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ABSTRACT
Due to decreasing sensor prices and increasing processing performance, the use of multiple cameras in vehicles becomes
an attractive possibility for environment perception. This contribution focuses on non-overlapping multi-camera configu-
rations on a mobile platform and their purely vision-based self-calibration as well as their restrictions. The usage of corre-
sponding features between the cameras is very difficult to realize and likely to fail due to different appearances in different
views and motion-dependent time delays. Instead, the hand-eye calibration (HEC) technique based on visual odometry is
considered to solve this problem by exploiting the camera motions. For that purpose, this contribution presents an approach
to continuously calibrate cameras by making use of the so-called motion adjustment (MA) and an IEKF. Visual odometry
in driving vehicles often struggles with estimating the relative magnitudes of the translational motion, which is crucial for
the HEC. So, MA simultaneously estimates the extrinsic parameters up to scale as well as the relative motion magnitudes.
Furthermore, the estimation process is embedded into a global fusion framework to benefit from the redundant information
resulting from multiple cameras in order to yield more robust results. This paper presents results with simulated and real
data.

Keywords: Extrinsic Calibration, Multiple Cameras, Hand-Eye Calibration, Visual Odometry, Multi-Camera Fusion, Error
Propagation, Motion-based Calibration, Non-overlapping Fields of View

1. INTRODUCTION
Over the last years multi-camera applications in vehicles have become more and more popular as the costs of the sensor
production decreased drastically. Multiple sensors can be used to cover a wider field of view (FOV) for scene recognition
and reconstruction tasks.1 However, in many cases it is not possible to cover the full environment or to guarantee overlap-
ping fields of view due to restrictions in design, energy consumption or physical capacity.
To be able to use the full range of possibilities that go along with such a sensor setup, the relative adjustment of the sensors
must be known. The extrinsic parameters between each camera can be described as a Euclidean transformation. Then, the
information that is extracted from the single cameras can be merged and referenced in a common coordinate system. This
might be very useful for reconstruction, object detection or attention guidance tasks.

3D scene reconstruction with multiple cameras is a growing field of research.2 Structure from Motion (SFM) and stereo
algorithms for 3D scene reconstruction are addressed in many scientific publications (e. g.,345 ). Both, SFM and stereo al-
gorithms are techniques for monocular or multiocular 3D scene reconstruction. Considering modern SFM techniques,
single cameras can also be used for egomotion estimation67 as well as for dense reconstruction.5 Important for all multioc-
ular reconstruction tasks is the knowledge of the camera parameters, specifically the intrinsic (focal length, principal point
and lens distortion) and the extrinsic (rotation and translation) parameters. Extrinsic parameters describe the geometric
relationship between the cameras that might be needed for a fusion of 3D data (e. g., acquired from a SFM-approach).
Common calibration techniques like for stereo cameras8 fail because of the non-overlapping FOV. The cameras do not
see the same scene and hence no corresponding image features can be used. So, the challenge is to recover the extrinsic
parameters from a set of cameras on a moving rig with non-overlapping FOV. This paper addresses the calibration without
using any pattern or known scene structure.
Although pattern-based calibration methods for non-overlapping cameras in vehicles exist, such methods are difficult to
apply. In9 traffic signs are used as calibration patterns, seen by different cameras at different times. A matching between
cameras at different times causes different object appearences and requires storage and time management respectively.
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Furthermore, for general motions, surroundings and camera adjustments, correspondences between frames cannot be guar-
anteed at any time (imagine, for example, a left and a right looking camera in a vehicle). The authors of10 and11 calibrated
a multi-camera rig on a mobile robot by performing a bundle adjustment between several views and different robot posi-
tions. However, they performed their calibration in a single room and hence in a restricted and controlled area, to guarantee
corresponding objects between the frames at different platform positions.
Another solution comes from the robotics community, called Hand-Eye Calibration (HEC)1213. Given a robot arm and a
camera (eye) at its end (hand), the goal is to determine the transformation between the coordinate systems of the eye and
the hand. Hand-Eye Calibration is based on the knowledge of the position of the robot arm as well as the camera’s position.
In our case, instead of a robot arm and a camera, we have to deal with two cameras mounted on a vehicle and we try to
determine the extrinsic parameters between them based on the camera motions. Such a solution is presented in14 for a
hand-held binocular camera rig. In,15 a planar approach is proposed for extrinsic calibration of a two camera system with
non-overlapping views and fixed camera height in a parking scenario at low speeds.

The difficulties in calibrating N >= 2 cameras continuously are manifold. Non-overlapping FOV mean that we cannot
use common features in different views for calibrating the cameras. Instead, we calculate the motion of the cameras and
use the Hand-Eye Calibration approach.13

By using the HEC approach, in practice we suffer from two circumstances: First, in a vehicle the rotational part of the
motion transformations is rather small. The motion estimation is vision-based and therefore needs correponding features
between the frames, so that we only use continuous motion estimations. And second, it appears to be difficult to estimate
the absolute magnitude of the motion’s translation (see Fig. 3). But this magnitude, especially the difference between the
velocities of two camera modules, is crucial for the calibration. The basic assumption behind the Hand-Eye Calibration is
that the distance between two cameras stays the same, no matter how the rig moves. Without the knowledge of the relative
translational motion of the cameras the constraint is mostly useless.
The approach that handles these difficulties is the so-called Motion Adjustment (MA).16 Motion adjustment simultaneously
estimates the extrinsic parameters as well as the motion scales and is designed of being used for both offline and online
calibration tasks.
Due to the complexity of the geometric model, the calibration of multiple cameras contains a lot of redundancy. On the
other hand, this redundancy may help to increase the robustness of the results. Therefore, knowledge about the quality of
the current parameters as well as a concept for fusing the redundant information is necessary. Hence, we perform three
steps for each motion and extrinsic parameter estimation: Local estimation of the state parameters based on the sensor data
of each single sensor, modelling the global system for each local module by propagating the locally computed state and
uncertainty, and finally, fusing the redundant parameters to yield a unified, global model. For that purpose, each camera in
the system is thought of as a processing unit which we call here a moduleM. Each moduleMi can communicate via a
bus system with all other modulesMj .
Based on SFM, HEC and MA, we can estimate the extrinsic position and orientation under certain circumstances - given
the motion of each single camera. So, a robust motion estimation is the basis for this calibration approach. Hence,
the solution of the calibration problem is basically devided into the problem of visual odometry and based on that the
determination of the extrinsic parameters. Visual odometry is calculated via the so called sparse bundle adjustment (SBA)6

for each camera based on corresponding image features in consecutive frames. To estimate the parameters continuously
we embedded the HEC model into an Iterated Extended Kalman Filter (IEKF) which merges and filters parameter vectors.
Furthermore, the IEKF calculates the uncertainties of the transformation parameters. These covariance matrices can be
used for merging redundant information on a higher level.17 By estimating the extrinsic parameters continuously the
system is able to perform a self calibration.

This paper is structured as follows: Section 2 presents the basic techniques used for the motion-based Hand-Eye
Calibration. Furthermore, the approach of motion adjustment for scaled motion is presented. Section 3 explains the
propagation and fusion framework for arbitrary multi-camera setups and implementation details. In Section 4, experiments
and results with simulated and real data are shown. Finally, Section 5 concludes and gives an outlook to further research.

2. EXTRINSIC SELF-CALIBRATION WITH NON-OVERLAPING FOV
2.1 Motion-based Hand-Eye Calibration
This Section shortly introduces the parameters that are necessary to describe the complete geometric structure of a moving
camera rig. Both the motion of a single camera and the relative position of two cameras can be considered as a Euclidean



Figure 1. Basic geometric constellation for a 2-camera rig. C is the extrinsic calibration matrix, M is the camera motion.

transformation. The transformation between two camera modules Mi and Mj at time t is given by the transformation
matrix

Cij =

[
Rij tij
0T 1

]
4×4

. (1)

R(rx, ry, rz) ∈ R3×3 is a rotation matrix with RTR = RRT = I and t = [tx, ty, tz]T is a translation vector. Hence,
the inverse is given by C−1ij = Cji. The Euler angles are represented by the vector r = [rx, ry, rz]T . C is the extrinsic
transformation with its parameters t and r. The XZ-plane is considered as the ground plane and Y the longitudinal axis
of the world coordinate system.
The motion of cameraMi between two time steps t and t+ 1 is given by

Mit =

[
Ωit vit

0T 1

]
4×4

, (2)

with rotation matrix Ω(ωx, ωy, ωz) ∈ R3×3, translation vector v = [vx, vy, vz]T and the rotation parameters ω =
[ωx, ωy, ωz]T .

Figure 2. Bundle adjustment is calculated for a motion block of size Γ, motion adjustment is calculated over history of H motion blocks.
The motion history will be needed for the Motion Adjustment (Section 2.2)

The extrinsic parameters R and t betweenMi andMj can be expressed with respect to the cameras’ motions (Fig. 1)

Mi = C−1ij MjCij (3)

which leads us with Eqn. 1 and 2 to the basic Hand-Eye Calibration equation

[I−Ωi]tij + Rijvj − vi = 0 (4)

in dependence of the extrinsic translation tij and rotation Rij , which could be solved with any non-linear optimization
method.
Fundamental for performing a motion-based hand-eye calibration is the motion estimation of the cameras. Consider, for



example, a vehicle driving around the corner with two cameras mounted, one on the left and one on the right side. Then
surely the distance covered by the outer camera is longer than the distance of the inner camera. This is also the reason why
odometric data from the vehicle is only little useful for hand-eye calibrations, as it does not cover the differences of the
cameras’ motion scales.
In our case, this is done using a standard bundle adjustment approach6 by minimizing the projection error of a sparse set
of points. significant image points are detected and tracked using a standard KLT-tracker.18 The transformations as well as
the scene coordinates are estimated within a block of Γ consecutive frames (Fig. 2). In our case, the intrinsic parameters
are assumed to be known.

2.2 Motion Adjustment

Figure 3. Estimated motion transformation parameters from our test sequence on a parking lot. Center top: Sketch of the scene and the
vehicle-mounted cameras. The vehicle performs of a long U-turn. Center: Frames from the two cameras with optical flow vectors. Left:
Continously estimated translation parameters tx, ty, tz . Right: Continously estimated rotation parameters rx, ry, rz . The translation is
initially estimated only up to scale and for the rest of the sequence relative to the previous time step, and hence unitless.

Despite the fact that the motion parameters were predicted temporally (relative to the previous Γ− 1 estimations), the
estimation of the camera modules’ velocities can become unreliable over time as seen in Fig.3. However, the estimation
of the translational motion is not entirely useless. As can be seen in Fig. 4, the scaled translation vectors reflect the car’s
motion adequatly.

The simple idea of motion adjustment is not only estimating the extrinsic parameters but also the scale factors of the
normalized motion translations simultaneously. This leads us to the extended hand-eye calibration equation

[I−Ωit ]tij + κtRijv
s
jt − vs

it = 0 (5)

with κt ∈ R, vs = v
‖v‖ and t = 1, ...,H. Eq. 5 can then be minimized with respect to Rij , tij and κt with standard non-

linear optimization techniques. Due to the scaled translational motion, the extrinsic translation can also only be estimated
up to scale (Fig. 5).
It is well known and can easily be seen in Eq. 5 that rotational motion Ωit 6= I is necessary to be able to estimate
tij .13 Assuming Rij to be known, we still need at least two different motions to solve Eq. 5 for tij and κt. Hence κt
is estimated for a motion block of size Γ > 1 (Fig. 2). Within such a block the relative translational scales must be
preserved. Fortunately, this is the case with a motion estimation via bundle adjustment with a consecutive block of frames.
Furthermore, to preserve full rank of the linear equation system in Eq. 5, the rotation matrix Ω needs to vary within a



Figure 4. Scaled translation values of the motion parameters from Fig. 3 with ||vt| | = 1.

motion block Γ, which means that moving in circles is an insufficient motion.
The problem of scaled motion adjustment is equivalent to the bundle adjustment used for simultaneous motion and structure
estimation.6 So, motion adjustment can be implemented quite efficiently. Because of the relation to the solving of sparse
bundle adjustment, this approach is called sparse motion adjustment (SMA).16

As could be shown in,16 the observability of the translational parameters using MA depends on the motion of the rig
and the position of the cameras. Fig. 6 shows two examples of the resulting error heat maps for two differently scaled
motions (but both with the same rotational motion). Surprisingly, the extrinsic position of the two cameras could not be
calculated equally well at all positions around the center. We could observe that in cases with bad estimation results the
scale factors κt could not be determined correctly.
Although such “bad” cases cannot be specified a priori, they can be detected by analyzing the result’s covariance matrix.
A principal component analysis (PCA) of the covariance matrix reveals the remaining uncertainty in the parameter space
(see16 for further details).

3. SYSTEM DESIGN
3.1 Multi-Camera Fusion
In this approach, both, the motion estimation via SBA as well as the extrinsic parameter estimation via SMA are bedded
into an Iterated Extended Kalman Filter. This filtering fulfills two purposes. First, the parameter states can be tracked
continously, which is useful for an online-calibration. And second, we get the uncertainty of the motion and calibration
parameters in terms of covariance matrices. These covariance matrices can be further used for a propagation and fusion
scheme that allows the holistic consideration of all modules’ local estimations. This works as follows:
After each camera module has estimated its own egomotion (Fig. 7a), we can now determine the motion parameters of all
other modules by using the calibration parameters and their covariance matrices (Fig. 7b). This is done by state and error
propagation.17 Consider a nonlinear function g : Rn×p −→ Rm with y = g(x1,x2, ...,xp) and independent variables
x1, ...,xp. Then the covariance of y can be approximated

Σy =

p∑
i=1

JiΣxi
JT
i . (6)

Notice that even in the initial case when the extrinsic parameters are still unknown, the uncertainty can be set extremely
high so that only the local estimations fall into account. Finally, each module can calculate a local estimation of the



Figure 5. Motion adjustment scheme. a. Original trajectory (red) of two camera modulesMi,Mj with unscaled velocity magnitudes
ν
{i,j}
t . b. First, the translation vectors are scaled to a reference magnitude νreft (blue/blue dotted), e. g., νreft = 1. Afterwards the

translation of Mj is rescaled to κ · νref (green) using the scales from the motion adjustment. The scales κt guarantee consistent
motions with respect to the relative position tij and orientation Rij of the cameras.

Figure 6. Error maps in dependence of the camera positions for differently scaled motions in a 2D-plane. E =
‖t∗−t̂‖
‖t∗‖ with t∗ is the

ground truth value of the camera position and t̂ is the estimated translation. The reference camera M1 is always in the center, the
position of the second cameraM2 is within a square around the reference camera. Red means E > 1, green is E = 0. The blue track
is the trajectory ofM1 (each motion transformation is scaled to ||vt,0| | = νref ). The red track is the trajectory of the motion ofM2

with relative scales κ̂t = 1 and t̂x = t̂z = 0. The blue and the red motions are the input data for the motion adjustment computation.
The green track is the ground truth of the resulting trajectory ofM2 with the correct relative scales κ∗t and t̂x = t∗x, t̂z = t∗z . Left: Error
map for a motion with small scale (νref = 0.5) and a detail view of the estimated motion scales with a resulting big error E. Right:
Error map for a motion with big scale (νref = 1.5) and a detail view of the estimated motion scales with a small error E. The rotional
motion in both heatmaps is the same with linearly increasing values of ωy ∈ [0.01, 0.02] and H = 100,Γ = 6.

global model by considering uncertainties of the calibration and egomotion estimations (Fig. 7c). The propagation step is
described in detail in Pagel et al.17

From the local propagation we have an estimation of each camera motion from each of the N modules (Fig. 7d). These N
motion estimations per camera module are now merged to one. The fusion of the states x and covariances Σ can be done



Figure 7. a. Each module performs a local motion estimation with a Kalman filter using the local sensor data and SBA. b. Extrinsic
calibration parameters and their uncertainties are taken into account. c. Each modulMi determines the motions of the other modules
Mj based on the extrinsic parameters via state and error propagation. Hence, there are N guesses for each of the N motions by each
module modi. d. The N local guesses of each module’s motion are merged to a global estimation.

Figure 8. a. Local estimations of the extrinsic parameters between moduleMi andMj 6=i using the local motion parameters and an
IEKF. b. Determination of the remaining calibration parameters in the camera network by state and error propagation based on the
locally estimated calibration data. c. After propagation, there exist k = 1, ...,N local guesses for each of the N(N − 1)/2 extrinsic
transformations by each moduleMi. d. The N local guesses of each transformation are merged to a global transformation.

in a pairwise manner following the approach of Smith & Cheeseman:19

xG = x1 + Σ1 · (Σ1 + Σ2)−1 · (x2 − x1) and ΣG = Σ1 −Σ1 · (Σ1 + Σ2)−1 ·Σ1 (7)

where G indicates the merged (= global) parameters and uncertainties, respectively.
At this point, after the N− 1 Kalman filter runs, each moduleMi has N− 1 estimations of the calibration parameters Cij .
These N− 1 transformations are sufficient to calculate the remaining transformations as follows:

Ĉjl = C−1ij Cil = CjiCil (8)

These are (N−1)(N−2)/2 additional calculations. As a result, each module has a local guess for each of the N(N−1)/2
extrinsic parameters between the cameras. This means on the other hand that there are N guesses for each extrinsic camera
transformation (Fig. 8c). The covariances are propagated according to.17 To merge these N estimates per camera pair we
can again proceed with Eq. 7 (Fig. 8d).

Here is a summary of the algorithm:

1. Track image features in each camera moduleMi (i = 1, ...,N)

2. Calculate SBA for each camera moduleMi (with block size Γ, see Fig. 2)

3. Propagate N local camera motion (block)s to all other modules

4. Merge all propagated motions and get (scaled) global motions



5. Calculate N− 1 local SMA procedures and get (scaled) local extrincics

6. Propagate local extrinsics to all other modules

7. Merge all propagated extrinsics and get (scaled) global motions

3.2 Implementation Details
As is shown in13 there are some restrictions of the motion-based HEC approach according to the kind of motion. For
example, as can be seen from eq. 4, if there is no rotational motion (Ωi = I), the extrinsic translation tij disappears
from the equation and hence cannot be calculated. Also, we need more than one motion to build up an overdetermined
linear equation system, which leads to a history of motions. It can be shown13 that a purely circular driving under static
conditions and hence fixed rotational parameters leads to an underdetermined equation system. Also, when the vehicle
performs a purely planar motion the relative translational, longitudinal parameter ty cannot be estimated anymore as there
is no rotational motion around a horizontal axis.
In order to satisfy these restrictions this implementation performs an additional step where the ground plane is estimated
explicitly. Once the transformation into the ground plane is known (which is obviously the same for all camera modules),
motion transformations can be transformed into this 2D plane where a 2D-SMA is calculated by each module (see Fig.
9). Finally, the extrinsic parameters (transformations) can be back-transformed from the 2D-plane to the 3D space. The
transformtion into the ground plane is based on the calculated 3D points from the Bundle Adjustment used for the motion
estimation of each camera. A RANSAC procedure can be used to extract points from the ground plane. More details can
be found in.20

Figure 9. Using the ground plane to reduce the HEC problem from the 3D-space to the 2D-plane.

In the implementation we considered the circumstance that different kind of motions can be used to estimate different
parameters. So, for example, in16 straight (non-rotational) motion were used to initialize the cameras’ orientations. Table
1 gives an overview of the different phases that were used to initialize the parameters of the system.

Motion Phase Calculation of ... Used for ...
1. Straight motion the init. local motion estimations (pure translation) in

the beginning
initializing motion estimation (SBA)

2. curve (rotational
motion)

the rotation axes of all cameras16 calculating the transformation matrices in order
to transform the motion transformations into the
ground plane20 and selecting points from the
ground20

3. Straight motion the transformations into the ground plane;20

the relative camera orientations16

Motion Adjustment (MA/SMA);

merging transformations20

4. curve (rotational
motion)

Motion Adjustment (MA/SMA)

state filtering (IEKF)

estimating the extrinsic calibration parameters;

propagation and fusion
Table 1. Motion phases of the calibration system. The first three phases are for initializing the system. From phase 4 on the state
parameters (motion and extrinsics) can be estimated continously with the IEKF.



4. EXPERIMENTS AND RESULTS
4.1 Simulations
In order to demonstrate the general capability of this global, motion-based calibration approach a two-camera rig was
simulated. The platform performed a helix-like motion (linearly increasing steering angle, constant velocity) (Fig. 10).
3D-points were equally distributed in space. Their projections (which are the basis for the motion estimation and hence
the calibration) were normally distributed with 0.5 pixel variance. Additionally, 10% outliers were added. The setting
parameters used were H = 100,Γ = 5 and P = 300 points for the KLT-tracker. Fig. 11 and show the results. The extrinsic
parameters converge towards the ground truth values.

4.2 Real Data Experiments
In order to test the calibration approach with real data, a 3-camera rig was implemented on a test vehicle. The cameras were
calibrated (intrinsically as well as extrinsically) with a standard pattern-based approach,2122 (Fig. 12). These calibration
parameters serve as ground truth for the evaluation and are shown in Table 2. The reference calibration had a remaining
average projection error of 1.7 pixels. The three cameras are labeled M1,M2 and M3. As no absolute reference like
odometry or GPS was available, the extrinsic distances between the cameras are all scaled relative to the translation vector
t12 between {M1,M2}. The longitudinal parameter ty was neglected (see20 for discussion).

pair tx ty tz [rx] = rad [ry] = rad [rz] = rad
1→ 2 -0,39 0,16 -0,91 -0,339 -2,612 0,074
1→ 3 0,71 0,22 -1,19 -0,448 2,441 0,178

Table 2. Reference extrinsic calibration parameters. Translation vectors are scaled relative to t12 with ‖t12‖ = 1 and hence have no
unit.

As all cameras were coplanar, the parameter ty was fixed during the estimation process, which means only rx, ry, rz
and the (relative) extrinsic parameters tx, tz were estimated during the tests. Fig. 13 shows the test-trajectory of the
vehicle. The setting parameters were H = 100, Γ = 5, P = 300 with the intitial state parameters tij = rij = 0. The
covariance matrices were initialized with very big values.

Fig. 14 and 15 show the estimated and merged (=global) motion parameters of the three cameras as well as the estimated
extrinsic parameters. It is clearly visible that the calibration process starts after the second straight motion part according
to the motion phases in Table 1. Fig. 16 shows the capability of the propagation and fusion approach.

Fig. 17 shows an example application of the resulting calibration parameters. Once the extrinsic parameters as well as
the ground plane (from the reference calibration) are known, one can transform the camera images into the ground plane
and generate a bird’s eye view.16

Experiments with real data were performed on 7 sequences. Overall, compared to the reference calibration, a mean
error of all estimated orientation angles of 0.8◦ and a mean translational error of 10.8% remained. The relatively high
translational error is due to the dependency between camera position and motion (see Section 2.2 or16). Here, odometric
data could be a very valuable sensor information to merge with the image information in order to yield more accurate
results.

5. CONCLUSION
This paper presented a completely vision-based approach for self-calibrating a camera rig with non-overlapping FOV using
onloy the motion of the camera. For a purely vision-based motion estimation, which estimates the motion of each camera
only up to scale, the concept of motion adjustment was introduced. Furthermore, to use the information of multiple sensors
in a multi-camera rig, a global fusion system was shown and demonstrated in simulated and real data with a reference
calibration. The experiments yielded very good results in the orientation and respectable results in the scaled translational
parameters. Also, the capability of the global fusion scheme could be shown.
It turned out, that without further sensor information or restrictions, no absolute translational calibration parameters could
be estimated. So, future research focuses on the multi sensor fusion with vehicle data including odometry and GPS data.



Figure 10. Left, Bottom: Simulated flow vectors of two camera modules. Left, Top: Helix-like motion of the two cameras. The first
curve initializes the rotation axes, then the camera orientations are intialized. Right: Perspective representation of the results from Fig.
11 (ground truth = grey.

Figure 11. Result of the Helix-Simulation: Estimated extrinsic parameters (translation t and euler angles r) of modulesM1 andM2.
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Figure 16. Comparison of the estimated extrinsic parameters tG12 und tG13 with (thin line) and without the global propagation and fusion
approach (dotted line = average of all local estimations). A comparison with Fig. 15 shows, that the global estimation is far closer to the
real parameters than the local estimations. Furthermore, the non-merged parameter estimations are much more fluctuating.

Figure 17. Calculated bird’s eye view with the extrinsic parameters from the reference calibration (top) and the continuously estimated
extrinsic parameters, following the global, motion-based approach (bottom). The lower left image shows the initial camera configuration
(= 0). Ideally, the upper and lower row look exaclty the same. Comparing the positions and orientations of the cameras’ FOV allows a
qualitative evaluation of the resulting parameters.


