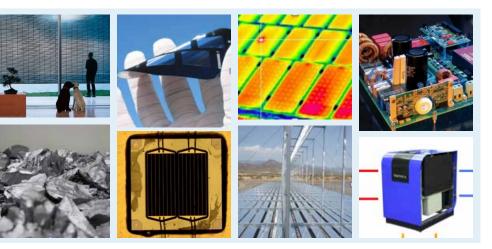
European Perspectives in Research and Development on Solar Thermal Collectors and Systems

Gerhard Stryi-Hipp

Coordinator Smart Energy Cities Fraunhofer Institute for Solar Energy Systems ISE

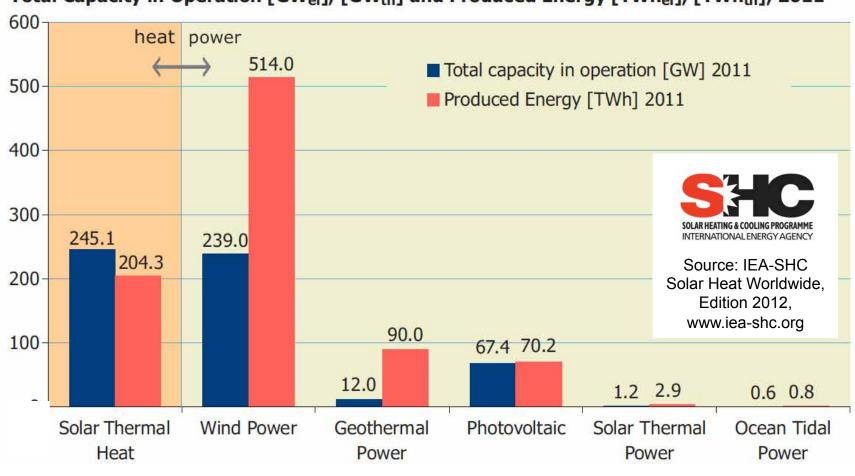
President European Technology Platform on Renewable Heating & Cooling

CISBAT2013 Lausanne, Swiss, 4 September 2013

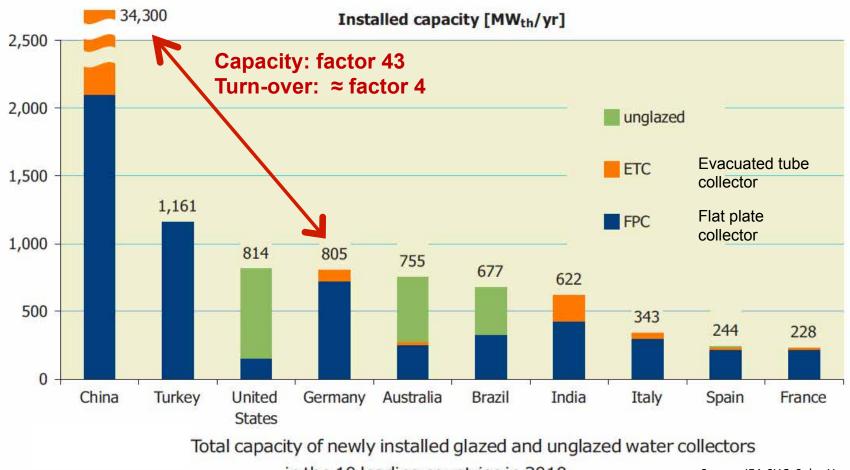


Fraunhofer Institute for Solar Energy Systems ISE

- Applied research on Renewable Energies since 1981
- Largest Solar Research Institute in Europe 1300 employees incl. 300 PhD and diploma students
- Director: Prof. Eicke R. Weber
- Part of the Fraunhofer Society with 60 institutes and 20000 employees, largest applied research network


- Energy Efficient Buildings
- Applied Optics, Functional Surfaces
- Solar Thermal Technology
- Silicon Photovoltaics
- Alternative PV Technologies
- Renewable Power Supply
- Hydrogen Technology

Solar Thermal Energy: Underestimated Source of Power



Total Capacity in Operation [GW_{el}], [GW_{th}] and Produced Energy [TWh_{el}], [TWh_{th}], 2011

Solar thermal world market 2010 – 10 leading countries

in the 10 leading countries in 2010

Source: IEA SHC, Solar Heat Worldwide, Edition 2012

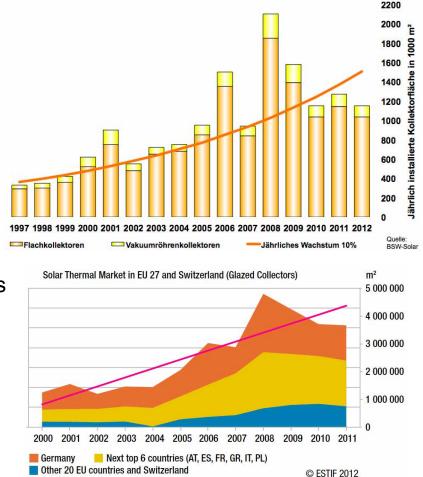
Renewable Heating & Cooling European Technology Platform

Market status and perspective Germany and EU27

Solar thermal market Germany

2009: - 25% 2010: - 25% 2011: + 10% 2012: - 9% 1-7/2013: - 12% => Stagnation

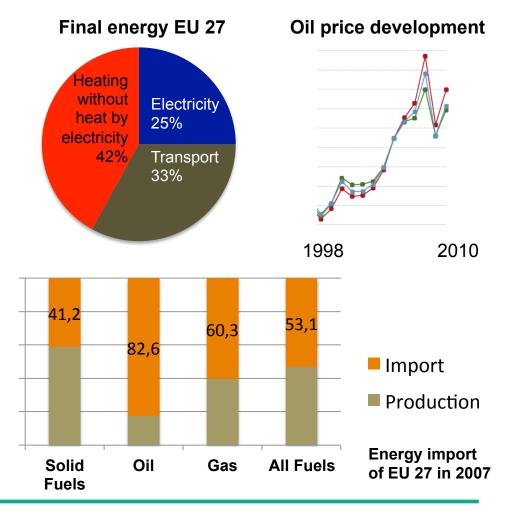
Solar thermal market Europe Dynamic countries Most countries are declining or stagnating (France, Spain, Italy) a few countries are growing: Poland,...


Perspective 2020

National Action Plans of EU member countries assume moderate growing demand

Long-term vision (2030-2050)
 High targets are set in the vision of the European Technology Platform
 (50% Solar thermal on heat demand
 = 8 m² collector area/inhabitant)

Development of the German solar thermal market

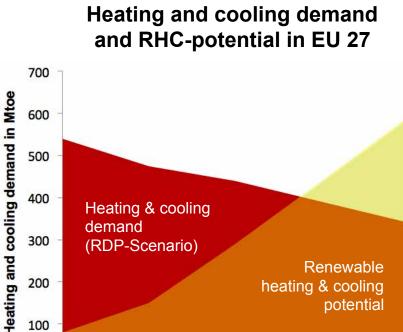


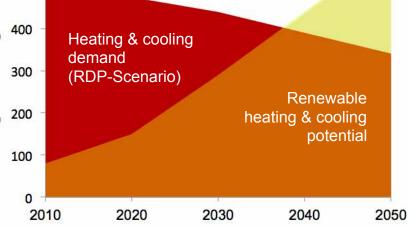
Relevance of heating & cooling in the energy sector

- Heating & cooling: the largest share on final energy demand
- Oil and natural gas price: increasing continuously
- Dependency on fossil fuels: increasing continuously

⇒ In future, energy policy must focus equally on electricity, transport AND heating & cooling

Important Part of the Solution: RHC-Technologies


RHC = Renewable Heating and Cooling


Heating & cooling demand can be reduced significantly and satisfied increasingly by RHC.

⇒ Until 2040 we can reach 100% RES for heating & cooling

Benefits of RHC-technologies

- Mitigation of climate change
- Reducing import dependencies
- High security of supply •
- Protection against oil price increase (social aspects)
- Local added value, creating jobs

Source: EHC-platform, Common vision for the RHC-sector, 2011 RDP-Scenario = Full Research, development and policy scenario

Heating and Cooling Market is often Omitted - Why?

SET-Plan (EC):

"The SET-Plan establishes an energy technology policy for Europe to accelerate the development and deployment of low carbon technologies."

8 Initiatives:

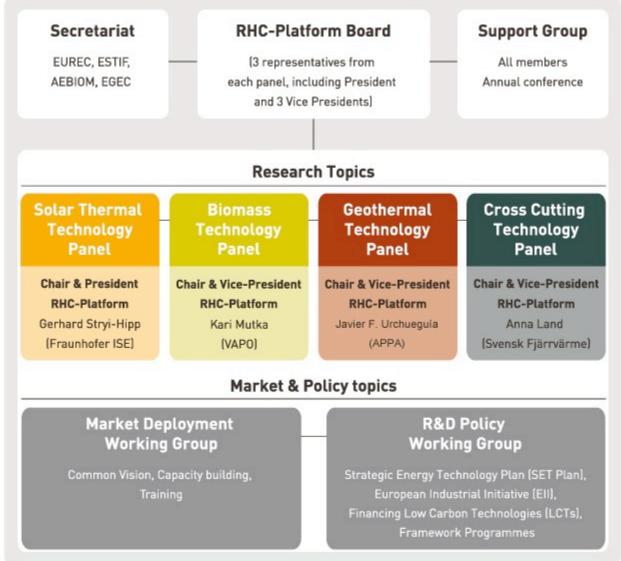
Bio Energy (fuels), CCS, Electricity Grid, Fuel Cells and Hydrogen, Sustainable Nuclear, Solar (PV + CSP), Wind => Heating & Cooling is only part of Smart Cities & Communities Initiative

Energy 2050 (Roadmap of EC): Acknowledges that renewable heating and cooling is vital to decarbonisation

=> A thorough analysis of the heating & cooling sector is omitted

REASONS

- H&C sector is decentralized and very inhomogenious in its structure (technologies, actors, demand, sources, costs, ...)
 => Difficult to understand
- H&C market depends strongly on oil price fluctuations
 => Difficult to influence by policy
- Policy instruments in the H&C sector are weak or expensive (subsidies), complex or hard to implement (obligations)
 => Difficult to influence



Data

- Founded in 2008
- 4 panels, led by steering committees
- Supported by the European
 Commission
- More than
 600 members
- Free membership

www.rhc-platform.org

Cross Cutting Technologies

TECHNOLOGIES

- District heating and cooling (DHC)
- Thermal energy storage (TE)
- Hybrid systems and heat pumps

CHARACTERISTICS

- Enabling technologies for high uptake of renewable energy
- Optimization / integration to framework conditions necessary

CHALLENGES

- Develop smart solutions and ICT for complex systems
- Increase efficiency and COP
- Reduce costs

APPLICATIONS DHC

- District heating
- District cooling
- DH&C with seasonal storage

TE Storage

- Water storage
- PCM
- Thermo chemical
- Underground storage (UTES)

Hybrid systems and heat pumps

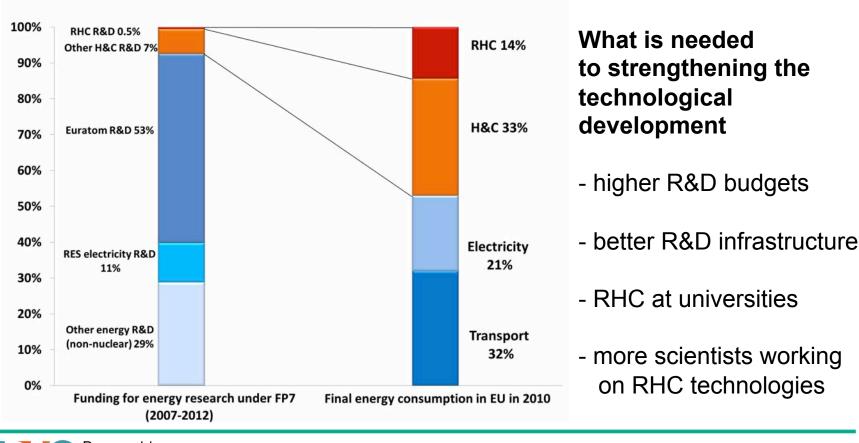
- Innovative system design
- Ground, water and air heat pumps

COP = Coefficient of performance, PCM = Phase change material, GT = Geothermal, UTES = Underground Thermal Energy Storage

Publications www.rhc-platform.org

European Technology Platform

Common	Strategic Research Priorities of			
Vision 2020 - 2030 - 2050	Solar thermal	Biomass	Geo thermal	Cross- cutting


Under development: Strategic Research Agenda of the RHC-Platform

Lack of R&D funding for RHC technologies

FP7 budget distribution to different sectors in comparison to the energy demand distribution

RHC-platform work programme

European Technology Platform

Vision 2030

Objective: strengthening the technological development

Role of RHC technologies in 2030, which technologies will be used?

PoliticiansResearcherIndustry

Strategic Research Agenda

Which R&D is necessary to let the vision become reality?

Implementation

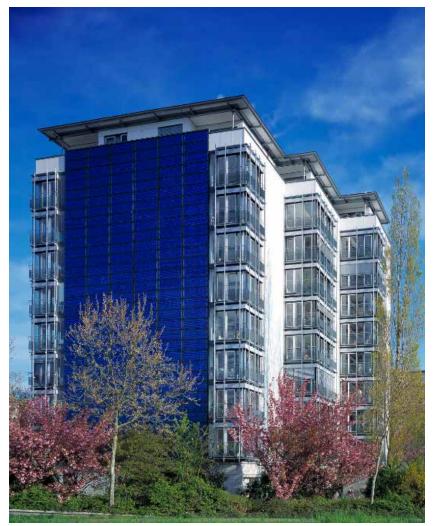
Stimulation of new R&D programs, political advice, lobbying,...

Solar Thermal Vision 2030

of the Solar Thermal Technology Panel of the European Technology Platform on RHC

- New buildings: Solar-Active-House
 100% solar heated buildings (building standard)
- Existing building stock: Solar Refurbishment Solar refurbished buildings will be the most cost effective way to refurbish the building stock (solar fraction > 50%)
- Industrial + Agricultural Solar Applications Solar thermal systems will cover process heating and cooling demands
- Solar district heating and cooling networks will be widely used in urban areas

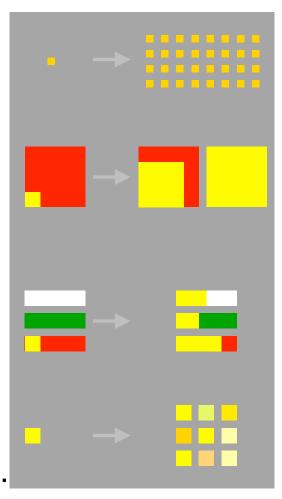
Overall goal: ca. 50% of the low temperature needs (up to 250°C) will be provided by solar thermal



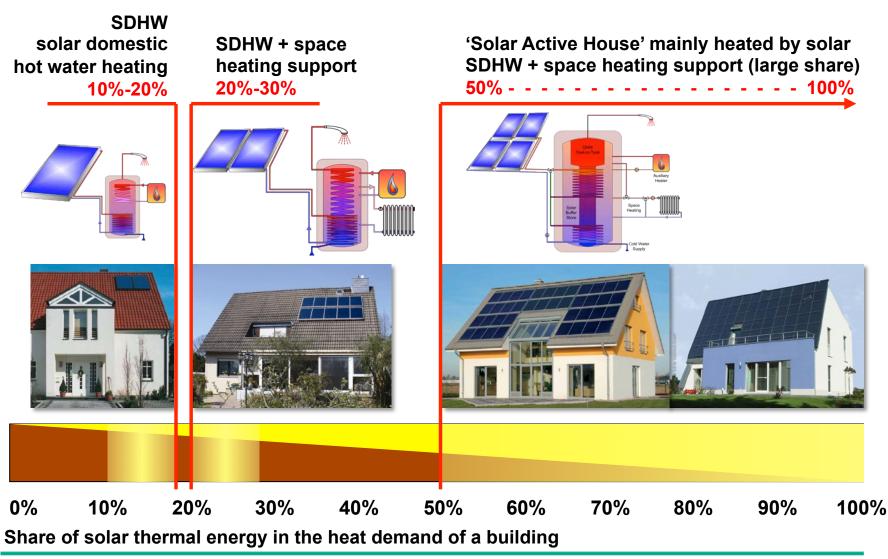
Buildings will become zero or plus energy houses

Solar Thermal will contribute to achieve the goal of the European Directive: From 2020 on new buildings must be "Nearly zero energy buildings" Buildings will use their roof and their façades to produce electricity and heat

Source: Schüco


Source: Hotz Architekten

Four Strategies to develop the full potential of ST and related R&D tasks


- The number of solar thermal systems
 has to be sharply increased
 => lower costs for standard technology,...
- The share of solar thermal energy per building has to be increased step-by-step up to 100%
 => system technology, storage tanks,...
- Existing technology to be introduced in new market segments like public buildings and commercial sector => collector & system technology,...
- New technologies & applications
 have to be developed like district and process heating
 and on longer-term solar assisted cooling
 => component, system & application technology,...

From SDHW only to 100% Solar Heated Houses

Concept of Solar Heated Building

Collectors 30m² - 60m² Seasonal Heat Storage (Water)

6 – 10 m³

Solar Fraction (share of the overall heat demand): 60% - 70%

Large Solar Thermal Systems

- For multi family homes, hotels, hospitals, nursing homes
- Crucial: smart and efficient management of the heat sources

Promising Application Solar District Heating

- will play a big role in the future

Solar District Heating, Marstal, Denmark collector area 17,000 m²

© Arcon

Semi-detached houses in Neckarsulm, Germany

12,000 m³ seasonal storage, Friedrichshafen, Germany

0

Promising Technology (long-term) Solar Assisted Cooling

- (Solar) thermally driven cooling machines
- Cooling demand and solar supply patterns match well
- There are already more than 400 pilot systems installed in Europe
- Small systems are under development

Adsorption cooling machine

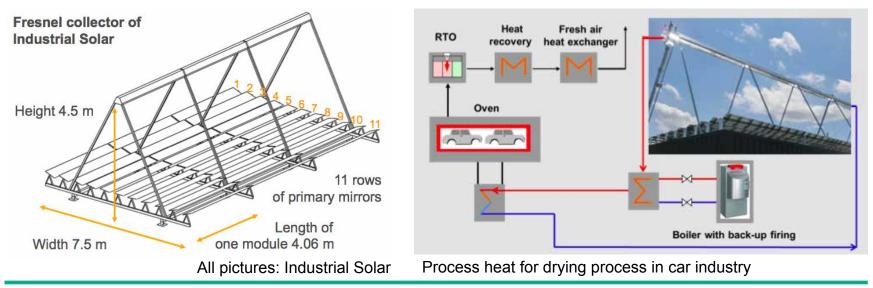
Source: Fraunhofer ISE

Important field of application: process heat generation

Example: R&D activities at Fraunhofer ISE

- Developing of new process heat collectors
- Working on optimized system design
- Development of branch solutions
- Testing and certification

Reference flat-plate collectors (glass-foil, front) and newly developed RefleC-collectors (back)



Medium and high temperature Fresnel-collectors

- Production of process heat up to 400 °C possible
- Fields of applications
 - Solar assisted cooling
 - High temperature processes in industry

Solar assisted cooling at football stadium in Doha

Solar Thermal R&D topics identified

- Solar Thermal Collectors
- Thermal storages for single buildings
- Seasonal thermal storages for district heating grids
- System technology
- Solar process heat
- Solar cooling and refrigeration

Example: R&D topics of flat plate collectors

Overall goals: Cost reduction, adapted to application

New materials

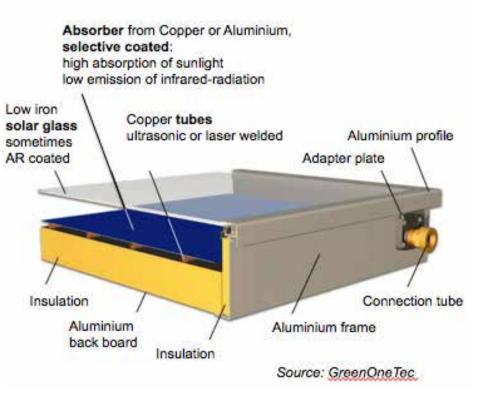
- plastic, steel, ...

New production methods

- absorber, housing,...

Security, operation

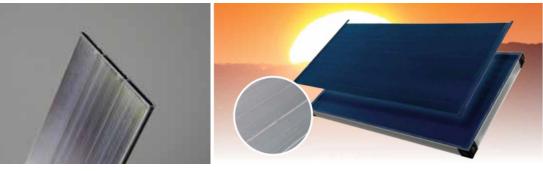
- avoid stagnation (switchable,..)


Adapted to the application

- temperature up to 250 °C
- Roof / façade integration

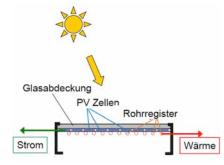
Special constructions

- Air collectors
- PV-Thermal hybrid collectors
- Integrated storage collectors



Sample research topics and products collectors

Cost reduction through replacement of copper by aluminium


www.hydro.com

www.hydro.com

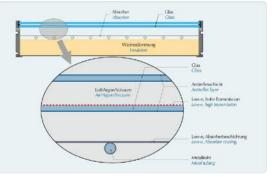
www.savosolar.fi

Photovoltaic-Thermal (PVT) collectors

www.isfh.de

www.isfh.de

www.absolicon.com Source: Michael Hermann


Sample research topics and products colletors

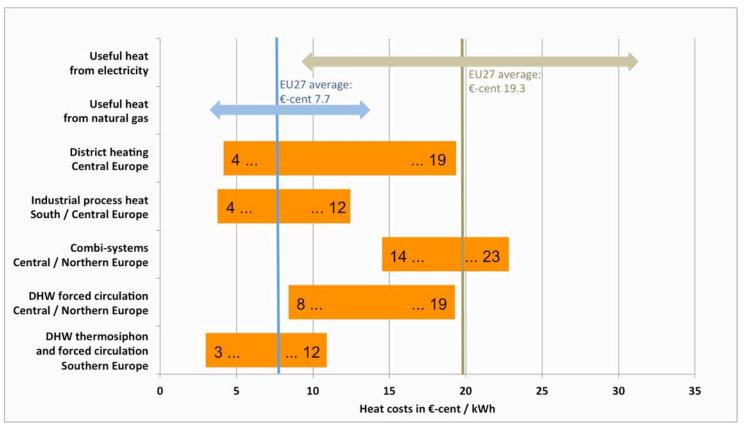
High-efficiency collectors (e. g. for solar process heat)

www.absolicon.com www.chromasun.com

www.itcollect.de

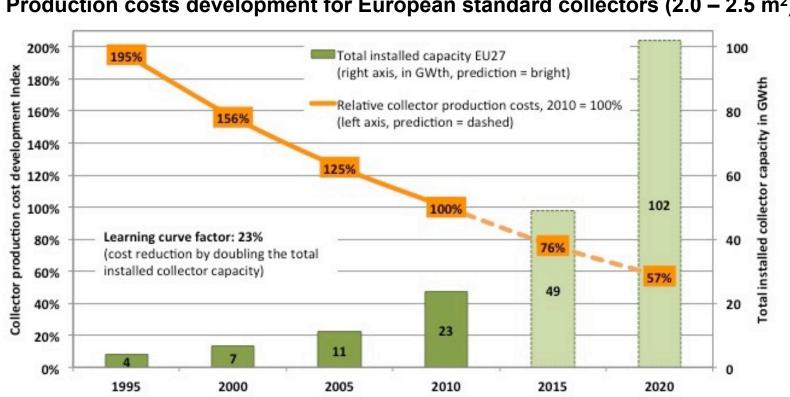
www.isfh.de

Multifunctional collectors



Main objective of research on RHC technologies: **Increasing cost-competitiveness**

Status solar thermal heat prices for different applications in different European regions in comparison to heat from electricity and natural gas


Source: Strategic Research Priorities for Solar Thermal Technology, RHC-Platform 2012

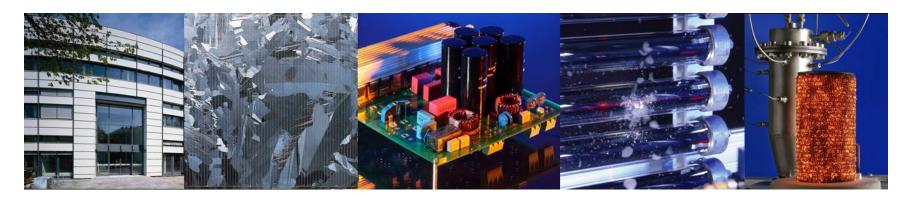
Cost reduction potential of solar thermal energy

To demonstrate the success of cost reduction, not the system price is compared, since the type of systems and their solar fraction are increasing, but the collector production costs

Production costs development for European standard collectors (2.0 – 2.5 m²)

Source: Strategic Research Priorities for Solar Thermal Technology, RHC-Platform 2012

Conclusions


- Solar thermal energy can cover up to 50% of the overall energy demand for heating and cooling in Germany and Europe
- There is a huge potential for solar thermal technology development
- Key words for solar thermal R&D are: cost reduction – new materials – increased reliability – fail-safe installation – smart controller – monitoring systems – hybrid systems – high density storage medium and high temperature collectors – multifunctional façade collectors – solar thermal cooling systems – …

Thank you very much for your attention!

Fraunhofer Institute for Solar Energy Systems ISE

Gerhard Stryi-Hipp

www.ise.fraunhofer.de

gerhard.stryi-hipp@ise.fraunhofer.de

