributions of a stochastic process (Ω,A, P, (Xt)t∈T ) with values in an arbi-
trary measurable space (E,B), where T = N or T = R≥0, can be calculated
with linear operators. In the discrete-time, discrete-observation case, we con-
struct a family of linear operators (τa)a∈E on a suitable real vector space V ,
such that any probability P (X0 = a0, . . . , Xn−1 = an−1) can be obtained
by evaluating a product of matrices and vectors of the form στan−1 · · · τa0v0,
where v0 ∈ V is a suitable starting vector and σ is the vector (1, . . . , 1). Con-
versely, necessary and sufficient conditions are given for algebraic structures
(V, (τa)a∈E, v0) to describe a distribution of a process. Thus, a 1–1 corre-
spondence between certain algebraic structures and distributions of discrete
processes is found. These results are generalized to continuous time and ar-
bitrary measurable spaces. All in all, one obtains a novel access to stochastic
processes, by showing a way to model their distributions purely by means
from linear algebra.

key words: stochastic processes, distributions, observable operator models

Zusammenfassung. In diesem Report wird beschrieben, wie die endlichdi-
mensionalen Randverteilungen eines stochastischen Prozesses (Ω,A, P, (Xt)t∈T )
mit Werten in einem beliebigen Meßraum (E,B), wobei T = N oder T =
R≥0, mit linearen Operatoren berechnet werden können. Im Falle diskreter
Zeit und endlichen Meßraumes konstruieren wir eine Familie linearer Opera-
toren (τa)a∈E auf einem geeigneten reellen Vektorraum V , so dass Wahrschein-
lichkeiten der Art P (X0 = a0, . . . , Xn−1 = an−1) durch die Auswertung
eines Matrizen/Vektorproduktes der Form στan−1 · · · τa0v0 erhalten werden,
wobei v0 ∈ V ein geeigneter Startvektor und σ der Vektor (1, . . . , 1) ist.
Umgekehrt werden hinreichende und notwendige Bedingungen für eine al-
gebraische Struktur (V, (τa)a∈E, v0) angegeben, dass diese in der erwähnten
Weise die Verteilung eines Prozesses beschreibt. So wird eine 1 – 1 Beziehung
zwischen bestimmten algebraischen Strukturen und Verteilungen diskreter
Prozesse aufgewiesen. Diese Ergebnisse werden sodann auf kontinuierliche
Zeit und beliebige Messräume verallgemeinert. Alles in allem erhält man
einen neuen Zugang zu stochastischen Prozessen, indem deren Verteilungen
mit Mitteln der linearen Algebra modelliert werden.

Stichwörter: stochastische Prozesse, Verteilungen, observable operator
models
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1 Introduction.

In this article we describe how the distribution of a stochastic process can be
characterized through certain linear operators, called the observable operators
of the process.

The paper deals with distributions of stochastic processes (Ω,A, P, (Xt)t∈T ),
where T = N or T = R≥0, and the random variables take values in an ar-
bitrary measurable space (E,B). For a first impression, we state here a
main result and the resulting definition for the special case of discrete-time,
finite-valued processes.

Proposition 1 Let (Ω,A, P, (Xn)n∈N) be a discrete-time, stochastic process
with values in a finite set E = {a1, . . . , ak}. Then there exists a real vec-
tor space G, a basis (ej)j∈J of G, a vector gε ∈ G, and a family of linear
operators (ta)a∈E indexed by the possible values of the process, such that all
probabilities P (X0 = ai0 , . . . , Xm = aim) of finite-length initial realizations
of the process can be computed in the following way. Apply the operators
tai0 , . . . , taim consecutively to gε, and let

∑
i=1,...,ν αieji = taim ◦ · · · ◦ tai0gε be

the linear combination of the resulting vector from basis vectors. Then obtain
the desired probability through

P (X0 = ai0 , . . . , Xm = aim) =
∑

i=1,...,ν

αi. (1)

Observe that the distribution of (Ω,A, P, (Xn)n∈N) is completely determined
by the probabilities of finite-length initial realizations. This motivates the
following definition:

Definition 1 A structure A = (G, (ej)j∈J , (ta)a∈E, gε), from which the finite-
length initial realizations of a stochastic process (Ω,A, P, (Xn)n∈N) can be
computed according to (1), is an observable operator model (OOM) of the
distribution of the process.

The name, observable operators, is motivated by the fact that possible obser-
vations (i.e., symbols ai) correspond 1–1 with the operators tai in the sense
that the probabilities of observations ai0 . . . aim are modeled by chains of op-
erators taim ◦ · · · ◦ tai0 . OOMs allow to characterise and analyse distributions
of stochastic processes purely by means of linear algebra.

An important special case is obtained when the vector space G has fi-
nite dimension. The observable operators can then be represented by ma-
trices, and methods of numerical linear algebra can be applied to various
practical tasks connected with stochastic systems, like system identification
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or prediction. Specifically, linear algebra methods lead to a fast, construc-
tive algorithm for learning observable operator models from empirical data.
This is remarkable since finite-dimensional OOMs subsume hidden Markov
models, for which only iterative learning algorithms are known. The top-
ics of matrix representations, prediction, learning algorithm, and relation to
hidden Markov models are detailed out in [17]; a generalization to discrete
input-output systems is given in [16].

Two lines of research in probability theory are related to observable op-
erator models.

Firstly, the idea that observations ai0 . . . aim correspond to a sequence of
operators is also constitutional for the theory of random systems with com-
plete connections [13]. Besides sharing this idea, the two approaches have not
much in common. Specifically, the operators in random systems with com-
plete connections need not be linear, and distributions are not characterized
through the operators.

Secondly, OOM theory is strongly related to a strand of research [10] [4]
[5] [6] [7] [8] [9], which had been triggered by the question when two hid-
den Markov models are equivalent, i.e. describe the same distribution [3]. In
the course of these investigations, a number of ways was described how to
compute probabilities by sequences of matrix multiplications. These com-
putations are analogous to (1), although the obtained matrices were in gen-
eral different (and higher-dimensional) than the matrices obtained in finite-
dimensional OOMs [17]. These matrix-based techniques culminated in a
theorem that gave necessary and sufficient conditions for equivalence of hid-
den Markov models (HMMs), thereby answering the initial question [15]. A
different approach was taken by [12]. Instead of using matrix representations,
Heller developed stochastic modules. They provide a representation of gen-
eral discrete-time, discrete-valued processes. Stochastic modules are defined
within a framework of category theory and module theory. The approach was
forgotten until in a recent dissertation thesis [14], stochastic modules were
connected to the more common matrix representations. This dissertation is
also a comprehensive presentation of the entire strand of research.

Both stochastic modules and OOMs provide algebraic models of all discrete-
time, discrete-valued processes. Two facts justify the introduction of OOMs.
First, they are mathematically more elementary (linear algebra vs. category
theoretic module theory in stochastic modules), and thus more accessible.
Second, while previous work was confined to discrete-time, discrete valued
systems, OOM theory can straightforwardly be extended to continuous-time,
arbitrary-valued processes – which is done in this article.
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2 Construction of discrete-time, discrete-value

OOMs.

For didactic reasons, we treat the special case of discrete-time, finite-value
processes seperately from the general case. This section contains a proof
of Proposition 1, introduces the basic constructions of OOM theory, and
presents a number of other theorems which are central to the theory.

Let (Ω,A, P, (Xn)n∈N) be a stochastic process with values in a finite set
E = {a1, . . . , ak}. For simplicity, in the remainder of this section we will call
such processes discrete processes, and their distributions, discrete distribu-
tions. We construct a vector space G, a basis (ej)j∈J , a vector gε ∈ G, and
a family of operators (ta)a∈E such that the statement of theorem 1 becomes
true.

Let En = {a0 . . . an−1 | a0, . . . , an−1 ∈ E} denote the set of all initial
observations of length n from elements of E (n ≥ 1). Formally, a0 . . . an−1 is
a word over the alphabet E. It is a general notational characteristic of the
OOM approach that observations X0 = ai0 , . . . , Xn−1 = ain−1 are denoted
by words ai0 . . . ain−1 . For n = 0, we put E0 = {ε}: ε – the empty word –
denotes the absence of any observation. Let E∗ =

⋃
n≥0 E

n be the set of all
words.

We use the shorthand b̄ to denote any element of E∗. Furthermore, for
ā = a0 . . . an−1, b̄ = b0 . . . bm−1 ∈ E∗ we introduce the shorthand P (ā | b̄)
to denote P (Xm = a0, . . . , Xm+n−1 = an−1 | X0 = b0, . . . , Xm−1 = bm−1)
in the case m,n ≥ 1, to denote P (X0 = a0, . . . , Xn−1 = an−1) in the case
n ≥ 1, b̄ = ε, and to denote 1 in the case ā = ε. Furthermore, the shorthand
P (ā) denotes P (X0 = a0, . . . , Xn−1 = an−1) in the case n ≥ 1, and it denotes
1 in the case ā = ε.

For every b̄ ∈ E∗ we define a numerical function gb̄ : E∗ → R by putting

gb̄(ā) =

{
P (ā | b̄), if P (b̄) > 0

0, if P (b̄) = 0
(2)

for all ā ∈ E∗.
In the remainder of this article, we will tacitly omit case distinctions such

as in 2, which account for zero probabilities of conditioning events, because
they are obvious.

The function gb̄ can be understood as a prediction function: gb̄(ā) gives
the probability that an initially obtained observation b̄ will be continued by ā.
If no prior observation is available, (i.e., b̄ = ε), then gb̄(ā) = gε(ā) gives the
unconditioned probability to observe ā. Thus, each gb̄ specifies a conditional
distribution (case P (b̄) > 0) or is the null vector (case P (b̄) = 0). Note that
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the distribution specified by gε is the very distribution of the process.
Let D denote the set of all functions from E∗ into the reals. D canonically

becomes a real vector space if one defines scalar multiplication and vector
addition as follows: for d1, d2 ∈ D, α ∈ R, ā ∈ E∗ put (αd1)(ā) = α(d1(ā))
and (d1 + d2)(ā) := d1(ā) + d2(ā).

Now let G = 〈{gb̄ | b̄ ∈ E∗}〉D be the linear subspace spanned in D by
all of the conditional distributions introduced above. Furthermore, choose
E0 ⊆ E∗ such that (ej)j∈J = {gc̄ | c̄ ∈ E0} ⊂ {gb̄ | b̄ ∈ E∗} is a basis of G (this
implies that every c̄ ∈ E0 has a positive probability).

Thus we have constructed the vector space G, the basis (ej)j∈J , and the
special vector gε. It remains to specify the family of observable operators
(ta)a∈E.

In order to specify a linear operator on G, it suffices to specify the values
the operator takes on the basis vectors. Define, for every a ∈ E, a linear
operator ta : G→ G by putting

tagc̄ = P (a | c̄) gc̄a (3)

for all c̄ ∈ E0 (c̄a denotes the sequence obtained by appending a to c̄). It turns
out that (3) carries over from basis elements {gc̄ | c̄ ∈ E0} to all predictors gb̄
(where b̄ ∈ E∗):

Proposition 2 The linear operators ta defined through (3) satisfy the con-
dition

tagb̄ = P (a | b̄) gb̄a (4)

for all b̄ ∈ E∗, which satisfy P (b̄) > 0.

Proof. Let gb̄ =
∑k

i=1 αigc̄i be the linear combination of gb̄ from k basis
elements taken from {gc̄ | c̄ ∈ E0}. Let d̄ ∈ E∗. Then obtain (4) through the
following calculation:

(tagb̄)(d̄) =

= (ta(
k∑
i=1

αigc̄i))(d̄) = (
∑

αiP (a | c̄i) gc̄ia)(d̄)

=
∑

αiP (a | c̄i)P (d̄ | c̄ia) =
∑

αi
P (c̄i)P (ad̄ | c̄i)

P (c̄i)

= gb̄(ad̄) = P (ad̄ | b̄) = P (a | b̄) P (d̄ | b̄a)
= P (a | b̄) gb̄a(d̄). 2
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We now restate and prove the claim made in the introduction.

Proposition 3 Let (Ω,A, P, (Xn)n∈N) be a stochastic process with values in
a finite set E = {a1, . . . , ak}, and let A = (G, (gb̄j)j∈J , (ta)a∈E, gε) be a struc-
ture derived from the process, as described above. Then the distribution of
the process can be calculated through A according to (1).

Proof. Let
∑

i=1,...,k αigc̄i = taim . . . tai0gε be the linear combination of
taim . . . tai0gε from basis vectors. From an iterated application of (4) it follows
that taim . . . tai0gε = P (ai0 . . . aim) gai0 ...aim . Using this fact, we conclude

P (ai0 . . . aim) =

= P (ai0 . . . aim)
∑
b∈E

gai0 ...aim (b) =
∑
b∈E

tai0 · · · taimgε(b)

=
∑

i=1,...,k

αi
∑
b∈E

gc̄i(b) =
∑

i=1,...,k

αi. 2

The vector space G is uniquely determined by the distribution. Its dimension
is therefore a characteristic of the distribution:

Definition 2 The dimension of the vector space G is the dimension of the
distribution.

Remark 1 Intuitively, vectors gā and operators ta are best understood as
modeling an observer’s knowledge about the state of an observed process. In
physics, control engineering, and the system sciences, a state st at time t of
a temporal system is defined as that inside the system which determines the
system’s future (formal treatment in [18]). What an observer knows about
a system’s state, then, is tantamount to what he or she knows about the
system’s future. We have construed the vectors gā as stochastic prediction
functions. gā models what can be said statistically about the system’s future,
given prior observations ā. Thus, gā reflects an observer’s knowledge about
the system. Specifically, it would be inappropriate to interpret gā as a state of
the system itself. Likewise, the operator ta describes the change of knowledge
about a process due to an incoming observation of a. These issues become
especially clear when one considers OOMs of hidden Markov models, where
both proper system states (the hidden states of the underlying Markov process)
and “knowledge states” (the vectors of the OOM) are formally defined. OOMs
of hidden Markov models are extensively treated in [17].
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So far, we have seen that every discrete distribution can be modeled by an
OOM A. We now consider the converse: given a structure A = (V, (ej)j∈J ,
(τa)a∈E, v0), (where V is a real vector space with basis (ej)j∈J , (τa)a∈E are
linear operators on V , v0 ∈ V ), under which conditions does there exist a
discrete distribution, of which A is an observable operator model?

We introduce the following notation. Let V be a real vector space with
basis (ej)j∈J . Let σ(ej)j∈J : V → R be the function which assigns to every
vector w ∈ V the sum of coefficients from its basis vector combination, i.e.

σ(ej)j∈J (w) =
∑

i=1,...,k

αi, (5)

where w =
∑

i=1,...,k αieji . Note that σ is linear. We drop the subscript
(ej)j∈J from σ when the reference to the basis is clear. Furthermore, for
a word a0 . . . am = ā ∈ E∗ we introduce the shorthand τā to denote the
concatenation τaim ◦ · · · ◦ τai0 in the case m ≥ 0, and to denote the identity
mapping id in the case ā = ε.

Proposition 4 Let V be a real vector space with basis (ej)j∈J , (τa)a∈E a
familiy of linear operators on V which is indexed by a finite set E, and v0 ∈ V .
Assume furthermore that V is spanned by the vectors {τāv0 | ā ∈ E∗}. Define
a numerical function P : E∗ → R by putting P (ā) = στāv0, and P (ε) = 1.
Let µ :=

∑
a∈E τa. Then P can be extended to the distribution of a discrete

stochastic process, if and only if the following three conditions hold:

1. σv0 = 1,

2. σµej = σej for all basis vectors ej,

3. for all sequences ā ∈ E∗ it holds that στāv0 ≥ 0.

Proof. ⇐=: Recall that a numerical function P : E∗ → R can be (uniquely)
extended to the distribution of a discrete stochastic process, if the following
two conditions are met:

A. For all n ≥ 0, P is a probability measure on the observations of length n.
I.e., (i) P (ai0 . . . ain−1) ≥ 0, and (ii)

∑
ai0 ...ain−1

∈En P (ai0 . . . ain−1) = 1.

B. P is consistent, i.e., P (ai0 . . . ain−1) =
∑

b∈E P (ai0 . . . ain−1b).

A.(i) is a consequence of condition 3. A.(ii) and B can easily be derived from
conditions 1 and 2, if one observes that condition 2 implies σµw = σw for
all w ∈ V , and that

∑
ai0 ...ain−1

∈En στain−1
· · · τai0v0 = σµ · · ·µv0.
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=⇒: Assume that P can be extended to a distribution. Conditions 1 and
3 follow trivially. For condition 2, observe that σµτāv0 = σ

∑
b∈E τbτāv0 =

στāv0. Since V is spanned by the vectors {τāv0 | ā ∈ E∗}, this implies that for
all w ∈ V it holds that σµw = σw. This subsumes condition 2 as a special
case. 2

Condition 3 is no help when it comes to constructing OOMs, because it
gives no clues about how the matrices τa must be formed in order to satisfy
this condition. This situation is much ameliorated by an equivalent version
of condition 3, which goes back to [12]. To spell out this version, we need
some concepts from the theory of convex cones. We follow the notation of a
standard textbook [2].

With a set S ⊆ Rn we associate the set SG, the set generated by S, which
consists of all finite nonnegative linear combinations of elements of S. A set
K ⊆ Rn is defined to be a convex cone if K = KG. A cone K is pointed if
for every nonzero v ∈ K, the vector −v is not in K.

Using these concepts, the following theorem gives a condition which can
replace condition 3 in Proposition 4 by a practically more useful alternative.

Proposition 5 ([12]) Let A = (Rm, (τa)a∈E, v0) be a structure consisting of
linear maps (τa)a∈E on Rm and a vector v0 ∈ Rm. Let µ :=

∑
a∈E τa. Assume

that the first two conditions from Proposition 4 hold. Then A is an OOM
if and only if there exists a pointed convex cone K satisfying the following
conditions:

1. σv ≥ 0 for all v ∈ K,

2. v0 ∈ K,

3. ∀a ∈ E : τaK ⊆ K.

Notes on the proof, variants and extensions can be found in [17]. Proposition
5 can be used to build OOMs from scratch, starting with a cone K and
constructing observable operators satisfying τaK ⊆ K. Note, however, that
the theorem provides no means to decide, for a given structure A, whether
A is a valid OOM, since the theorem is non-constructive w.r.t. K.

Remark 2 A note on terminology. We write (G, (ej)j∈J , (ta)a∈E, gε) for ob-
servable operator models whose vectors are construed as conditional probabil-
ity functions, and whose operators are defined by (3). By contrast, in general
we write (V, (ej)j∈J , (τa)a∈E, v0) for any linear algebra structure which spec-
ifies a projective measure, which in turn gives rise to the finite-dimensional
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marginal distributions of a stochastic process. The generic term for both
(G, (ej)j∈J , (ta)a∈E, gε) and (V, (ej)j∈J , (τa)a∈E, v0) is observable operator mo-
del; a specific term for the former kind of models is canonical OOMs (they
were somewhat clumsily called predictor-space OOMs in [17]).

Summing up, in this section we have described a correspondence between

a probabilistic concept: the distribution of a discrete stochastic process,
and

a linear algebra concept: structures (V, (ej)j∈J , (τa)a∈E, v0), which satisfy
the conditions from Proposition 4.

The correspondence becomes effective through the equation P (ā) = στāv0.
Up to liberty in the choice of the basis (ej)j∈J , the correspondence is 1 –
1. For finite-dimensional processes, all admissible changes of basis can be
effectively constructed (detailed out in [17]).

3 OOMs of continuous-time, arbitrary-valued

distributions.

In this section, we generalize the previous results to distributions of processes
of the kind (Ω,A, P, (Xt)t∈R≥0

), where the random variables Xt have values
in an arbitrary measurable space (E,B).

A continuous-time distribution is specified through its finite-dimensional
marginal distributions, i.e. the probabilities of the finite-dimensional cylinder
sets in BR≥0 . These latter probabilities are in turn completely determined
by the probabilities of particular kind of cylinder sets, which can be specified
in the following way:

{Xt0 ∈ A0, . . . , Xtn−1 ∈ An−1 |n ≥ 1, 0 ≤ t0 < . . . < tn−1, Ai ∈ B}. (6)

We shall call cylinder sets specified in the way of (6), basic cylinders. It is easy
to see that the basic cylinders generate the cylinder sets (cf. [1] exercise in
section 22). Since furthermore the set of basic cylinders is closed with respect
to ∩, a standard theorem about the unique extension of finite measures (cf.
[1], theorem 5.5) yields that the probabilities of basic cylinders uniquely
determine the probabilities of finite-dimensional cylinder sets. Therefore, we
can restrict ourselves to probabilities of basic cylinders if we wish to specify
distributions of continuous-time processes.
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In fact, the main work to be done in order to extend the discrete-time,
discrete-value to the continuous-time, arbitrary-valued case, is to introduce a
suitable notational convention, which makes it possible to write basic cylin-
ders as words. Once that is done, the theorems and proofs of the previous
section can be re-used without any change.

Definition 3 (A word-based notation for basic cylinders and conditional
probabilities.)

Let

C := {(A, r) |A ∈ B, r ∈ R>0},
C∗ := {(A0, r0) . . . (An−1, rn−1) |n ≥ 1, Ai ∈ B, ri ∈ R>0} ∪ {ε}

denote the set of pairs of measurable events and positive real numbers, and
the finite sequences thereof, respectively. We use symbols a, b, c for elements
of C, ā etc. for elements of C∗, and write b̄a, b̄ā for concatenations in the
obvious way (cf. figure 1). Use elements of C∗ to denote basic cylinders, as
follows:

1. ε denotes the basic cylinder {X0 ∈ E},

2. A word ā ∈ C∗ of the form ā = (A0, r0) . . . (An−1, rn−1), where n ≥ 1,
denotes the basic cylinder {X0 ∈ A0, Xr0 ∈ A1, Xr0+r1 ∈ A2, . . . ,
Xr0+···+rn−2 ∈ An−1}.

(Note that the first observation in basic cylinders according to 2. is made
at time 0. A basic cylinder {Xt0 ∈ A0, . . . , Xtn−1 ∈ An−1}, where the
first observation is taken at t0 > 0, can nevertheless be expressed in the
way of 2. by re-writing {Xt0 ∈ A0, . . . , Xtn−1 ∈ An−1} equivalently as
{X0 ∈ E, Xt0 ∈ A0, . . . , Xtn−1 ∈ An−1}.)

We write P (ā) for the probability of the basic cylinder denoted by ā.
If ā = (A0, r0) . . . (An−1, rn−1) denotes {X0 ∈ A0, . . . , Xr0+···+rn−2 ∈

An−1} and b̄ = (B0, s0) . . . (Bm−1, sm−1) denotes {X0 ∈ B0, . . . , Xs0+···+sm−2 ∈
Bm−1}, we write P (ā | b̄) to denote the conditional probability P (Xs0+···+sm−1 ∈
A0, Xs0+···+sm−1+r0 ∈ A1, . . . , Xs0+···+sm−1+r0+···+rn−2 ∈ An−1 |X0 ∈ B0, . . . ,
Xs0+···+sm−2 ∈ Bm−1).

Proposition 6 Let (Ω,A, P, (Xt)t∈R≥0
) be a stochastic process, where the

random variables Xt have values in an arbitrary measurable space (E,B).
Then there exist a real vector space G, a basis (ej)j∈J of G, a vector gε ∈ G,
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Figure 1: Example for definition 3. A word b̄ = (B0, s0)(B1, s1)(B2, s2) con-
catenated with a word ā = (A0, r0)(A1, r1) corresponds to the basic cylinder
b̄ā = {X0 ∈ B0, Xs0 ∈ B1, Xs0+s1 ∈ B2, Xs0+s1+s2 ∈ A0, Xs0+s1+s2+r0 ∈ A1}.

and a family of linear operators (ta)a∈C indexed by measurable events and
positive reals, such that the probability of the basic cylinder denoted by ā =
a0 · · · an−1 = (A0, r0) · · · (An−1, rn−1) can be computed in the following way:

P (X0 ∈ A0, Xr0 ∈ A1, . . . , Xr0+···+rn−2 ∈ An−1) =

= σ(ej)j∈J (t(An−1,rn−1) · · · t(A1,r1)t(A0,r0)gε). (7)

In shorthand notation, this becomes P (ā) = σtāgε.

Proof. We construct G, (ej)j∈J , gε and the observable operators in perfect
analogy to the discrete case. The only difference lies in the semantics of
words ā, which here denote basic cylinders.

For every b̄ ∈ C∗ (including b̄ = ε) we define a numerical function gb̄ :
C∗ → R by gb̄(ā) = P (ā | b̄). Let D denote the real vector space of all
functions from C∗ into the reals. Let G = 〈{gb̄ | b̄ ∈ C∗}〉D be the linear
subspace spanned in D by all functions gb̄. Choose C0 ⊆ C∗ such that
(ej)j∈J = {gc̄ | c̄ ∈ C0} is a basis of G.

For every a ∈ C, define a linear operator ta : G → G by putting tagc̄ =
P (a | c̄) gc̄a for all c̄ ∈ C0. This defining equation carries over to all c̄ ∈ C
(re-use Proposition 2). Finally, re-use Proposition 3 to conclude the proof.
2

Like in the discrete case, we call A = (G, (ej)j∈J , (ta)a∈C , gε) an observable
operator model of the distribution of (Ω,A, P, (Xt)t∈R≥0

), and the dimension
of G is taken as the dimension of the process.

The family (ta)a∈C is internally structured by virtue of the following re-
lationships:
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Proposition 7 Let (G, (ej)j∈J , (ta)a∈C , gε) be an observable operator model
of a process (Ω,A, P, (Xt)t∈R≥0

) with values in measurable space (E,B). Then
it holds that

1. t(⋃∞n=1 An,r)
=
∑∞

n=1 t(An,r) for all sequences of pairwise disjoint Ai ∈ B,

2. t(A,r1+r2) = t(E,r2) ◦ t(A,r1) for all r1, r2 > 0.

Proof. 1. We have to show that the operators t(⋃∞n=1 An,r)
and

∑∞
n=1 t(An,r)

have the same values on arguments gc̄ from the basis of the OOM. Thus, let
c̄ ∈ C0, ā ∈ C∗, and conclude

t(
⋃∞
n=1 An,r)

gc̄(ā) =

= P ((
∞⋃
n=1

An, r) | c̄) gc̄(⋃∞n=1 An,r)
(ā) = P ((

∞⋃
n=1

An, r) | c̄) P (ā | c̄ (
∞⋃
n=1

An, r))

= P ((
∞⋃
n=1

An, r)ā | c̄) =
∞∑
n=1

P ((An, r)ā | c̄)

=
∞∑
n=1

P ((An, r) | c̄) P (ā | c̄(An, r))

=
∞∑
n=1

P ((An, r)ā | c̄) gc̄(An,r)(ā) =
∞∑
n=1

t(An,r) gc̄(ā). 2

2. Like in the proof of 1., let c̄ ∈ C0, ā ∈ C∗, and conclude

t(A,r1+r2) gc̄(ā) =

= P ((A, r1 + r2) | c̄) gc̄(A,r1+r2) (ā) = P ((A, r1 + r2) | c̄) P (ā | c̄(A, r1 + r2))

= P ((A, r1)(E, r2) | c̄) P (ā | c̄(A, r1)(E, r2))

= P ((E, r2) | c̄(A, r1)) P ((A, r1) | c̄) P (ā | c̄(A, r1)(E, r2))

= P ((E, r2) | c̄(A, r1)) P ((A, r1) | c̄) gc̄(A,r1)(E,r2)(ā)

= P ((A, r1) | c̄) t(E,r2) gc̄(A,r1) (ā)

= t(E,r2) P ((A, r1) | c̄) gc̄(A,r1)(ā) = t(E,r2) t(A,r1) gc̄ (ā). 2

Remark 3 The denotation of a basic cylinder by a word is not unique. A
basic cylinder {Xt0 ∈ A0, . . . , Xtn−1 ∈ An−1} can be denoted by any word
(E, t0)(A0, t1 − t0) . . . (An−2, tn−1 − tn−2)(An−1, r), where r > 0. This is not
harmful in the sense that for two words ā(A, r), ā(A, r′) which differ only in
their last time specification, it holds that σtā(A,r)gε = σtā(A,r′)gε (use Propo-
sitions 6 and 7 ( 2) for the simple proof).
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We conclude this section with an analog of Proposition 4, by providing neces-
sary and sufficient conditions for a structure (V, (ej)j∈J , (τa)a∈C , v0) to specify
a projective family of probability measures. Recall that the finite-dimensional
marginal distributions of every stochastic process are such a projective family.

For the statement of the proposition we need some concepts and termi-
nology. Let (E,B) be a measurable space. By P0(R) we denote the set of
finite subsets of R. For T = {t0, . . . , tn−1} ∈ P0(R), let BT =

⊗
t∈T Bt be

the product σ-algebra where every factor Bt is equal to B. Furthermore, we
shall use the symbol

⋃̇
to denote unions of disjoint sets, and use σ for the

summation of basis vector coefficients like in (5), i.e. σ
∑

i αiei =
∑

i αi.

Proposition 8 Let (E,B) be a measurable space. Let V be a vector space
with a basis (ej)j∈J , let (τa)a∈C be a family of linear operators on V , and
let v0 ∈ V . For T = {t0, . . . , tn−1} ∈ P0(R), where t0 < · · · < tn−1, let the
numerical function PT : Bt0 ⊗ · · · ⊗Btn−1 → R be defined by

PT (At0 × · · · × Atn−1) = (8)

=

{
στ(An−1,1)τ(An−2,tn−1−tn−2) · · · τ(A1,t2−t1)τ(A0,t1−t0)τ(E,t0)v0, if t0 > 0,
στ(An−1,1)τ(An−2,tn−1−tn−2) · · · τ(A1,t2−t1)τ(A0,t1) v0, if t0 = 0.

Then (PT )T∈P0(R) can be extended to a projective family (ET ,BT , PT )T∈P0(R)

of probability measures on the cylinder sets, if and only if the following con-
ditions are satisfied:

1. σv0 = 1,

2. στ(E,r)ej = σej for all r > 0,

3. στ(An−1,rn−1) · · · τ(A0,r0)v0 ≥ 0 for all (A0, r0) . . . (An−1, rn−1) ∈ C∗,

4. τ(
⋃̇∞
n=1An,r)

=
∑∞

n=1 τ(An,r) for all r > 0,

5. τ(A,r1+r2) = τ(A,r2) ◦ τ(E,r1) for all r1, r2 > 0, A ∈ B.

Note that conditions 1 – 3 correspond to the conditions known from the
discrete case (Proposition 4), while 4 and 5 are the properties derived in
Proposition 7.

Proof. The =⇒ direction is an easy exercise (re-use proofs of Propositions
6 and 7). We treat only the ⇐= case.

Step 1. We show that for T = {t0, . . . , tn−1} the numerical function PT
can be extended to a probability measure on BT . We restrict our treatment
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to the case t0 = 0 (the case t0 > 0 can then be obtained in a straightforward
way by considering T ′ = {0, t0, . . . , tn−1}). We follow the general scheme in
[1] (§5) for constructing measures.

Step 1.1. We show that PT can be extended to a pre-measure on the
ring R generated in BT by the sets At0 × · · · ×Atn−1 ∈ Bt0 ⊗ · · · ⊗Btn−1 (a
subset system is called a ring if it contains the empty set and is closed w.r.t.
set complements and finite unions; a pre-measure on a ring is a non-negative
numerical function which maps the empty set on 0 and is σ-additive).

Step 1.1.1. It is an elementary exercise to show every A ∈ R can be
represented by a finite disjoint union of sets from Bt0 ⊗ · · · ⊗ Btn−1 , i.e.

A =
⋃̇
i=1,...,mA

i
0× · · · ×Ain−1 for suitable Aij ∈ B (cf. [1] exercise §21 Nr. 1).

We therefore can extend PT on R by putting

PT (A) =
∑

i=1,...,m

PT (Ai0 × · · · × Ain−1) (9)

for a partition A =
⋃̇
i=1,...,mA

i
0 × · · · × Ain−1. We have to show that (9)

is independent from the partition. Let A =
⋃̇
i=1,...,mA

i
0 × · · · × Ain−1 =⋃̇

j=1,...,kB
j
0×· · ·×Bj

n−1 be two partitions of A. Then there exists a common
refinement

A =
⋃̇

h=1,...,l
Ch

0 × · · · × Ch
n−1, (10)

where every Ch
0 × · · · × Ch

n−1 is non-empty, and where Ch
ν ∩ Ch′

ν = Ø or
Ch
ν = Ch′

ν for all h, h′ ≤ l; ν ≤ n− 1. Then, for i ≤ m,

Ai0 × · · · × Ain−1 =

=
⋃̇

gi=1,...,pi
Cgi

0 × · · · × Cgi
n−1 (11)

=:
⋃̇

j0=1,...,m0

Ci,j0
0 × · · · ×

⋃̇
jn−1=1,...,mn−1

C
i,jn−1

n−1 , (12)

where pi ≤ l, (11) is a sub-collection of (10), and each Ci,jν
ν is one of the Cgi

ν .
Exploiting condition 4 from the Proposition, we can now conclude

∑
i=1,...,m

PT (Ai0 × · · · × Ain−1) =

=
∑

i=1,...,m

PT (
⋃̇

j0=1,...,m0

Ci,j0
0 × · · · ×

⋃̇
jn−1=1,...,mn−1

C
i,jn−1

n−1 )
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=
∑

i=1,...,m

σ(τ
(
⋃̇
jn−1=1,...,mn−1

C
i,jn−1
n−1 ,1)

◦ · · · ◦ τ
(
⋃̇
j0=1,...,m0

C
i,j0
0 ,t1)

v0)

=
∑

i=1,...,m

σ
∑

jn−1=1,...,mn−1

τ
(C

i,jn−1
n−1 ,1)

◦ · · · ◦
∑

j0=1,...,m0

τ
(C

i,j0
0 ,t1)

v0

= σ
∑

i=1,...,m
j0=1,...,m0···

jn−1=1,...,mn−1

τ
(C

i,jn−1
n−1 ,1)

◦ · · · ◦ τ
(C

i,j0
0 ,t1)

v0

= σ
∑

h=1,...,l

τ(Chn−1,1) ◦ · · · ◦ τ(Ch0 ,t1) v0
[admissible since all occuring

C
i,jn−1

n−1 × · · · × Ci,j0
0 are disjoint.]

In a similar fashion we can show that
∑

j=1,...,k PT (Bj
0 × · · · × Bj

n−1) =
σ
∑

h=1,...,l τ(Chn−1,1) ◦ · · · ◦ τ(Ch0 ,0) v0, which shows that (9) is independent from

the partition, and concludes step 1.1.1.
Step 1.1.2. We show that PT is σ-additive on R, i.e. for A =

⋃̇∞
i=1Ai ∈ R

it holds that PT (A) =
∑∞

i=1 PT (Ai). Let A =
⋃̇
j=1,...,mC

j
0 × · · · × Cj

n−1

be a finite partition of A, where all Cj
ν ∈ B. Furthermore, we partition

every Ai into Ai =
⋃̇
p=1,...,si

Di,p
0 × · · · × Di,p

n−1 =:
⋃̇
p=1,...,si

Di,p (where si <

∞, Di,p ∈ B ⊗ · · · ⊗ B). Let Cj
ν =

⋃̇
k=1,...,rν,j

Bk,j
ν (where 0 ≤ ν ≤ n − 1,

rν,j ≤ ∞, Bk,j
ν ∈ B) be a finite or infinite partition of Cj

ν , such that

(a) each Di,p
0 × · · · × Di,p

n−1 is a disjoint union of sets of the form Bk0,j
0 ×

· · · × B
kn−1,j
n−1 , namely, Di,p

0 × · · · × Di,p
n−1 =:

⋃̇ui,p

q=1B
i,p,q
0 × · · · × Bi,p,q

n−1 ,

where ui,p ≤ ∞ and each Bi,p,q
ν is a set Bkν ,j

ν (where 1 ≤ j ≤ m and
1 ≤ kν ≤ rν,j), and

(b) for all ν, k, k′, j, j′ it holds that Bk,j
ν ∩Bk′,j′

ν = Ø or Bk,j
ν = Bk′,j′

ν .

It is not difficult to see that such a partition exists. (A way to obtain one is

e.g. to first construct the coarsest common refinement A =
⋃̇
xF

x
0 ×· · ·×F x

n−1

of all of the sets Cj
0 × · · · × Cj

n−1 (j = 1, . . . ,m) and Di,p
0 × · · · × Di,p

n−1

(i ≤ ∞, p = 1, . . . , si). Then, for every 0 ≤ ν ≤ n− 1, further refine the sets
F x
ν to make them disjoint. Renaming yields the desired Bk,j

ν .)
We now conclude

PT (
⋃̇∞

i=1
Ai) =

= PT (
⋃̇

j=1,...,m
Cj

0 × · · · × Cj
n−1) =

∑
j=1,...,m

στ(Cjn−1,1) · · · τ(Cj0 ,t1) v0
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=
∑

j=1,...,m

στ(
⋃̇
k=1,...,rn−1,j

Bk,jn−1,1) · · · τ(
⋃̇
k=1,...,r0,j

Bk,j0 ,t1) v0

=
∑

j=1,...,m

σ(

rn−1,j∑
kn−1=1

τ
(B

kn−1,j

n−1 ,1)
) · · · (

r0,j∑
k0=1

τ
(B

k0,j
0 ,t1)

) v0 [use condition 4 ]

=
∑

j=1,...,m

∑
k0=1,...,r0,j

···
kn−1=1,...,rn−1,j

στ
(B

kn−1,j

n−1 ,1)
· · · τ

(B
k0,j
0 ,t1)

v0 [exploit (b)]

=
∞∑
i=1

si∑
p=1

ui,p∑
q=1

στ(Bi,p,qn−1 ,1) · · · τ(Bi,p,q0 ,t1) v0
[re-order according to (a);
admissible because of cond. 3 ]

=
∞∑
i=1

si∑
p=1

∑
q0=1,...,ui,p,0

···
qn−1=1,...,ui,p,n−1

στ
(B

i,p,qn−1
n−1 ,1)

· · · τ
(B

i,p,q0
0 ,t1)

v0 [exploit again (b);

Bi,p,1
ν , . . . , Bi,p,ui,p,ν

ν is a repetition-free enumeration of Bi,p,1
ν , . . . , Bi,p,ui,p

ν ]

=
∞∑
i=1

si∑
p=1

σ(

ui,p,n−1∑
qn−1=1

τ
(B

i,p,qn−1
n−1 ,1)

) · · · (
ui,p,0∑
q0=1

τ
(B

i,p,q0
0 ,t1)

) v0

=
∞∑
i=1

si∑
p=1

στ
(
⋃̇ ui,p,n−1
qn−1=1 B

i,p,qn−1
n−1 ,1)

· · · τ
(
⋃̇ ui,p,0
q0=1 B

i,p,q0
n−1 ,t1)

v0 [apply again cond. 4 ]

=
∞∑
i=1

si∑
p=1

στ(Di,pn−1,1) · · · τ(Di,p0 ,t1) v0 [exploit that Di,p
0 =

⋃̇ui,p,0

q0=1
Bi,p,q0

0 ]

=
∞∑
i=1

si∑
p=1

PT (Di,p) =
∞∑
i=1

PT (Ai).

This concludes step 1.1.
Step 1.2. We show that PT is finite on R. Let A =

⋃̇m

i=1A
i
0×· · ·×Ain−1 ∈

R, and conclude

PT (
⋃̇m

i=1
Ai0 × · · · × Ain−1) =

=
m∑
i=1

στ(Ain−1,1) · · · τ(Ai0,t1) v0

≤
m∑
i=1

στ(E,1) · · · τ(E,t0) v0 [follows from conds. 3 and 4 ]

= m. [follows from conds. 1 and 2 ]
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This concludes step 1, since every finite pre-measure on a ring can be uniquely
extended to a measure on the σ-algebra generated by the ring, and because
R generates BT .

Step 2. We show that the family (ET ,BT , PT )T∈P0(R) is projective. We
use the fact that the family (PT )T∈P0(R) is projective if and only if

P{t0,...,tκ,tκ+1,tκ+2,...,tn−1}(At0 × · · · × Atκ × E × Atκ+2 × · · · × Atn−1) =

= P{t0,...,tκ,tκ+2,...,tn−1}(At0 × · · · × Atκ × Atκ+2 × · · · × Atn−1)

for all n ≥ 1, 0 ≤ κ ≤ n. But this is a straightforward consequence of
condition 5.

This concludes the proof of Proposition 6. 2

Under very general conditions, the projective family (ET ,BT , PT )T∈P0(R) can
be extended to a probability measure on

⊗
t∈R≥0

Bt, such that a stochas-

tic process (Ω,A, P, (Xt)t∈R≥0
) exists of which (PT )T∈P0(R) yields the finite-

dimensional marginal distributions (Kolmogorov extension theorem, cf. [11]).
A convex cone based version of condition 3 in Proposition 8, which would

be analog to Prop. 5, remains to be worked out.
Like in the discrete case, we call OOMs (G, (ej)j∈J , (tA)A∈B, gε) con-

structed via prediction functions, canonical OOMs. Note that in a general
OOM (V, (ej)j∈J , (τa)a∈C , v0), V can have a vector space dimension greater
than the dimension of the distribution it models. We call two OOMs equiv-
alent if they model the same distribution. We call an OOM A minimal-
dimensional if the vector space dimension of A is less or equal to the vector
space dimension of B for any B that is equivalent to A. It is easy to see that

1. canonical OOMs are minimal-dimensional,

2. equivalent, minimal-dimensional OOMs are isomorphic,

3. in a minimal-dimensional OOM (V, (ej)j∈J , (τa)a∈C , v0), V is spanned
by the vectors {τāv0 | ā ∈ C∗}.

Finally, we remark that discrete-time, arbitrary-valued, canonical OOMs
(G, (ej)j∈J , (tA)A∈B, gε) can be constructed from distributions in a similar
fashion as continuous-time canonical OOMs. Such models describes finite-
dimensional distributions of the kind (X0 ∈ A0, . . . , Xn−1 ∈ An−1). The rig-
orous definition and construction are straightforward simplifications of the
continuous-time case and left to the reader.
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4 Stationary processes.

In this section we characterize stationary distributions in terms of their
OOMs. Recall that a process is called stationary if the probabilities of el-
ementary cylinders are invariant under temporal shift, which in our word
notation can be expressed by the condition

∀ā ∈ C∗∀r > 0 : P (ā) = P ((E, r)ā). (13)

Proposition 9 Let (V, (ej)j∈J , (τa)a∈C , v0) be a minimal-dimensional OOM
of a process. Then the process is stationary if and only if v0 is invariant
under all τ(E,r), where r > 0. Without requiring minimal dimensionality,
only the direction ⇐= holds.

Proof. The ⇐= direction is obvious. For the =⇒ direction, assume that
the process is stationary, i.e. that (13) holds. Since (V, (ej)j∈J , (τa)a∈C , v0)
is minimal-dimensional, it is isomorphic to the canonical OOM (G, (ej)j∈J ,
(t(a)a∈C , gε). It suffices therefore to show that t(E,r)gε = gε for all r > 0. Let
ā ∈ C∗. Then, t(E,r)gε(ā) = P ((E, r) | ā)g(E,r)(ā) = 1P (ā | (E, r)) = P (ā) =
gε(ā). Thus, t(E,r)gε = gε. 2

5 Decomposition of observable operators.

The family (τa)a∈C of a continuous-time OOM is actually a doubly indexed
family, namely, (τ(A,r))A∈B,r∈R>0 , which is rather unhandy. The topic of this
section is how and when this doubly indexed family can be decomposed into
two single-indexed families, which are simpler to handle and more revealing
of the modeled distribution.

Sometimes such a decomposition is easy to obtain. Consider an OOM
(V, (ej)j∈J , (τ(A,r))A∈B,r∈R>0 , v0), where every operator τ(E,r) (r > 0) is invert-
ible. For every A ∈ B, define an operator ηA by putting

ηA = τ−1
(E,r) ◦ τ(A,r). (14)

This definition does not depend on r. This can be seen as follows. Assume
that r > s > 0. Then conclude

τ(A,r) = τ(A,r)

⇒ τ(A,r) = τ(E,r−s)τ(E,s)τ
−1
(E,s)τ(A,s) [apply Prop. 7 (2 ) ]

⇒ τ(E,r)τ
−1
(E,r)τ(A,r) = τ(E,r)τ

−1
(E,s)τ(A,s)

⇒ τ−1
(E,r)τ(A,r) = τ−1

(E,s)τ(A,s)
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Rename the operators τ(E,r) into µr. Then for every operator τ(A,r) it holds
that

τ(A,r) = µr ◦ ηA, (15)

because µrηA = τ(E,r)τ
−1
(E,r)τ(A,r) = τ(A,r). Thus, we have decomposed the

family (τ(A,r))A∈B,r∈R>0 into two single-indexed families (ηA)A∈B and (µr)r>0.
We remark in passing that if τ(E,r0) is invertible for some r0 > 0, then the

τ(E,s) are invertible for all s > 0. This can be seen as follows. If τ(E,r0) is
invertible, then all τ(E,nr0) are invertible, because τ(E,nr0) = τ(E,r0)◦· · ·◦τ(E,r0)

(n times) as a consequence of Prop. 7 (2 ). Consider any s > 0. Choose n
such that nr0 > s. Then, again by Prop. 7 (2 ), τ(E,nr0) = τ(E,nr0−s)τ(E,s).
Since the lhs. is invertible, both factors on the rhs. must be invertible, too.
Thus, every τ(E,s) is invertible.

Remark 4 The decomposition (15) deserves more than a little comment. In
the discrete case (section 2), we have intuitively interpreted OOMs as models
of an observer’s knowledge about an evolving system, and an observable op-
erator ta as effecting evolution in the knowledge due to incoming observation
a. In the continuous case, an observable operator t(A,r) describes changes of
knowledge due to an observation of A, followed by a time interval r where
no observation is made. When observable operators can be decomposed into
operators (ηA)A∈B and (µr)r>0, the former describe “immediate jumps” in
knowledge about the system’s state due to an observation of A, while the lat-
ter describe the evolution of knowledge as time goes by with no observation
available. In decomposed OOMs, we will call operators (ηA) “observation
operators”, while we shall refer to operators (µr) as “evolution operators”.

We now give a formal definition which covers both discrete and continuous-
time OOMs.

Definition 4 A decomposed OOM is a structure (V, (ej)j∈J , (ηA)A∈B, (µr)r∈T>0 ,
v0), where T>0 = N>0 or T>0 = R>0, such that a stochastic process (Ω,A, P,
(Xt)t∈T ) exists (where T = N or T = R), whose finite-dimensional marginal
distributions can be computed by

P (X0 ∈ A0, Xt1 ∈ A1, . . . , Xtn−1 ∈ An−1) =

= σηAn−1µtn−1−tn−2 · · · ηAt2µt2−t1ηAt1µt1ηAt0v0. (16)

(The case t0 > 0 is captured by putting A0 = E, like in the previous section.)
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Obviously, considering the case T = R, if (V, (ej)j∈J , (ηA)A∈B, (µr)r∈R>0 , v0)
is a decomposed OOM, then (V, (ej)j∈J , (µr ◦ ηA)A∈B,r∈R>0 , v0) is an OOM.
Likewise, in the case T = N, we obtain from a decomposed OOM (V, (ej)j∈J ,
(ηA)A∈B, (µr)r∈N>0 , v0) an ordinary discrete-time OOM (V, (ej)j∈J , (µ1◦ηa)a∈E,
v0).

In the remainder of this section I present a number of mixed results
concerning the construction of decomposed OOMs. The first concerns finite-
dimensional, finite-valued, discrete-time distributions. An OOM A of such a
distribution can conveniently be written in matrix notation:

A = (Rm, (τa)a∈E, v0),

where m ∈ N>0, the basis vectors (ej)1≤j≤m are tacitly taken as the unit
vectors and can therefore be omitted, E is a finite set of atomic observations,
the operators τa are given by m×m real-valued matrices, and the σ-operation
is left inner product with (1, . . . , 1), i.e.,

σ(x1, . . . , xm)T = (1, . . . , 1) · (x1, . . . , xm)T = x1 + · · ·+ xm.

In matrix representation, equation (1) becomes

P (X0 = ai0 , . . . , Xn = ain) = στain · · · τai0v0, (17)

which here should be read as a sequence of matrix multiplications applied to
v0, concluded by the inner product with (1, . . . , 1). As was already mentioned
in the introduction, the theory of such finite-dimensional OOMs in matrix
representation has been elaborated in some detail. We will now see how from
a finite-dimensional OOM A = (Rm, (τa)a∈E, v0) in matrix representation,
one can construct a decomposed, equivalent OOM.

Let E = {a1, . . . , an} have cardinality n. Define an nm × nm matrix µ̃
by tiling the nm × nm array with n copies of each τai in a row, and define
an nm vector ṽ0 by concatenating n weighted copies of v0:

µ̃ =


τa1 · · · τa1

τa2 · · · τa2

· · ·
τan · · · τan

 ṽ0 =


τa1 v0

τa2 v0

· · ·
τan v0

 (18)

Define η̃ai to be the nm×nm matrix with zeroes everywhere except for ones
at the diagonal positions ((n− 1)i+ 1, (n− 1)i+ 1), . . . , ((n− 1)i+m, (n−
1)i+m). Finally, define η̃A =

∑
a∈A η̃a. It is a simple exercise to demonstrate

that (Rnm, (ej)j=1,...,nm, (η̃A)A⊆E, (µ̃
t)t∈N>0 , ṽ0) is a decomposed OOM which
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is equivalent to A, if one notes that η̃aik−1
µ̃ · · · η̃ai1 µ̃η̃ai0 ṽ0 is the nm vector

which has τaik−1
· · · τai0v0 in its ik−1th subcell of size m, and is zero elsewhere.

We now turn to the continuous-time case, and show how one can construct
decomposed OOMs directly from the distribution by methods that are similar
to the construction of canonical OOMs. We start with a denotation of basic
cylinders by words that is slightly different from the one given in def. 3, in
that time periods r = 0 are now allowed:

Definition 5 (A variant of definition 3)
Let

C̃ := {(A, r) |A ∈ B, r ∈ R≥0},
C̃∗ := {(A0, r0) . . . (An−1, rn−1) |n ≥ 1, Ai ∈ B, ri ∈ R≥0} ∪ {ε}.

We use symbols ã, b̃, c̃ for elements of C̃, etc. Use elements of C̃∗ to denote
basic cylinders, as follows:

1. ε denotes the basic cylinder {X0 ∈ E},

2. A word ¯̃a ∈ C̃∗ of the form

¯̃a =

= (A1
0, 0) . . . (Ai0−1

0 , 0)(Ai00 , r0)

(A1
1, 0) . . . (Ai1−1

1 , 0)(Ai11 , r1)

· · ·
(A1

n−1, 0) . . . (A
in−1−1
n−1 , 0)(A

in−1

n−1 , rn−1),

where n ≥ 1; r0, . . . , rn−1 > 0; i0, . . . , in−1 ≥ 1, denotes the basic
cylinder

{X0 ∈ A1
0 ∩ · · · ∩ Ai00 , Xr0 ∈ A1

1 ∩ · · · ∩ Ai11 , . . . ,
Xr0+···+rn−2 ∈ A1

n−1 ∩ · · · ∩ A
in−1

n−1 }.

That is, if a word contains “blocks” of consecutive zero-time (Aj, 0), the
intersection of all concerned events Aj is taken in the basic cylinder.

We write P (¯̃a) for the probability of the basic cylinder denoted by ¯̃a. Prob-

abilities of concatenations P (¯̃b¯̃a) and conditional probabilities P (¯̃b | ¯̃a) are
defined in the obvious way.
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The original statement and proof of Proposition 6 can be repeated with the
only alteration that time indices r = 0 are now allowed. For convenience, we
re-state this slight variant of Proposition 6:

Proposition 10 (A variant of Prop. 6). Let (Ω,A, P, (Xt)t∈R≥0
) be a stochas-

tic process with values in (E,B). Then there exist a real vector space G̃,
a basis (ẽj)j∈J of G̃, a vector g̃ε ∈ G̃, and a family of linear operators
(̃t(A,r))A∈B,r∈R≥0

, such that the probability of the basic cylinder denoted by
¯̃a = ã0 · · · ãn−1 = (A0, r0) · · · (An−1, rn−1) can be computed in the following
way:

P (¯̃a) = σ(ẽj)j∈J (̃t(An−1,rn−1) · · · t̃(A1,r1)t̃(A0,r0)g̃ε). (19)

Since the prediction functions g¯̃c used in the construction of G̃ are a superset
of the prediction functions that span our accustomed vector space G, the
vector space dimension of G̃ is greater or equal to that of G.

The desired construction of a decomposed OOM is now obtained as an
obvious corollary.

Proposition 11 Let (G̃, (ẽj)j∈J , (̃t(A,r))A∈B,r∈R≥0
, g̃ε) be constructed from the

distribution of (Ω,A, P, (Xt)t∈R≥0
) according to Prop. 10. Then (G̃, (ẽj)j∈J ,

(̃t(A,0))A∈B, (̃t(E,r))r∈R>0 , g̃ε) is a decomposed OOM which models the same
distribution.

Summing up, in this section we have seen that for every OOM A one can find
an equivalent, decomposed OOM B, albeit possibly of a higher dimension.
If the mapping µ associated with A is invertible, then a decomposed OOM
B can be provided without increasing dimension. It is easy to find discrete,
finite-dimensional, minimal-dimensional examples where µ is not invertible,
but where nevertheless a decomposition does not raise dimension. It is also
easy to find minimal-dimensional examples where every decomposition raises
the dimension: for instance, let µ be rank deficient, but some τa have full
rank; then no ηa can satisfy the requirement µηa = τa. Outside such finite-
dimensional rank considerations, nothing is known about conditions when
decomposition implies an increase of dimensionality.

6 Conclusion.

Textbooks on stochastic processes are by and large organized along specific
classes of processes: e.g., Markov processes, martingales, processes with inde-
pendent increments, etc. OOM theory contributes to this organization of the
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field by offering novel, interesting classifications which arise from algebraic
properties. For example, finite-dimensional processes are worth a separate
treatment, as would be processes where the evolution operator µ is invertible.

Conversely, known classes of processes can be characterized by their al-
gebraic properties. We have seen an instance of this in section 4, where sta-
tionary processes have been characterized. Historically, it was the (solved)
task of algebraically characterizing finite-dimensional hidden Markov pro-
cesses which gave rise to OOM theory. Besides that, it is not difficult to
characterize processes with i.i.d. random variables, or Markov processes – it
may amuse the reader to do so. Other known classes of processes remain to
be investigated.

OOM theory is young, and there are many open problems. Some of
them, which are connected to themes addressed in the present article, are
the following:

• Decide (in the discrete-time, discrete-valued case) whether a candidate
structure (Rm, (τa)a∈E, v0) is a valid OOM, i.e., satisfies the conditions
from proposition 4.

• Given a reduced OOM, when can it be decomposed without raising the
dimension?

• In OOMs derived from finite-dimensional hidden Markov processes, the
semigroup (µr)r>0 is a Markov semigroup (which gives rise to the under-
lying Markov process). Furthermore, the algebraic properties of (µr)r>0

are tightly coupled to the ergodic properties of the hidden Markov pro-
cess. This motivates the question of how the ergodic properties of
some process can be connected with the algebraic properties of the
corresponding semigroup (µr)r>0 of evolution operators.

Acknowledgements. Many thanks go to Vladislav Tadić for careful proof-
reading and valuable suggestions for transparent formulations. The results
described in this paper were obtained while the author worked under a post-
doctoral grant from GMD.
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