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Performance Characterization in 
Automated Optical Inspection using CAD 
Models and Graphical Simulations 

Abstract: The important role of automated optical inspection in the manufacturing 

process necessitates the design of optimized and precise inspection setups which can 

fulfill the application demands. Due to the high dimensionality of the design space, a 

manual choice of the geometrical and optical parameters is tedious and often not 

optimal. In this paper, we propose the calculation of two comprehensive evaluation 

metrics, namely the lateral resolution and the measurement uncertainty, based on using 

a CAD model of the workpiece and real-time graphical simulations. Automatic setup 

evaluation enables us to determine the setup adequacy with respect to the part 

tolerances and inspection quality requirements, which opens up the path to automatic 

optimization and virtual rapid prototyping of machine vision systems. We present the 

optical inspection of a cylinder head using laser triangulation as an application. Based 

on graphical simulation results, the proposed metrics are evaluated for different 

configurations of the setups and the achieved performance characteristics are 

compared against the part inspection tolerances on different areas of the CAD model. 

Keywords: Automated optical inspection, performance characterization, real-time 

graphical simulations, lateral resolution, measurement uncertainty, CAD-based 

inspection planning, prototyping 



 

 

1. Introduction 

Finding the optimal design of a machine vision setup is a time-consuming process, 

requiring a lot of engineering experience [1]. To verify if a product has been 

manufactured within predefined tolerances, the inspection setup must be accurate and 

precise enough to be applicable to the task. A manual system design based on physical 

samples usually leads to a trial and error process. Moreover, the design space of optical 

inspection setups is often very large, including - besides other parameters - the positions 

and orientations of the camera(s) and the illumination source(s) as well as optical 

properties of the participating devices. Therefore, a setup design in this high-

dimensional space is tedious and can end up in a non-optimal compromise between 

requirements. In this paper, we introduce and calculate performance evaluation metrics 

for the evaluation of optical inspection setups based on using CAD models and graphical 

simulations. The simulations enable us to efficiently evaluate different setup 

configurations without the need to realize the setup physically. Therefore, this opens up 

the path to automatic setup optimization and fast prototyping of machine vision systems. 

We have focused on the optical inspection of a cylinder head, as an example of a 

geometrically complicated workpiece, using laser triangulation [2] which is an affordable 

and widely used inspection technique. We further evaluate the inspection setup in terms 

of two important performance characteristics, the “lateral resolution” and the 

“measurement uncertainty” which together assess the adequacy of the setup. 

Furthermore, we compare the achieved performance metrics with the expert-defined 

tolerances on the CAD model.  

In the literature of sensor planning, authors mainly seek to automate the process of view-

point selection [3] by optimizing the setup design according to some defined evaluation 

criteria. Therefore, appropriate definition and calculation of the performance criteria is of 

central importance to sensor planning. Since the interaction of the light in the scene is 

at the heart of an optical inspection system, the evaluation of most performance 

characteristics is realized through ray-tracing. Scott [4] analyzes the measurability for 

coarsely sampled points on the surface and indicates the sensor visibility analysis as 

computationally expensive. Other authors [5] have set geometrical constraints to 

indicate the visibility of a mesh face. However, geometrically complex triangulated 

meshes often consist of numerous triangles which are non-uniform in area, can be partly 

visible, or vary in resolution. Moreover, the majority of the works only aim at optimizing 

the surface coverage [6]. A few authors have also included optical constraints such as 

resolution, focus, and field of view [7], while recent works have also taken the uncertainty 

of the measurement into account [4]. The uncertainty models are typically empirical and 

device dependent and only take a few parameters (e.g. distance, sensor viewing angle) 



 

 

Figure 1: Laser scanning system and the 

geometrical degrees of freedom. The object is 

moved along the 𝑥-axis. 𝜃𝑐 and 𝜙𝑐 define the 

camera orientation. The camera and laser 

distances are denoted by 𝑑𝑐 and 𝑑𝑙, respectively. 

The 𝜏 angle is called the triangulation angle. 

into account. Cajal et al. [8] follow a similar intention to simulate a laser triangulation 

setup where they also account for some sources of uncertainty and propagate them 

using a Monte-Carlo numerical sampling. Such a method for uncertainty propagation is 

not suitable for the current application since the sampling procedure needs to be 

repeated for each 3D measured point and in each setup configuration [9]. In this paper, 

we apply an analytical second-order uncertainty propagation which is computationally 

very efficient.  

This paper is organized as follows: upon reviewing the laser triangulation methodology 

in the next section, we introduce the two performance criteria for the setup evaluation in 

section 3. Section 4 briefly discusses the real-time graphical simulation library 

implemented for the simulation of the measurement. Section 5 demonstrates the 

evaluation results for the inspection of a cylinder head in a laser triangulation setup. 

2. Laser Triangulation Measurement 

In a laser triangulation inspection, the workpiece is moved along a scan direction while 

illuminated by a laser line. In the captured image, the peak intensities at the lateral center 

of the illuminated profile are extracted and processed to yield a set of surface 

coordinates in 3D space. The finite resolution of the sensor results in a finite set of 

measured points in each frame, which together form a point cloud of the workpiece. The 

3D measurement is achieved by solving a system of linear equations, in which two of 

the constraints are determined by the 2D camera projection and the third constraint is 

provided by the laser plane equation. A detailed mathematical derivation of the 3D 

measurement is discussed in our previous work [9] .  

Figure 1 illustrates the schematic of the setup and the main geometrical degrees of 

freedom that we have considered for the simulation and setup evaluation. Each valid 

choice of the set of parameters is called a geometrical constellation. A geometrical 

constellation together with a specific set of optical parameters (e.g. focal length, sensor 

size, etc.) is referred to as a setup configuration. 

 

 

 

 

 

 



 

 

3. Performance Characterization 

In this section, we propose the calculation of two comprehensive performance metrics, 

namely the "lateral resolution" and the "measurement uncertainty" based on real-time 

graphical simulations. As we later discuss in Section 4, by efficiently simulating the 

measurement process, we compute the simulated 3D measurement point cloud for each 

desired constellation and further calculate the two metrics to evaluate the simulated 

setup in terms of resolution and precision, respectively. 

The lateral resolution metric is defined as the minimum distance between two 

distinguishable measurement points [10]. Therefore, it can be approximated by the local 

density of the resulting point cloud. This metric is an extended version of the commonly 

used Boolean visibility [4], since a local point density of zero indicates a local invisibility.  

To estimate the lateral resolution, we first uniformly sample the triangulated surface of 

the initial CAD model with a high resolution. The uniform sampling is achieved by 

selecting a triangle with a probability proportional to its area, then sampling a point on 

its surface uniformly. This only needs to be performed once and we use the same set of 

sampled points for the all setup evaluations. Based on the simulation results, we search 

for the simulated measurement points located in the neighborhood of each sampled 

point, using a kd-tree data structure to accelerate the search. This way we are able to 

estimate the local average distance between the points at different parts of the CAD 

model. However, the resolution alone cannot characterize a setup unless we take the 

respective uncertainty into account. Therefore, this metric is complemented with 

measurement uncertainty to achieve a comprehensive setup evaluation criterion. 

The measurement uncertainty metric indicates the dispersion of the measurement 

value around the nominal value due to the limited precision of the measurement. The 

estimation of the measurement uncertainty is primarily based on applying our previous 

work [9] on the simulated point cloud, where we have proposed an uncertainty 

propagation framework to model different sources of uncertainty in the measurement 

process with appropriate random variables, estimate the standard deviation of the 

random variables in the setup, and propose a probabilistic method to propagate them 

through the measurement. The uncertainties that are modeled belong to three different 

groups: laser detection uncertainties on the image, geometrical positioning uncertainties 

of the camera and the laser, and the camera optical calibration uncertainties. The 

modeled uncertainties are then propagated using a second-order approximation method 

which results in a 3×3 covariance matrix for each 3D measured point, describing the 

dispersion of the resulting point in 3D space. This covariance matrix describes a 

correlated 3D uncertainty for each point and can be used to calculate the measurement 

standard deviation along each direction of interest. To apply a worst case analysis, we 



 

 

evaluate the uncertainties along the direction with the highest uncertainty (standard 

deviation). This is possible by applying an eigenvalue decomposition on the 

corresponding estimated 3D covariance matrix. 

4. Graphical Simulation 

To evaluate a specific setup configuration, we simulate the measurement to obtain the 

3D point cloud measured in the desired configuration. To this end, we have implemented 

the Rasterization Simulation Library (RSL) which simulates the image acquisition 

process for a specific geometrical and optical configuration (see Figure 2). The 

simulation input currently includes the geometrical constellation (as in Figure 1), the 

laser properties, such as wavelength, focal distance, divergence and opening angle, the 

camera resolution, and above all, the CAD model of the workpiece. The graphical 

simulations are based on rasterization techniques [11], which can be performed very 

quickly even on commodity hardware, making them an ideal fit for our needs. Using the 

OpenGL library, we first check for all surface points projected onto a camera pixel 

whether they are illuminated by the laser line and visible to the camera. We use a 

shadow map check, followed by a calculation of the laser beam width at the surface to 

determine the illumination. The visibility to the camera is resolved by the depth buffer. 

Surface points fulfilling both criteria are then evaluated with regard to whether the 

analytical intersection between the laser plane and the surface occurs in the frustum of 

the affected camera pixel. Surface points whose pixel boundaries contain the analytical 

intersection then constitute the final set of points for a frame. Having determined a set 

of points for each frame, we combine them to form a point cloud of the model. This point 

cloud is then used for the calculation of the two aforementioned performance metrics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: RSL simulation. Left: Free view. The box and the cylinder represent the camera 

and the laser, respectively. Right: The same scene from the camera's view. 



 

 

5. Evaluation of a Cylinder Head Inspection 

In this section, we simulate a cylinder head inspection process in a laser triangulation 

setup and evaluate the proposed performance criteria on the simulation results. To 

compare the achieved performance characteristics with the expert-defined constraints 

at each specific part of the CAD model, the RSL simulation library supports segmented 

CAD models in which different parts of the model are associated with different resolution 

and uncertainty constraints. Figure 3 illustrates the segmented cylinder head CAD model 

which we have used in the simulations. 

Figure 4 displays a demonstration of the results for the simulated cylinder head 

inspection. This result has been generated for the constellation in which θc = 60∘, 𝜙𝑐 =

0 °, 𝑑𝑐 = 0.5 𝑚, 𝑑𝑙 = 0.5 𝑚 and 𝜏 = 30°, based on the setup geometry in Figure 1 and a 

camera image with 512 × 512 pixels. The wavelength of the simulated laser line is 

530𝑛𝑚 and has a focal distance of 0.3𝑚 and an opening angle of 90°. The triangulated 

cylinder head mesh model was moved at a speed of 2𝑚𝑚  per frame during the 

measurement simulations, and the whole workpiece is scanned through 400 frames. 

The runtime for the simulation part is 0.39 𝑠. This time was measured on a machine with 

an NVidia GTX780 graphics card and a Core i7 2600 CPU running at 3.4 GHz. The 

simulation efficiency enables us to simulate the measurement for many constellations 

and provides the possibility for the further optimization of the setup. The result of the 

simulation has been evaluated in terms of the lateral resolution and the measurement 

uncertainty. The runtime for calculating the performance metrics is measured to be 

0.98 𝑠 on the same machine. 

For modeling the sources of uncertainty, we have considered a 0.2 𝑝𝑥  standard 

deviation for the laser peak detection on the image, a 0.5 𝑚𝑚 standard deviation for the 

positioning of the laser and the camera which is a typical value for the repeatability of 

industrial robots (neglecting rotational uncertainties), 1 𝑝𝑥 standard deviation for the 

focal length (pixel unit based on the ratio of the sensor size and pixel numbers), and a 

0.5 𝑝𝑥 standard deviation in estimating the projection center of the camera based on a 

Figure 3: Segmented CAD model of the cylinder head. Different grayscales correspond to 

different CAD segments associated with different inspection requirements. 



 

 

pinhole camera model [12]. The uncertainties are then analytically propagated based on 

a second order approximation, as described in [9], and each point is associated with a 

3×3 covariance matrix which corresponds to an ellipsoid in the 3D space. We have 

further analyzed the ellipsoids and computed the variance along the direction with the 

largest spread, which indicates the direction with the largest uncertainty. This variance 

corresponds to the largest eigenvalue of each estimated covariance matrix. Finally, both 

estimated metrics are compared against the expert-defined constraints, separately for 

each CAD segment. Figure 4 illustrates the achieved performance metrics in this 

constellation and Figure 5 displays the pass or fail condition of the metrics on different 

areas of the model according to the given tolerances. 

 

 

6. Conclusion  

The described performance characterization method can be applied to efficiently 

evaluate a laser triangulation setup for each desired geometrical constellation and 

optical parameters. Therefore, one is able to use this evaluation framework for automatic 

or semi-automatic setup optimization with the goal to best fulfill the inspection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4: Performance characterization of cylinder head inspection in a laser triangulation setup. Left: 

The estimated measurement uncertainty along the direction with the largest standard deviation. Right: 

Achieved lateral resolution. The brightest area corresponds to unmeasured parts. 

Figure 5: The final inspection evaluation 

based on the expert-defined tolerances. 



 

 

requirements. The efficiency of the method, which is mostly achieved by the hardware 

accelerated simulations can turn this approach into a suitable solution for setup 

optimization and rapid prototyping of optical inspection setups with geometrically 

complex CAD models and specific inspection requirements. 
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