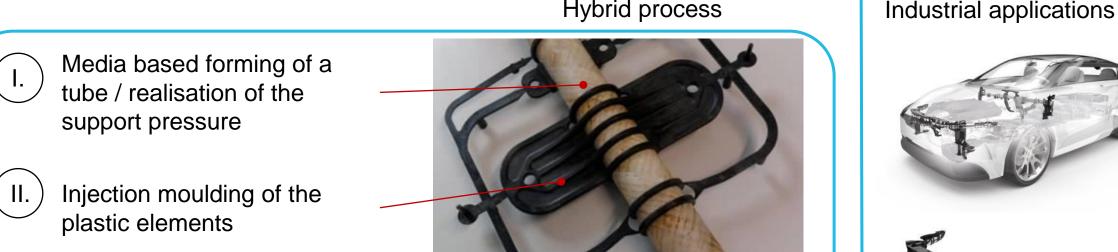

HYDROFORMING WITH INJECTION MOULDING BASED ON FIBRE REINFORCED PLASTIC TUBES

67th CIRP General Assembly, CWG on Composite Materials Parts Manufacturing Welf-Guntram Drossel, André Albert, Markus Layer; 24th of August 2017, Lugano

- Introduction
- Media based forming with gaseous media
- Hydroforming with injection moulding based on fibre reinforced plastic tubes
 - With continuous fibre reinforcement
 - With short fibre reinforcement
- Conclusion and outlook

Media based Forming at the Fraunhofer IWU


Hydroforming at room temperature More than 20 years hydroforming experience at the Fraunhofer IWU 1995 2001 2006 2011 2017	<image/>		<section-header><section-header><section-header><image/><image/><image/><image/><image/></section-header></section-header></section-header>	
1995 2001 2006 2011 2017				
		2006	2011 2017 Fraunhofer	

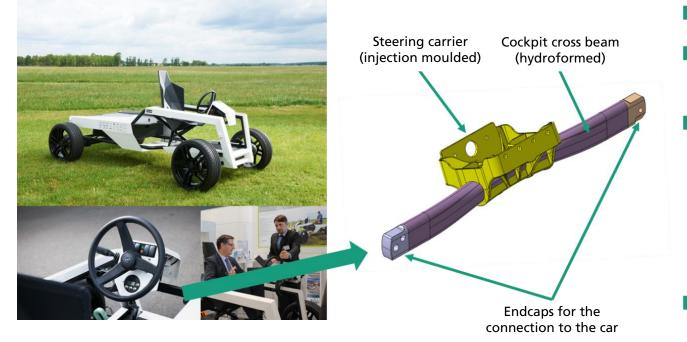
1

IWU

In-situ-manufacturing processes for hybrid parts

Process combination of hydroforming with injection moulding

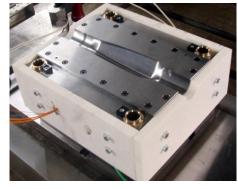
Hybrid process


- Research fields of the Fraunhofer IWU
 - Usage of gas (nitrogen) as working media
 - Substitution of the chemical bonding agents through a structuring of the metal surface for metal/plastic hybrid parts
 - Development and usage of fibre reinforced plastic tubes

Source: www.elringklinger.de/de/unternehmen/einblicke/kunststoffleichtbauteile-fuer-die-karosserie

AGENDA

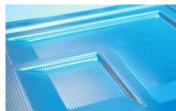
Introduction

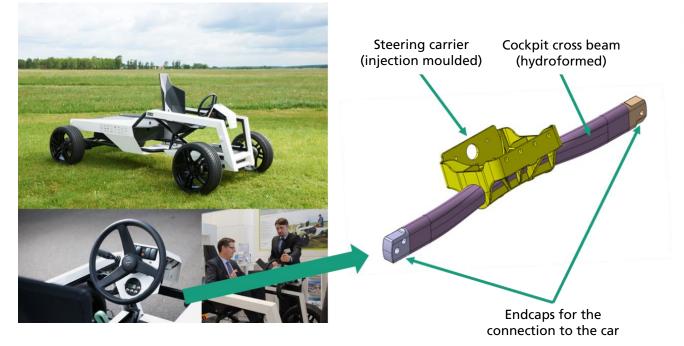

- Media based forming with gaseous media
- Hydroforming with injection moulding based on fibre reinforced plastic tubes
 - With continuous fibre reinforcement
 - With short fibre reinforcement
- Conclusion and outlook

Media based forming with gaseous active media

- 2006 installation of a 70 MPa gas pressure unit by Maximator (upgraded to 120 MPa in 2014)
- Realized processes
 - Isothermal forming
 - Hot forming with tools at room temperature
 - Superplastic forming
 - Hot metal gas forming with press hardening HMGF-PH
 - Hydroforming with injection moulding

- Advantages
 - Clean and dry: No cleaning operations necessary
 - Tempered forming possible up to more than 1000 ° C
- Disadvantages
 - Gaseous medium is compressible
 - Additional safety effort





AGENDA

Introduction

- Media based forming with gaseous media
- Hydroforming with injection moulding based on fibre reinforced plastic tubes
 - With continuous fibre reinforcement
 - With short fibre reinforcement
- Conclusion and outlook

Hydroforming with injection moulding based on fibre reinforced plastic tubes semi finished parts: short fibre reinforced tubes vs. continuous fibre reinforced tubes

- Short fibre reinforced tubes
 - Advantages
 - Cost-effective production by extrusion
 - High degree of formability

- Disadvantages
 - Lower strength
 - Combined hydroforming and injection moulding process is difficult to control (lower burst pressures in the area of the injection moulding geometries)

- Continuous fibre reinforced tubes
 - Advantages
 - Component properties can specifically influenced by fibre position

- Simpler process control at the combined hydroforming and injection moulding process
- Disadvantages
 - High costs due to winding process
 - No forming of the tube possible, only calibration due to low formability of the fibers

Hydroforming with injection moulding based on continuous fibre reinforced plastic tubes tube development

Tube requirements

- Gastight for the hydroforming with injection moulding process
 - 2-component tubes
 - Extrusion tube (PA6.6/GF or PPA/GF) as a gas-tight inner layer
 - Reinforced outer layer (PA6/GF-tapes)
- No material strains possible due to the continuous-fibre-reinforcement
- Sufficient self-stability for handling at forming temperature
 - Forming just below melting temperature

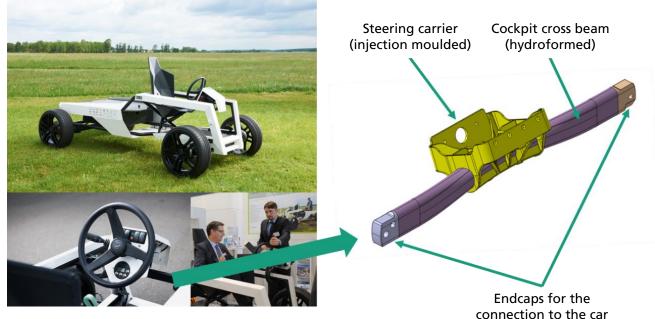
Tube manufacturing

- Extrusion of the gastight inner layer
- Winding process of the reinforced outer layer direct on the extruded inner layer

Hydroforming with injection moulding based on continuous fibre reinforced plastic tubes **Experimental setup and realized parts**

Injection moulding press	Process parameter	value
Injection moulding press	Injection moulding plastic	PA6 / GF60
	Forming pressure	35 MPa
	Tube temperature	220 °C
	Tool temperature	80 °C
	Injection temperature	280 °C
	Cycle times	
	hydroforming	3-5 sec
	Injection	2 sec
Gas pressure unit	total cycle (with cooling and handling)	59 sec

9



Hydroforming with injection moulding based on short fibre reinforced plastic tubes

ZIM-Project FVK-IHU: "Development of fibre-reinforced plastic tubes for further manufacturing of highly integrated lightweight parts using a combination of hydroforming and injection moulding"

- Part A: development of fibre-reinforced plastic tubes for hydroforming
- Part B: heating and handling of the tubes
- Part C: tool and process development for hydroforming
- Part D: tool and process development for the combination of hydroforming and injection moulding

© Fraunhofer IWU

Hydroforming with injection moulding based on short fibre reinforced plastic tubes Method plan – demonstrator part cockpit cross beam Kulan

ກອດ

- Process chain (start with tube)
 - Preform:
 - Heating up the tube (Ø38mm, 500mm long) 1.
 - 2. Part handling into the tool
 - 3. Hydroforming of the preform
 - Combination of hydroforming and injection moulding
 - Heating up the preformed part 1.
 - 2. Part handling into the tool
 - 3. Hydroforming and injection moulding process

Hydroforming with injection moulding based on short fibre reinforced plastic tubes **Tube requirements / materials used**

Tube requirements

- Gastight in hydroforming and hydroforming with injection moulding process
 - 2-component tubes (gastight inner layer and reinforced base layer)
 - Thick-walled pipes with temperature profile over wall thickness in process
- Possible material strains up to approx. 20 percent \rightarrow short fibre reinforcement
- Self-stability for handling at forming temperature just below melting temperature
- Cost efficient tube manufacturing by extrusion / co-extrusion

Materials used Mass plastic **Technical plastics** Polypropylene (PP) Polyamide 6.6 Exxon mobile EXXTRAL CNK010 (PA6.6/GF25: Lanxess Durethan AKV 325 H2.0, PA 6.6/GF15: BASF Ultramid® Endure D5G3 RM) good mechanical properties inexpensive low density good heat resistance most popular plastic high damping cap good chemical r in the automotive barely fatigue plant sector

Schicktanz

GmbH Sohland/Spree

ວອກ

Polyphthalamides (PPA)

del-PXM14261

hes Polyamid)

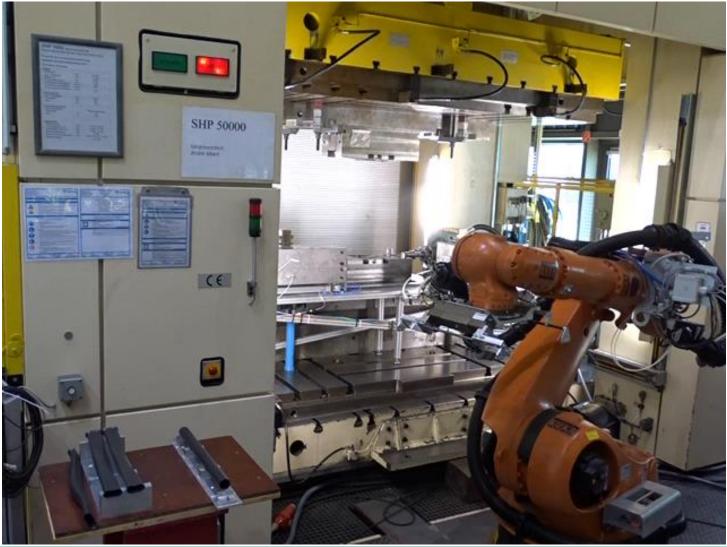
heat

d mechanical

12

Hydroforming with injection moulding based on short fibre reinforced plastic tubes Automated preform process

Equipment:


- Schuler hydroforming Press SHP 50.000
- Maximator gas pressure unit
- Kuka Robot KR 150

Process parameters:

Tube heating (Furnace temperature: 390°C)

Material	Furnace time	Tube temperature
РР	100-140 sec	140 °C
PA 6.6	150 sec	195°C – 220 °C
PPA	180 sec	220 °C

- Hydroforming process
 - Max. pressure: 15 MPa
 - Pressure build up time: 5 sec
 - Pressure holding time: 15 sec

Schicktanz

GmbH Sohland/Spree

ວອກ

POLY-LAB.NET 55 L Maschinenbau GmbH

Hydroforming with injection moulding based on short fibre reinforced plastic tubes **Automated preform process – forming results**

Good parts

- Materials:
 - PPA-KM,
 - PA-KM,
 - Ultramid TUC und
 - PP / GF15 -TUC

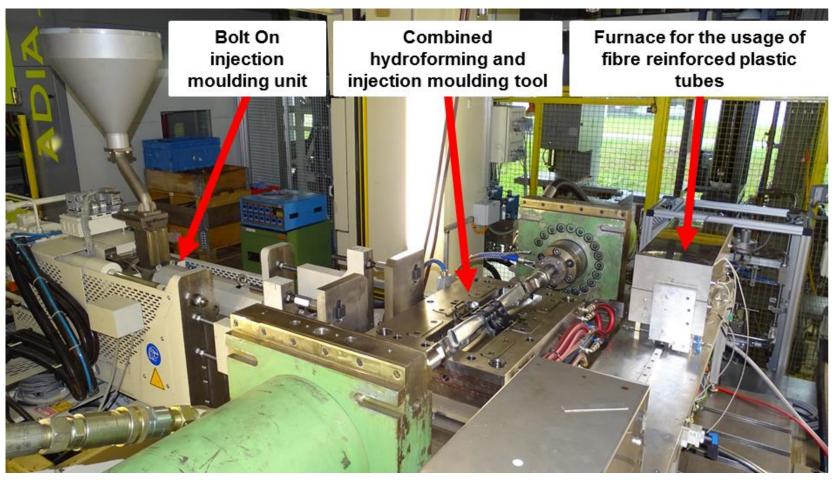
150 me

Failures

Cracks

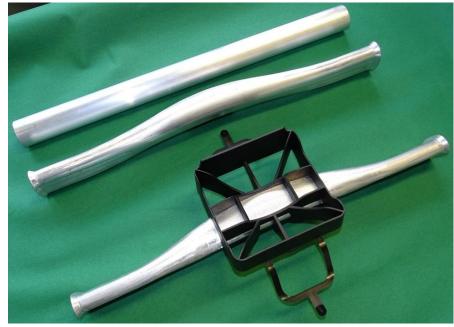
- Whitening fracture
- Wrinkles 🔽

- Material squeezed in the separating plane
- Deformed tube ends


55 Maschinenbau GmbH

Hydroforming with injection moulding based on short fibre reinforced plastic tubes Experimental setup

- Same process chain as hydroforming, but with an integrated injection moulding process
- Extended tool design based on hydroforming process
 - New tool with integrated injection moulding hot channel
 - Integration of a Bolt On injection moulding unit from the TU Chemnitz



Hydroforming with injection moulding based on short fibre reinforced plastic tubes First results

Tests with aluminum tubes were successful

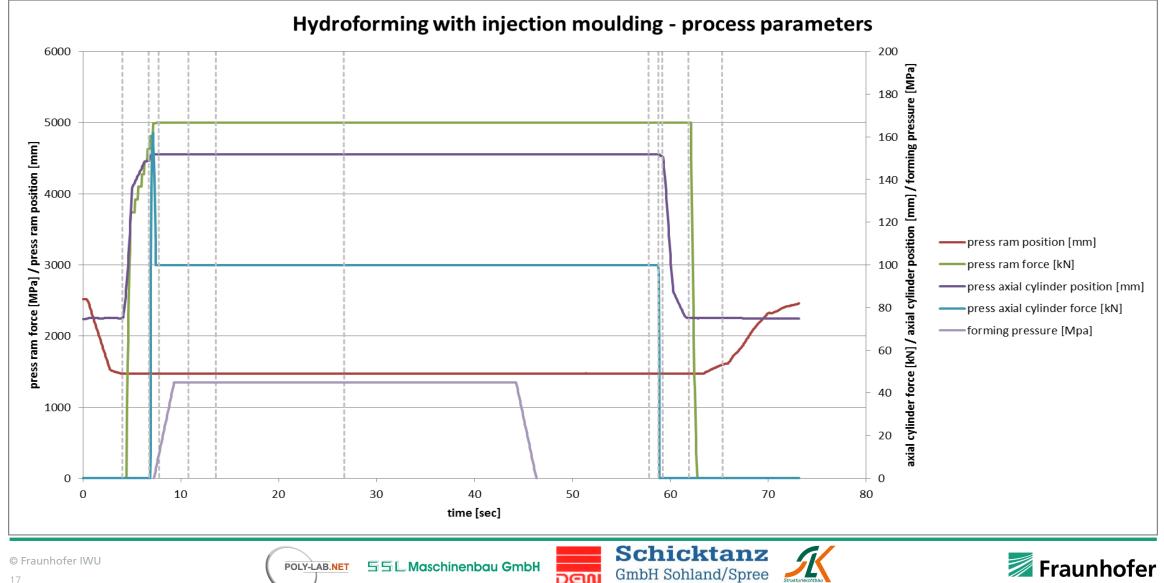
Production steps cockpit cross beam Kulan

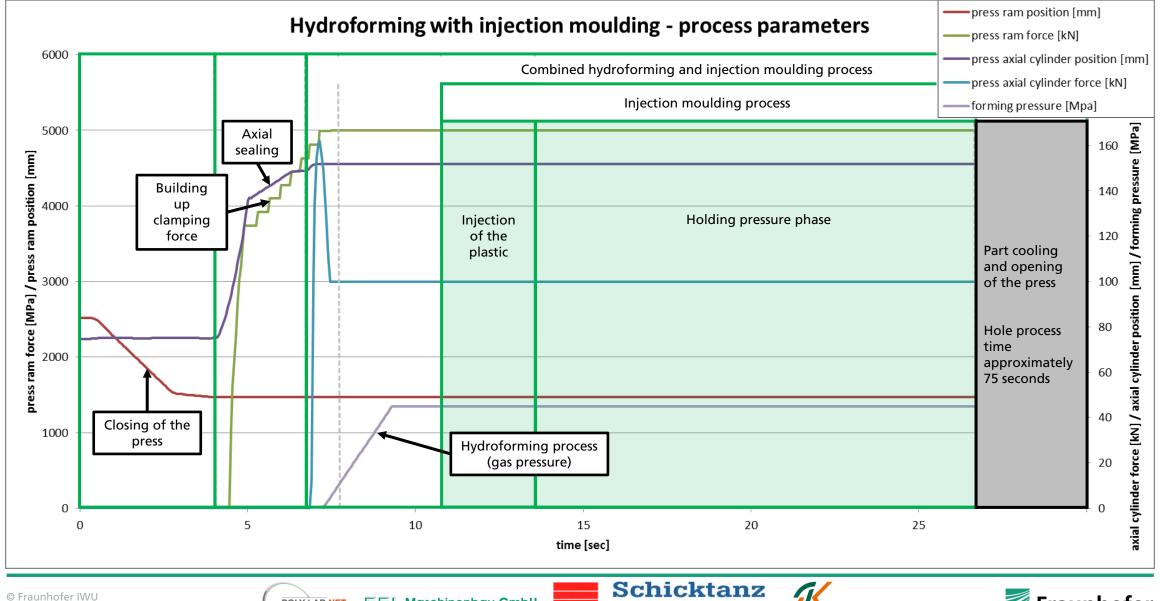
- Above: Semi finished tube (Ø38mm, EN AW 6060)
- Middle: hydroformed preform
- Below: final part produced by the combination of hydroforming and injection moulding

- First experiments with FRP-tubes (hydroforming process without injection moulding):
 - Good process with 10 MPa inner pressure

Crack with 13 MPa inner pressure

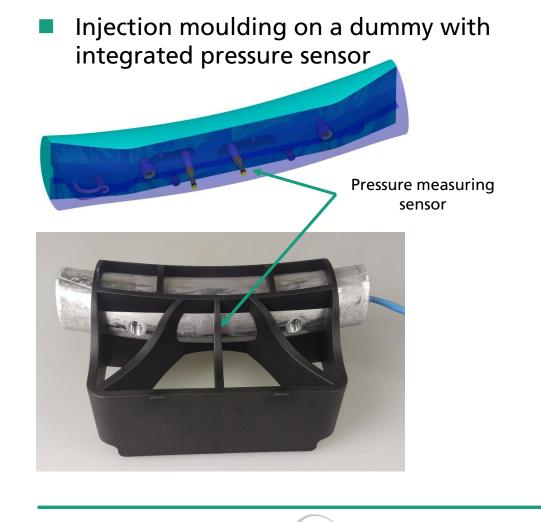
Min. 20 MPa inner pressure are necessary!

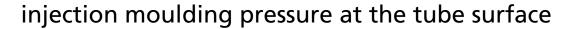


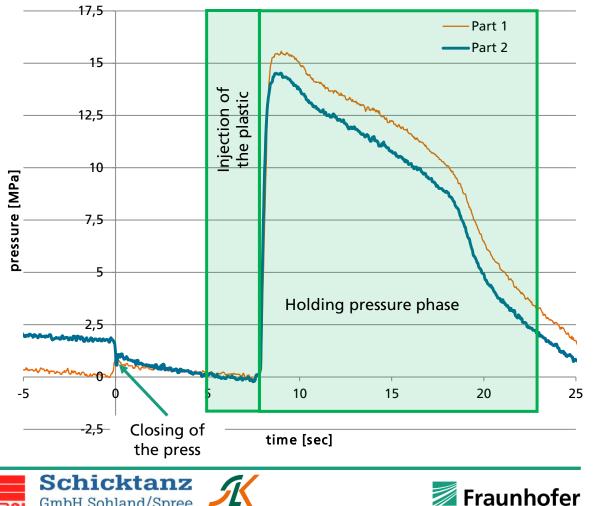


Hydroforming with injection moulding based on short fibre reinforced plastic tubes First results – process diagramm (based on aluminum tube)

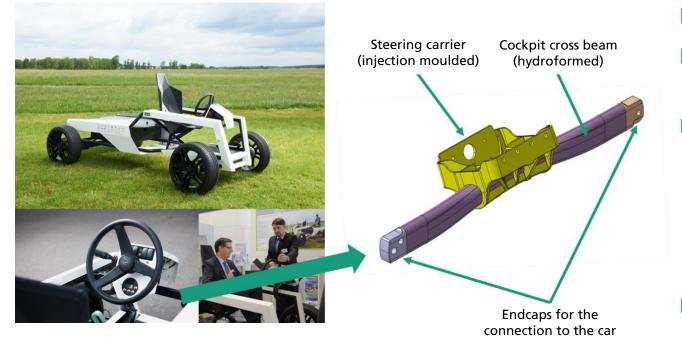
ວອທ


Hydroforming with injection moulding based on short fibre reinforced plastic tubes


© Fraunhofer IWU



Hydroforming with injection moulding based on short fibre reinforced plastic tubes First results – measuring of the injection moulding pressure at the surface of the tube



GmbH Sohland/Spree

© Fraunhofer IWU

AGENDA

Introduction

- Media based forming with gaseous media
- Hydroforming with injection moulding based on fibre reinforced plastic tubes
 - With continuous fibre reinforcement
 - With short fibre reinforcement
- Conclusion and outlook

Hydroforming with injection moulding based on short fibre reinforced plastic tubes Conclusion and outlook:

- Hydroforming and hydroforming with injection moulding processes were realized based on fibre reinforced plastic tubes
- Short fibre reinforced plastic tubes and continuous fibre reinforced plastic tubes were developed, manufactured and tested
- Next steps: Optimization of the process control for hydroforming with injection moulding process based on short fibre reinforced plastic tubes
 - Use of tubes with higher wall thickness
 - Simultaneous build-up of the forming pressure / support pressure in the tube and of the injection pressure in particular when switching to the holding pressure phase

Thank you for your attention

Prof. Dr.-Ing. Welf-Guntram Drossel Fraunhofer IWU Reichenhainer Str. 88 09126 Chemnitz Tel. +49 371 5397 1400 Email welf-guntram.drossel@iwu.fraunhofer.de

