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1 Introduction

In the last years, there has been a rising interest in the easy access of printed material in large-
scale projects such as Google Book Search Vincent [2007] or the Million Book Project Sankar et al.
[2006]. To make this material amenable to browsing and retrieval the logical structure of documents
into titles, headings, sections, and thematically coherent parts has to be recognized. To cope with
large collections this task has to be performed in an automatic way. The result produced by a docu-
ment understanding system, given a text representation, should be a complete representation of the
document’s logical structure, ranging from semantically high-level components to the lowest level
components.

Document structure recognition can exploit two sources of information. On the one hand the
layout of text on the printed page often gives many clues about the relation of different structural
units like headings, body text, references, figures, etc.. On the other hand the wording and the
contents itself can be exploited to recognize the interrelation and semantics of text passages.
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There currently exist a wide range of algorithms specialized for certain parts of document analysis.
In large scale applications these approaches have to cope with the vast variety of printed document
layouts. A recent comparison is given by Shafait et al. [2006] showing that no single algorithm
is uniformly optimal. As argued in Baird and Casey [2006], versatility is the key requirement for
successful document analysis systems. Even for the same publisher, the layout of its publications
changes drastically over time. This is especially visible when dealing with publications spanning
over many decades or even centuries. As a general rule, more recently printed documents are also
more complex, and the difference between the layouts used by different publishers becomes more
pronounced. Thus it is extremely difficult to have algorithms consistently delivering good results over
the whole range of documents.

Machine learning approaches are a potential remedy in this situation. Starting form a training set
of structures documents they are able to extract a large number of features relevant for document
structure. In contrast to manually built rule systems they are able to weight these features and the
change of a few features does not lead to drastic loss of performance.

In this chapter we first discuss some advance approaches for detecting the structure of text based
on the sequence of text objects and layout features. This can be formulated as a classification problem
which may be solved by discrimiative classifiers like the support vector machine. To take into account
structural features these approaches may be enhanced by tree kernels, as shown in section ???. As
an alternative we discuss Conditional Random Fileds, which describe the interrelation of structural
states of text and are able to include a large number of dependent features. In the second part we
describe an approach based on minimum spanning trees. It is able to cope with multiple columns
and embedded commercials having a non-Manhattan layout and may be automatically adapted to the
different layouts of each publisher. It has been used in large scale newspaper digitization projects.

1.1 Conditional Random Fields

1.1.1 Basic Model

Let us consider the problem that we want to identify title and author in the following text snippet

The new bestseller:
Tears of Love
by Paula Lowe

For simplicity we may write the words of the snippet including newlines and mark them with T if they
belong to the title, by A if they belong to the authors, and by O otherwise. This gives the two vectors
x of words and y of unknown states

y O O O O T T T O O A A
x The new bestseller \n Tears of Love \n by Paula Lowe

Text data in documents has two characteristics: first, statistical dependencies exist between the
words, we wish to model, and second, each word often has a rich set of features that can aid clas-
sification. For example, when identifying the title in documents we can exploit the format and font
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properties of the title itself, but the location and properties of an author and an abstract in the neigh-
borhood can improve performance.

To infer the unknown states we represent the relation between sequences y and x by a conditional
probability distribution p(y|x). More specifically let the variables y = (y1, . . . , yn) represent the labels
of the word that we wish to predict with a set Y of possible values. Let the input variables x =
(x1, . . . , xn) represent the observed words and their properties. If I = {1, . . . , n} is the set of indices
of y then we denote the subvector corresponding to the indices in A ⊂ I by yA. Let φA(x, yA) > 0 be
a factor function with x and the subvectors yA as arguments and let C be a set of subsets of A ⊂ I .
Each φA(x, yA) is a function taking into account the relation between the labels in the subvector yA,
which often are the adjacent labels in the sequence. Then we represent the conditional distribution
by a product of factor functions

p(y|x) =
1

Z(x)

∏
A∈C

φA(x, yA) (1)

Here Z(x) =
∑

y

∏
A∈C φA(x, yA) is a factor normalizing the sum of probabilities to 1.

The product structure enforces a specific dependency structure of the variables yi. Consider the
conditional distribution of yi given all other variables. It may be written as

p(yi|yD(i), x) =
p(yi, yD(i), x)∑

yi∈Y p(yi, yD(i), x)
=

∏
B∈C,i∈B φB(x, yB)∑

yi∈Y

∏
B∈C,i∈B φB(x, yB)

(2)

as the factor functions φA(x, yA) where i /∈ A cancel. Therefore the conditional probability of yi is
completely determined if the values of x and the yB are known for all B which contain i. The factor
functions φA(x, yA) describe the interactions between the argument variables. Obviously C determines
the dependency structure of the components of y. A probability distribution of this form is called
conditional random field (CRF) Lafferty et al. [2001] Sutton and McCallum [2007]. As dependencies
among the input variables x do not need to be explicitly represented, rich, global input features x may
be used. For example, in natural language tasks, useful features include neighboring words and word
bigrams, prefixes and suffixes, capitalization, membership in domain-specific lexicons, and semantic
information from sources such as WordNet.

Recently there has been an explosion of interest in CRFs, with successful applications including text pro-

cessing [Taskar et al., 2002, Peng and McCallum, 2004, Settles, 2005, Sha and Pereira, 2003], bioinformatics

[Sato and Sakakibara, 2005, Liu et al., 2005], and computer vision [He et al., 2004, Kumar and Hebert, 2003].

Usually there exists a number of different features for the same variables x, yA. For A = {i} for
instance φA(x, yi) may cover the feature that word xi is in bold and yi = T , i.e. is a title word. If
we have KA features for A then we may write φA(x, yA) = exp(

∑KA
k=1 λA,kfA,k(x, yA)). Here λA,k is a

real-valued parameter determining the importance of the real-valued feature function fA,k(x, yA). The
exponentiation ensures that the factor functions are positive. This yields the representation

p(y|x) =
1

Z(x)

∏
A∈C

exp

(
KA∑
k=1

λA,kfA,k(x, yA)

)
=

1
Z(x)

exp

(∑
A∈C

KA∑
k=1

λA,kfA,k(x, yA)

)
(3)

Often the feature functions are binary with value fA,k(x, yA) = 1 if the feature is present and
fA,k(x, yA) = 0 otherwise. If λA,k = 0 the corresponding feature has no influence. For non-negative
feature functions positive values for λA,k indicate that the feature increases p(yA|x), while negative
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values decrease the conditional probability. and have to be estimated from training data by maximum
likelihood.

A a common special case is the linear chain conditional random field, where only interactions
between yt and yt−1 are allowed. If in addition we only take into account the corresponding inputs xt

and xt−1 the feature functions have the form. f{t−1,t},k(xt−1, xt, yt−1, yt). Therefore only the adjacent
states yt−1 and yt influence each other directly. The following figure shows such a linear chain with
four states. For simplicity only a single type of feature function is shown.

Often it can be assumed, that the parameters do not depend on the particular t and hence
λ{t−1,t},k = λ{t,t+1},k for all t. This parameter tying drasticaly reduceds the number of unkown pa-
rameters. More general we may partition C = {C1, . . . , CQ} where each Cq is a set of all A whose
parameters are tied. Then we get the representation

p(y|x;λ) =
1

Z(x)
exp

∑
Cp∈C

∑
A∈Cp

KA∑
k=1

λp,kfA,k(x, yA)

 (4)

We may estimate the unkown parameters according to the maximum likelihood criterion. As-
sume we have observed a number of i.i.d observations (x(1), y(1)), . . . , (x(N), y(N)), e.g different doc-
uments which are already labeled with the states. Differentiating the log-likelihood function `(λ) =
log
∏

n p(y
(n)|x(n);λ) with respect to λp,k yields

∂`(λ)
∂λp,k

=
N∑

n=1

∑
A∈Cp

fA,k(x(n), y
(n)
A )−

∑
A∈Cp

∑
yA∈YA

p(yA|x(n);λ)fA,k(x(n), yA)


where YA is the set of all possible yA and p(yA|x(n);λ) is the probability of yA given x(n) and the
current parameter values λ.

The first sum contains the observed feature values for fA,k(x(n), y
(n)
A ) and the second sum consists

of the expected feature values given the current parameter λ. If the gradient is zero both terms
have to be equal. It can be shown that the log likelihoodfunction is concave and hence may be
efficiently maximized by second-order techniques such as conjugate gradient or L-BFGS. To improve
generalization a quadratic penalty term may be added which keeps the parameter values small.

Gradient training requires the computation of the marginal distributions p(yA|x(i)). In the case of
a linear chain CRF this can efficiently done by the forward-backward algorithm requiring 2*N steps.
For tree-structured networks we may use the ..., which. Networks with cycles require more effort as
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the exact computation grows exponentially with the diameter: loopy belief propagation (see section
1.1.4).

If the parameters are known we have to determine the most likely state configuration for a new
input x+ = (x+

1 , . . . , x
+
n )

y∗ = arg max
y
p(y|x+;λ)

which in the case of linear chain models can be efficiently calculated by dynamic programming using
the Viterbi algorithm. During prediction the linear-chain CRF takes into account the correlations
between adjacent states, which for many problems increase the prediction quality. Other problems
requiring long-range correlations between states are described in sections 1.1.3 and 1.1.4.

1.1.2 Application of Linear-Chain CRFs to Structure Information extraction

Peng and McCallum [2004] applied linear chain CRFs to the extraction of structural information from
scientific research papers. In their header extraction task they consider the first part of a paper which
has to be labeled with the following states: title, author, affiliation, address, note, email, date, abstract,
introduction, phone, keywords, web, degree, publication number, and page. A second reference task
labels the references at te end of a paper with the following states: author, title, editor, booktitle, date,
journal, volume, tech, institution, pages, location, publisher, note. They used the following features:

• Local features describing the curret word xi: word itself, starts with capital letter, only capital
letters, contains digit, only digits, contains dot, contains "-", acronym, capital letter and dot,
matches regular expressions for phone number, zipcode, URL, email.

• layout features: word at begin of line, word in the middle of line, word at the end of a line.

• External lexicon features: Word in author list, word in date list (e.g. Jan. Feb.), word in notes.

On a training set with 500 headers they achieve an average F1 of 94% for the different fields,
compared to 90% for SVMs and 76% for HMMs. For the reference extraction task trained on 500
articles they yield and F1-value of 91.5% compared to 77.6% for an HMM. They found that the
Gaussian prior consistently performs best.

Schneider [2006] uses linear CFRs to extract information like conference names, titles, dates,
locations, and submission deadlines from call for papers with the goal to compile conference calenders
automatically. He models the sequence of words in a CFP and uses the following layout features: first
/ last token in the line, first/last line in the text, line contains only blanks / punctuations, line is
indented, in first 10 / 20 lines of the text. Using a training dataset of 128 CFPs they achieve an
average F1-value of about 60-70% for the title, date and other fields of a CFP. More difficult is te
identification of a the co-located main conference which has only an F1-value of 35%.

1.1.3 Discriminative Parsing Models

Document structure extraction problems can be solved more effectively by learning a discriminative
context free grammar (CFG) from training data. According to Viola and Narasimhan [2005] Awasthi
et al. [2007] a grammar has several distinct advantages: long range, even global, constraints can
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be used to disambiguate entity labels; training data is used more efficiently; and a set of new more
powerful features can be introduced. The specific problem Viola and Narasimhan [2005] consider is
of extracting personal contact, or address, information from unstructured sources such as documents
and emails.

A CFG consists of a set of terminals T = {w1, . . . , wV } and a set of non-terminalsN = {N1, . . . , Nn},
a designated start symbol N1 and a set of rules or productions R = {Ri : Nji → ζi} where ζi is a se-
quence of terminals and non-terminals in N ∪T . A parse tree for a sequence w1, . . . , wm is a tree with
w1, . . . , wm as leaf nodes and some Ni ∈ N as interior nodes such that the child nodes of an interior
node are generated by a rule Ri ∈ R. Associated with each rule is a score S(Ri). The score of a
complete parse tree is the sum of all scores of the rules used in the parse tree. The CKY (Cook-Kasami-
Younger) algorithm (see Manning and Schütze [1999]) can compute the parse with the highest score
in time O(n3 · |R|), which is feasible for relatively small m.

Assume that a nonterminal Nji generates the terminals wa, . . . , wb then the probability of a rule
may be written by a loglinear expression

p(Ri) =
1

Z(λ(Ri), a, b, Ri)
exp

F∑
k=1

λk(Ri)fk(w1, . . . , wm, a, b,Nji → ζi)

Here Nji directly or indirectly generates wa, . . . , wb and f1, . . . , fk is the set of features similar to the
CRF features above, which may depend on all terms in the parenthesis. In principle, these features
are more powerful than the linear-chain CRF-features because they can analyze the sequence of words
associated with the current non-terminal and not only for the direct neighboring words. λk(Ri) is the
weight of feature k for Ri and Z(·) is a factors ensuring that the probabilities add up to 1.

As for the CRF this loglinear model is not intended to describe the generative process forw1, . . . , wm

but aim at discriminating between different parses of w1, . . . , wm. For training use a training set of
documents manually labeled with the correct parse tree. They semiautomatically infer a set R of
production rules and a set of features. The weights λk(Ri) of the features for production rule Ri are
determined by the perceptron learning algorithm, which successively increases weights for examples
with active features and decreases weights for samples with inactive features.

The apply this approach to a CRF trained by the voted perceptron algoritm. They used a data set
with about 1500 contact records with names adresses, etc. for training. For only 27% of the records
in the training set an error occured, while the linear chain CRF had an error rate of 55%. This means
that taking into account non-local information by the parse tree approach cut the error in half.

1.1.4 Graph-Structured Model

Up to now we have analyzed document structures with an inherent sequence of elements for the linear
chain CRF or discriminative parsing models. We now discuss graph-like structures with more complex
dependencies.

As an example consider the problem of processing newspaper archives. After scanning and apply-
ing OCR, low-level algorithms may be used to identify elements like lines, paragraphs, images, etc.
The 2-dimensional page analysis can go further and establish spatial logical relationships between the
elements, like ”touch”, "below", ”right of”, etc. Especially in newspapers with multi-column layout the
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Figure 1: For multicolumn newspaper layout the relation between articles, paragraphs, images and
tables is ambiguous and may be modeled by a probabilistic relational model.

sequence of paragraphs of an article in different columns or even on continuation pages is not unique.
In the same way the assignment of tables, figures and images located somewhere on the page to an
article is a challenging problem.

The low-level analysis generates a number of object oi, e.g. lines, paragraphs, articles, images,
etc. For a some pairs of these objects relations rj may be specified, e.g. image left-of article , image
belongs-to article, article below article. Each object and each relation has an associated type t(oi) or
t(ri). Depending on the type each object and each relation is characterized by type-specific attributes,
e.g. topic, title, or x-y-position. This yields for each type t a type-specific attribute vector xt(oi)

oi for
an object or and attribute vector xt(ri)

ri for a relation. The following figure shows a small example
network of relations between articles and images of a newspaper. A probabilistic relational network
(PRM) (Taskar et al. [2002], Getoor and Taskar [2007], Neville and Jensen [2007]) represents a joint
distribution over the attributes xt(oi)

oi and xt(ri)
ri of objects and relations.

Attributes of an object or relation can depend probabilistically on other attributes of the same or
other objects or relations. For example the probability of image belonging to an article is higher if it is
located close to it. In the same way the probability of an image belonging to an article is higher if the
topic of the caption and the topic of the article are similar. These dependencies can be exploited in a
probabilistic relation model.

In a linear chain CRF we had a generic dependency template between the states of successive states
in the chain. This resulted in using the same parameters independent of the step index or the specific
sentence. In the same way probabilistic relational models may define a number generic dependency
templates depending on the types of the involved items. This approach of typing items and tying
parameters across items of the same type is an essential component for the efficient learning of PRMs.
It enables generalization from a single instance by decomposing the relational graph into multiple
examples of each item type (e.g., all image objects), and building a joint model of dependencies
between and among attributes of each type.

The resulting probabilistic dependency network is a graph-structured CRF (4) where parameters
are tied in a specific way. This model is discussed in depth in Sutton and McCallum [2007]. A number
of variants of CRF models have been developed in recent years. Dynamic conditional random fields
Sutton et al. [2004] are sequence models which allow multiple labels at each time step, rather than
single labels as in linear-chain CRFs. Lumped label CRFs Paaß and Reichartz [2009]allow to include
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Figure 2: Articles and images of a newspaper page are characterized by a number of attributes. Be-
tween a subset of pairs different types of relations exist.

observations, where only a subset of labels is observed and it is known that one of the labels in the
subset is the true label. Finally, Markov logic networks Richardson and Domingos [2006] are a type of
probabilistic logic network in which there are parameters for each first-order rule in a knowledge base.
These first-order rules may, for example, be exploited to specify constrainst between layout elements.

Parameter estimation for general CRFs is essentially the same as for linear-chains, except that com-
puting the model expectations requires more general inference algorithms. Whenever the structure of
the relationships between elements form an undirected graph, finding exact solutions require special
graph transformations and eventually the enumeration of all possible annotations on the graph. This
results in the exponential complexity of model training and inference. To make it tractable, several
approximation techniques have been proposed for undirected graphs; these include variational and
Markov Chain Monte Carlo methods.

A number of alternatives exist:

• Gibbs sampling Finkel et al. [2005], where for each training example the labels are selected ran-
domly according to the conditional distribution (2). The required probabilities can be estimated
from the resulting joint ditribution of labels.

• Loopy belief propagation Sutton and McCallum [2004], performing belief propagation, which is
an exact inference algorithm for trees, ignoring part of the links.

• Pseudo-likelihood approaches Besag [1975] which instead of the predicted labels use the ob-
served label values to predict a label from its environment.
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Chidlovskii and Lecerf [2008] use a variant of probabilistic relational models to annalyze the
structure of documents. They aim at annotating lines and pages in layout-oriented documents which
correspond to the beginning of sections and section titles. While for a local network corresponding to
linear chain CRFs they get an F1-value of 73.4% which is increased to 79.5% for a graph-structured
probabilistic relational network.

There are other, more heuristic, models taking into account graph-structured dependencies. Wis-
niewski and Gallinari [2007] consider the problem of sequence labeling and propose a two steps
method. First they use a local classifier for the initial assignment of elements without the taking into
account dependencies. Then a relaxation process successively takes into account non-local depende-
cies to propagate information and ensure global consistency. They test their approach on a collection
of 12000 course descriptions which have to be annotated with 17 different labels such as lecturer,
title, start time or end time; each description contains between 4 and 552 elements to be extracted.
For a CRF they report an F1-value of 78.7%, for a Probabilistic Context Free Grammar using maximum
entropy estimators to estimate probabilities they yields 87.4% and the relaxation model arrives at an
F1-value of 88.1%.

Nicolas: Document Image Segmentation Using a 2D Conditional Random Field Model ICDAR 2007
Handwriting: In this work we have proposed a Conditional Random Field model for 2D data

labelling, in particular for document image segmentation. One of the main advantages of this model
is that it can be learned automatically using machine learning procedures, so no manual parameter
setting is necessary. This allows an easy adaptation to different types of documents and different
analysis tasks. The results we have obtained on Flaubert’s manuscripts show that the proposed model
provides better results than MRF generative models. These results are similar to those presented in

2 Document Analysis for Large-Scale Processing

Despite intensive research in the area of document analysis, the research community is still far from
the desired goal, a general method of processing images belonging to different document classes both
accurately and automatically. We will see that while geometric layout analysis methods are fairly ma-
ture, logical layout analysis research is mainly focused on journal articles. The automatic discovery of
logical document structure would enable a multitude of electronic document tools, including markup,
hyperlinking, hierarchical browsing and component-based retrieval Summers [1995]. For this pur-
pose, the application of machine learning techniques to arrive at a good solution has been identified
by many researchers as being a promising new direction to take Marinai and Fujisawa [2008].

The current section is dedicated to the presentation of a rule-based module for performing logical
layout analysis. The described module has been extensively used as part of an automatic system in the
processing of large-scale (i.e. >100.000 pages) newspaper collections. As can be seen from figure 3, a
generic DIU system must incorporate many specialized modules. Logical layout analysis is considered
to be one of the most difficult areas in document processing and is a focal point of current research
activity. We will also discuss the applicability of the previously described machine learning approaches
as a replacement for the traditional rule-based methods. As a prelude, for the sake of completeness, a
brief overview on the current research in geometric layout analysis is presented before going into the
state-of-the-art algorithms for logical layout analysis.
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Figure 3: Functional model of a complete, generic DIU system. The ordering of some subsystems may
vary, depending on the application area
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a) b)

Figure 4: Example of page segmented images from: a) newspaper; b) chronicle. Color legend: green=
text, red= image, orange= drawing, blue= vertical separator, cyan= horizontal separator, darkened
background= frame box

2.1 State of the Art

2.1.1 Geometric Layout Analysis

The purpose of geometric layout analysis (or page segmentation) is to segment a document image into
homogeneous zones, and to categorize each zone into a certain class of physical layout elements. Most
commonly, the physical layout elements are divided into text, graphics, pictures, tables, horizontal
and vertical rulers. It is important to note that in the specialized literature there exists no consensus
on the number of physical classes considered, the number depending mostly on the target domain.

Ideally, the page segmentation process should be based solely on the geometric characteristics
of the document image, without requiring any a priori information (such as a specific document
type - e.g. newspaper, engineering drawing, envelope, web page). Many current page segmentation
algorithms are able to meet this condition satisfactorily. In the vast majority of cases, however, the
input image is assumed to be noise free, binary, and skew-free.

Traditionally, page segmentation methods are divided in three groups: top-down (model-driven),
bottom-up (data-driven) and hybrid approaches. In top-down techniques, documents are recursively
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divided from entire images to smaller regions. These techniques are generally very fast, but they
are only useful when a priori knowledge about the document layout is available. To this class be-
long methods using projection profiles Ha et al. [1995], X-Y cuts Ha et al. [1995], or white streams
Akindele and Belaid [1993]. Bottom-up methods start from pixels, merging them successively into
higher-level regions, such as connected components, text lines, and text blocks. These methods are
generally more flexible and tolerant to page skew (even multiple skew), but are also slower than
top-down methods. Some popular bottom-up techniques make use of region growing (Jain and Yu
[1998]; Kise et al. [1998]), run-length smearing Wahl et al. [1982], or mathematical morphology
Gatos et al. [2005]. Many other methods exist which do not fit exactly into either of these categories;
they were consequently called hybrid methods. Hybrid approaches try to combine the high speed
of the top-down approaches with the robustness of the bottom-up approaches. Within this category
fall all texture-based approaches, such as those employing Gabor filters, multi-scale wavelet analysis
Doermann [1995], or fractal signatures Tang et al. [1995].

Many other algorithms for region detection have been proposed in the literature. For a more
complete overview one may consult the most recent surveys and methods, such as Cattoni et al.
[1998]; Mao et al. [2003]; Shafait et al. [2006]. Page segmentation methods are being evaluated
from time to time, e.g. by Shafait et al. [2006] who compare the performance of six algorithms and,
most recently, in the 2007 ICDAR competition described by Antonacopoulos et al. [2007]. As one
may see from the results obtained in the recent years, current page segmentation algorithms perform
quite well in the task of separating text and non-text regions. An evaluation of the page segmentation
results produced by the module used in our DIU system on a set of 22 newspaper images coming from
6 different publishers has shown an accuracy of about 95% correctly separated text regions for the
text-non-text separation task.

2.1.2 Logical Layout Analysis

The purpose of logical layout analysis is to segment the physical regions into meaningful logical units
according to their type (e.g. text lines, paragraphs), assign a logical label to each of the determined
regions (e.g. title, caption), as well as to determine the logical relationships between the logical regions
(e.g. reading order, inclusion in the same article). Note that in case the processed document type is a
periodical, logical layout analysis is also referred to as article segmentation.

The set of available logical labels is different for each type of document. For example: title,
abstract, paragraph, section, table, figure and footnote are possible logical objects for technical papers,
while: sender, receiver, date, body and signature emerge in letters. Logical relationships are typically
represented in a hierarchy of objects, depending on the specific context Cattoni et al. [1998]. Examples
of relations are cross references to different parts of an article or the (partial) reading order of some
parts of a document. Taking into consideration all these aspects, it becomes clear that logical layout
analysis can only be accomplished on the basis of some kind of a priori information (knowledge)
about the document class and its typical layout, i.e. a model of the document. Such knowledge can be
represented in very different forms (e.g. heuristic rules, formal grammars, probabilistic models such
as Hidden Markov Models, a.s.o.). Cattoni et al. [1998] contains a survey of the different document
formats used in modern document image understanding systems.
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The number of available logical layout analysis algorithms is much lower than that of geometrical
layout analysis algorithms, as the difficulty of the task is significantly higher. This section will only
present the main ideas of a few methods and the interested reader is advised to consult one of the
dedicated survey papers (e.g. Haralick [1994]; Cattoni et al. [1998]; Mao et al. [2003]).

Tsujimoto and Asada [1992] regarded both the physical layout and logical structure as trees. They
transform the geometrical layout tree into a logical layout tree by using a small set of generic rules
suitable for multi-column documents, such as technical journals and newspapers. The physical tree
is constructed using block dominating rules. The blocks in the tree are then classified into head and
body using rules related to the physical properties of the block. Once this logical tree is obtained, the
final logical labels are assigned to the blocks using another set of rules. The logical labels considered
are: title, abstract, sub-title, paragraph, header, footer, page number, and caption. A virtual field
separator technique is introduced, in which separators and frames are considered as virtual physical
blocks in the physical tree. This technique allows the tree transformation algorithm to function with
a low number of transformation rules. The authors tested their algorithm on 106 pages from various
sources and reported a logical structure recognition accuracy of 88.7%. Errors were due to inaccurate
physical segmentation, insufficient transformation rules, and the fact that some pages did not actually
have hierarchical physical and/or logical structures.

A general algorithm for automatic derivation of logical document structure from physical layout
was described by Summers [1995]. The algorithm is divided into segmentation of text into zones
and classification of these zones into logical components. The document logical structure is obtained
by computing a distance measure between a physical segment and predefined prototypes. The set
of properties assigned to each prototype are the parameters from which each distance value is cal-
culated. The properties include contours, context, successor, height, symbols, and children. Basic
textual information was also used in order to obtain a higher accuracy. The algorithm was tested on
196 pages from 9 randomly selected computer science technical reports. The labeling result of each
text block was characterized as correct, over-generalized, or incorrect. Two metrics, precise accuracy
and generalized accuracy, were used to evaluate the performance. Both average accuracy values were
found to be greater than 86%.

Niyogi and Srihari [1995] presented a system called DeLoS for document logical structure deriva-
tion. In their system, the algorithm is regarded to be the result of applying a general rule-based con-
trol structure, as well as a hierarchical multi-level knowledge representation scheme. In this scheme,
knowledge about the physical layouts and logical structures of various types of documents is encoded
into a knowledge base. The system included three types of rules: knowledge rules, control rules,
and strategy rules. The control rules control the application of knowledge rules, whereas the strategy
rules determine the usage of control rules. A document image is first segmented using a bottom-up
algorithm, followed by a geometric classification of the obtained regions. Finally, the physical regions
are input into the DeLoS system and a logical tree structure is derived. The DeLoS system was tested
on 44 newspaper pages. Performance results were reported in terms of block classification accuracy,
block grouping accuracy, and read-order extraction accuracy.

In the recent years, research on logical layout analysis has shifted away from rigid rule-based meth-
ods toward the application of machine learning methods in order to deal with the required versatility.
There are several examples for this. Esposito et al. [2004] employ machine learning in almost every
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aspect of document analysis, from page segmentation to logical labeling. Their methods are based on
inductive learning of knowledge that was hand-coded in previous approaches. Chen et al. [2007] use a
set of training pages to learn specific layout styles and logical labels. An unknown page is recognized
by matching the page’s layout tree to the trained models and applying the appropriate zone labels
from the best fit layout model. Similarly, the method of van Beusekom et al. [2007] finds for a given
unlabeled page the best matching layout in a set of labeled example pages. The best match is used to
transfer the logical labels to the unlabeled page. The authors see this as a light-weight yet effective
approach. Rangoni and Belaïd [2006] use an artificial neural network as basis for their approach. In-
stead of a Multi Layer Perceptron where the internal state is unknown, they implement a Transparent
Neural Network that allows introduction of knowledge into the internal layers. The approach features
a feedback mechanism by which ambiguous results can be resolved by proposing likely and unlikely
results to the input layer based on the knowledge about the current context. The input layer can
respond by switching between different feature extraction algorithms, e.g. for determining the word
count in a given block.

The logical layout analysis methods described so far have not been evaluated rigorously on layouts
more complex than journal papers. The very complex newspaper layouts are for example the subject
of Furmaniak [2007]. This is one of very few publications on the matter of article segmentation. It
appears that this reflects the difficulty of the task. Yet, the author realizes that the mass digitalization
of newspapers will be one of the next steps after the current wave of book digitalization projects. He
proposes a method for learning the layout of different newspapers in an unsupervised manner. In
a first stage, a word similarity analysis is performed for each pair of neighboring text blocks. The
second stage uses geometric and morphological features of pairs of text blocks to learn the block
relations that are characteristic for a specific newspaper layout. Results with high confidence from the
word similarity analysis serve as ground truth for the training of the second stage. This method gives
promising results and further strengthens the machine learning approach to logical layout analysis.

It is very important to note that in the area of logical layout analysis, there do not exist any
standardized benchmarks or evaluation sets, not even algorithms for comparing the results of two
different approaches. This is a gap that needs to be filled in future research, as principled evaluation
is the only way to convincingly demonstrate advances in logical layout analysis research.

2.2 Minimum Spanning Tree-based Logical Layout Analysis

In case of newspaper pages or other complex layout documents, the logical layout analysis phase must
be able to cope with multiple columns and embedded commercials having a non-Manhattan layout.
Most importantly however, the approach has to be flexible enough so as to be readily adaptable (or
adapt automatically) to the different layouts of each publisher. The current section contains the con-
cise description of an article segmentation method, which, based on the construction of a minimum
spanning tree (MST), is able to handle documents with a great variety of layouts.

Previous approaches using the MST in document layout analysis were proposed by Ittner and
Baird [1993] and Dias [1996]. Ittner and Baird construct the MST from the centers of the connected
components in the document image, and by means of a histogram of slopes of the tree edges, the
authors are able to detect the dominant orientation of the text lines. Their method is based on the
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assumption that inter-character distance is generally lower than inter-line spacing. The algorithm
of Dias constructs the MST in a similar way and using the automatically determined inter-character
(horizontal) and inter-line (vertical) spacing as splitting thresholds for the tree edges, it produces
as output a segmentation of the document page into text regions. As input, the algorithm assumes
that the input page is noise-free and contains only text, i.e. all non-text physical regions have been
previously removed from the image via specialized filters. The most important problems observed by
Dias are the sensitivity of the MST to noise components and the fact that a single incorrectly split
branch can potentially produce a poor segmentation.

The MST-based algorithm introduced in this section requires as input a list containing the bound-
ing boxes of all connected components belonging to text regions as well as the lists of vertical and
horizontal separators detected in the given newspaper page. The first step consists of simply grouping
the connected components into text lines. This can be accomplished by many algorithms, e.g. the
geometric algorithm proposed in Jain and Yu [1998]. Several features are computed for each text
line, the most important being the stroke width, the x height and the capital letter height for the font,
the set of intersected layout columns and its position therein (e.g. left- or right-aligned or centered).
Based on these features, one may now compute an optimal (i.e. minimize the total merging cost) set
of text regions formed by vertically merging adjacent text lines having similar enough characteristics.
This step can be accomplished by a dynamic programming approach. The costs of merging two verti-
cally adjacent regions/lines is given by a measure of the similarity between their computed features.
Note that here one may also include rules which take into account common formatting conventions,
such as indentation at the beginning of each paragraph, in order to prevent text regions from spanning
over several paragraphs. A single threshold is needed for this step, namely a stopping criterion for the
merging of two regions. The threshold can be determined experimentally, and can subsequently be
used for a wide range of publications, as shown by our experience.

At this point, it is possible to compute a compound distance measure between any two text regions
as a weighted mean of the Euclidean distance between their bounding boxes and a value directly
related to the "logical distance" between the two text blocks. The logical distance between two text
blocks is asymmetrical and directly influenced by the number and type of separators present between
the two text blocks, as well as by their feature similarity (as used for text region creation). The
weights assigned to each of these components can and must be adjusted so as to match the different
layouts used by a certain newspaper publisher. In order to be able to compute a meaningful logical
distance between two blocks, we have additionally performed two steps before it: detection of titles
and detection of captions. By using this additional information (which is in most cases relatively
simple given a certain layout), one may compute more accurate logical distances between text blocks.
For example a regular text block located before a title block in reading order will have a high logical
distance to it (a probable article ending is located between them). A hierarchy of titles proved beneficial
to use in our tests, as it allows the formulation of rules such as: a lower-level title located (in reading
order) after a higher-level title with no other title in between has a low logical distance to it (as they
are very likely part of the same article). By using the compound distance measure between text blocks,
the MST of the document page can be constructed in the next step of the algorithm. It is important to
notice that hereby the inherent noise sensitivity of the MST is significantly reduced, due to the usage
of higher-order page components (i.e. logical blocks instead of just connected components). Next,
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a) b)

Figure 5: Example of MST-based article segmentation on newspaper image: a) initial graph edges; b)
MST result

the obtained tree is split into a set of smaller trees, each one ideally corresponding to an article. The
splitting operation is done by removing the edges which have weights greater than a certain threshold
value. The considered threshold value is closely related to the logical distance between blocks, and it
should be adjusted according to the layout templates used by each publisher.

Finally, a suitable reading-order determination algorithm can be applied separately, for each ar-
ticle. The determination of the reading order is a hard problem and may depend not only on the
geometric layout of a document (which varies widely among publishers even for the same document
type), but also on linguistic and semantic content. For all our processing tasks, as well as all the
described experiments we have used the method proposed by Breuel [2003], enriched with informa-
tion regarding the layout columns present in the newspaper image. The method of Breuel uses solely
geometric information about the text blocks (i.e. bounding boxes, vertical overlaps) and internally
performs a topological sort given a list of pairs of text regions, each sorted in reading order.

A post-processing stage was found to be useful in many cases where an obtained tree actually
corresponds to merely a part of an article. This is usually the case when text blocks not having an
overlain title section are identified as independent articles. Such situations can readily be detected at
this point, followed by a merge at the end of the previous article having a title (if such an article exists).

16



a) b)

Figure 6: Example of article segmented images from: a) newspaper; b) chronicle. Articles have
distinct colors and the line segments indicate the detected reading order

The previous article can be found by searching backward (toward the head) in the list containing the
articles sorted in reading order, for the first article which has no horizontal separator between itself
and the considered article. This procedure has the advantage that it is independent of the specific
language-dependent reading order algorithm previously employed.

The layout analysis algorithm described in this section has the advantage of being very fast, robust
to noise and easily adaptable to a wide variety of document layouts. Its main shortcoming however,
is the need to manually adapt the logical distance measures for each publisher or layout type. Also,
the current algorithms does not need or take into account the text within each block, which may
prove useful in case of more complex layouts. The future application of machine learning algorithms
(such as those described in the previous sections of the chapter) for automating these tasks is a most
promising approach.

2.2.1 Evaluation

All algorithms described in this section were incorporated in an in-house developed DIU system and
successfully used for segmenting several large (>10.000 pages) newspaper collections. No formal
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evaluation of the article segmentation results was performed on the respective collections, as a mean-
ingful evaluation can only be performed by humans, which is of course prohibitive for such large
quantities of data. However, a formal testing of our methods was done on 100 multi-column chronicle
pages from the year 2006. Examples of the layout can be observed in figures 4 and 6. The original
input images had 24-bit color depth and had a resolution of 400dpi (approx. 4000x5000 pixels). In
these conditions, the total processing time for the article segmentation (incl. text line- and region de-
tection and labeling of titles and captions) on one document image was about 8 seconds on a computer
equipped with an Intel Core2Duo 2.66GHz processor and 2GB RAM. In the test set there were 621
titles (incl. subtitles, roof titles and intermediary titles), and for the detection and labeling task the
manual ruleset achieved a precision of 86% and a recall of 96% (resulting in an F-measure of 90.7%).
For the detection of captions on the test set containing 255 instances, the rule set was able to achieve
an F-measure of 97.6% (precision 98.4% and recall 96.8%). These values are only significant to show
that a relatively simple rule set is able to perform quite well on known layouts, thus giving hope that
such rule sets can be evolved in the future automatically through machine learning methods. Based
on the results produced by these two manual rule sets, the article segmentation algorithm was able
to correctly segment 85.2% of the 311 total articles present in the test set. While the vast majority of
document images are segmented correctly, a few pages fail catastrophically, thus generating most of
the observed errors (e.g. two pages were responsible for more than 75% of the title labeling errors).
Article split errors were the most common, totaling 13.2% and most often these were generated as a
direct consequence of a wrong page segmentation (i.e. split non-text regions, such as tables).

3 Conclusion (all)

-described 1. new theoretical model 2. working system 3. showed how to adapt such a system to a
ML approach -future work: benchmark& data sets for logical layout analysis evaluation evaluation on
different layouts - e.g. magazines, newspapers, books take into account publication as a whole (not
just individual pages in order to account for multi-page articles/chapters)
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