Capacity-dependent tariffs as an incentive for a grid-benefiting storage operation in private households

Michael Schreiber Fraunhofer IWES, Kassel, Germany michael.schreiber@iwes.fraunhofer.de

What are we going to learn today?

What could make accumulators in private households serve the overall system?

Optimization of self-sufficiency does not serve the overall system

- Load (standard profile), PV generation and net load of a private household
- Storage to maximize self consumption
- Net load with high gradients and peaks

Approach for an intelligent energy management

Combining fixed and variable tariff components

Possibilities for flexible components in retail electricity tariffs

Study of four tariffs with different levels of flexibility

Retail electricity tariff	Flexible energy component	Flexible capacity component	Fixed costs component
Reference	0 %	0 %	100 %
Real time pricing (RTP)	x = 21 %	0 %	79 %
Capacity	0 %	y = 10 %	90 %
Capacity + RTP	x = 21 %	y = 10 %	69 %

Cost minimization for multi-component tariffs

$$\begin{split} \min \sum_{T} c_{total} \\ c_{total} &= 1.19 \cdot \left(c_{energy} + c_{capacity} + c_{fix} \right) - rev_{PV} \\ c_{energy} &= P^{+} \cdot c_{spot} \\ c_{capacity} &= c(y) \cdot P^{2} \\ c_{fix} &= P^{+} \cdot (1 - x - y) \cdot 24.14 \frac{Cent}{kWh} \\ rev_{PV} &= \begin{cases} P^{-} \cdot 15.35 \frac{Cent}{kWh}, P^{-} \leq 0.6 \cdot P_{PV} \\ 0, otherwise \end{cases} \end{split}$$

- Energy component: EPEX spot price for purchasing energy, fixed compensation for grid feed-in
- Capacity component: Increases disproportionately high to net capacity (quadratically), both for purchasing and selling energy

Visualization of the costs of the different tariffs

Energy management for a household (standard profile)

Test household: databases

- Measured load data with E _{con} = 4350 kWh/a, time resolution: 15 minutes
- Simulated photovoltaic generation with E gen = E con , P_{PV} = 4.1 kW
- Battery system with a usable storage capacity of $C = 2 \cdot P_{PV} = 8.2 \text{ kWh}$
- Rectifier and inverter with P = P_{PV} = 4.1 kW (efficiency curves are considered)

Influence of tariffs on net load

- Accumulator reduces maximum feed-in for all energy tariffs. Reduction is higher when tariff has a flexible capacity component
- Maximum grid withdrawal can be reduced significantly by capacity component

Financial effects of retail electricity tariffs

	Household: electricity costs [Cent/kWh]	Supplier: contribution margin [Cent/kWh]	Network operator: revenues [Cent/kWh]
No storage	28.7	3.5	5.7
Reference	28.7	3.9	5.7
RTP	27.6	3.5	5.7
Capacity	27.4	3.9	4.7
Capacity + RTP	26.5	3.5	4.7

contribution margin = revenues – procurement costs

Conclusions and outlook

- Both real time pricing tariffs and capacity tariffs have various weaknesses
- A combined tariff with both components can reduce peak loads, smooth gradients and lower energy procurement costs
- The economic efficiency has to be demonstrated for a larger system
- Refinancing of higher technological efforts have to be ensured

Thank you for your attention!

Michael Schreiber michael.schreiber@iwes.fraunhofer.de

© Fraunhofer