

Proceedings of the

First International Workshop on Quality
Assurance in Reuse Contexts (QUARC 2004)

August 30, 2004, Boston, Massachusetts
In conjunction with the Third Software Product Line Conference

Editors:
Ronny Kolb
John D. McGregor
Dirk Muthig

IESE-Report No. 096.04/E
Version 1.0
August 30, 2004

A publication by Fraunhofer IESE

Fraunhofer IESE is an institute of the Fraun-
hofer Gesellschaft.
The institute transfers innovative software
development techniques, methods and tools
into industrial practice, assists companies in
building software competencies customized
to their needs, and helps them to establish a
competitive market position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach (Executive Director)
Prof. Dr. Peter Liggesmeyer (Director)
Sauerwiesen 6
67661 Kaiserslautern

Copyright © Fraunhofer IESE 2004 v

Proceedings of the First International Workshop on
Quality Assurance in Reuse Contexts (QUARC 2004)

Organizers

Ronny Kolb
Fraunhofer Institute for Experimental

Software Engineering (IESE)
Sauerwiesen 6

D-67661 Kaiserslautern, GERMANY
kolb@iese.fraunhofer.de

John D. McGregor
Dept. of Computer Science

Clemson University
Clemson, SC 29634

johnmc@cs.clemson.edu

Dirk Muthig
Fraunhofer Institute for Experimental

Software Engineering (IESE)
Sauerwiesen 6

D-67661 Kaiserslautern, GERMANY
muthig@iese.fraunhofer.de

Copyright © Fraunhofer IESE 2004 vii

Workshop Participants

Pekka Mäki-Asiala
VTT Technical Research Centre of Finland, VTT Electronics,
P.O.Box 1100
FIN-90571 Oulu, Finland
Pekka.Maki-Asiala@vtt.fi

Michael Eonsuk Shin
Department of Computer Science, Texas Tech University
Lubbock, TX 79409-3104
Michael.Shin@coe.ttu.edu

Grover G. Phillips
Engenio Information Technologies, Inc.
grover.phillips@engenio-it.com

Frank van der Linden
Philips Medical Systems QV-1
Veenpluis 4-6, PO Box 10000, 5680 DA Best
The Netherlands
frank.van.der.linden@philips.com

Tim Trew
Philips Research Laboratories
Cross Oak Lane, Redhill, RH1 5HA, UK
Tim.Trew@philips.com

Hideharu Teranishi
Ricoh Company Ltd.
1-15-5 Minami-Aoyama,
107-8544 Minatoku, Japan
Hiderahu.Teranishi@nts.ricoh.co.jp

Copyright © Fraunhofer IESE 2004 viii

Holger Diekmann
Robert Bosch GmbH

Rohit Sharma
Virtusa
2000 West Park Drive
Westborough, MA
rsharma@virtusa.com

Kiran Samartunga
Virtusa
2000 West Park Drive
Westborough, MA
kiran@virtusa.com

Copyright © Fraunhofer IESE 2004 ix

Table of Contents

Introduction to Quality Assurance in Reuse Contexts 1
Ronny Kolb, John D. McGregor and Dirk Muthig

Inspections in Reuse Intensive Software
Development Processes 4
Christian Denger and Hideharu Teranishi

Improving Efficiency of Testing with Test Reuse:
Development of Reusable Test Assets 11
Annukka Mäntyniemi and Pekka Mäki-Asiala

Quality Assurance in a Software Product Line 19
John D. McGregor

Position – Quality Assurance in Reuse Contexts 25
Frank van der Linden

Consistency Checking in Multiple-View
Meta-Models of Software Product Lines 27
Hassan Gomaa and Michael Eonsuk Shin

Summary of Workshop Results 34
Ronny Kolb, John D. McGregor and Dirk Muthig

Introduction to Quality
Assurance in Reuse Contexts

Copyright © Fraunhofer IESE 2004 1

1 Introduction to Quality Assurance in Reuse Contexts

Ronny Kolb1, John D. McGregor2, and Dirk Muthig1

1 Fraunhofer Institute Experimental Software Engineering, Sauerwiesen 6,
D- 67661 Kaiserslautern, Germany
christian.denger@iese.fhg.de

2 Dept. of Computer Science, Clemson University, Clemson, SC 29634,
johnmc@cs.clemson.edu

Software development today faces several challenges. There is a critical need to
reduce cost, effort, and time-to-market of software products, but, at the same
time, complexity and size of products are rapidly increasing and customers are
requesting more and more quality products tailored to their individual needs. A
promising approach to address today’s software development problems and to
make the software development process more efficient is the systematic, large-
scale reuse of software artifacts over multiple products. Recently, reuse-based
software development paradigms such as component-based software devel-
opment and software product lines have increasingly received attention not just
in the software research community but even more in the software industry as
they promise – and have shown – to shorten the development time of software
systems and to reduce development and maintenance costs.

The potential benefits of all these approaches are based on the assumption that
a significant portion of a new software product is built through the reuse of ex-
isting software components, but also other software artifacts such as architec-
ture, design, or requirements. In order to achieve the promised improvements,
however, a high level of quality of the artifacts intended for reuse is required.
Therefore, more than for traditional software development, quality assurance
becomes a crucial part of every reuse-based development effort. In fact, quality
assurance is more critical for software product lines and other reuse-based
software development paradigms since quality problems in an artifact not only
lead to an end product with low quality but also propagate this low quality into
all the products making use of it. Consequently, it is vital that before being re-
used the quality of all artifacts intended for reuse is assured using quality assur-
ance techniques such as inspections and testing.

There are a number of specifics caused by software reuse such as variable usage
of software components or genericity of artifacts, however, that have to be

Introduction to Quality
Assurance in Reuse Contexts

Copyright © Fraunhofer IESE 2004 2

faced during quality assurance. In order to enable an organization to fully ex-
perience the expected efficiency gain through reuse, therefore, a quality assur-
ance approach is required that enables to validate the products built from reus-
able artifacts as effective and as efficient as they are validated in a non-reuse
context.

Despite the criticality of quality assurance and the special problems caused by
reuse-based software development, however, research in the field of software
product lines and component-based development has primarily focused on
analysis, design, and implementation to date and only very few results address
the quality assurance problems and challenges that arise in a reuse context.
With the growing acceptance of reuse-based development paradigms such as
software product lines, therefore, effective and efficient methods and tech-
niques for ensuring the quality of reusable artifacts and products built by reus-
ing existing artifacts are required.

The aim of this workshop is to establish a forum for the successful exchange of
experience and ideas among practitioners and researchers, working together to
improve the state-of-the-art and state-of-the practice in quality assurance for
software product lines and other reuse-based software development ap-
proaches. The workshop will provide an opportunity for exchanging views, ex-
periences, and lessons learned, advancing ideas, as well as discussing recent
work and work in progress on topics dealing with quality assurance for soft-
ware artifacts intended for reuse and products built using reusable artifacts. It
intends to bring together researchers and practitioners from both academia and
industry to share ideas on the foundations, techniques, methods, strategies,
and tools of quality assurance for reuse-based software development para-
digms.

The discussion of this workshop is particularly focused on the following issues:

• What are the implications of reuse-based software development para-
digms such as software product lines or component-based development
from the perspective of quality assurance?

• Are existing quality assurance approaches suitable with respect to reuse-
based software development paradigms?

• How to improve existing quality assurance techniques and processes to
be effectively and efficiently applicable in a reuse context?

• What is the best way to ensure the quality of software artifacts intended
for the purpose of reuse?

• How can the quality of reusable components (in particular generic com-
ponents used in product lines) be ensured efficiently and effectively?

• How to minimize the effort of ensuring the quality of products built from
reusable artifacts?

Introduction to Quality
Assurance in Reuse Contexts

Copyright © Fraunhofer IESE 2004 3

• Which impact does the domain has on quality assurance techniques and
strategies?

• When to use which quality assurance technique?
• Which quality assurance techniques should be applied to satisfy which

quality attributes to the expected level?
• How do different variability implementation mechanisms influence quality

assurance strategies?
• How to plan and prepare for quality assurance in a product line context?
• How should an organization invest its resources for quality assurance?
• How can costs and benefits be “traded-off” against resulting product

quality?
• How can synergies between various quality assurance techniques be

combined?

Inspections in Reuse Intensive
Software Development Processes

Copyright © Fraunhofer IESE 2004 4

2 Inspections in Reuse Intensive Software Development Processes

Christian Denger1 and Hideharu Teranishi2

1 Fraunhofer Institute Experimental Software Engineering, Sauerwiesen 6,
D- 67661 Kaiserslautern, Germany
christian.denger@iese.fhg.de

2 Ricoh Company LTD. 1-15-5 Minami-Aoyama, 107-8544 Minatoku
Tokyo, Japan, Hiderahu.Teranishi@nts.ricoh.co.jp

Abstract. High quality is an important goal for almost all software develop-
ment projects. In the context of software product lines this goal is even more
important. In such development approaches, the quality of the final system is a
result of the quality of its comprising components. Moreover, reuse is an inher-
ent element of product line engineering. Thus, the quality of each single com-
ponent is of highest importance. Components that are built for reuse are even
more important as a defect in such a component does not only affect the qual-
ity of the component but also the overall quality of all the systems that reuse
this component. Inspections are one of the most effective and efficient quality
assurance techniques but this quality assurance technique has so far not been
tailored to the specific characteristics of reuse intensive systems. This paper dis-
cusses challenges and potential solutions on how make efficient use of limited
inspection resources in a reuse intensive development context.

2.1 Introduction

Software developers strive to develop high quality software. In reuse intensive
development approaches, such as software product lines, high quality of the
single components that comprise a final system are of highest important [3].
The reason is that when reusing components in a product not only the compo-
nents functionality and characteristics are reused but also the quality flaws con-
tained in that component. In other words, defects in one component affect all
those products in which that component is reused. Therefore, reusable compo-
nents should achieve a highest level of quality in order to reduce the risk of de-
fect propagation. Quality assurance techniques such as testing and inspections
[4, 5, 2] have been developed to improve the quality of software products and
components. However, so far these techniques are not tailored to the specials
characteristics of reuse intensive systems [6].

Inspections in Reuse Intensive
Software Development Processes

Copyright © Fraunhofer IESE 2004 5

One reason for this might be that it is assumed that traditional quality assur-
ance approaches can be used within the context of product line engineering.
This would imply that the challenging question of how to perform quality as-
surance in product line engineering companies is already solved. However,
practice shows that this is not true. Product lines engineering imposes specific
aspect that need to be addressed such as the modeling of variabilities and the
use of generic components for reuse in specific applications. This aspect is not
or insufficiently considered in existing quality assurance techniques. The chal-
lenges and the opportunities imposed by reusing components should be con-
sidered in tailored quality assurance techniques.

A crucial aspect of such tailored approaches is how a cost-effective enactment
of quality assurance techniques might look like in the context of reuse. Every
software development project has limited resources for quality assurance and
therefore, these resources need to be spent in a most efficient and systematic
way that is most likely to yield the best return on investment, and maximize the
chances of successful defect

As software inspection are one of the most efficient software quality assurance
techniques, especially for the early life-cycle phases [9], this technique should
be in particular considered as a means to improve the quality in product line
development approaches. In the following a balancing model for software in-
spection is discussed that tackles exactly the question on how to efficiently en-
act and perform software inspection to address the challenges and specialties
imposed by the reuse intensive nature of product line engineering.

2.2 Inspections in Software Product Lines, Challenges and Chances

In the following the ideas of a balancing model for inspections are discussed.
The following figure indicates the ideas of this model. The figure illustrates the
overall issue of quality assurance in general and inspections in particular in a re-
use centered development approach such as product line engineering. The in-
spections can be performed either on the generic or reusable components or
within the projects that reuse a certain instantiation of the reusable compo-
nents (white arrows).

Thus, a strategy is required on how to perform inspections as efficient as possi-
ble when reusing components. This imposes the following questions (green ar-
rows):

• How to perform inspection on reusable components in a most effective
and efficient way i.e. how to address issues such as variabilities and
genericity?

Inspections in Reuse Intensive
Software Development Processes

Copyright © Fraunhofer IESE 2004 6

• How to balance the effort for inspections of the reusable components
and the inspections of the specific projects that reuse the generic com-
ponents?

Beside these crucial questions and the related challenges the aspect of reusing
components has also a positive effect. A reusable component is not only reused
in one project but usually in several different ones. Thus, it is possible to con-
tinuously learn about the component’s quality and to continuously improve the
inspection approaches for generic components. The overall question with re-
spect to this chance is:

• How to optimize inspections of generic components based on the knowl-
edge of defects found on the instantiations of the components?

Reusable
Components

Perform inspections

Product/projects
that reuse
components

Perform inspections

How to balance the
inspection effort
between generic and
specific components

How to optimize
generic component
inspections?

Reusable
Components

Perform inspections

Product/projects
that reuse
components

Perform inspections

How to balance the
inspection effort
between generic and
specific components

How to optimize
generic component
inspections?

Figure 2-1: Challenges of Inspecting in the Context of Reuse

2.3 Performing and Balancing Product Line Inspections

In the following some approaches are presented that should help to answer the
questions mentioned above.

2.3.1 Addressing Genericity and Variabilities

In order to address the question of how to cope with product line specific as-
pects such as variabilities and generic components, existing inspection ap-
proaches need to be tailored to these characteristics. Scenario-based ap-

Inspections in Reuse Intensive
Software Development Processes

Copyright © Fraunhofer IESE 2004 7

proaches such as usage based reading [8] or perspective based reading [1, 7]
proved to be the most efficient reading techniques in several application con-
texts.

The flexible nature of these approaches allows a tailoring to the specific re-
quirements of product line inspections. The basic idea of perspective-based
reading is that a software artifact is inspected from different viewpoint (per-
spectives). The selected perspectives represent relevant stakeholders of the
software artifact that are interested in its quality. Mainly, these perspectives
represent users of the object under inspection. For a component in general this
could mean testers, implementer, code analysts, and maintainers. An inspector
of each perspective gets a so-called reading scenario that provides active guid-
ance on how to perform the inspection. Experience in applying this approach
shows that the tester perspective seems to be the most efficient perspective. In
that case the inspector has to develop test cases from the object under inspec-
tion and has to mentally simulate these test cases, which often reveals a lot of
subtle defects. With these “traditional” perspectives it is possible to address
typical quality criteria of a component such as its functional correctness, its con-
sistency to other artifacts, its completeness and testability.

In the context of software product lines additional quality criteria are of impor-
tance such as maintainability, adaptability and reusability of a component. In a
constructive way these aspects are achieved by variability modeling and the
definition of generic components. In order to ensure that a component fulfills
these aspect additional perspectives should be designed. The definition of a
product line manager perspective and a product line architect perspective allow
to focus the inspectors exactly on these aspects. The reading scenarios can be
used to guide the inspectors in traversing variability resolutions through the
component under inspection and to focus on the components reusability and
adaptability by checking its interface definitions and by modeling some poten-
tial instantiations of the generic component to see whether all generic parts are
reasonable.

2.3.2 Balancing the Inspection Effort

The second challenge that needs to be addressed is the efficient use of re-
stricted inspection resources on the generic components and the specific pro-
jects that reuse these components. It is obvious that in an unsystematic inspec-
tion process one might redundantly inspect aspects of the reusable compo-
nents, once on the generic component and later on the concrete instance.
Therefore, a systematic planning process is essential. At first, two extreme ap-
proaches are thinkable. Either, the quality is checked only on the reusable com-
ponents (i.e. the generic component) and no additional inspection of these
components is performed during the specific product inspections. On the other

Inspections in Reuse Intensive
Software Development Processes

Copyright © Fraunhofer IESE 2004 8

end of the spectrum inspections are performed only on the product specific
side, when the components are reused in a concrete context.

Both approaches have crucial drawbacks. Limiting inspection to the reusable
components means that product specific aspects and the concrete instantiation
of the component cannot be considered. This might lead to ineffective inspec-
tions as crucial defects due to the product specific instantiation are missed. Lim-
iting the inspection to the product specific side leads to an inefficient inspection
approach, as defects in a reusable component are propagated to all products
and need to be corrected in all of these products. These drawbacks show that
the inspection effort has to be balanced between inspections of reusable and
reused components.

The basic assumption of this balancing model is that different type of defects
and quality aspects can and should be addressed by inspecting the generic and
the instantiated components. Based on this assumption it is then possible to
measure which types of defects are easier to detect in each inspection and to
balance the inspection effort in that way that those defects and qualities are
addressed that are most easily found in the different inspections. The balancing
model can be developed by a measurement program that evaluates the defect
typed that are most efficiently found on the reusable components and on the
specific project instantiations of the reused components. An initial hypothesis is,
that all defect types that are related to the general quality of the component
(e.g. functionality, internal consistency, algorithm, variable assignments) should
be addressed on the reusable (generic) component. In addition reuse specific
aspects such as modular design of the component, low coupling and high co-
hesion, reusability and integratability of the component should also be in-
spected on the reusable component. In the project specific inspection it is then
recommended to focus on aspects such as the interfaces between reused and
newly developed components and project specific changes that were imple-
mented on the component. The following table shows how such a balancing
model could look like.

Reusable
Component1

Reuse
project 1

Reuse
project 2

Reuse
project 3

Defect Types
External Interfaces 1 4 7 5
Internal Interfaces 1 4 3 5
Algorithm 7 2 1 0
Assignments 2 6 4 7
Resources 8 2 1 0
Functionaity 5 0 1 0
....

Figure 2-2: Excerpt of a balancing model

Inspections in Reuse Intensive
Software Development Processes

Copyright © Fraunhofer IESE 2004 9

The entries in the table are derived over measurements on inspections per-
formed on reusable components and reusing projects. The measurements indi-
cate that the defect types Resources and Algorithm should be addressed on re-
usable components as these defect types are frequently identified in inspections
of reusable components and almost not detected in the specific project. For the
defect types Interfaces and Assignments the opposite is true (dotted lines). In
almost all project these defect types are most frequently identified in product
specific inspections.

For the measurement program the product line aspects and the inherent con-
cept of reuse offers an important chance. As the reusable components are usu-
ally used in several products (and thus development project) it is possible to get
enough data about which defect types are at best addressed when. In addition,
from each project that reuses components and finds defects on them, it is pos-
sible to learn more how to optimize the inspections of the reusable inspections.
An analysis method has to be implemented that analyzes a defect and decides
whether this defect can be addressed in an inspection of the reusable compo-
nent. The major benefit would be that such a defect can be detected and re-
solved already on the reusable component before it is propagated to all prod-
ucts that reuse the component.

All in all, the balancing model has several benefits:

• The inspection effort can be balanced between inspections of reusable
components and project specific components by a systematic planning
based on the model.

• Inspectors are focused on special defect types and quality aspects during
inspection of reusable components and project specific inspections,
which reduces the overlap and redundant checks. This also contributes to
an improved efficiency of the inspection.

• The model comprises a continuous learning cycle which makes use of the
inherent reuse concept of software product lines and thus helps to con-
tinuously optimize the balancing model.

2.4 Conclusion

The paper presented an approach for tailoring inspections to the context of re-
use intensive development paradigms such as product line engineering. It
showed how perspective based reading can be used to address special quality
aspects imposed by a reuse intensive development paradigm. Perspective-based
inspections proofed to be a highly efficient and effective defect detection tech-
nique that outperforms other inspection techniques such as checklists or ex-
perience (ad-hoc) inspections.

Moreover the paper showed that current inspection approaches do not con-
sider the reuse aspect in a sufficient way and thus highly valuable development

Inspections in Reuse Intensive
Software Development Processes

Copyright © Fraunhofer IESE 2004 10

effort is wasted. By focusing the inspection on defects that are most efficiently
found in inspections of reusable components helps to reduce this expensive
drawback of recent inspection approaches. The focusing of the inspection
process is at best guided by a balancing model for inspections in product line
environments. This model shows that different defect types should be ad-
dressed in different phases (i.e. inspections of the reusable components and in-
spections on the specific products).

References

[1] V. R. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull, S. Sorumgard,
and M. Zelkowitz. The Empirical Investigation of Perspective-based Read-
ing, Empirical Software Engineering 1 (1996) 133–164.

[2] B. Beizer. Software Testing Techniques. Second Edition, Van Nostrad
Reinhold, New York, 1990.

[3] P. Clements and L. Northrop. Software Product Lines: Practices and Pat-
terns. Addison-Wesley, August 2001.

[4] Michael E. Fagan. Design and Code Inspections to Reduce Errors in Pro-
gram Development. IBM System Journal, 15 (3); 1976.

[5] Thomas Gilb, Dorothy Graham. Software Inspections. Addison-Wesley
Publishing Company, 1993.

[6] R. Kolb and D. Muthig, “Challenges in Testing Software Product Lines”.
CONQUEST 2003, Nuremberg, Germany.

[7] Oliver Laitenberger. Cost-effective Detection of Software Defects through
Perspective-based Inspections. PhD Thesis in Experimental Software Engi-
neering; Fraunhofer IRB Verlag, 2000.

[8] T. Thelin, P. Runeson, C. Wohlin. An Experimental Comparison of Usage-
Based Reading and Checklist-Based Reading. IEEE Transactions on Soft-
ware Engineering, 29-8 (August 2003), 687-704.

[9] Karl Wiegers. Peer Reviews in Software – A practical Guide. Addison-
Wesley, 2002.

Improving Efficiency of Testing
with Test Reuse: Development of
Reusable Test Assets

Copyright © Fraunhofer IESE 2004 11

3 Improving Efficiency of Testing with Test Reuse: Development of
Reusable Test Assets

Annukka Mäntyniemi and Pekka Mäki-Asiala

VTT Technical Research Centre of Finland, VTT Electronics, P.O.Box 1100,
FIN-90571 Oulu, Finland
{Annukka.Mantyniemi, Pekka.Maki-Asiala}@vtt.fi

Abstract. While systematic reuse promises to shorten software development
time, testing may become a bottleneck of otherwise efficient software devel-
opment process. This is because software testing practices have not advanced
to the extent that of software reuse techniques and processes. Test asset reuse
could provide similar efficiency gains as expected from software reuse. This pa-
per proposes a tentative approach for development of reusable test assets. In
this approach, software reuse techniques and principles are applied into soft-
ware testing context.

3.1 Introduction

Software reuse has been practiced for decades, evolving from ad-hoc code re-
use to today’s component-based software engineering and product line engi-
neering approaches. “Reuse is a simple concept”, Basili et al. [1] state, “use the
same thing more than once”. However, as they say and experiences from in-
dustry [e.g. 11] prove, it is nothing but simple in practice. Although being a
complicated process, promises of software reuse are tempting. Major benefits
expected from software reuse are, for example, shortened time-to-market and
higher quality of the software products [7], [9].

Unlike software reuse, test reuse is a fairly new and unexplored field of study.
Demands for software testing and quality assurance are ever-increasing as the
size and complexity of the systems expand and the markets demand higher
quality and shorter development times. Also the software reuse itself sets de-
mands for testing practices which are forced to keep up with the pace.

The amount of effort consumed by software testing varies from 30 to 50 per
cent in a typical software development project [6]. Therefore, improving the ef-
ficiency of testing through test asset reuse could provide remarkable savings.
Adhering to the definition of IEEE Std 1517-1999 [7] for an asset, test asset is

Improving Efficiency of Testing
with Test Reuse: Development of
Reusable Test Assets

Copyright © Fraunhofer IESE 2004 12

defined to mean any test item (e.g. test case, test step, test specification) that is
designed for reuse in multiple contexts. The expectations towards test reuse
can be even higher than promised from software reuse, as in addition to reus-
ing test assets in testing different products (e.g. product family), tests could be
reused in different testing phases (e.g. unit and integration), types (e.g. func-
tional and performance) and in regression testing.

In a typical software development project, the specifications and designs for the
tests are developed concurrently with the design phases of the actual software,
binding the tests tightly to the system under test. How to develop test assets
that could be reused in variety of contexts?

The question has been approached earlier in the study of Korhonen et al. [10]
that introduces a concept of feature-based testing. However, this study concen-
trates on reuse of tests in regression testing, which is only one of the possible
targets for test reuse. The most extensive test reuse studies seem to be done in
the telecommunication domain in the middle of 90’s [4], [5]. Also in these stud-
ies the reuse target is quite limited, focusing only on protocol testing.

This paper proposes a tentative approach for development of reusable test as-
sets. When compared to the earlier studies [4], [5], [10], this approach utilizes
more extensively methods and practices known from software reuse and prod-
uct line engineering, e.g. [2], [7], [8], [9], [13], [14], and provides a wider tour
throughout the process of test development for reuse.

The rest of this paper is composed as follows: Section 3.2 introduces the ap-
proach for test asset development, Section 3.3 gives an example of a reusable
test case and Section 3.4 draws conclusions on this paper.

3.2 Test Asset Development

Like software reuse [7], [9], test reuse can be divided to test development for
and test development with reuse sides as illustrated in Figure 3-1. The specifica-
tions for the software systems form the basis of the test asset specifications.
Based on these specifications reusable test assets are designed and imple-
mented for reuse and reused later in the with reuse phase. However, unlike the
with reuse approach of software development, which is mainly interested in
building something new, the purpose of test development with reuse is to find
errors or to give some level of assurance that the software meets its specifica-
tion. Reusing test assets provides a way to speed up this process.

Improving Efficiency of Testing
with Test Reuse: Development of
Reusable Test Assets

Copyright © Fraunhofer IESE 2004 13

According to Karlsson [9], in development for reuse, the main aim is to identify
potential reusers with similar requirements, and to analyze the variations be-
tween their requirements. Domain analysis is the technique that can be applied
for this purpose and it is a focal practice in software reuse. According to IEEE
Std 1517-1999 [7] domain analysis is: “(A) The analysis of systems within a do-
main to discover commonalities and differences among them. (B) The process
by which information used in developing software systems is identified, cap-
tured, and organized so that it can be reused to create new systems within a
domain. (C) The result of the process in (A) and (B)” [originally in 12]. The gen-
erality may be expressed by using different component compositions or by de-
signing an architecture that captures commonalities between different products
and variability mechanisms that allow component customization when needed
[13].

As software components, also test assets need to be sufficiently general to be
reused in variety of contexts. This means that test developers must understand
the common and the differing software items or features of the products to be
tested, and design test assets for testing the identified common items or fea-
tures. At the beginning of test asset development, the reuse potential of tests
needs to be evaluated. It should be analyzed if the testing targets, i.e. software
items and features, are specific to only one product to be tested or if they are
common to multiple products. In the latter case, building of reusable tests is
justifiable.

“First and the most important criterion for reusability is functionality” states
Karlsson [9] meaning that it does not matter how well non-functional criteria
are fulfilled if the reusable asset does not fulfill the functional needs. In test de-
velopment for reuse, test assets should capture the right functionality. Defining
this functionality may be difficult as similar features to be tested may be imple-
mented differently in different products or common software items may have
dependencies on other elements of a system. However, reuse of test assets is
probably most productive when done concurrently with software reuse. In sys-

Test Asset Library

Test asset development
for reuse

Test development with
reuse

Support

Feedback

Test
assets

Test
assets

System specifications
/test asset needs

- Analysis of reuse
 potential
- Identification of common
 and specific parts
- Test asset design
- Test asset
 implementation
- Test asset reliability
 verification
- Analysis of test asset
 reuse
- Test asset updates

- Search for test assets
- Evaluation of test assets
- Selection of test assets
- Adaptation of test assets
- Specific part design
- Test suite implementation
 (integration of common
 and specific parts)
- Test execution
- Test result analysis

Figure 3-1: Test asset development for and with reuse

Improving Efficiency of Testing
with Test Reuse: Development of
Reusable Test Assets

Copyright © Fraunhofer IESE 2004 14

tematic software reuse, domain analysis models and architectural designs
should address the common software items between different products. This
makes generality analysis for test assets easier as their development can be tar-
geted to cover the already identified common software items.

Figure 3-2 illustrates the possibility of splitting a test suite into common and
specific parts. The common part concentrates on tests of items or features that
are commonly included in the products to be tested, whereas the specific part
concentrates on the tests of items that change for each product. This splitting
follows the one described in EWOS/ETG 022 [5].

This splitting idea is close to the domain analysis and architectural design pha-
ses of software development for reuse. One central criterion in software devel-
opment for reuse is a modular architecture [9], [15]. Good modular architec-
tures make dependencies explicit and lead to natural distribution of responsibili-
ties [15]. In test asset design, principles of modularization should be followed to
facilitate test assets’ adaptability, understandability and maintainability.
ETSI/ETR 190 [4] gives several guidelines for test modularization. Splitting a test
suite into common and specific parts corresponds to organizational level modu-
larization. This level can be applied to define the best partitioning of modules in
order to minimize the development effort. Other levels of modularization are
functional and language level. In the functional level, test suites are partitioned
into several functional parts. This modularization is performed through the tree
organization of the test cases. The language level is a naïve class of criteria that
is based on a classification of language elements by the categories they belong
to, such as constant declarations, test cases, test steps, defaults, etc. To facili-
tate reusability in modularization, structural complexity should be low [9],
meaning that relationships between modules are avoided or kept simple and
easily understandable.

In addition to capturing commonalities in the reusable test asset, it should be
considered, how the diversity between the software items or features to be
tested is addressed. Taking the diversity into account in test asset design makes
test assets more reusable as reusers are able to customize them to their specific
needs. Variability mechanisms provide the means to address the diversity be-
tween the products [13]. Variability is the ability to change or customize a sys-
tem [14]. Those parts of the component that vary across contexts can be sepa-

Specific part for
product A

Test Suite for
Product B

Test Suite for
Product A

Specific part for
product B

Common part for
products A & B

Consists of

Figure 3-2: Common and specific parts of a test suite

Improving Efficiency of Testing
with Test Reuse: Development of
Reusable Test Assets

Copyright © Fraunhofer IESE 2004 15

rated from the component itself at selected plug-points where that variation
can be encapsulated and localized [3]. These variation or plug-points are places
where the behavior of the component can be changed. A variation point repre-
sents a delayed design decision by providing possibilities for clients to create
their own unique variants of a component [2].

In test asset development, the use of variability mechanisms depends on the
test implementation language. According to D’Souza and Wills [3], reusable
components can be built without object-oriented techniques, but it is a lot eas-
ier if these techniques are used. Jacobson et al. [8] define variability mecha-
nisms that could be used to implement variability in test assets as well as in
software components. These mechanisms are: parameterization, which is used
if there are several small variation points for each variable feature; inheritance,
which is applied if a method needs to be implemented for every application or
if an application needs to extend a type with additional functionality; uses that
applied in reusing an abstract use case to create a specialized use case; and ex-
tensions and extension points that are used, if parts of a component need to be
extended with additional behavior selected from a set of variations for a par-
ticular variation point. In addition, several languages and tools can be used to
implement variability [8][14].

Test assets are implemented according to their designs. To facilitate reusability,
the code should be self-descriptive [9], meaning that it should be commented
to explain how the functionality is implemented. If possible, tests are executed
in order to verify test assets reliability, i.e. that they function as designed. In
practice, however, test asset’s reliability is evaluated when it is executed in a
real testing context in the with reuse side of test development.

Test assets are stored into a test asset library together with the documentation
supporting reuse. Documentation includes information, for example, about the
purpose of the test asset, suitable reuse contexts, and guidelines how to take
test asset into use (e.g. interface descriptions). In addition, test asset developers
provide support for the with reuse test developers. After the test asset has been
used in testing, the with reuse side gives feedback to the test asset developers.
Feedback is analyzed and it may lead to updates or development of new assets.
The for reuse side maintains the test assets.

3.3 An Example: a Reusable TTCN-3 Test Case

The example presented in this paper is a simplified one. Today consumers are
able to choose their mobile phones from a wide range of products. Even
though more expensive phones will typically offer more features and more e-
laborate functions, some of these features are similar, and some of the func-
tions are the same. Clearly, there is a possibility to use the same tests to vali-
date these commonalities.

Improving Efficiency of Testing
with Test Reuse: Development of
Reusable Test Assets

Copyright © Fraunhofer IESE 2004 16

A short cursory example of a reusable test case implemented with TTCN-3 lan-
guage is illustrated in Figure 3-3. This example presents a fictitious basic calen-
dar test for testing the calendar feature found commonly in modern phones. In
module CalendarTests test case BasicEntry is realized with the help of few func-
tions and module parameters. This test case uses three functions to stress some
of the basic functionalities found in phone calendars. The two other modules
CalendarTestsForModel_XX33 and _XX66 respectively, represent a low-end and
a high-end phone models of a phone vendor. The low-end model has only the
basic functionality and therefore can reuse and execute the test case ‘as is’. The
high-end model can reuse the test case ‘as is’ but also take some parts of it and
utilize them in a new test case.

3.4 Conclusions

This paper introduced a tentative approach for development of reusable test as-
sets and an example of a reusable TTCN-3 test case. The approach is based on
applying reuse techniques and principles into software testing context. The ap-
proach is an intermediate result of a TT-Medal project that is going on at Tech-
nical Research Centre of Finland (VTT Electronics). It is currently being enhanced
with a process perspective including both development for and with reuse
sides. The project also studies possible test reuse targets (e.g. test reuse be-
tween different testing phases) and how TTCN-3 language suits for develop-
ment of reusable test assets. During the latter year of the two year project, the
approach for development and utilization of reusable test assets will be evalu-

module CalendarTestsForModel_XX66 {
import from CalendarTests recursive { testcase
SetBasicEntry; group SetFunctions }
:
testcase SetFullEntry() runs on MyCT system MTS1 {

map(mtc:PCO, system:PCO);
// Functions are reused in a new test case

SetSubject(subject);
SetDateAndTime(date, time);
SetAlarm(alarm);

// Specific part begins
SetMeetingPlace(place);
SetEndingTime(endTime);
SetAlarmDateAndTime(a_date, a_time)
:

}
:
control {

:
// executing the reusable test case
execute (SetBasicEntry());
// executing the specific test case
execute (SetFullEntry());
:

}

module CalendarTests {
modulepar {charstring subject, DateType date,
float time, boolean alarm := true};
:
group SetFunctions {

function SetSubject(integer subject) runs
on MyCT{ ... }
function SetAlarm(boolean alarm) runs
on MyCT { ... }

:
} // group
testcase BasicEntry() runs on MyCT system MTS1 {

map(mtc:PCO, system:PCO);
SetSubject(subject);
SetDateAndTime(date, time);
SetAlarm(alarm);

}
:

module CalendarTestsForModel_XX33 {
import from CalendarTests recursive {
testcase BasicEntry }

:
control {

execute (BasicEntry());
:

}

Figure 3-3: A reusable TTCN-3 test case

Improving Efficiency of Testing
with Test Reuse: Development of
Reusable Test Assets

Copyright © Fraunhofer IESE 2004 17

ated in a case study in cooperation between VTT Electronics and an industrial
partner.

References

[1] Basili, V., Caldiera, G. & Cantone, G. A Reference Architecture for the
Component Factory. ACM Transactions on Software Engineering and
Methodology, Vol. 1, No. 1, (1992), 53–80.

[2] Bosch, J. Design and Use of Software Architectures. Adopting and Evolv-
ing a Product-line Approach. Harlow: Addison-Wesley (2000)

[3] D'Souza, D. F. & Wills, A. C. Objects, Components, and Frameworks with
UML, The Catalysis Approach. USA: Addison-Wesley (1998)

[4] ETSI/ETR 190. Methods for Testing and Specification (MTS); Partial and
multi-part Abstract Test Suites (ATS); Rules for the context-dependent re-
use of ATSs (1995)

[5] EWOS/ETG 022. Test specifications for embedded protocols in application
profiles (1992).

[6] Graham, D., Herzlich, P. & Morelli, C. CAST report, Computer aided
software testing, 3rd ed. London: Cambridge Market Intelligence (1995)

[7] IEEE Std 1517-1999, IEEE Standard for Information Technology - Soft-
ware Life Cycle Processes - Reuse Processes. USA, New York: IEEE (1999)

[8] Jacobson, I., Griss, M. & Johnsson, P. Software Reuse - Architecture, Pro-
cess and Organization for Business Success. New York, USA: Addison-
Wesley (1997)

[9] Karlsson, E-A. Software Reuse, A Holistic Approach. England: John Wiley
& Sons Ltd (1995)

[10] Korhonen, J., Salmela, M. & Kalaoja, J. The reuse of tests for configured
software products. VTT Publications 406. Espoo, Finland: Technical Re-
search Centre of Finland. (1999)

[11] Morisio, M., Michel, E. & Tully, C. Success and Failure Factors in Software
Reuse. IEEE Transactions on Software Engineering, Vol. 28, Issue 4,
(2002), 340–357

[12] NIST Special Publication 500-222, Glossary of Software Reuse Terms
(1994)

Improving Efficiency of Testing
with Test Reuse: Development of
Reusable Test Assets

Copyright © Fraunhofer IESE 2004 18

[13] Ommering, R. & Bosch, J. Widening the Scope of Software Product Lines
– From Variation to Composition. Proceedings of the Second Interna-
tional Conference on Software Product Lines. Heidelberg: Springer LNCS,
(2002), 328-347

[14] Svahnberg, M., Bosch, J. Issues Concerning Variability in Software Prod-
uct Lines. Proceedings of the Third International Workshop on Software
Architectures for Product Families, Heidelberg, Germany: Springer LNCS,
(2000), 146-157

[15] Szyperski, C. Component Software, Beyond Object-Oriented Program-
ming. England, Harlow: Addison Wesley Longman Limited (1997)

Quality Assurance in a Software
Product Line

Copyright © Fraunhofer IESE 2004 19

4 Quality Assurance in a Software Product Line

John D. McGregor

Dept. of Computer Science, Clemson University, Clemson, SC 29634,
johnmc@cs.clemson.edu

Abstract. Quality is a multi-faceted concept whose very definition varies from
one product to another. Software product lines have the potential to achieve
very high levels of quality, but quality is not guaranteed merely by adopting the
product line practices. Techniques and processes must be designed with a spe-
cific view of quality in mind. We describe an operational view of quality and
how this may be incorporated into the product production process of a soft-
ware product line organization.

4.1 Introduction

Quality is a nebulous concept that changes with the situation and the observer.
While correctness is often the naïve definition of quality, it usually is just the
starting point for what is needed for most products to be viewed as quality
products. Recently, several groups have put forward the notion that “quality” is
actually a composite of a number of attributes. These are referred to in one
context as quality attributes [bass].

In a reuse environment, such as a software product line, quality assurance is
even more critical than in traditional development because whatever the level
of quality, it will broader implications than in one-off development. A software
product line organization integrates business and technical aspects of planning,
training, and process definition that influence the levels of quality for the or-
ganization’s outputs.

The economics of software product lines should make it possible to expend
more resources to produce higher quality, but simply expending more does not
necessarily result in higher quality. Traditionally, quality assurance requires three
essential elements.

1.) Quality assurance has to be a small voice in the head of every per-
son on the project.

2.) Personnel must have adequate time and resources to do quality
work.

Quality Assurance in a Software
Product Line

Copyright © Fraunhofer IESE 2004 20

3.) Tools, techniques, and processes should be defined in such a man-
ner that quality work is a natural result rather than requiring ex-
traordinary effort.

These three items show that quality is the result of commitment. Commitment
on the part of the business and technical managers and the engineers, rather
than just expenditures. The comprehensive nature of a software product line
organization provides an environment conducive to quality but it is not guaran-
teed.

Some organizations view testing as their quality assurance while others sepa-
rate testing from quality assurance departments. They view quality assurance as
only those things that are done without touching code such as design reviews
and inspections. We will first describe a viewpoint about quality processes and
then we will focus on an inspection process for software product lines that
bridges the gap between testing and quality assurance.

4.2 Quality Assurance Processes

Traditionally quality assurance is set up as a separate process that parallels the
product production process, as illustrated in Figure 4-1. Many quality standards,
such as the ISO-9000 family, would seem to support this approach by the ways
in which they define the activities that constitute their process. There is good
reason to do this. It emphasizes the independence of the organization which
may be empowered to stop production if quality goals are not met. However,
this arrangement often emphasizes the isolation of quality assurance from the
realities of production.

production process

quality process

Figure 4-1: Isolated quality and production processes

Quality assurance is a cross-cutting concern that is a part of each production
step. It should be woven into the product production process as illustrated in
Figure 4-2. Every step in the production process definition should include activi-
ties that assure the quality of the outputs of the step.

Quality Assurance in a Software
Product Line

Copyright © Fraunhofer IESE 2004 21

Figure 4-2: Integrated Quality and Production Processes

4.3 Guided Inspections

Inspection is a technique for examining designs, code, or documents produced
in a development effort. Fagan described a procedure for code inspections that
walked through the code in a sequential manner [Fagan 86]. Parnas showed
that inspections could be improved by engaging the inspectors more fully with
the artifacts being inspected [Parnas 85]. Techniques such as directed reading
have been shown to be more effective than standard inspection techniques
[Thelin 03], [Travassos 99].

Guided inspection is a technique developed by Luminary Software to increase
the effectiveness of the typical inspection process. We developed this technique
when we realized that existing inspection techniques only examined what is
there and do not find what has been omitted. Guided Inspection is different in
that the inspection is “guided” by test cases developed from the artifacts in the
project rather than the inspector or a standard checklist.

For each guided inspection, a set of test cases is defined from the requirements
and expectations for the artifact to be inspected. Constructing these test cases
is an excellent way to focus the attention of the inspectors on the artifact they
are about to inspect. The inspectors might begin with the use case model for
the system and extract some of the scenarios to serve as test cases. Template
test cases might be available for standard documents such as the system test
plan.

Guiding the inspection process with test cases allows the inspectors to empha-
size client priorities or to select the riskiest, or most critical, features to inspect
most closely. Many use case templates provide for capturing risk information
for each use case. The inspectors can use the usual case, alternative cases, and
exceptional case scenarios for a highly critical use case while only using the
usual case for a use that has low criticality.

As with any testing activity, “coverage”, the degree to which an artifact has
been exhaustively explored, is an important measure. Using one scenario from
each use case as the basis for test cases would achieve an “all use cases” level
of coverage. By achieving high levels of coverage, inspectors are led naturally to
identify necessary parts of the artifact that are missing. Tracking the degree to
which coverage is achieved also maintains traceability between the require-

Quality Assurance in a Software
Product Line

Copyright © Fraunhofer IESE 2004 22

ments, the source of the test cases, and the portions of the inspected artifact
that are touched by the test case.

4.3.1 Inspection Criteria for Software Product Lines

The models produced by a software product line organization present unique
challenges. We first describe our criteria for individual product inspections and
how they are applied in a product line context. Then we add an additional crite-
ria.

Correctness is a measure of the accuracy of the model. When does a test case
result in unexpected behavior? For a product line, behaviors that are correct in
one product are not correct in another. Each test case requires a product sce-
nario which is the context for the test.

Completeness is a measure of the inclusiveness of the model. Is it possible to
write test cases that address concepts or operations not found in the model?
For a product line, completeness covers all possible products. The product sce-
nario is the context in which completeness is judged.

Consistency is a measure of whether there are contradictions within the model
or between the current model and the model upon which it is based. Is it pos-
sible to write two test cases that are expected to produce the same result but
that produce differing results? In a product line that is quite possible.

A software product line requires the additional consideration of comprehen-
siveness. We add this as a similar but slightly different notion of completeness.

4.3.2 Effectiveness of Inspections

All too often inspections are seen as hurdles to be cleared rather than opportu-
nities for careful examination. Sometimes this is because it is not clear to the
participants that the inspections are effective. The metrics used to evaluate in-
spections help shape the priorities of the inspection process. I once heard a
manager bragging about the large number of lines of code that were inspected
per hour in his inspections. Since then I have often wondered if that manager
ever decided to skip reading the code altogether since that must have been the
only thing slowing him down! Ultimately the effectiveness of the inspection
process is measured by:

lifetime itsover product in the found defects ofnumber
 sinspectionby found defects ofnumber the

=esseffectiven

Quality Assurance in a Software
Product Line

Copyright © Fraunhofer IESE 2004 23

Although this value cannot be known immediately, a metric tracking program
can support approximations based on actual data collected from previous pro-
jects. The denominator can also be taken to be the total number of engineer
hours with the result x defects/hour.

4.4 Summary

The Guided Inspection technique has proven to be very effective part of a qual-
ity assurance effort. It provides early detection of defects in models from re-
quirements models to detailed design models. Figures in the literature indicate
that finding and fixing a defect at these early points in the life cycle costs 1% of
what it would cost at system test time. The increased emphasis on MDA makes
techniques such as Guided Inspection even more critical to the success of a
product line. The technique does require effort but, as initiatives such as MDA
push the boundary of automation, the effort to execute a model test case is be-
ing rapidly reduced.

Position – Quality Assurance in
Reuse Contexts

Copyright © Fraunhofer IESE 2004 24

5 Position – Quality Assurance in Reuse Contexts

Frank van der Linden

Philips Medical Systems QV-1, Veenpluis 4-6, PO Box 10000, 5680 DA Best, The
Netherlands, frank.van.der.linden@philips.com

Quality is in the eye of the beholder. This means that every system developer,
and every system user, may have different ideas on what is quality, and more-
over they may have priorities on what they consider to be important quality.

In a reuse context the assets are reused over product borders, and that means
that the way they deal with quality has to adapt over system border to new en-
vironments. Since different systems have different quality priorities, it may be
the case that the asset solves different quality requirements, or solves them
with the wrong priorities. For instance an asset may deal very well with security,
but not with performance. This may be the wrong decision for a stand-alone
system!

Certain architectures may be better than others to support certain quality. It
may be useful to think about reusable quality architectures, in which other re-
usable assets fit. This may not be the final solution since the support of an ar-
chitecture to a quality is only indirect. In fact, an architecture may support a
certain quality, because it implements a certain solution to deal with some qual-
ity to a certain extent. This is often only qualitative. Moreover, a solution often
supports a combination of more than one quality, whereas it may hamper the
solution of another quality. A modular architecture may be good for mainte-
nance, adaptability and flexibility, but it may hamper performance.

Many quality issues are emergent properties, which originate from the com-
plete system configuration and implementation. It is often not easy to localize
quality and assign them to specific parts of the system. This means that it is
hard to decide whether a given asset supports a certain required quality well
enough. There is presently no clear agreed upon way to describe them, and be-
cause the different qualities can be diverse, it may be the case that a complete
description may be impossible, or require too much documentation effort, with
too less pay back. The only way to solve this is to agree upon a small set of
fixed solutions for quality requirements, and documenting the relationship of
the asset on these solutions. Therefore in many cases test-runs and other forms

Position – Quality Assurance in
Reuse Contexts

Copyright © Fraunhofer IESE 2004 25

of prototyping may be needed to get enough confidence in the support for the
required qualities.

As a consequence, the following hard questions have to be solved for getting
reusable quality assets.

1.) What does the developer need to know about a reusable asset, to
be able to be able to deduce that the resulting system supports a
certain quality to a certain extent?

2.) Can it be expected that a reusable asset developer knows what is
required by all the users?

3.) Is it enough to restrict the reusable architecture to certain architec-
tures only?

4.) Can this be supported by reusable architectures, or reusable archi-
tecture fragments?

5.) What are reusable architecture fragments or patterns?
6.) How to reuse other assets in reusable architecture fragments?
7.) How to combine reusable architecture fragments?
8.) Which kinds of assets are best supporting certain quality?
9.) How to relate asset attributes to quality?

As can be seen from the questions I have a lot of doubt about the possibility of
general quality support at the reusable asset level. I like to discuss this. I have
the opinion that architecture information is crucial to support qualities. In fact,
it provides a certain way to satisfy the quality requirements. This may however
enabling the quality support within a product-line setting. In that case it still has
to be defined how reusable asset attributes can contribute to the quality.

It may be the case that architectures, or parts of them, can be made reusable as
well. How to do that? Are patterns the way to proceed. Certain patterns seem
to support certain solutions for certain quality requirements, for instance many
patterns support flexibility.

Copyright © Fraunhofer IESE 2004 26

Consistency Checking in Multiple-View Meta-Models of Software Product Lines

 Hassan Gomaa Michael Eonsuk Shin
 Dept. of Information and Software Engineering Dept. of Computer Science
 George Mason University Texas Tech University
 Fairfax, VA 22030-4444 Lubbock, TX 79409-3104
 hgomaa@gmu.edu Michael.Shin@coe.ttu.edu

Abstract

This paper describes an approach for quality
assurance of software product lines by consistency
checking in multiple-view UML meta-models. A multiple-
view meta-model for software product lines describes
how each view relates semantically to other views. The
meta-model depicts life cycle phases, views within each
phase, and meta-classes within each view. The
relationships between the meta-classes in the different
views are described. Consistency checking rules are
defined based on the relationships among the meta-
classes in the meta-model. These rules, which are
specified formally using the Object Constraint Language
(OCL), are used to resolve inconsistencies between
modeling elements in the same view (intra-view
consistency) or in different views (inter-view
consistency), and to define allowable mappings between
multiple views in different phases. Finally, tool support
for the approach is described.

1. Introduction

A multiple-view model [NKF94] of a software product
line captures the commonality and variability among the
software family members that constitute the product line.
A better understanding of the software product line
[CN02] can be obtained by considering the different
perspectives, such as requirements modeling, static
modeling, and dynamic modeling, of the product line.
Using the UML notation, the functional requirements
view is represented through a use case model, the static
model view through a class model, and the dynamic
model view through a collaboration model and a
statechart model. While these views address both single
systems and product lines, there is, in addition, a feature
model view, which is specific to software product lines.
This view describes the common and variant features of
the product line.

Consistency checking between multiple views of a
model is complex [NKF94], one of the reasons being the
different notations that are needed. An alternative
approach is to consider consistency checking between
multiple views at the meta-model level, which uses one

uniform notation instead of several. Furthermore, rules
and constraints can be specified for the relationships
between the meta-classes in the meta-model. This paper
describes an approach for quality assurance of software
product lines by consistency checking in multiple-view
UML meta-models.

2. Multiple-View Models of Product Lines

A multiple-view UML model for a software product
line defines the different characteristics of a software
family [Parnas79], including the commonality and
variability among the members of the family. The
product line life cycle has three phases:

Product Line Requirements Modeling:
Use Case Model View. The use case model view
addresses the functional requirements of a software
product line in terms of use cases and actors.

Product Line Analysis Modeling:
Static Model View. The static model view addresses
the static structural aspects of a software product line
through classes and relationships between them.
Collaboration Model View. The collaboration model
view addresses the dynamic aspects of a software
product line.
Statechart Model View. The statechart model view,
along with the collaboration model view, addresses the
dynamic aspects of a software product line.
Feature Model View. A feature model view captures
feature/feature dependencies, feature/class
dependencies, feature/use case dependencies, and
feature set dependencies.

Product Line Design Modeling: During this phase, the
software architecture of the product line is developed.

More information on multiple-view modeling for
product lines is given in [GomaaShin02, Gomaa04].

3. Meta-Model for Software Product Lines

The meta-model describes the modeling elements in a
UML model and the relationships between them. The
meta-model is described using the static modeling

Copyright © Fraunhofer IESE 2004 27

notation of UML and hence just uses one uniform
notation instead of several. Furthermore, rules and
constraints are allocated to the relationships between
modeling elements.

The multiple views are formalized in the semantic
multiple-view meta-model, which depicts the meta-
classes, attributes of each meta-class, and relationships
among meta-classes.. A high level representation of the
phases containing the views in this meta-model is shown
in Fig. 1. A phase is modeled as a composite meta-class,
which is composed of the views in that phase.

In the meta-class model, all concepts are modeled as
UML classes. However, as the meta-classes have
different semantic meaning, they are assigned stereotypes
corresponding to the different roles they play in the meta-
model. In Fig. 1, meta-classes representing the different
views of a UML model are assigned the stereotype
«view». Meta-classes representing development phases
are assigned the stereotypes «phase» as they represent the
different phases of the OO lifecycle, Requirements
Modeling, Analysis Modeling, and Design Modeling.

Each view in Fig. 1 can be modeled in more detail to
depict the meta-classes in that view. A view meta-class is
a composite class that is composed of the meta-classes in
that view. An example is given in Fig. 2, which depicts
the meta-classes in the Class Model view and their
relationships. Thus the Class Model view contains meta-
classes such as class, attribute, relationship and class
diagram, as well as the relationships between them.

Fig. 1 depicts underlying relationships among multiple
views in development phases of a software product line:
Requirements phase:

- Use case model: This model describes the functional
requirements of a software product line in terms of
actors and use cases.

Analysis phase:
- Class model: This model addresses the static structural

aspects of a software product line through classes and
their relationships.

- Statechart model: This model captures the dynamic
aspects of a product line through states and transitions.

- Collaboration model: This model addresses the
dynamic aspects of a software product line by
describing objects and their message communication.

- Feature model: This model captures the commonality
and variability of a software product line by means of
features and their dependencies.

The views in the Design phase are given in [Gomaa00].

3.1. Meta-Model Views
This section describes the meta-classes and their

attributes, as well as the relationships between the meta-
classes for the Class and Feature Model views in Fig. 2.
Other views shown in Figure 1 are described in [Shin02].

Fig. 2 depicts meta-classes and relationships between
the meta-classes for the class model view. A class
diagram consists of classes and their relationships. A
class may interact with an external class, such as an
external input/output device or user interface. Each class
may have attributes. Relationships between classes are
specialized to aggregation, generalization/specialization,
and association relationships. To capture variations of a
software product line, the meta-model specializes a class
to a kernel, optional or variant class. Kernel classes are

«view»
Use Case

Model

«view»
Class
Model

«view»
Statechart

Model

«view»
Collaboration

Model

Instantiated from

Realized by

Generates events for

«view»
Refined Class

Model

«view»
Consolidated
Collaboration

Model

«view»
Subsystem
Architecture

Model

«view»
Task

Architecture
Model

Refined to Integrated
into

Instantiates
objects for

Decomposed
into

Abstracted
into

Mapped to

«phase»
Design

Modeling

«phase»
Analysis
Modeling

«phase»
Requirements

Modeling

Generates actions
and activities for

«view»
Feature
Model

Supported by

Supported by

Behavior described by

Behavior
described by

Maps to

Maps to

Equivalent to

Fig. 1. High-level relationships between multiple views for a software product line

Copyright © Fraunhofer IESE 2004 28

Association

0..*

Attribute

1

0..*

Class Relationship Generalization/
Specialization

Aggregation

2..*
Has

Class Diagram

Has

«view»
Class Model

Feature

Feature
Dependency0..*

Feature
Diagram

1..*

Kernel Feature

Optional Feature
Feature

Set
1..*

Mutually Exclusive
Feature Set

Has

Exactly-one-of
Feature Set

0..*

«view»
Feature Model

Optional Class

1

Kernel Class

Variant Class

Variant Feature

External
Class

Interacts with

0..*

1..*

Supported by

1..*

1

1..*

0..1

Maps to

At-least-one-of
Feature Set

Fig. 2. Meta-model for Class Model and Feature Model views in analysis phase

required by all members of a software product line,
whereas optional classes are required by only some
members. Variant classes are required by the specific
members to meet variations of kernel or optional classes.
Fig. 3 depicts the meta-class attributes for the class model
view. A class meta-class is classified by an application
attribute (stereotype), whose possible values are control,
algorithm, business logic, user interface or entity. A
domain property of the class meta-class is captured
through kernel, optional and variant class meta-classes.

Fig. 2 also depicts meta-classes and relationships
between the meta-classes for the feature model view. A
feature is an end-user functional requirement of an
application system. Features are specialized to kernel,
optional, and variant features depending on the
characteristic of the requirements, that is, commonality
and variability. Kernel features are requirements common
to all members of systems, that is, required by all
members of a product line. Optional features are required
by only some members of a product line. A variant
feature is an alternative of a kernel or optional feature to
meet a specific requirement of some systems. Feature
dependencies represent relationships between features,
and feature sets refer to constraints on the choice of target
features supported by a target system. A feature set is
specialized to “mutually exclusive feature set,” “exactly-
one-of feature set,” and “at-least-one-of feature set.” In a
mutually exclusive feature set, zero or one feature can be
selected. An exactly-one-of feature set allows one and
only one feature to be selected, whereas an one-or-more
feature set permits one or more features to be selected.
Fig. 4 depicts the meta-class attributes for the feature
model view. Each feature dependency has a starting

feature (fromFeature) and a destination feature
(toFeature).

3.2. Relationships among Meta-Model Views

A meta-model for multiple views in each phase
describes the relationships between the different views in
each development phase. A meta-model for multiple
views in a given phase of a software product line
describes the relationships between different views in the
same phase. The analysis phase of a software product line
is viewed by means of the class model, collaboration
model, statechart model, and feature model. Fig. 2 depicts
a meta-model describing the relationships between the
class and feature model views in the analysis phase. The
relationships between the views are:
- A feature in the feature model is supported by classes

in the class model.
- If there is a generalization/specialization relationship

between two classes that support two different features
respectively, the generalization/specialization
relationship between two classes maps to a feature
dependency between the two features.

A meta-model for multiple views in different phases of a
software product line describes the relationships between
the multiple views in the different phases. It shows how a
meta-class in a view of a phase is mapped to a meta-class
in the subsequent phase.

4. Consistency Checking between Multiple
Views

Consistency checking rules are defined based on the
relationships among meta-classes in the meta-

Copyright © Fraunhofer IESE 2004 29

model[MC01]. Model objects and their relationships in
the multiple-view model are instantiated from meta-
classes and their relationships in the multiple-view meta-
model. The rules resolve inconsistencies between
multiple views in the same phase or other phases, and
define allowable mapping between multiple views in
different phases. To maintain consistency in the multiple-
view model, rules defined at the meta-level must be
observed at the multiple-view model level. Consistency
checking is used to determine whether the multiple-view
model follows the rules defined in the multiple-view
meta-model.

ClassDiagram

Attribute

diagramName :
String

attributeName : String
attributeType : String
range : String

Relationship Aggregation

Association

associationName : String
fromClassCardinality : enum

{Integer, 0..1, 0..*, 1..*, *}
toClassCardinality : enum

{Integer, 0..1, 0..*, 1..*, *}

toClassCardinality :
enum {Integer, 0..1,

0..*, 1..*, *}

Generalization/
Specialization

condition :
String

Class

className : String
stereotype : enum

{control, algorithm,
businessLogic,
userInterface, entity}

fromClass :
Class

toClass : Class

ExternalClass
className : String
stereotype : enum
{externalInputDevice,
externalOutputDevice,
externalInputOutputDevice,
externalUserInterface}

KernelClass OptionalClass VariantClass

Fig. 3. Attributes of meta-classes in class model view

Fig. 5 depicts consistency checking between a feature
in the feature model and a class in the class model.
Suppose an optional class “Class2” supports an optional
feature “Feature2.” Class2 and Feature2 in the multiple-
view model are respectively instances of Class and
Feature meta-classes in the multiple-view meta-model.
There is a relationship between Class and Feature meta-
classes, which is “each optional class in the class model
supports only one optional feature in the feature model.”
For the multiple-view model to remain consistent, this
meta-level relationship must be maintained between
instances of those meta-classes, that is, Class2 and
Feature2. Consistency checking confirms that each
optional class in the class model supports only one
optional feature in the feature model. Consistency
checking rules are specified formally using the Object
Constraint Language (OCL) [Warmer99], as well as
informally in a natural language. The Object Constraint
Language is a formal language that describes constraints
on object-oriented models. A constraint is a restriction on
one or more values of an object-oriented model.

As the multiple-view meta-model is developed
sequentially, the consistency checking rules are derived
from the meta-model. The rules from the meta-model for
each view (in Section 3.1) are described first, then rules

from the meta-model for the multiple views in each phase
(in Section 3.2) are described and finally the rules from
the meta-model for the multiple views in different phase
(in Section 3.2) are described.

Feature
featureName :

String

FeatureDependency

from Feature : Feature
toFeature : Feature

FeatureDiagram

featureDiagramName :
String

FeatureSet
featureSetName : String

KernelFeature

OptionalFeature VariantFeature

M utuallyExclusiveFeatureSet

ExactlyOneOfFeatureSet AtLeastOneOfFeatureSet

Fig. 4. Attributes of meta-classes in feature model
view

4.1 Rules within One View

These rules describe consistency between meta-classes
within each view, and include constraints on meta-
classes. The rules derived from the class and feature
meta-models in Fig. 2 are as follows:
1) A class must have a stereotype of “kernel,” “optional,”

or “variant.” (Class Meta Model)
2) A class whose stereotype is “variant” must be a

specialized class on a generalization/specialization
hierarchy. (Class Meta-Model)

3) The stereotype of each feature must be “kernel,”
“optional,” or “variant.” (Feature Meta-Model)

4) The stereotype of a feature set must be one of
“Mutually Exclusive Feature Set,” “Exactly One-of
Feature Set,” and “At-least-one-of Feature Set.”
(Feature Meta-Model)

5) Zero or one feature must be selected from a mutually
exclusive feature set. (Feature Meta-Model)

6) One or more features can be selected from an at-least-
one-of feature set. (Feature Meta-Model)

7) Exactly-one-of Feature Set Constraint: One and only
one feature can be selected from an exactly-one-of
feature set. (Feature Meta-Model).

An example of these rules is “the stereotype of each
class in the class model must be kernel, optional, or
variant” (Fig. 2). This consistency checking rule is
specified using OCL as follows:

context Class inv:
 self.allInstances->forAll(oclType = KernelClass or
 oclType = OptionalClass or oclType = variantClass)

Copyright © Fraunhofer IESE 2004 30

Association

0..*
1

Attribute
0..*

Class Relationship

Generalization/
Specialization

Aggregation

2..*
Has

Class Diagram

1..* 0..*

Has

«view»
Class Model

Feature

Feature
Dependency

0..*
1

Feature
Diagram

1..*

Kernel Feature

Optional Feature
Feature

Set
1..*

Mutually Exclusive
Feature Set

HasAt-least-one-of
Feature Set

0..*

«view»
Feature Model

Optional Class

Supported by

1

1..*

0..1

1..*

Kernel Class

Variant Class

Maps to

Variant Feature

External
Class

Interacts with

0..*

1..*

Class Model

*

1

«optional»
Class1

Feature Model

Feature1
«optional»

Supported by

Multiple-View Model Multiple-View Meta-Model

Feature2
«optional>>

«optional»
Class2

Exactly-one-of
Feature Set

Fig. 5. Meta-model for feature and class model views

In this OCL specification, oclType is the type of Class
instance, that is, KernelClass, OptionalClass or
VariantClass.

Another example of these rules is “a class whose
stereotype is variant must be a specialized class on a
generalization/specialization hierarchy” (Fig. 2). This rule
is specified using OCL as follows:

 context VariantClass inv:
 self.relationship->select(oclType =
 Generalization/Specialization and

toClass = self.className)->size() = 1

In this OCL specification, the toClass is an attribute of
Generalization/Specialization meta-class, which is
inherited from the Relationship meta-class in the class
model (Fig. 3). The className in “self.className” is an
attribute of the Class meta-class.

4.2 Rules between Views

These rules address consistency between the different
views in a given phase or in different phase. The rules
derived from relationships between the class meta-model
and the feature meta-model in the analysis phase (in Fig.
2) are:
1) Each “kernel” class in the class model must support

only one kernel feature.
2) Each “optional” class in the class model must support

only one “optional” feature.
3) Each “variant” class in the class model must support

only one “variant” feature.
4) A kernel feature must be supported by at least one

kernel class.

5) An optional feature must be supported by at least one
optional class.

6) A variant feature must be supported by at least one
variant class.

7) If there is a generalization/specialization relationship
between two classes that support two different
features respectively, the generalization/specialization
relationship between two classes must map to a
feature dependency between the two features.

An example of these rules is “each kernel class in the
class model must support only one kernel feature” (Fig.
2), which is specified using OCL as follows:

 context KernelClass inv:
self.feature->select(oclType =
KernelFeature)->size() =1

Another example is a consistency checking rule, “if
there is a generalization/specialization relationship
between two classes that support two different features
respectively, the generalization/specialization relationship
between two classes must map to a feature dependency
between the two features” (Fig. 2). This rule is specified
using OCL as follows:

context Generalization/Specialization inv:
(self.class->size() = 2 and
self.class->forAll(c1, c2 | c1.feature.featureName
<> c2.feature.featureName))

 implies
self.class->forAll(c1, c2 | ((c1.className =
self.fromClass and c1.feature.featureName =
c1.feature.featureDependency.fromFeature) and

Copyright © Fraunhofer IESE 2004 31

(c2.className = self.toClass and
c2.feature.featureName =
c1.feature.featureDependency.toFeature)) or
((c2.className = self.fromClass and
c2.feature.featureName =
c2.feature.featureDependency.fromFeature) and
(c1.className = self.toClass and
c1.feature.featureName =
c2.feature.featureDependency.toFeature)))

In this OCL specification, the fromClass in
“self.fromClass” and the toClass in “self.toClass” are
attributes of the Generalization/Specialization meta-class
in the class model (Fig. 3), which are inherited from the
Relationship meta-class. The fromFeature in
c1.feature.featureDependency.fromFeature and
c2.feature.featureDependency.fromFeature is an attribute
of the FeatureDependency meta-class in the feature model
(Fig. 4). And the toFeature in
c2.feature.featureDependency.toFeature and
c1.feature.featureDependency.toFeature is an attribute of
the FeatureDependency meta-class.

The consistency checking rules are specified in more
detail in [Shin02].

5. Tool Support for Consistency Checking

In order to support consistency checking between
multiple views, a proof-of-concept prototype, the Product
Line UML Based Software Engineering Environment
(PLUSEE) was developed. The scope of this proof-of-
concept prototype includes the domain engineering phase.
A domain model addressing the multiple views of a
software product line is developed and checked for
consistency between the multiple views.

Fig. 6 depicts the proof-of-concept prototype. A
domain engineer captures a multiple-view domain model
consisting of use case, collaboration, class, statechart, and
feature models through the Rose tools, which save the
model information in a Rose MDL file. From this MDL
file, the domain model relations extractor extracts domain
relations, which correspond to the meta-classes in the
meta-model. Through the domain relations extractor, a
multiple-view model is mapped to domain model
relational tables. Using these tables, the consistency
checker checks for consistency of the multiple-view
model by executing the consistency checking rules
described in Section 4. Tool support is described in more
detail in [GomaaShin04]

6. Conclusions

This paper has described an approach for quality
assurance of software product lines by consistency
checking in multiple-view UML meta-models. The meta-

model depicts life cycle phases, views within each phase,
and meta-classes within each view. Consistency checking
rules have been described based on the relationships
among the meta-classes in the meta-model. These rules,
which are specified formally using the Object Constraint
Language (OCL), are used to resolve inconsistencies
within each view and between multiple views, and to
define allowable mapping between multiple views in
different phases.

Use Case Model

Collaboration Diagram

Class Diagram

*

Statechart Diagram

Event/Action
State1

Class2

Object1

Association

Message

Use Case

Rational
Rose S/W

Domain Model
Relations

Classes

Aggregate Class

Use Case
-

Rose MDL
File for
Domain

Domain
Model

Relations
Extractor

Domain Model
Consistency

Checker

Domain
Engineer

Feature Model

Feature1

Domain Model
Executable
Components
(Rose RT only)

1

Object2

Class1

State2

Feature2

Fig. 6. Product Line UML Based Software
Engineering Environment (PLUSEE)

References

[CN02] P. Clements and L. Northrop, Software Product Lines:
Practices and Patterns, Addison Wesley, 2002.
[Gomaa00] H. Gomaa, “Designing Concurrent, Distributed, and
Real-Time Applications with UML,” Addison-Wesley, 2000.
[Gomaa04] H. Gomaa, H. Designing Software Product Lines
with UML: From Use Cases to Pattern-based Software
Architectures, Addison-Wesley, July 2004.
[GomaaShin02] H. Gomaa and M. E. Shin, “Multiple-View
Meta-Modeling of Software Product Lines” Proc. IEEE Intl
Conf on Eng of Complex Computer Systems, MD, Dec 2002.
[GomaaShin04] H. Gomaa and M. E. Shin, “A Multiple-View
Meta-Modeling Approach for Variability Management in
Software Product Lines” Proc. IEEE Intl Conf on Software
Reuse, Madrid, July 2004.
[NKF94] B. Nuseibeh, J. Kramer, A. Finkelstein, "A Framework
for Expressing the Relationships Between Multiple Views in
Requirements Specification ", IEEE Trans. on Soft Engineering,
20(10): 760-773, 1994.
[Parnas79] Parnas D., "Designing Software for Ease of
Extension and Contraction", IEEE Transactions on Software
Engineering, March 1979.
[Shin02] Michael E. Shin, “Evolution in Multiple-View Models
in Software Product Families,” Ph.D. dissertation, George
Mason Univ., Fairfax, VA, 2002.
[Warmer99] Jos Warmer and Anneke Kleppe, “The Object
Constraint Language: Precise Modeling with UML,”Addison
Wesley, 1999.

Copyright © Fraunhofer IESE 2004 32

Copyright © Fraunhofer IESE 2004 33

Dirk Muthig
Ronny Kolb
{muthig, kolb}@iese.fhg.de

Sauerwiesen 6
D-67661 Kaiserslautern, Germany

Report on First Workshop on Quality Report on First Workshop on Quality
Assurance in Reuse Contexts (QUARC 2004)Assurance in Reuse Contexts (QUARC 2004)

Workshop at Third Software Product Line Conference (SPLC3)Workshop at Third Software Product Line Conference (SPLC3)
Boston, Massachusetts Boston, Massachusetts –– August 30, 2004August 30, 2004

Institut
Experimentelles
Software Engineering

Fraunhofer

IESE

John D. McGregor
johnmc@cs.clemson.edu

Dept. of Computer Science
Clemson University
Clemson, SC 29634

Slide 1

Copyright © Fraunhofer IESE 2004

Report on Workshop Quality Assurance in Reuse Contexts (QUARC 2004)
Boston, September 1, 2004

Objectives

Workshop Structure

Results

Conclusion

Outline

IESE Workshop Objectives

• Exchange of experience, ideas, and lessons learned

• Discussion of recent work and work in progress on topics
dealing with quality assurance for software artifacts intended
for reuse and products built using reusable artifacts

• Share ideas on the foundations, techniques, methods,
strategies, and tools of quality assurance for reuse-based
software development paradigms

• Getting a common understanding of the implications of
reuse-based software development paradigms such as
product lines or component-based development from the
perspective of quality assurance

• Discussion of the suitability of existing quality assurance
approaches with respect to reuse-based software
development paradigms

Copyright © Fraunhofer IESE 2004 34

Slide 2

Copyright © Fraunhofer IESE 2004

Report on Workshop Quality Assurance in Reuse Contexts (QUARC 2004)
Boston, September 1, 2004

Objectives

Workshop Structure

Results

Conclusion

Outline

IESE Workshop Structure

• Presentations of submitted papers and position statements
from the participants regarding quality assurance in a reuse-
context in the two morning sessions

• Presentations were starting point for identification of topics
for breakout working groups

• Working Groups
– Product Line Quality Assurance Processes
– Reuse of Quality Assurance Artifacts and Results
– Role of an Architecture in Quality Assurance
– Product-line specific Quality Assurance Techniques and their

Automation

Slide 3

Copyright © Fraunhofer IESE 2004

Report on Workshop Quality Assurance in Reuse Contexts (QUARC 2004)
Boston, September 1, 2004

Objectives

Workshop Structure

Results

Conclusion

Outline

IESE Results (1/5)

Challenges for quality assurance in reuse contexts

• Variability

• Varying quality requirements

• More stakeholder, more concerns

• More complex traceability relationships

• Typically distributed organizations

• …

Copyright © Fraunhofer IESE 2004 35

Slide 4

Copyright © Fraunhofer IESE 2004

Report on Workshop Quality Assurance in Reuse Contexts (QUARC 2004)
Boston, September 1, 2004

Objectives

Workshop Structure

Results

Conclusion

Outline

IESE Results (2/5)

• Distributed organizations Processes become more complex
– More communication is required
– Synchronization becomes more challenging
– More aspects must be considered

• QA processes should be integrated with development
– Accompany development activities right from the start
– QA processes are (partially) determined by architecture

• In a product line context all processes are continuously running
– Product development
– Product line infrastructure evolution

Integration of processes can be better realized in a
product line context

– Architecture is known better already at the beginning of each
project

Slide 5

Copyright © Fraunhofer IESE 2004

Report on Workshop Quality Assurance in Reuse Contexts (QUARC 2004)
Boston, September 1, 2004

Objectives

Workshop Structure

Results

Conclusion

Outline

IESE Results (3/5)

• New role in quality assurance process in a PL context:
Product Line Artifact Owner

– Responsible for quality of a product line artifact
– Validates artifact always from a product line point of view
– Coordinates evolution and maintenance across projects

• New role changes quality assurance processes
– Problem reports must be sent to owner
– Delegation and monitoring of reacting activities

• Complex organizations make it hard to decide on how to react
on problem reports

– Distributed responsibilities
– Organizational constraints

Copyright © Fraunhofer IESE 2004 36

Slide 6

Copyright © Fraunhofer IESE 2004

Report on Workshop Quality Assurance in Reuse Contexts (QUARC 2004)
Boston, September 1, 2004

Objectives

Workshop Structure

Results

Conclusion

Outline

IESE Results (4/5)

Reuse of quality assurance artifacts and results

• Types of Reuse
– Reuse between different phases of the same QA activity (e.g.

between unit and integration testing)
– Reuse between different QA activities (e.g. between inspections

and testing)
– Reuse between products of the product line
– Reuse between different product generations/versions

• Prerequisites for successful reuse
– Good architecture
– Traceability to/from architecture
– Information about the context

• Identified which kind of artifacts can be reused and whether
an artifact can only be partially or completely be reused

Slide 7

Copyright © Fraunhofer IESE 2004

Report on Workshop Quality Assurance in Reuse Contexts (QUARC 2004)
Boston, September 1, 2004

Objectives

Workshop Structure

Results

Conclusion

Outline

IESE Results (5/5)

Role of an Architecture in Quality Assurance

• Architecture principally enables products to meet quality
requirements

– Within a given space of variability
– Balancing among different quality attributes

• Architectures supports planning of quality assurance activities
– Identify hot spots
– Predict ROI

• Architecture is key to concrete guidelines for QA activities
– Inspection questions e.g. focusing on right communication

mechanism

• Architecture establishes traceability among all kinds of artifacts

Copyright © Fraunhofer IESE 2004 37

Slide 8

Copyright © Fraunhofer IESE 2004

Report on Workshop Quality Assurance in Reuse Contexts (QUARC 2004)
Boston, September 1, 2004

Objectives

Workshop Structure

Results

Conclusion

Outline

IESE Conclusion

• Workshop has been a very large success (in particular due to
the level of participation of the audience)

• Importance of the topic has been confirmed by reports from
industry representatives

• Participants reported about similar observations regarding
difficulties and challenges of quality assurance for software
product lines

• Common understanding of the implications of reuse-based
software development paradigms on quality assurance

• Some promising solution ideas on how to address identified
problems and challenges

• BUT: Concrete techniques, methods, models, processes and
tools for quality assurance in reuse contexts mainly missing

Copyright © Fraunhofer IESE 2004 38

Document Information

Copyright 2004 Fraunhofer IESE.
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means including,
without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial
purposes.

Title: Proceedings of the First
International Workshop on
Quality Assurance in Reuse
Contexts (QUARC 2004)

Date: August 30, 2004
Report: IESE-096.04/E
Status: Final
Distribution: Public

	Introduction to Quality Assurance in Reuse Contexts
	Inspections in Reuse Intensive Software Development Processes
	Improving Efficiency of Testing with Test Reuse: Development of Reusable Test Assets
	Quality Assurance in a Software Product Line
	Position - Quality Assurance in Reuse Contexts
	Consistency Checking in Multiple-View Meta-Models of Software Product Lines
	Summary of Workshop Results

