FABRICATION TOLERANCES IN LOW COST ANTENNA SUBSTRATES AT 60 GHZ

CST European User Conference

Robert Trieb, Advanced System Integration Group, Fraunhofer IIS / EAS

OUTLINE

- Introduction of Fraunhofer EAS
- Low Cost Antenna Substrates, Package Example
- Fabrication Issues Examples
 - Inhomogeneous substrate thickness
 - Warpage Modeling
- Simulation Results
- Summary

Fraunhofer IIS / Division Engineering Adaptive Systems Advanced System Integration Group

Our Mission:

Customer support for cost effective integration of multiple chips in a single package.

- System concept, design and prototype development
- Path finding
- Production of packages
- Supply chain

Low Cost IoT Node for 60 GHz

- Antenna Array
- Antenna Substrate
 - Mold Compound (Nagase R4251)
 - Thickness \geq 300µm
- **Redistribution Layer embedded** in Polyimide

RF Front-End FR4

Key Parameters:

- 4x4 Antenna Array of Rectangular Patch Antennas
- Package Dimensions: 16 x 16 mm

Issues arise from applying mold materials

- 1. Deformation due to fabrication process
- 2. Less suitable dielectric properties compared to, i.e. Rogers laminates and LTCC

Nagase R4251:

- $\epsilon_r = 3.65$
- $\tan \delta = 0.0037$

\rightarrow Tolerable range of measurable deformations has to be found

Impact of substrate deformations on antenna characteristics

- Variation in antenna impedance
- Decrease of Gain
- Change of main lobe direction

- Increase of the side lobe level
- Increase of Antenna Crosstalk

Substrate Deformation

1. Inhomogeneous substrate thickness

- 2. Warpage
 - Various layers on top / bottom side (Cu, passivation,..)
 - Inhomogeneous distribution of Cu on top/bottom side

Modeling

8

© Fraunhofer IIS/EAS | Robert Trieb | 4/27/2017

Modeling Substrate Deformation Inhomogeneous substrate thickness

Case Study with different thickness variation functions

Thickness variation Δz on 8 mm: 0, 25 μ m, 50 μ m

🗾 Fraunhofer

Modeling Substrate Deformation Warpage of substrate materials

[2] – Mold on organic substrate (upper figure)

- [3] Mold on Silicon (right figure)
- \rightarrow High similarity to sphere cut Modeling Warpage by the sphere equation: $R^2 = x^2 + y^2 + (z - z_M)^2$

→ Warpage ratio = $\frac{\Delta z}{r_{XV}} \cdot 100\%$

Ref.	Block Size mm	Warpage $\Delta z/\mu m$	Warpage Ratio / %
[1]	12	84	0.99
[2]	40	60	0.11
[3]	300	200	0.13
[4]	6	50	0.59

"Characterization of Residual Strains of the EMC in PBGA during Manufacturing and IR Solder Reflow Process", M. Y. Tsai et al. [2]

"Low Warpage Wafer Level Transfer Molding post 3D die to wafer assembly", Francisco Cadacio Jr. et al. [3]

Modeling Substrate Deformation Warpage of substrate materials

Specification of the warpage model

- Higher Cu density on bottom side \rightarrow convex deformation
- Defining the origin of the coordinate system according to the figure
 - $\rightarrow R^2 = x^2 + y^2 + (z + R)^2$ with $R = f(b, \Delta z)$
 - Arc length b is equal to edge length $(b = \sqrt{2} \cdot 16 \text{mm})$

Warpage Ratio /%	Δz / mm	R / mm
1	0.11	565.7
2	0.23	283.0
4	0.45	141.6

Ζ

b

realistic

Х

Mold

Modeling Substrate Deformation Warpage of substrate materials

Modeling Progress

Simplified modeling by applying analytical faces

- Substrate, Cu plane on top/bottom side
 - Analytical Face by $R^2 = x^2 + y^2 + (z + R)^2$
 - Copy Face, Pick Inside Faces
 - Loft Function
- Antenna Array
 - Bricks at the antenna positions
 - Boolean Operation \rightarrow Intersection

Discrete Edge Port

Simulation Results

Inhomogeneous Substrate Thickness

Simplification to linear antenna array

- Thickness variation Δz : 0, 25µm, 50µm
- Reflection Loss with lowest and highest substrate thickness

Inhomogeneous Substrate Thickness

Combination of S1,1 of Patch 1 and Patch 4

- Bandwidth variation: $\Lambda B = 0.58 \text{ GHz}$
 - \rightarrow Decrease in operational bandwidth of 33 %

Simulation Results – Substrate Thickness **Farfield Plot**

Thickness $t_{sub} = f(y)$

• E-field Vector $\vec{E} = E_{\gamma}$

At 60 GHz:

Directivity	Plane substrate	50µm Variation
Main Lobe Gain	19.3 dBi	18.5 dBi
Main Lobe Direction	0°	-4°
Min. Side Lobe Level	-13.3 dB	-9.5 dB
Angular Width (3dB)	19.2°	19.3°

Summary – Substrate Thickness

Inhomogeneous substrate thickness

- Shift of self-resonating frequency of each patch → decrease of operational bandwidth
- Variation of Main Lobe direction
- No increase in antenna crosstalk

Simulation Results - Warpage Input Reflection Loss

Reflection Loss

- **Operational Frequency to** higher frequencies: $\Delta f = 1.1 \text{ GHz}$
- Very small bandwidth variation

Simulation Results - Warpage Farfield Plot

Farfield Directivity Abs (Phi=0) 20 E-field Vector $\vec{E} = E_x$ - Plane Substrate 15 Warpage Ratio = 1% Warpage Ratio = 2% 10 Warpage Ratio = 4% 5 0 dBi -5 -10 -15 At 60 GHz: -20 -25 -30 -200 -150 -100 -50 50 100 Directivity Plane Warpage 0 Theta / Degree ratio 4% substrate Farfield Directivity Abs (Phi=90) 20 Main Lobe 19.3 dBi 19.2 dBi --- Plane Substrate 15 Warpage Ratio = 1% Gain - Warpage Ratio = 2% 10 Warpage Ratio = 4% 0° Main Lobe **0°** 5 Direction 0 B -5 Min. Side -13.3 dB -13.1 dB -10 Lobe Level -15 -20 Angular 19.2° 19.1° -25 Width -30 -200 100 -150 -100 -50 0 50 Theta / Degree

150

CST

19

CST

-2

Simulation Results - Warpage Farfield Plot

Frequency Domain vs. **Time Domain Simulation**

- E-field Vector $\vec{E} = E_x$
- Both simulation do not show
 - Main lobe broadening
 - Side lobe level reduction
- Difference is the FTBR
 - -4dB (Freq Domain)
 - -18dB (Time Domain)

Summary

Properties	Warpage	Substrate Thickness Variation
Antenna Impedance / Bandwidth	Highest impact → bandwidth shift of up to +1.1 GHz	 High impact → bandwidth shift of up to ± 1.2 GHz → Degradation of Total Radiation Efficiency (incl. Reflection Loss)
Farfield Properties	Low impact → Almost unchanged properties	 Moderate impact → Main Lobe Direction (max. 4%, 50µm) → Decrease in Side Lobe Level (max 4dB, 50µm)

Outlook

- Replacement of high accurate substrate models
- Conclusions from small antenna arrays to large arrays

THANK YOU FOR YOUR ATTENTION

BACK-UP SLIDES

Time Domain vs. Frequency Domain Simulation Warpage Ratio = 4%

	Time Domain	Frequency Domain
Peak Memory	19.42 GB	58.57 GB
Total Solver Time	46 h, 58 m, 6 s	34 h, 58 m, 56 s
Meshcells	33,423,096	2,574,516

- Frequency Domain and Time Domain Solver with Adaptive Mesh Refinement (Maximum delta = 0.02)
- System:
 - Intel(R) Xeon® CPU E5-1620 v3 @ 3.5GHz (4 Cores) Processor:
 - RAM: 128 GB

Substrate Thickness Variation

Total Efficiency including Input Reflection Loss and Material Losses

Strong degradation of the total radiation efficiency (up to 26%)

Warpage

Total Efficiency including Input Reflection Loss and Material Losses

- Possible shift of the Efficiency Maximum to higher frequencies
- Worst case: Reduction of up to 3%

Literature

- [1] "Mold Compound Properties for Low Warpage Array Packages", Tanweer Ahsan, Hao Tang, *Electronics Packaging Technology Conference*, 2008 (EPTC 2008)
- [2] "Characterization of Residual Strains of the EMC in PBGA during Manufacturing and IR Solder Reflow Process", M. Y. Tsai
- [3] "Low Warpage Wafer Level Transfer Molding post 3D die to wafer assembly", Francisco Cadacio Jr. et al., 66th Electronic Components and Technology Conference, 2016
- [4] "The Warpage Control Method in Epoxy Molding Compound", Wei Tan et al., International Conference on Electronic Packaging Technology & High Density Packaging (ICEPT-HDP), 2009

