
Vehicle Tracking using Ultrasonic Sensors & Joined Particle Weighting

Philipp Köhler, Christian Connette, Alexander Verl

Abstract— In recent years, driver-assistance systems have
emerged as one major possibility to increase comfort and
safety in road traffic. Still, cost is one major hindrance to the
widespread use of safety systems such as lane-change or blind
spot warning. To facilitate the widespread adoption of such
safety systems, thus increasing safety for all traffic participants,
the use of cost-efficient components is of crucial importance.

Within this work we investigate the use of cost-efficient,
widely used ultrasonic sensors for the tracking of passing-
by vehicles at high velocities. Therefore, a particle filter with
some mixture tracking capabilities is implemented to fuse the
signals from 6 us-sensors. The main focus of this work lies
on the development of a more detailed sensor model that is
used in this particle filter. Additionally, a strategy to take into
account object-visibility w.r.t. the different sensors is outlined.
The derived concept is evaluated experimentally in real road
traffic. The applicability of the tracking result in context of
lane-change-decision-aid and blind-spot-surveillance systems is
analyzed.

I. INTRODUCTION

During the last decade, autonomous driving has seen
significant progress from the first DARPA Grand Challenges
in 2004 and 2005 [1], [2], [3] over the DARPA Urban
Challenge [4], [5] up to Google’s driverless car [6] which
did hit the road about two years ago. Still it seems that legal
considerations and costs might be an insurmountable obstacle
to the commercialization of autonomous driving for quite
some time. Yet, by now the developed concepts are hitting
the road in form of driver-assistance systems and they emerge
as one major possibility to increase both comfort and safety
in road traffic [7]. The most repressing factor to the spread
of driver-assistance systems in general, is their high costs.
For instance, lane-change-decision-aid systems are usually
based on camera [8], [9], lidar and radar systems [10] or
some combination of those.

To foster the widespread use of driver-assistance systems
it is important to reduce hardware cost by employing cost-
efficient sensors or if possible sensors that are already
ubiquitous in modern cars. Ultrasonic sensors do for instance
already meet these requirements. They are comparably cost-
efficient and already used in context of parking-aid systems
[11]. However, the performance of us-sensors varies greatly
depending on weather conditions [12]. They are sensitive to
rain, spray or gusts of wind. Moreover, the amount of infor-
mation that can be acquired is quite sparse. Us-sensors often
have a wide aperture and a restricted range which makes it
difficult to locate and track the source of an echo accurately.
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Fig. 1. The lower car (blue) is in the blind spot of the host-car’s (red)
driver. The blue arcs depict the sensor range of the host-car’s us-sensors.
The orange rectangles depict the critical zone which should be supervised.

Accordingly, the usage of ultrasonic sensors in context of
novel driver-assistance systems was mainly focused on the
detection of fast vehicles but rather not on their tracking. For
instance, a fuzzy-markov based approach using an inverse-
geometric model that reached notably detection rates was
presented in [13]. Mirus et al. proposed a detector that uses
artificial neural network to perform curve fitting of us-sensor
data to different premodeled cases of different objects in the
blind spot zone [14].

The work at hand investigates the tracking problem for fast
vehicles in the vicinity of the host car up to absolute veloc-
ities of 160 km/h when using ultrasonic sensors. It applies
a particle filter algorithm [15] with some mixture tracking
capabilities [16] to perform Bayesian filtering in terms of
monte carlo sampling. The primary contribution of this work
is the development of an adapted us-sensor measurement
model based on the model proposed by Thrun et al. in [17].
Additionally, a weighting strategy for the measurement step
is proposed that implicitly leads to a tighter coupling of
the separate ultrasonic sensors. This improves direction and
velocity estimation in a fashion similar to sensor-arrays.

The remainder of the paper is organized as follows: In
Sect. II the tracking problem is discussed w.r.t. particle fil-
tering and mixture tracking. Sect. III describes the developed
measurement and sensor models. In Sect. IV the tracking
capabilities of the filter are analyzed and statistical detection
results are shown. Sect. V concludes the work and gives
possible further improvements and a prospect.
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Fig. 2. Coverage of the used ultrasonic sensors (black arcs) and the blind
spot zone. The coordinate-system is fixed to the host car as shown and is
the base system for the particle filter.

II. PROBLEM STATEMENT

A. System Setup

The host car is equipped with an array of 12 ultrasonic
sensors. The single sensors are placed equally on its front
and rear. Within this work only six of them are used, three
on each side of the car: the front-side and the rear sensor
(aperture 75◦) and additionally the passive rear-side sensor
(aperture 50◦), which only receives ultrasonic echoes emitted
by the rear sensor (Fig. 2). All sensors are operating at a rate
of 30 ms.

The region of special interest for lane-change maneuvers
and in which objects shall be tracked is depicted in figure 1. It
reaches (back to front) from 3 m behind the car up to the side
mirrors and covers roughly three to four meters to the side.
Ideally, a possible track should converge within 0.3 s after a
car has entered this region. The system should operate under
different weather conditions and in diverse environments
(city, rural roads, autobahn). However, in the following we
will focus on high-speed scenarios on the autobahn under
mild weather conditions. This means heavy rain or snow
will not be taken into account.

B. Vehicle Tracking with Ultrasonic Sensors

Typically, vehicle detection and tracking is separated in
two individual steps using high-resolution sensor data like
laser-range-scans [18], [19] to first detect an object and
then feed this estimate to a tracking filter. Due to the very
limited information that can be gathered from us-sensors, our
approach dispenses with data segmentation, data association
or separated detection. In contrast, the data from all sensors
is merged immediately into one common state-space. As
there might be more than one object – it is usually one
or two – in the region of interest the resulting probability
density function to represent the track might take the form
of a multimodal distribution. Therefore, a particle filter with
some mixture tracking capabilities was chosen to implement
the tracking algorithm.

C. Particle Filter Setup & Model Assumptions

Our experiments and simulations have shown that it is
usually sufficient to model a passing vehicle as an object that
is moving parallel to the host car. To allow the representation
of the approach-process which occurs during lane-change
maneuvers of host or target car, a slight motion of the object
in y-direction is accepted. Thus, a single particle is at time
t represented via the four-dimensional vector

Xt = (xt, yt, vx,t, vy,t)
T .

As detailed motion of the object is unknown the motion
model is assumed to be linear and is perturbed by additional
noise

Xt,i = AXt−1,i + ∆t,i (1)

to take into account the model uncertainties [18]. The per-
turbing value ∆t,i is generated by drawing from a random
variable with Gaussian distribution for the position variables.
For the velocity variables a uniform distribution is taken as
a basis to account for expected bounded target acceleration.
Applying this motion model to every particle leads to an ap-
proximation of the probability density function p(Xt |Xt−1)
representing the a priori estimate of moving objects in the
vicinity of the host car.

One known issue of using particle filters for multi-target-
tracking – especially in context with noisy sensors – is that
one mode or particle cluster might cannibalize other clusters.
Thus, the actual filter was implemented as a mixture model
particle filter according to Vermaak et al. [16]. Therefore,
the observation space was split into two areas separating
the particles to a front and a rear cluster. For each of this
clusters cm an individual a posteriori probability distribution
pm(Xt |Zt) is approximated via its own normalized particle
distribution

pm(Xt |Zt) =
∑
i∈Im

w
(i)
t δ

x
(i)
t

(Xt) , (2)

where δa( · ) is the Dirac delta measure with mass at a and
Im is the set of indices of the particles belonging to the m-
th mixture component. The individual particle weight is a
function of the inverted sensor model

w
(i)
t = p(Zt |x(i)t ) . (3)

The combined probability density may then be formed by
calculating a weighted sum of both particle distributions
following [16] to maintain a correctly normalized particle
distribution at any time.

The implementation of the mixture model particle filter
also simplifies adaptation of the birth process. New particles
are spread within both of the two clusters taking into
account the current sensor measurements via the inverted
measurement model given in Sect. III-A. Thus, it is more
straight forward to take into account that cars might approach
the host car either from the front or from the back.
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Fig. 3. Distances zk∗t are the expected range scans for a sample vehicle.
For a given (xt, yt) these expected distances arise from the intersection
between the rectangle and the sensor cones.

III. JOINED PARTICLE WEIGHTING

A. Sensor Measurement Model

The basis of the particle filter estimation or weighting
process is the calculation of the probability density p(Zt |Xt)
of the obtained set of measurements Zt for the current set of
particles Xt. Assuming independence of the sensor readings
this boils down to the calculation of the probability densities
p(zkt |Xt) for the separate measurements zkt originating from
the K independent sensors for the given set of particles Xt.
This calculation requires a model of the measurement process
as well as the sensor characteristics.

To model the measurement process it is assumed that
an ultrasonic range sensor will always return the distance
to the closest surface of the objects in its coverage area.
Within the work at hand the target vehicles geometry is
simply modeled rectangular with fixed size. Thus, for a given
Xt the expected measurement zk∗t will be calculated as the
shortest distance between the sensor and the intersection of
the vehicles rectangle with the sensor cone (see Fig. 3).

The sensor characteristics are represented according to the
classical model proposed by Thrun et al. in [17]. This model
takes into account four different types of measurement errors:
measurement noise, errors due to short readings, errors due
to measurement failures, and tiny random unexplained noise.
In the presented setup short reading errors and measurement
failures resulting in max-range-readings are of particular
interest. The resulting density p(zkt |Xt) is then a mixture
of this four densities, namely
• phit (narrow Gaussian around zk∗t with standard devia-

tion σhit)
• pshort (exponential distribution for zkt < zk∗t )
• pmax (1 if zkt = zmax)
• prand (uniform distribution).

To form the actual sensor model these densities are weighted
via the tuning variables zhit, zshort, zmax and zrand for which
holds

zhit + zshort + zmax + zrand = 1 (4)

and summed up to the resulting measurement probability
density function (Fig. 4).

B. Particle Weighting via Joined Inverse Sensor Models

Incorporating measurements to the particle filter is done
by weighting each particle according to the measurement

p(zkt |Xt)

ηp(zkt |Xt)

0 zk∗t zmax

0

1

zk∗−t zk∗+t
measured distance

Fig. 4. Mixture probability density function that models four different
types of measurement errors (namely measurement noise, short readings,
measurement failures and random noise). The η-scaled density possesses an
equilibrium – measurements between zk∗−/+

t result in supporting weights.

probability. Therefore, the weight resulting from each single
sensor will be calculated by evaluating the probability density
for the actual obtained measurement

w̃
(i)
k = P (zkt |x

(i)
t ) . (5)

Fusion of the different sensor readings will usually be
performed by multiplying the weights obtained for a single
particle

w̃(i) =
3∏

k=1

w̃
(i)
k . (6)

However, this implicitly assumes mutual independence of the
incorporated sensors. In general, this will not be the case for
measurements originating from one single object. Practically
speaking: Usually, a specific particle will not be in the field
of view of all sensors, but of some.

Naturally, a particle being supported by more sensors
should earn a greater weight value than a particle only
supported by one. But depending on the measurement func-
tion this desirable manner is harmed by simply multiplying
the weights. If the peak value of the associated density
is below 1 (max{p(zkt |Xt)} < 1) this is even the case
for measurements perfectly fitting the expected ones. This
characteristics can be set aright by introducing an additional
tuning parameter η. Each weight is now multiplied with
this factor η – from another perspective this is scaling
the measurement density function. The range of weights
now contains 1.0 as neutral element for multiplication;
measurements between zk∗−t and zk∗+t now explicitly result
in supporting weights (Fig. 4). Adjusting the range of weights
using the scaling factor η allows to tune this behavior by
defining an equilibrium or ”neutral” weight.
The desired manner for combining multiple sensor measure-
ments on a single particle is then achieved by calculating a
joined particle weight w(i)

ŵ
(i)
k = (ηw̃

(i)
k )q

(i)
k (7)

ŵ(i) =
3∏

k=1

ŵ
(i)
k (8)

w(i) =
ŵ(i)∑N
j=1 ŵ

(j)
, (9)
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Fig. 5. Gradient of the reliability value depending on the expected origin of
the sensor measurement. Angular and radial reliability values are determined
separately and then joined multiplicatively to the resulting reliability value
shown in color.

where (9) normalizes the weighted particle distribution.
The proposed classical measurement model in Sect. III-A

penalizes only measurement derivations but takes not into
account sensor reliability. Therefore q

(i)
k ∈ [0, 1] was ap-

pended to the particle weighting procedure (7). Therein q(i)k

represents a sensor reliability value that indicates whether the
vehicle which is represented by particle i is expected to be
observed by sensor k. If the reliability to observe this particle
is high, q(i)k will become 1. If the reliability is very low, q(i)k

will become 0. By raising each measurements weight ŵ(i)
k to

the power of the sensors reliability value, a sensor with a very
low reliability will shift the outcome towards the equilibrium
weight – and so influences the result of the joined weight
for that particle only slightly. One possibility to calculate q(i)k

will be outlined in the next section.
Having created an equilibrium element for joined particle

weighting makes it possible to incorporate this aspect directly
into the particle filter framework.

C. Sensor Reliability Model

Our experiments have shown that objects close to the
sensor cone border or close to the maximum range of the
sensor produce only very unstable echoes. This is obvious
as one must not forget that the cone model is only a rough
representation of the propagation of ultrasonic waves which
actually form lobes emanating from the sensor. To calculate
the sensor reliability a characteristic angular coordinate

ẑk∗t = (αk∗
t , zk∗t )T (10)

representing the reflecting surface within the sensor cone
is calculated. Herein αk∗

t denotes the maximum angular
distance to the sensor cone borders. It is calculated using the
rectangular vehicle model, thus investigating that point of the
rectangle that is closest to the sensor’s direction. Analogously
the expected minimal radial distance zk∗t is calculated. Based
on these values an angular reliability factor qang,k ∈ [0, 1]
and a radial reliability factor qrange,k ∈ [0, 1] is determined.
These may now be used to calculate the final combined
reliability factor.

Within the work at hand the reliability factors were
determined by applying a trapezoidal function over the
sensor coverage area (see qang,3 and qrange,3 in Fig. 5). The
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Fig. 6. Particle distribution of simulated measurement data (vx,host =
17 m/s) with the simulated target marked. Z-coordinate of each particle
shows its weight, color is representing velocity in [m/s]. In (a) a target
vehicle is entering the FOV from behind (vx = 30 m/s), in (b) a target
vehicle is passing in the opposite direction (vx = −10 m/s) (as correctly
shown by the particles negative velocities).

calculation of the combined reliability factor is performed
by simply multiplying angular and radial reliability factor

qk = qang,k(αk∗
t ) · qrange,k(zk∗t ) . (11)

IV. EXPERIMENTAL RESULTS

To quantify tracking and detection performance the host
car was equipped with two laserscanners. The obtained data
was annotated manually. In total more than 500 use cases
were annotated to check detection performance. About 40
use cases were additionally annotated in detail at intervals of
1 m to allow assessment of the tracking performance. While
tracking performance is of specific interest for the work at
hand the evaluation of the detection performance gives a
good hint in how far the proposed algorithm may be applied
in context of driver-assistance systems such as lane-change-
decision-aid systems or blind-spot-surveillance systems.

A. Tracking Results

Fig. 7 shows a sample scene of an overtaking car on
a motorway. The resulting particle densities demonstrate
that our filter is able to propagate a dense particle cluster
representing the target vehicle through the observation space.
The densities display some limitations mainly resulting from
the sparse sensor information: In Fig. 7(a) the track initially
forms as an arc since there is no additional sensor informa-
tion available to limit the degree of freedom of the particles.
The velocity of the particles is being fixed in this phase
depending on their position on the arc (see also Fig. 6(a)).
The best estimate of a vehicle’s position can be obtained
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(a) t1 = 14.877 s (b) t2 = 16.437 s (c) t3 = 18.193 s (d) t4 = 19.717 s

Fig. 7. A target vehicle passing the host car on the left. The video frames originate from the roof-mounted color camera and show view to the front
(FRLE) and rear (RELE). Below the correspondent grid-based particle densities are shown. The density per grid cell is color encoded where dark-blue
means lowest density. Red arcs symbolize actual sensor measurements.

while it is passing the side of the host car (Fig. 7(c)). Finally,
when the target is only in the front sensors FOV, the track
again becomes more uncertain (now in x-direction due to
lateral acceleration and deceleration according to the vehicle
dynamics model, Fig. 7(d)).

Figure 8 depicts mean and standard-deviation of the track-
ing error obtained for 41 tracking-cases with and without the
joined particle weighting proposed in section III-C. It be-
comes apparent that the introduction of the sensor reliability
model and the joined particle weighting enhances tracking of
a vehicle significantly. Especially a ”soft” angular reliability-
border of the front sensor favors a smooth propagation
of particles throughout the observation space. The eminent
effect of the sensors ”soft” borders has its seeds not only
in the presence of measurement errors but results also from
cushioning modelling errors rising from different real-vehicle
lengths.

B. Vehicle Detection in Application Context

To evaluate the tracking result w.r.t. its applicability to
vehicle detection a simple detector-module that overlays
the particle filter was implemented. Several properties of
the particle distribution are used for determining whether
a target vehicle is present in the blind spot area or not. A
necessary condition for this is certainly the presence of any
vehicle in the field of view that is reflected by any spatial
convergence of the particle distribution in combination with
persistent high unnormalized weights ŵ(i). This criteria
makes it also possible to distinguish between a vehicle and
any spuriously tracked infrastructure that does not match the
geometry assumed for a vehicle. For each vehicle hypothesis
the velocity estimate is evaluated to discriminate between
a parking vehicle, one passing in the opposite direction or
again just tracked infrastructure (Fig. 6(b)).

To assess capability and performance of the proposed
procedure in the BSD-scenario extensive testing has been
conducted. The test set presented in figure 9 contains about
221 km of motorway data including 535 use cases. On the
whole test set, a total detection rate of 97.38 % and a false
alarm rate of 6.96 % was reached.

In table I the detection rate for some motorbike testcases
(40 cases in total) are given. This is a stresstest to the

proposed approach as motorbikes offer a very bad reflection
face to ultrasonic waves and thus lead to instable and noisy
echoes. Yet, the proposed model-based detection approach
shows quite good results with an overall detection rate of
97.5 % and a false-alarm rate of 5 % (two false alarms).

TABLE I
DETECTION RATES AND TIMES ON A MOTORBIKE TEST SET

Reaction time t < 0.3 s t < 0.6 s t < 1.5 s no limit
Detection rate 90.0% 90.0% 95.0% 97.5%

V. CONCLUSION & OUTLOOK

The evaluation of the tracking performance as well as the
detection rate of the presented particle filter approach deliv-
ered promising results. Especially in motorway conditions
our algorithm performs solid tracking and returns fast blind
spot warnings. Inner city and heavy rain conditions still pose
a challenge mainly to false detections. One idea to tackle
these difficulties could be to have multiple parameter sets
for the particle filter and the detection module adjusted to
the different conditions.

Another topic that seems to be worth further investigation
is the enhanced use of mixture tracking capabilities. In
simulation we had great experience with creating clusters
of dense regions in particle space (thus for each target
vehicle candidate). With having a separate cluster for each
target vehicle, more robust tracking and detection can be
performed. In reality however it proved hard to create and
re-create meaningful clusters of particles.

As a third extension one could think of additionally
performing classification of target vehicles (like car, truck
or motorbike) by the use of different dynamics and mea-
surement models.
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[7] F. Küçükay and J. Bergholz, “Driver assistant systems,” in Int. Conf.
on Automotive Technologies, Istanbul, Turkey, Nov. 2004.

[8] W. Liu, X. Wen, B. Duan, H. Yuan, and N. Wang, “Rear vehicle
detection and tracking for lane change assist,” in Intelligent Vehicles
Symposium, 2007 IEEE, Istanbul, Turkey, June 2007, pp. 252–257.

[9] P. Batavia, D. Pomerleau, and C. Thorpe, “Overtaking vehicle de-
tection using implicit optical flow,” in Proceedings of the IEEE
Conference on Intelligent Transportation Systems (ITSC’97), Boston,
Massachusetts, USA, Nov 1997, pp. 729–734.

[10] J. C. Reed, “Side zone automotive radar,” in Proc. IEEE National
Radar Conf., Syracuse, New York , USA, May 1997, pp. 186–190.

[11] W.-J. Park, B.-S. Kim, D.-E. Seo, D.-S. Kim, and K.-H. Lee, “Parking
space detection using ultrasonic sensor in parking assistance system,”
in Intelligent Vehicles Symposium, 2008 IEEE, Eindhoven, Nether-
lands, June 2008, pp. 1039–1044.

[12] K.-T. Song, C.-H. Chen, and C.-H. C. Huang, “Design and experimen-
tal study of an ultrasonic sensor system for lateral collision avoidance
at low speeds,” in Proc. IEEE Intelligent Vehicles Symp, Parma, Italy,
June 2004, pp. 647–652.

[13] C. Connette, J. Fischer, B. Maidel, F. Mirus, S. Nilsson, K. Pfeiffer,
A. Verl, A. Durbec, B. Ewert, T. Haar, et al., “Rapid detection of fast
objects in highly dynamic outdoor environments using cost-efficient
sensors,” ROBOTIK 2012, May 2012.

[14] F. Mirus, J. Pfadt, C. Connette, B. Ewert, D. Grüdl, and A. Verl,
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