—7; SEEDS - 285150 D5.4 Report

SEVENTH FRAMEWORK PROGRAMME
THEME - Energy Efficient Buildings

EeB-ICT 2011.6.4. ICT for energy-efficient building and
spaces of public use

SEEDS

Self lear ning Ener gy Efficient builDing and open Spaces

GA No. 285150

D5.4 - Specification and implementation of interfacesthat have
been integrated and tested

Work Package WP5 - Self learning and global optimization

Task Task 5.4: Interfacing and Integration within SEEDS architecture
Revision 0

Duedate 31/05/2013 Submission date 13/06/2013
Dissemination level PU Deliverable type P

Authors R. Meyer (FhG-EAS), Dr. Jirgen Haufe (FhG-EAS), F. Diaz

(SOFTCRITS)
Verification F. Diaz (SOFTCRITS), N. Jiménez-Redondo (CEMOSA)
Approval N. Jimenez-Redondo (CEMOSA)

[13/06/2013] Page 1 of 44

SEVENTH FRAMEWORK
PROGR

SEEDS - 285150 D5.4 Report

[13/06/2013] Page 2 of 44

SEEDS - 285150 D5.4 Report

Table of Contents

1 INTRODUGCT ION . ..ottt ettt e aa e e et eeeeeee e aaaaeeeaaseses s aasssseesseennsnaasseeeseeennsnnnanns 9
N I Y = T =t 5 13
3 CONTROLLER INTERNAL INTERFACES ...t 15
31 CONTROLLER et eteee et e e e e e e e et e e e e et e e e e eeeeseameeeeeaeneeeeeeanneeeeaaneeeseanseeeseaneeeseaneeesaaneesenannes 15
32 [S 1 RO 18
33 TIME-RELATED DATA CLASSES. ..ciiiiicctttiiieetteseiitteetetessssssstesesesssssssssssesesssssassssesesesssesssssessseesess 19
34 CONTROLLER ARCHIVING INTERFACEueeee e et eeeee e eeeee e eeeeeeeeaeeeeeeaeeeeeseaeeaeeaaneeeseanneeeeannes 23
35 OPTIMIZATION INTERFACEt eeeee et et e e e e e e ee e e e aaaeeeeeaaeeeseaeeeeesaaeeessaaeeeseaneeeseanneeeseanes 26
3.6 SELF-LEARNING INTERFACE ...ttt tcttttitieeiiessiieetteessssssssaseetesssssssssssssesasssasssssssesessssssssrsssesssssssssns 28
37 BUILDING M ODEL INTERFACE. ... ettt eeeeeeeeeeeeeeaeeeeesaeeeesaaeneeasaaneeesaaneeesaaneessasneessanneessanneees 29
4 CONTROLLER EXTERNAL INTERFACES.....o oottt ettt n e e et raa e 31
4.1 USER INTERFACE SEEDS CACHE INTERFACE ... ctttiiiee e e e seceeeieee e e e e seitaeeeea e s s s s savasenesssssessnaneees 31
4.2 CONTROLLER TOWISAN INTERFACE ..ottt eeeee e et e e e e e aaeeeeeaeeeeseaeneeeeeaeeaeeaneeessanneeseannes 32
4.3 WISAN SEEDS CACHE INTERFACE ...coecueteeteeee s teeeeette et eesaesseseeeessssssasssstesesssasassseeeresssssasassreees 34
RS UL\ Y AN A TR 35
T = 11 I O L AN T 37
ANNEX A: ABBREVIATIONSAND ACRONYMS ...ttt eee et teaee e e e aneeeenns 39
ANNEX B: HELICOPTER GARAGE IDENTIFIERS ...ttt n e e e eeenns 40
ANNEX C: HELICOPTER GARAGE OSGI SERVICE COMPONENTS ... 42
ANNEX D: HELICOPTER GARAGE METHOD CALL EXAMPLES.......ieeeee e 43

[13/06/2013] Page 3 of 44

SEVENTH FRAMEWORK
PROGR

SEEDS - 285150 D5.4 Report

[13/06/2013] Page 4 of 44

SEEDS - 285150 D5.4 Report

List of Figures

Figure 1: Layer architecture of SEEDS BEMScoooiiiiiiiieee e 9
Figure 2: Component Diagram of SEEDS arChiteCture............cccveveveiieieere e 10
Figure 3: Deployment Diagram of the SEEDS architecture.............ccoceveeieniineenince e 11
Figure 4: Architecture of the SEEDS TSt BEdcoviieiieiiceceeee e 13
Figure 5: Component Diagram CONrOHEr ..o 15
Figure 6: Deployment Diagram of the CONtrollEr...........coiveiecececeee e 15
[T [UT R @Co g i (o]l (oo o TSRS 16
Figure 8: Controller Class DIiagramccieeieeieieeieeeseeseseesee e eeesee e eeesseesseesesseesseensesseessens 16
Figure 9: MANIFEST.MFEF @XaMPIE........oiiiiieeeee et 18
Figure 10: Service DesCription €XampPle........cocvieeiieiece et ne s 19
FIQUIE 11: TIME ClASSES... .o cueiieeiiiiee sttt sttt sttt st ee e b et e s be e be et e sreenbeeneesneenean 20
Figure 12: TiImePOINtS Aala SITUCIUNE......cc.eeiieeie e cieeie ettt ettt e e sneenneeneeeneenneas 21
Figure 13: Class TIMEPOINTS........cccuiiiiieie ettt ettt sreenbeeneesneenne s 22
Figure 14: TiImePOINtS Aala SITUCIUNE.......c.eeieeie et stee e se s e e te e sreenneeeeeneennean 24
Figure 15: Java Dataase CONNECTIVITYcoeiiiriiiieieeie ettt e sae e nee s 25
Figure 16: Activity Diagram Of OPtimiZEr FUNccveueieereeieseesesieeseesieeseesee e eeesreesseeeesneensens 26
Figure 17: Class Diagram of IOtimizer INTErfaCecoooi e 27
Figure 18: Sequence diagram of OptimiZer 00Dcoveveiiereee e nne s 27
Figure 19: Class Diagram of ISelfLearning INterface..........cooovoeieniiie e 28
Figure 20: Self-learning example with calling the Building Model component.............cccocvevveeennen. 29
Figure 21: Class Diagram of IBuildingModel interfaceocooveeieiiniieneniieeee e 29
Figure 22: Interface between SEEDS Cache and GUIccoccvveeieiie e 31
Figure 23: Controller WISAN INLEITACE.........cooiieiiieeee e e 32
Figure 24: WISAN communiCation iNFraStIUCLUNE............coverieeeeseesecie e eee e e e eee e e 33
Figure 25: WISAN SEEDS CaChe.......ccoiiiiieieee et 34

[13/06/2013] Page 5 of 44

SEVENTH FRAMEWORK
PROGR

SEEDS - 285150 D5.4 Report

[13/06/2013] Page 6 of 44

SEEDS - 285150 D5.4 Report

List of Tables

Table 1: BUNAIE DEPENUENCIESccueieiiieieeie ettt sttt st be et st sre e 18
Table 2: Example of timerelated variables ..o 21
Table 3: Identifier Group — Device CONtrol SEINGS.ccovrieiierere e e 21
Table 4: IDataaseA CCESS INTEITACEeiieeeieie et 23
Table 5: Identifier Group — Device CONtrol SEINGS.ooirieiiererenie e 40
Table 6: Identifier Group - DEVICE SEIINGS........cueiierierieriee s ee e ee e sne e e 40
Table 7: Identifier Group — Energy CONSUMPLIONc.ceiuiriirrierieeiesee e eie e ee e 40
Table 8: Identifier Group — DEVICE SLALE........c.eceeieeeeeere ettt sne e 40
Table 9: Identifier Group — Device Water RELUINNcooiiiiiieiieiesiesiee e 41
Table 10: Identifier Group — Device Water SUPPIYoeverieeieiierie et 41
Table 11: Identifier Group — OCCUPANCYccoveiueerierierieeriereesieesseseesseesseseesseessessesseessesssessesssesnsenns 41
Table 12: Identifier Group — Solar Raialioncceceeiieieiiese et 41
Table 13: Identifier Group — Comfort TEMPEIELUIEcc.ovuiiieieee e 41
Table 14: Identifier Group — Comfort Temperature Delta..........cccvevveeveeie e 41
Table 15: Identifier Group — CUrrent TEMPEIALUNE..........ooereereereeie e sre e 41

[13/06/2013] Page 7 of 44

SEVENTH FRAMEWORK
PROGR

SEEDS - 285150 D5.4 Report

[13/06/2013] Page 8 of 44

T

EVENTH FRAMEWO:
PROGRAMME

SEEDS - 285150 D5.4 Report

1 Introduction

This document (D5.4 “Interfacing and Integration within SEEDS architecture”) is part of the Work
Package 5 “Sdlf learning and global optimization”, within the FP7 project “Self learning Energy
Efficient builDings and open Spaces”.

Main objective of this deliverable is to describe the interfaces and interactions between the SEEDS
components. The SEEDS architecture is divided into three layers.

Controller

Sensor data of comfort, environment variables, Control settings

comfort settings, and energy consumption
Optimizing

Predicted environment values and

Calculated predicted energy consumption sredicted energy consumption

Potential control settings . .
Potential control settings

Building
Model
Library

Building Model Predicted environment values Self-learning

& Forecast

2.
Evaluator -

Sensor data and Historical
control settings data

Present energy consumption
Data Management Archiving Control settings

~N)
7|
Comfort settings Sensor data of comfort and

Energy consumption environment variables

Graphical

Input / Output Control settings

User Interface

(WISAN Communication Server)

Process Interface

Figure 1: Layer architecture of SEEDSBEM S

The Controller Layer includes the core components of the building energy management system
(BEMS) to compute and optimize the control settings for the facilities of the building. The Data
Management Layer is a database which stores historical, present, and future data. The Process
Layer includes the GUI to provide a graphical interface between the SEEDS BEMS and the users,
and the WISAN for input and output sensor / actuator values.

[13/06/2013] Page 9 of 44

. 4

SEEDS - 285150 D5.4 Report
cmp SEEDS architecture/
Controller
Controller::Controller
IBuildingModel Controller:: ISelfLeaming
E/@/ Self-Learning \@\ @
Controller::Building Con_trqll_er::
Model Optimizing
W/ é 10ptimizer

]

Data Management

IWisanWebService ()\

? JDBC

Data Management::SEEDS
Cache

Process Interface

2]

Process Interface::
Input / Output (WISAN
Communication
Server)

N\

User Interface

5]

Process Interface::

Figure 2: Component Diagram of SEEDS ar chitecture

This document is a starting-point for the implementation of the SEEDS components. It describes the
interfaces that have been implemented from the project engineers in textual form and UML
Diagrams. In Section 3, all internal interfaces of the Controller are explained. That includes the
interface definition of the core components Building Model, Self-Learning, Optimizer, and the
Controller itself. In Section 4, al interfaces outside the controller are described. This mainly
concerns the communication between the Data Management Layer (SEEDS Cache) and the

interface between Controller, and WISAN to transfer optimized control settings.

[13/06/2013]

Page 10 of 44

SEEDS - 285150

D5.4 Report

deployment Deployment/

«device»
BEMS Node

«executionEnvironment»
Java

5]

Controller::
Controller

«device»
Data Management Node

«executionEnvironment»
Database Server

2]

Data Management::
SEEDS Cache

«device»
GUI

«device»
WISAN

«executionEnvironment»
.Net

5]

Process Interface::
User Interface

«executionEnvironment»

.Net
3]

Process Interface::
Input / Output (WISAN
Communication
Server)

Figure 3: Deployment Diagram of the SEEDS ar chitecture

The run-time architecture of the SEEDS system is divided into four possible nodes. The Controller
and al of its core components are implemented in Java and executed on the same node. The Data
Management Layer is represented by a Database Server on an addition node. The components of the
Process Interface Layer GUI and WISAN are both implemented with Microsoft .NET and both
executed on single nodes.

[13/06/2013]

Page 11 of 44

SEEDS - 285150 D5.4 Report

[13/06/2013] Page 12 of 44

SEEDS - 285150 D5.4 Report

2 Test Bed

Since the SEEDS pilots were not ready by the time the present deliverable was produced, the
implemented interfaces were tested un the Helicopter Garage example. To test the developed
interfaces and the interaction between the various components of the SEEDS architecture a physical
building model of the helicopter garage was developed. It calculates the process variables,
especially the values of comfort, as response on the control settings, the comfort settings, weather,
and occupancy. In SEEDS Controller implementations of the core components are instantiated and
set up for controlling the helicopter garage. Furthermore, Archive and Front Panel are included in
the test bed in the target implementation. Only the WISAN component is omitted; its
communication is replaced by inputs and outputs of the physical building simulator.

SEEDS Controller

Calculate Current

Energy Consumption Process Control

Energy Consumption e X, ¥, W, u X, Y, W, U, e Control Settings u
Archive
N
w,y X, e u X
Front Panel
Comfort Control Settings u Comfort x
Settings w 1
Weather & Physical Building Model
Occupancy vy

Figure 4: Architecture of the SEEDS Test Bed
Detailed information about the helicopter garage is given in the report [1] “D2.3 - Modelling

Methodology. ANNEX B - Application of SEEDS Modelling Methodology in an example (Helicopter
Garage, HG)” and report [2] “D2.8 - Energy Control Strategy. First Version” Chapter 4

[13/06/2013] Page 13 of 44

SEEDS - 285150 D5.4 Report

[13/06/2013] Page 14 of 44

SEEDS - 285150 D5.4 Report

3 Controller internal Interfaces

3.1 Controller

cmp ComponemControIIer/
Controller
Controller::Controller
IBuildingModel Controller:: ISelfLearning
q O [[T—O— 2]
Controller::Building Controller::
Model Optimizing
\(IDatabalseAccess ‘)/ \éﬁ/ IOptimizer
L

Figure 5: Component Diagram Controller

The Controller layer contains the three core components Building Model, Self-Learning and
Optimizing. The Controller itself is represented by an own component (Controller::Controller). The
Controller component fulfills severa tasks and could be considered as the main start point of the
BEMS. At startup, the Controller component takes care of the core components. It validates that all
core components are available and instantiate them if required. All components are implemented in
Java and executed in the same Java virtual machine (JVM).

deployment DeploymentController /

«devices
BEM S Node

«executionEnvionments
Java

Controller::
Controller

)7 a K AW

s L A "

«deploy» «Gfeplav» «depl\ov» «deploys
-
2 A
Selfleaming jar D | Oplimizer jar D BuildingModel_jar D BEMSController jar D

Figure 6: Deployment Diagram of the Controller

Each core component and the controller itself is represented by an own Java Archive (.jar) file. The
BEMSController.jar IS the main start point and has a main method to execute the controller loop.

[13/06/2013] Page 15 of 44

SEEDS - 285150 D5.4 Report

After a successful start, the loop of process control is started and runs until the controller shutdown.
The loop of process fulfills the following tasks:

- Cadculation of the current energy consumption.

- Start of the optimization of control settingsif necessary.

act ControllerLoop

Controller loop Optimizer loop

Controller

Wait for dT

[falsef

[true] I—
Calzulate current Run optimization
. energy I
Optimization required®
Write energy in
SEEDS Cache

Figure7: Control loop

All core components need access to the Data Management layer to read or write values from / to the
SEEDS Cache. To simplify this access the controller provides an interface for easy access to the
SEEDS Cache (1patabaseAccess detailsin chapter 3.4).

class Implementation_Report/

Controller

databaseAccess :IDatabaseAccess = null
optimizer :IOptimizer = null
selfLearning :1SelfLearning = null
buildingModel :IBuildingModel = null

getDatabaseAccess() :IDatabaseAccess

getCurrentTime() :long

callEnergyCalculation(TimePointg[], TimePoints[], TimePointg[], TimePoints[], TimePointg[]) :TimePoints
callSelfLearning(TimePointg[]) :TimePointg[]

runBEMSController() :void

+ 4+ + + o+

Figure 8: Controller Class Diagram

The method getDatabaseAccess() returns an Object that implements IDatabaseAccess which grant
access to the SEEDS Cache.

[13/06/2013] Page 16 of 44

SEEDS - 285150 D5.4 Report

public IDatabaseAccess getDatabaseAccess();

return: | | DatabaseA ccess object which grant access to the SEEDS Cache

To provide a controller wide uniform time base the controller provides a method to query the
current time.

public long getCurrentTime();

return: | Number of milliseconds since January 1, 1970, 00:00:00 GMT

The controller acts for the other core components as so called “mediator”. The mediator design
pattern defines an object that encapsulates how a set of objects interacts. This promotes loose
coupling for the core components and simplifies the dependencies between the components. To call
the Building Model component, the controller provides the method callEnergyCalculation(..). For
detailed information about the interface of the Building Model see chapter 3.7

public TimePoints[] callEnergyCalculation(TimePoints[] temperatures,
TimePoints[] controlSettings,
TimePoints[] waterSupply,
TimePoints[] deviceStates);

temperatures: | Array of current temperaturesin °C
controlSettings: | Array of control settings
waterSupply: | Array of supply temperaturein °C of the chiller and heat pump
deviceStates: | Array of device states
return: [Time points in KW of energy consumption from the rooms and building total
consumption

To call the Self-Learning component the controller provides the method callselfLearning(...). For
detailed information about the interface of the building model see chapter 3.6

public TimePoints[] callSelfLearning(TimePoints[] potentialControlSettings);

potentialControlSettings: | Array of potentia control settings
return: | array of predicted room temperatures and energy consumption

[13/06/2013] Page 17 of 44

SEEDS - 285150 D5.4 Report

3.2 0OSGI

The controller consists of four different components (Controller itself, Building Model, Self-
learning, Optimizer), al implemented in Java. The standard Java environment does not include a
dynamic component model so OSGi (Open Services Gateway initiative framework) as module
system and service platform was carried out. OSGi groups Java classes to so called bundlesin .jar
files and equip them with a MANIFEST.MF file with additional information (bundle name,
versions, dependencies, service descriptions)

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: Self-Learning

Bundle-SymbolicName: eu.seeds_fp7.controller.selflearning
Bundle-Version: 0.0.1.qualifier
Bundle-RequiredExecutionEnvironment: JavaSE-1.6
Require-Bundle: eu.seeds_fp7.controller;bundle-version="0.0.1
Export-Package: eu.seeds_fp7.controller.selflearning
Service-Component: 0SGi-INF/SelflLearning.xml
Bundle-ClassPath:

Figure 9: MANIFEST.MF example

Each bundle is atightly coupled, dynamically |loadable collection of classes, jars, and configuration
filesthat explicitly declare their external dependencies.

In other words OSGi introduces a kind of modularization system on top of java core platform.

Each SEEDS Controller component is represented by its own OSGi bundle:

= eu

eu

eu.

eu

eu.

.seeds_fp7

.seeds_fp7.
seeds_fp7.
.seeds_fp7.
seeds_fp7.

.controller.
controller.
controller.
controller.
controller.

jar Bundle with interface definitions and data classes.
impl.jar Controller implementation.
buildingmodel.jar Building Model implementation.
optimizing.jar Optimizer implementation.
selflearning.jar Self-learning implementation.

Bundle Name

Bundle dependencies

eu.seeds_fp7.controller.jar

eu.seeds_fp7.controller.impl.jar eu.seeds_fp7.controller.jar
eu.seeds_fp7.controller.selflearning.jar eu.seeds_fp7.controller.jar
eu.seeds_fp7.controller.optimizing.jar eu.seeds_fp7.controller.jar
eu.seeds_fp7.controller.buildingmodel. jar eu.seeds_fp7.controller.jar

Table 1: Bundle Dependencies

The eu.seeds fp7.controller.jar bundle contains only the interface definitions and the data classes,
but no implementation. The other bundles contain the respective implementation and its only
dependency of the eu.seeds_fp7.controller.jar bundle.

To populate the implementation of a functionality of a bundle, OSGi Declarative Services are used.
A service is specified by a Java interface and can be registered with the OSGi Service Registry.
Clients, who want to consume this functionality, ask the registry for this implementation, so that the
client bundle has no direct dependency to the service provider bundle. To populate the service in the
registry, an extra XML document containing the service description must exist in the bundle.

[13/06/2013] Page 18 of 44

e SEEDS - 285150 D5.4 Report

MME

<?xml version="1.0" encoding="UTF-8"?>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0"
name="eu.seeds_fp7.controller.selflearning”>
<implementation
class="eu.seeds_fp7.controller.selflearning.SelfLearning" />
<service>
<provide
interface="eu.seeds_fp7.controller.selflearning.ISelfLearning" />
</service>
</scr:component>

Figure 10: Service Description example
Each SEEDS Controller component provides the following services.

- eu.seeds_fp7.controller.IController Service provider for Controller implementation.

- eu.seeds_fp7.controller.buildingmodel.IBuildingModel Service provider for Building
Model implementation.

- eu.seeds_fp7.controller.optimizing.IOptimizer Service provider for Optimizer
implementation.

- eu.seeds_fp7.controller.selflearning.ISelfLearning Service provider for Self-learning
implementation.

Service Dependencies:

Bundle Name Service dependencies
eu.seeds_fp7.controller
eu.seeds_fp7.controller.impl eu.seeds_fp7.controller.selflearning,

eu.seeds_fp7.controller.optimizing,
eu.seeds_fp7.controller.buildingmodel
eu.seeds_fp7.controller.selflearning

eu.seeds_fp7.controller.optimizing
eu.seeds_fp7.controller.buildingmodel

3.3 Time-related Data Classes

The core components and the controller communicate directly through java method calls. For
example the Optimizer component calls the Self-learning component with the evaluated control
settings. The Self-learning component predicts the temperatures and returns it to the Optimizer
component. An analysis of this parameter shows that all arguments are time-value data. To handle
this data two data classes TimePoint and TimePoints are created. The following section explains the
class TimePoint, arepresentation of a single time-value pair, and subsequently the class TimePoints,
arepresentation of a sequence of time points.

[13/06/2013] Page 19 of 44

SEEDS - 285150 D5.4 Report

class TimePoint /

timestamp(int) :long
iterator() :lterator<TimePoint>
toString() :String

lterable
TimePoints
values :List<TimePoint> TimePoint
identifier :String -
time :long

+ TimePoints(String) -valyes| - value :double
+ add(TimePoint) :void 0 - -
+ size() :int o T|meP0|nt(I0ngl, double)
+ identifier() :String + QOubIeVaIueFI) :double
+ doubleValue(int) :double + timestamp() :long
+ + toString() :String
+
+

Figure 11: Time classes
The class TimePoint represents a single time-value par. The time is stored as POSIX time in
milliseconds and represents a 1ong value of milliseconds since 1 January 1970. The value is stored
asadouble vaue.

The constructor creates anew TimePoints object with the specified time and value.

public TimePoint(long time, double value)

time: [Timein milliseconds since January 1, 1970, 00:00:00 GMT
value: | Value asdouble

The method doublevalue() returnsthe value of the TimePoint object as double.

public double doubleValue()

returns: | The value as double

The method timestamp() returns the time value of the TimePoint object as long.

public Llong timestamp()

returns: | Timein milliseconds since January 1, 1970, 00:00:00 GM T

The method tostring() returns a human readable representation of the TimePoint object.

public String toString()

returns: | A string representation in form “Timestamp : Value”

[13/06/2013] Page 20 of 44

S SEEDS - 285150 D5.4 Report

The controller requires time curves e.g. a list of TimePoint objects. For this purpose the Class
TimePoints was created who represents a sequence of time point. Addition to a list of TimePoint
objects the TimePoints class has aunique identifier.

TimePoints temperatureOfRooml represents:

TemperatureRoom1 hdenﬁﬁer
2012-07-12 10:00:00 24.123456
2012-07-12 10:30:00 26.654321
2012-07-12 11:00:00 28.112233
2012-07-12 11:30:00 27.987654
2012-07-12 12:00:00 25.332211
2012-07-12 12:30:00 23.000005

time | temperature |

Figure 12: TimePointsdata structure

The unique identifier represents a sensor or actuator value from the SEEDS Cache. The available
identifiers depend on the controlled building and its facilities and are static configured before the
controller starts.

The following tables show the identifiers of the control settings of the Helicopter Garage Example:

| dentifier Group: DeviceControlSetting

Descrunion; FC_Speed - Speed level [1, 2, 3, 4] of the Fan-Coill...Fan-Coill®
CH_Load - Load level [0.25, 0.50, 0.75, 1.00] of a Chiller
HP_Load - Load level [0.25, ©0.50, 0.75, 1.00] of a Heat Pump
Helicopter FANCOIL1, FANCOIL2, FANCOIL3, FANCOIL4, FANCOIL5, FANCOILG,

Garage Example: FANCOIL7, FANCOI8, FANCOI9, FANCOI16, CHILLER, HEATPUMP

Table 3: Identifier Group — Device Control Settings

To provide a better overview the identifiers are grouped. The identifier group
“DeviceControlSettings” represents the control settings of the devices and contains al controllable
facilities. The Helicopter Garage Example contains ten fancoils, a heatpump, and a chiller for
controlling.

A complete list of the identifiers for the helicopter garage exampleis to be found in the annex B.

[13/06/2013] Page 21 of 44

SEEDS - 285150 D5.4 Report

class TimePoint /

lterable
TimePoints

values :List<TimePoint>
identifier :String

TimePoints(String)
add(TimePoint) :void

size() :int

identifier() :String
doubleValue(int) :double
timestamp(int) :long

iterator() :lterator<TimePoint>
toString() :String

+ 4+ + + + + 4+

Figure 13: Class TimePoints

The public constructor creates anew TimePoints object with the specified identifier.

public TimePoints(String identifier)

identifier: | Uniqueidentifier that labels a sensor or actuator from the SEEDS Cache

The method size() return the number of time— value — pairsfor this object.

public int size()

return: | Number of TimePoint

The method doublevalue(..) returnsthe value for the specified index

public double doubleValue(int index)

index: | Index of the value
Return: | Value of the specified index

The method timestamp(..) returns the timestamp for the specified index

public long timestamp(int index)

index: | Index of the timestamp
Return: | Time on the specified index in milliseconds since January 1, 1970, 00:00:00 GMT

The method identifier() return theidentifier of this TimePoints object

public String identifier()

[13/06/2013] Page 22 of 44

SEEDS - 285150 D5.4 Report

Return: | Identifier of this object

The method add(..) adds atime— value — pair to this object.

public void add(TimePoint timePoint)

timePoint: | Unique name that |abels a sensor or actuator from the SEEDS Cache

The method iterator() return an iterator over the TimePoint objects.

public Iterator<TimePoint> iterator()

Return: | Aniterator over the TimePoint € ements.
Return:

The method tostring() returns a human readable representation of the TimePoints object.

public String toString()

Return: | Theidentifier

3.4 Controller Archiving Interface

The SEEDS Cache is the central element in the SEEDS system. All components write their data to
the cache and read the desired data from the cache. All Controller core components need access to
the Data Management layer to read or write values from / to the SEEDS Cache. To unify the
transfer, an interface is defined that includes al access methods to the database. The
IDatabaseAccess interface is defined to create a database abstraction. This leaves the underlying
database used from SEEDS Cache hidden for the other components and allows a database-
independent communication and manipulation of the underlying database. This interface is able to
handle the time classes TimePoint and TimePoints.

class Implementation_Report/

«interface»
|DatabaseAccess

getValue(String, long) :TimePoint
getValues(String, long, long) :TimePoints
setValue(String, TimePoint) :void
setValues(TimePointg[]) :void
setValues(TimePoints) :void

+ o+ o+ o+ o+

Table 4: | DatabaseAccess interface

[13/06/2013] Page 23 of 44

SEEDS - 285150 D5.4 Report

The method getvalue(..) queries the SEEDS Cache and returns a single legal time point to the
specified time point. If the SEEDS Cache has no entry on the specified time, the next legal entry
prior is returned.

TemperatureRoom1 getValue(“TemperatureRooml”, “12-07-12 10:00:00”);
2012-07-12 10:00:00 | 24.123456 <

2012-07-12 10:10:00 | 26.654321
2012-07-12 10:20:00 | 28.112233
2012-07-12 10:30:00 | 27.987654 getValue(“TemperatureRooml”, “12-07-12 10:45:00”);
2012-07-12 10:40:00 | 25.332211 |-«
2012-07-12 10:50:00 | 23.000005

Figure 14: TimePointsdata structure

TimePoint getValue(String identifier, long time);

identifier: [Theidentifier
time: | Timein milliseconds since January 1, 1970, 00:00:00 GMT
Returns: | Single time point (time, value) or NULL if identifier could not be found

The method getvalues(..) queries the SEEDS Cache and returns a sequence of ascending
continuing time points between the specified start and stop time. If the specified identifier could not
be found, NULL is returned. If the SEEDS Cache contains no values for the specified time period,
an empty TimePoints-Object is returned.

TimePoints getValues(String identifier, long startTime, long stopTime);

identifier: | Theidentifier
startTime: | Timein milliseconds since January 1, 1970, 00:00:00 GMT
stopTime: | Timein milliseconds since January 1, 1970, 00:00:00 GMT
Returns: | Sequence of ascending continuous data points or NULL if identifier could not be
found

The method setvalue(..) stores asingle time point object in the SEEDS Cache.

void setValue(String identifier, TimePoint point);

identifier: | Theidentifier for the time point
point: | Timevalue pair to storein the SEEDS Cache

The method setvalues(TimePoints) stores asingle TimePoints Object in the SEEDS Cache.

void setValues(TimePoints timePoints);

[13/06/2013] Page 24 of 44

—7— SEEDS - 285150 D5.4 Report

timePoints: | time points object to store in the SEEDS Cache

For easy storing of TimePoints arrays the setvalues(TimePoints[]) was created. It stores al
TimePoints from the array in the SEEDS Cache.

void setValues(TimePoints[] timePoints);

timePoints: | Array of time points to store in the SEEDS Cache

cmp JDBC

Controller

Controller::Controller
IBuildingModel Controller:: ISelfLearning
@/@/ Self-Learning \@\ E
Controller::Building ConFrqllgr::
Model Optimizing
\(IDatabase Access / @Ig/ IOptimizer
I|_I
Data Management ? JDBC

Data Management::SEEDS
Cache

Figure 15: Java Database Connectivity

The IDatabaseA ccess implementation tranglates the identifiers to a storage location in the SEEDS
Cache. Depending on the IDatabaseAccess — method, the implementation read or writes data from
or to this location. For this purpose the Java Database Connectivity (JDBC) isused. JDBC isa Java-
based data access technology for querying and updating relational databases.

[13/06/2013] Page 25 of 44

SEEDS - 285150

3.5 Optimization Interface

This component encapsul ates the optimization algorithm. It creates a set of potential control settings
and transfers them to the Self-learning component. The Self-learning component predicts the
temperatures and the energy consumption of the building and returns these values. The optimizer
checks whether the temperatures are in the limitations of the comfort and the energy consumption is
decreased. In negative case the potential control settings are discarded. In positive case they are
registered and used as reference for a next tria. If the optimizer found a minimum of energy
consumption or a fixed number of trails is reached, the results have to be written to the SEEDS

Cache.
act Run optimization/
/ Run optimization
{ Optimizer
. [true]
Optimum found Write results in DB
or cancel?
[false]

L Selflearning

The Optimizer has to implement the interface 1optimizer. This interface has only one method
called dooptimizing(..) with the Controller Object as argument. The Method returns the optimized

Figure 16: Activity Diagram of Optimizer run

control settings as array of TimePoints Objects.

[13/06/2013]

D5.4 Report

Page 26 of 44

SEEDS - 285150 D5.4 Report

class IOptimizer /

«interface»
10ptimizer

+ doOptimizing(controller :IController) :TimePoints]]

Figure 17: Class Diagram of | Otimizer Interface

The Controller object provides access to the SEEDS Cache and to the Self-learning component.
Over the controller method getbDatabaseAccess() the Optimizer can query the database and store
the optimized control settings. To call the Self-learning component the controller object provides
the callselfLearing(..) method. This method requires the potential control settings as argument
and returns the predicted temperatures and energy consumption.

sd Optimization

«interface» «interface» «interface»

IController I0ptimizer IDatabaseAccess

I
|
|
: doOptimizing(IController) :TimePoints[]

I

|

|

> |

|

< getDatabaseAccess() :IDatabaseAccess :

(1 :
getValues(String, long, long) :TimePoint;I_l|

loop Optlmlzatlon :

[optimumifound == false] :

callSelfLeaming(TimePointg[]) :TimePoints]] :

|

__________ TimePointd] o] i

|
g

I

|

|

|

|

|

|

|

|

|

J setValues(TimePoints[])
|
|
|
|
|
|
|
|
|

L
|
|
|
|
|
|
|
|
|

Figure 18: Sequence diagram of Optimizer loop

[13/06/2013] Page 27 of 44

SEEDS - 285150 D5.4 Report

public TimePoints[] doOptimizing(IController controller);

controller: | The controller object
Returns: | The optimized control settings as array of TimePoints objects.

To provide the Optimizer implementation as OSGi Service, the bundle has to register the
implemented class in the OSGi Service Registry under the
eu.seeds_fp7.controller.optimizer.IOptimizer interface. The OSGI Service component
description of the Helicopter Garage Optimizer implementation can be found in annex C.

3.6 Self-learning Interface

This component forecasts the comfort conditions and the energy consumption of the building. It is
called from the Optimizer component with potential control settings. The predicted comfort settings
and the predicted energy consumption are returned.

class Self-learning /

«interface»
ISelfLearning

+ doSelfLearning(controller :IController, controlSettings :TimePointg]]) :TimePoints[]

Figure 19: Class Diagram of | SelfL earning Interface

The Self-learning component has to implement the 1selfLearning interface. This interface defines
one method called doselfLearning(..) with two arguments. The first argument is the Icontroller
object which provides access to the SEEDS Cache and the Building Model component. The second
argument is a TimePoints - array of potential control settings. The method returns the predicted
comfort conditions and energy consumption as an array of TimePoints.

public TimePoints[] doSelfLearning(IController controller,
TimePoints[] potentialControlSettings);

controller: | The controller object
potentialControlSettings: | Array of potential control settings
Returns: | The predicted comfort conditions and energy consumption as an
array of TimePoints

An example call of the doselfLearning method with detailed list of the identifiers for the Helicopter
Garage example can be found in annex D.

It depends on the internal implementation of the Self-learning component if it predicts the energy
with forecast technics or if the Building Model component is called.

[13/06/2013] Page 28 of 44

SEEDS - 285150 D5.4 Report

sd SelfLearning
=interfaces =interfaces sinterfaces
IControlier 1SelfLearning [Databasefcoess
T T T
! doSelfLearning{lController, TimePoints[l) : TimePoints]] = ! l
-
|
o getDatabeseAccess() [|Databasefcoess :
o= |
getVslues{String, long, long) :TimePoints
Ll
callEnergyCalculation{ TimePoints[], TimePoints], TimePoints[], TimePoints[[) : TimePoints]]
-
[
= ==5elfLearningResult=={) : TimeFoints]]

|
]
|
|
|
|
|
|
|
|
|
|
|
|
i

L L
| |
| |
| |
| |
| |
i i

Figure 20: Self-learning example with calling the Building M odel component

To provide the Self-learning implementation as OSGi Service the bundle has to register the
implemented class in the OSGi Service Registry under the
eu.seeds_fp7.controller.selflearning.ISelflLearning interface.

The OSGI Service component description of the Helicopter Garage Self-learning implementation can be
found in annex C.

3.7 Building Model Interface

This component is used in twofold concern:
o Firstly, calculation of the present energy consumption.
In doing this, sensor data from the facilities and present control settings are taken
into account.
o Secondly, it is used to calculate the future energy consumption of the building.
For that, forecasted comfort values by self-learning and potential control settings by
optimizing are used.

class IBuiIdingModel/

«interface»
I1BuildingModel

+ doEnergyCalculation(temperatures :TimePointg[], controllSettings :TimePointg]], waterSupply
:TimePointg]], deviceStates :TimePoints[]) :TimePoints[]

Figure 21: Class Diagram of | BuildingM odel interface

The Building Model component has to implement the interface 1BuildingModel. This interface
defines the method doEnergyCalculation(..) which is called from the controller component to
calculate the current energy consumption and depending on the implementation from the Self-
learning component to predict the energy consumption.

[13/06/2013] Page 29 of 44

SEEDS - 285150 D5.4 Report

public TimePoints[] doEnergyCalculation(TimePoints[] temperatures,

TimePoints[] controlSettings,
TimePoints[] waterSupply,
TimePoints[] deviceStates);

temperatures:
controlSettings:
waterSupply:
deviceStates:
Return:

Array of room and outside temperaturesin °C

Array of control settings

Array of water supply temperaturesin °C

Array of device states

The energy consumption in kWh of the rooms and the total consumption of the
building as an array of TimePoints

An example call of the doEnergyCalculation method with detailed list of the identifiers for the
Helicopter Garage example can be found in annex D.

To provide the Building Model implementation as OSGi Service the bundle has to register the implemented
classin the OSGi Service Registry under the

eu.seeds_fp7.controller.buildingmodel.IBuildingModel interface. The OSGI Service component
description of the Helicopter Garage Example Building Model implementation can be found in annex C.

[13/06/2013]

Page 30 of 44

SEEDS - 285150 D5.4 Report

4 Controller external Interfaces

4.1 User Interface SEEDS Cache Interface

The Graphical User Interface provides the interface between the user and the SEEDS system. The
GUI displays to the user the SEEDS system data, and gives him the ability to change data into the
system. The GUI communicates with the individua SEEDS components by means of the SEEDS
Cache and enables data exchange between the GUI and the individual system components.

cmp ComponentGUI /

Data Management

Data Management::SEEDS
Cache

@ADO.NET

Process Interface

5]

Process Interface::
User Interface

Figure 22: Interface between SEEDS Cache and GUI

The GUI communicates directly with the SEEDS Cache over ADO.Net. ADO.Net is a set of
software components included with the Microsoft .NET Framework to access and modify data
stored in relational database systems. The system parameters that are displayed on the GUI will be
periodically read from the SEEDS cache. This will be realized by periodically sending a SELECT
guery to the SEEDS Cache. The read data that has been changed is visualized in the GUI. If the user
changes data on the GUI, the GUI executes an insert command to the SEEDS Cache. Detailed
information about the GUI implementation is given in the report [3] D6.3 — “Specification of
Hardware and Software Platform”.

[13/06/2013] Page 31 of 44

—?— SEEDS - 285150 D5.4 Report
4.2 Controller to WISAN Interface

This section describes the interface between the Controller and the WISAN Communication Server.
If the controller has finished an optimization run and new control settings are available, the WISAN
component must be directly and immediate informed about the new actuator commands.

cmp ComponentWISAN/

Controller
Controller::Controller
IBuildingModel Controller:: ISelfLearning
E /@/ Self-Learning \@\ @
Controller::Building Controller::
Model Optimizing
\(IDatabaseAccess / &lg/ |Optimizer
L1
Process Interface ()\
IWisanWebService
Process Interface::
Input / Output (WISAN
Communication
Server)

Figure 23: Controller WISAN interface

Detailed information about the WISAN communication infrastructure is given in the report [4] D4.3
— “Plug & Play conformance requirements. API, Integration Webservices and libraries”.

The WISAN component provides two communication elements for external excess: The “WISAN
Client library” and the “Web Service”.

[13/06/2013] Page 32 of 44

SEEDS - 285150 D5.4 Report

SEVENTH FRAMEWORK
PROGRAMME

WIS AN W

eb
Client Library . | r Service

WISAN Communication Server

............................. —

Figure 24: WISAN communication infrastructure

Because of the interoperable interaction over a network, the “Web Service” communication element
was chosen to transfer the new control settings to WISAN. For this purpose the IWisanWebService
interface defines the method setActuatorvalueByNodeNameAndActuatorName:

bool SetActuatorValueByNodeNameAndActuatorName(string nodeName, string actuatorName,
double value);

The actuator is identified by is name and node name so that this information are stored in the
controller.

[13/06/2013] Page 33 of 44

SEEDS - 285150 D5.4 Report

4.3 WISAN SEEDS Cache Interface

This section describes the interface between the WISAN Communication Server and the SEEDS
Cache.

cmp ComponentWISAN/

Data Management

Data Management::SEEDS
Cache

Process Interface
ADO.NET
\®)

5]

Process Interface::
Input / Output (WISAN
Communication
Server)

Figure 25: WISAN SEEDS Cache

The WISAN stores the | ast value of each sensor/actuator in the SEEDS Cache. The WISAN Server
uses the ADO .NET Entity framework to update the values of the sensorg/actuators in the SEEDS
Cache. Detailed information about the WISAN Server implementation is given in the report D4.4 —
“Communication infrastructure and tool support implementation”.

The ADO.NET Data provider model provides a common managed interface in the .NET
Framework for connecting to and interacting with the data store. The ADO.NET Entity framework
builds on top of the ADO.NET Data Provider model to allow for use of the Entity Framework with
any data source for which a supported provider is available.

[13/06/2013] Page 34 of 44

SEEDS - 285150 D5.4 Report

5 Summary

Deliverable D5.4 “Interfacing and Integration within SEEDS architecture”’ describes the interfaces
and interactions between the SEEDS components. The first part of this deliverable describes the
interfaces of the SEEDS controller and its core components. Since al core components are
implemented in JAVA and run on the same JAVA virtua machine, a fast data exchange between
the core components was redized. By using the OSGi framework, the controller provides a
complete and dynamic component model. All implementation of the core components are populated
with OSGi Services and therefore are simply to exchange with potentially other implementations.
The second part of this deliverable describes the interface outside the controller, mainly the
communication between the central point of the SEEDS architecture: the SEEDS Cache. All
SEEDS components have access to it to store or read values. The usage of a standard database as
SEEDS Cache provides the option to simply extend the SEEDS system with existing other system
components. If these components are in a position to use standard database access techniques like
ADO.Net or JIDBC they could be easily integrated into the SEEDS System.

All interfaces (except the WISAN to SEEDS Cache) described by this document have been
successfully tested on the Helicopter Garage example. Detailed information about the Test Bed and
optimization results are given in the report [2] D2.8 — “Development of energy control strategy”
chapter 4.

[13/06/2013] Page 35 of 44

SEEDS - 285150 D5.4 Report

[13/06/2013] Page 36 of 44

SEEDS - 285150 D5.4 Report

6_Bibliography

[1] Méarquez, F.; Jiménez, N.; Barragan, A.: D2.3 Modelling Methodology. 2013

[2] Donath U.; Haufe, J; Esteves R.; Montague S.: D2.8 Energy Control Strategy. First Version
2013

[3] Peneva, R.: D6.3 Specification of Hardware and Software Platform. 2013

[4] Espafia, J.; Diaz, F.: D4.3 Plug & Play conformance requirements. API, Integration
Webservices and libraries. 2012

[13/06/2013] Page 37 of 44

SEEDS - 285150 D5.4 Report

[13/06/2013] Page 38 of 44

SEVENTH

NTH FRAMEWORK
PROGRAMME

SEEDS - 285150

Annex A: Abbreviations and acronyms

D5.4 Report

ADO.Net ActiveX Data Objects .NET

API Application Programming Interface

BEMS Building Energy Management System

D Deliverable

DoWw Description of Work

FP7 Seventh Framework Programme

GMT Greenwich Mean Time

GUI Graphical User Interface

HVAC Heating, Ventilation Air Condition

IDE Integrated Development Environment

|EEE Institute of Electrical and Electronics Engineers
JDBC Java Database Connectivity

JVM Javavirtual machine

OSGi Open Services Gateway initiative

POSIX Portable Operating System Interface

SEEDS Self learning energy efficient building and open spaces
UML Unified Modeling Language

WISAN Wireless intelligent sensors and actuators network
WP Work Package

XML Extensible Markup Language

[13/06/2013]

Page 39 of 44

SEVENTH FRAMEWORK

SEEDS - 285150 D5.4 Report

Annex B: Helicopter Garage Identifiers

| dentifier Group:

DeviceControlSetting

Description:

Helicopter
Garage Example:

FC_Speed - Speed level [1, 2, 3, 4] of the Fan-Coill...Fan-Coill®
CH_Load - Load level [0.25, ©.50, 0.75, 1.00] of a Chiller
HP_Load - Load level [0.25, ©.50, 0.75, 1.00] of a Heat Pump

FANCOIL1, FANCOIL2, FANCOIL3, FANCOIL4, FANCOILS, FANCOILG,
FANCOIL7, FANCOI8, FANCOI9, FANCOI16, CHILLER, HEATPUMP

Table5: Identifier Group — Device Control Settings

| dentifier Group:

DeviceSettings

Description:

Helicopter
Garage Example:

AT - Set point of the air return temperature in °C of the Fan-Coil
WTCH - Set point of the water supply temperature in °C of the
Chiller

WTHP - Set point of the water supply temperature in °C of the Heat
Pump

FANCOIL1, FANCOIL2, FANCOIL3, FANCOIL4, FANCOILS, FANCOILG,
FANCOIL7, FANCOI8, FANCOI9, FANCOI16, CHILLER, HEATPUMP

Table 6: Identifier Group - Device Settings

| dentifier Group:

EnergyConsumption

Description:

Helicopter
Garage Example:

E - Total energy consumption of the Building in kWh over the last 24
hours

ERi - Total energy consumption of Rooms in kWh
ROOM1, ROOM2, ROOM3, ROOM4, ROOM5, ROOM6, ROOM7, ROOM8, ROOM9,

ROOM16, CHILLER, HEATPUMP, PUMP_CHILLER, PUMP_HEATPUMP, TOTAL_24H,
TOTAL_SAMPLE

Table 7: Identifier Group — Energy Consumption

| dentifier Group:

DeviceState

Description:

Helicopter
Garage Example:

On - device states

OnFC - On/Off of the Fan-Coil

OnCH - On/Off of the Chiller

OnHP - On/Off of the Heat Pump

FANCOIL1, FANCOIL2, FANCOIL3, FANCOIL4, FANCOIL5, FANCOILG,
FANCOIL7, FANCOI8, FANCOI9, FANCOI10, CHILLER, HEATPUMP

Table 8: Identifier Group — Device State

| dentifier Group:

DeviceWaterReturn

Description:
Helicopter
Garage Example:

Water return temperature in °C of the chiller and heat pump
CHILLER, HEATPUMP

[13/06/2013]

Page 40 of 44

T SEEDS - 285150 D5.4 Report

PROGRAMME

Table 9: Identifier Group — Device Water Return

|dentifier Group: DeviceWaterSupply

Description: Water supply temperature in °C of the chiller and heat pump
Helicopter CHILLER, HEATPUMP

Garage Example:

Table 10: Identifier Group — Device Water Supply

| dentifier Group: Occupancy

Description: O - Occupancy of the Room in Number of Persons
Helicopter ROOM1, ROOM2, ROOM3, ROOM4, ROOM5, ROOM6, ROOM7, ROOM8, ROOMS,

Garage Example: ~ ROOM16

Table 11: Identifier Group — Occupancy

|dentifier Group: SolarRadiation

Description: SR - Solar Radiation Intensity of the Room in the range © to 1
Helicopter ROOM3, ROOM4, ROOM5, ROOM6, ROOM7, ROOM8, ROOM9, ROOM16

Garage Example:

Table 12: Identifier Group — Solar Radiation

I dentifier Group: TemperatureComfort

Description: CT - Comfort temperature in °C of the room
Helicopter ROOM1, ROOM2, ROOM3, ROOM4, ROOM5, ROOM6, ROOM7, ROOM8, ROOM9,

Garage Example: ~ ROOM16

Table 13: Identifier Group — Comfort Temperature

| dentifier Gr oup: TemperatureComfortDelta

Description: Delta Tmax - Maximum delta of the comfort temperatures in °K
Helicopter ROOM1, ROOM2, ROOM3, ROOM4, ROOM5, ROOM6, ROOM7, ROOM8, ROOMS,

Garage Example: ~ ROOM16

Table 14: Identifier Group — Comfort Temperature Delta

|dentifier Group: TemperatureCurrent

Description: RT - Current temperature in °C of the Room
OT - Outdoor Temperature in °C
Helicopter ROOM1, ROOM2, ROOM3, ROOM4, ROOM5, ROOM6, ROOM7, ROOM8, ROOM9,

Garage Example: ROOM16, OUTSIDE

Table 15: Identifier Group — Current Temperature

[13/06/2013] Page 41 of 44

SEEDS - 285150 D5.4 Report

Annex C: Helicopter Garage OSGIi Service Components

OSGI Service component description of the Controller implementation:

<?xml version="1.0" encoding="UTF-8"?>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0"
name="eu.seeds_fp7.controller.impl">
<implementation class="eu.seeds_fp7.controller.impl.Controller"/>
<service>
<provide interface="eu.seeds fp7.controller.IController"/>
</service>
</scr:component>

OSGI Service component description of the Optimizer implementation:

<?xml version="1.0" encoding="UTF-8"?>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1i.1.0"
name="eu.seeds_fp7.controller.optimizing">
<implementation class="eu.seeds_fp7.controller.optimizing.Optimizer"/>
<service>
<provide interface="eu.seeds fp7.controller.optimizer.IOptimizer"/>
</service>
</scr:component>

OSGI Service component description of the Self-1earning implementation:

<?xml version="1.0" encoding="UTF-8"?>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/vi.1.0"
name="eu.seeds_fp7.controller.selflearning”>
<implementation class="eu.seeds_fp7.controller.selflearning.SelfLearning"/>
<service>
<provide interface="eu.seeds fp7.controller.selflearning.ISelflLearning"/>
</service>
</scr:component>

OSGI Service component description of the Building Model implementation

<?xml version="1.0" encoding="UTF-8"?>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0
name="eu.seeds_fp7.controller.buildingmodel” >
<implementation class="eu.seeds_ fp7.controller.buildingmodel.CalculateEnergy" />
<service>
<provide interface="eu.seeds fp7.controller.buildingmodel.IBuildingModel™ />
</service>
</scr:component>

[13/06/2013] Page 42 of 44

SEVENTH FRAMEWORK
PROGRAMME

SEEDS - 285150

D5.4 Report

Annex D: Helicopter Garage method call examples

List of identifiersfor calling the Self-1earning component in the Helicopter Garage example:

public TimePoints[] doSelfLearning(IController controller,

TimePoints[]

potentialControlSettings);

controller:

potentialControlSettings:

Returns:

Controller object with database access

Array of potential control settings with the following identifiers:

DeviceControlSetting.
DeviceControlSetting.
DeviceControlSetting.
DeviceControlSetting.
DeviceControlSetting.
DeviceControlSetting.
DeviceControlSetting.
DeviceControlSetting.
DeviceControlSetting.
DeviceControlSetting.
DeviceControlSetting.
DeviceControlSetting.

FANCOIL1,
FANCOIL2,
FANCOIL3,
FANCOIL4,
FANCOILS,
FANCOILG,
FANCOIL7,
FANCOILS,
FANCOILO,
FANCOIL10,
CHILLER,
HEATPUMP

Array of predicted room temperatures and energy consumption with
the following identifiers:

TemperatureCurrent.
TemperatureCurrent.
TemperatureCurrent.
TemperatureCurrent.
TemperatureCurrent.
TemperatureCurrent.
TemperatureCurrent.
TemperatureCurrent.
TemperatureCurrent.
TemperatureCurrent.

ROOM1,
ROOM2,
ROOM3,
ROOM4,
ROOMS,,
ROOM6,
ROOM7,
ROOMS,
ROOM9,
ROOM10,

EnergyConsumption.TOTAL

[13/06/2013]

Page 43 of 44

E SEEDS - 285150 D5.4 Report

List of identifiers for calling the Building Model component in the Helicopter Garage example:

public TimePoints[] doEnergyCalculation(TimePoints[] temperatures,
TimePoints[] controlSettings,
TimePoints[] waterSupply,
TimePoints[] deviceStates);

temperatures: | Array of current room and outside temperatures with the following identifiers:

TemperatureCurrent.ROOM1, TemperatureCurrent.ROOM2,

TemperatureCurrent.ROOM3, TemperatureCurrent.ROOM4,

TemperatureCurrent.ROOM5, TemperatureCurrent.ROOM6,

TemperatureCurrent.ROOM7, TemperatureCurrent.ROOMS,

TemperatureCurrent.ROOM9, TemperatureCurrent.ROOM10,
TemperatureCurrent.OUTSIDE

controlSettings: | Array of control settings with the following identifiers:

DeviceControlSetting.FANCOIL1, DeviceControlSetting.FANCOIL2,
DeviceControlSetting.FANCOIL3, DeviceControlSetting.FANCOIL4,
DeviceControlSetting.FANCOIL5, DeviceControlSetting.FANCOIL6,
DeviceControlSetting.FANCOIL7, DeviceControlSetting.FANCOILS,
DeviceControlSetting.FANCOIL9, DeviceControlSetting.FANCOIL10,
DeviceControlSetting.CHILLER,

DeviceControlSetting.HEATPUMP

watersupply: | Array of water supply temperature in °C of the chiller and heat pump with the
following identifiers:

DeviceWaterSupply.CHILLER, DeviceWaterSupply.HEATPUMP

deviceStates: | Array of device states with the following identifiers:

DeviceState.FANCOIL1, DeviceState.FANCOIL2,
DeviceState.FANCOIL3, DeviceState.FANCOIL4,
DeviceState.FANCOIL5, DeviceState.FANCOIL6,
DeviceState.FANCOIL7, DeviceState.FANCOILS,
DeviceState.FANCOIL9, DeviceState.FANCOIL10,
DeviceState.CHILLER, DeviceState.HEATPUMP

Return: | Calculated energy consumption in kw/h with the following identifiers:

EnergyConsumption.ROOM1, EnergyConsumption.ROOM2,
EnergyConsumption.ROOM3, EnergyConsumption.ROOM4,
EnergyConsumption.ROOM5, EnergyConsumption.ROOM6,
EnergyConsumption.ROOM7, EnergyConsumption.ROOMS8,
EnergyConsumption.ROOM9, EnergyConsumption.ROOM10,
EnergyConsumption.CHILLER, EnergyConsumption.HEATPUMP,
EnergyConsumption.TOTAL

[13/06/2013] Page 44 of 44

