SLA Based Resource Orchestration using UNICORE

Core GRID

UNIC#RE

Problem

Reliable high-speed networks enable combination of multiple, geographically dispersed compute clusters for distributed high-performance applications like multi-physics simulations, if the following prerequisites are in place:

- High-performance, grid-aware MPI-Implementation
- Dedicated high-bandwidth, low-latency network connection
- Reservation of compute nodes
- Grid middleware for access and orchestration

VIOLA Solution

Enhancement and integration of existing middleware components and development of missing pieces for SLA negotiation and resource orchestration across different administrative domains:

ARGON – Allocation and Reservation in Grid-enabled Optic Networks

- Advance and immediate reservation of OSI layer 2 and 3 network connectivity services with specified QoS
- SOAP-based Web-Service interface for reservation, query of availability information and reservations, binding of additional information

MSS – MetaScheduling Service

- Reservation of resources for a common time period (co-allocation)
- Negotiation with local Resource Management Systems based on GGF draft protocol

UNICORE Integration

- Meta-Job description including network resources through UNICORE client-plugin
- MetaMPICH job startup including bindung of MSS run-time information via wrapper scripts

WS-Agreement

- Proposed GGF recommendation for SLA specification and negotiation
- Used as protocol between UNICORE client and MSS

MetaMPICH

- MPI library for efficient communication inside and between multiple clusters
- Multidevice architecture: direct node-to-node communication using different MPICHcommunication devices for intra-cluster and inter-cluster communication
- Router-based architecture: inter-cluster communication managed by dedicated router-nodes
- Mixture of multidevice and router configuration for optimal adaptation to environement

Future Work

In German D-Grid:

- VIOLA testbed infrastructure is made available for D-Grid
- Integration of middleware developments into D-Grid infrastructure and port to Globus Toolkit 4

On European level:

EU integrated project PHOSPHORUS: extension and adaptation of VIOLA middleware for user-driven bandwidth on demand between different NRENs and GÉANT and resource orchestration on a pan-European scale for single applications or workflows

Ferdinand Hommes, Fraunhofer Institute IMK,

Wolfgang Moll, University of Bonn

moll@informatik.uni-bonn.de and

ferdinand.hommes@imk.fraunhofer.de

More information about the VIOLA project: www.viola-testbed.de

about the MSS and the UNICORE integration: www.coregrid.net/mambo/images/stories/ TechnicalReports/tr-0010.pdf and www.coregrid.net/mambo/images/stories/ TechnicalReports/tr-0025.pdf

Acknowledgements:

Some of the work presented here is funded by the German Federal Ministry of Education and Research through the VIOLA project under grant #01AK605F. This presentation also includes work carried out jointly within the CoreGRID Network of Excellence funded by the European Commission's IST programme under grant #004265.

Contacts:

Wolfgang Ziegler, Fraunhofer Institute SCAI Wolfgang.Ziegler@scai.fraunhofer.de (MetaScheduling Service)

(ARGON) Carsten Clauß, RWTH Aachen University, carsten@lfbs.RWTH-Aachen.DE

(MetaMPICH)

universitätbonn

