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Chapter 1

Introduction

This thesis is embedded into a field of research and development that aims at systems
for the cognitive support of modern research in medicine and biology. A current
development in biology and medicine is the application of multi-layer models for
the description of pathological objects and relations. For example to characterize
a disease there are numerous, heterogeneous and growing clues in pathological
research. Computational support via machine learning is needed as the number and
heterogeneity of these clues is no longer cognitively manageable by human domain
experts.

Concentrating on the medical insight interest the main task is the differentiation
between diverse pathologies, i.e. subtypes of diseases. This is even more important
regarding the upcoming personalized medicine. Human domain experts cognitively
discriminate the pathological subtypes of a disease by means of typical representa-
tives, i.e. patient cases. The computational concept of prototypes – as they are used
in machine learning – presents a functional equivalent to these cognitive structures
that seems to be adequate to built graspable disease models.

The typical patient cases are described by heterogeneous feature patterns mapping
the multi-layer model of a patient’s situation. For example in breast cancer research
this includes the following feature groups:

• the status of the lymph nodes represented by a category,

• the distribution of inflammation over the different probe tissues,

• the heterogeneity of the expression level of a hormone receptor in different
tumor regions.

A conceptual and mathematical valid measure of dissimilarity between different
patient samples is needed. Often the suited measures are different for each of the
feature groups. Hastie et al. state: “Although simple generic prescriptions for
choosing the individual attribute dissimilarities [. . . ] can be comforting, there is no
substitute for careful thought in the context of each individual problem. Specifying
an appropriate dissimilarity measure is far more important in obtaining success
with clustering than choice of clustering algorithm. This aspect of the problem is
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emphasized less in the clustering literature than the algorithms themselves, since it
depends on domain knowledge specifics and is less amenable to general research.”
(Hastie, T. et al. 2003, p. 506)

The relevance of the feature pattern is given by its power to discriminate different
subtypes of the considered disease. Traditional prototype based methods are not able
to provide computational support in these pathological research fields. They work
on homogeneous vectors of describing features using one single similarity measure
for all features. We extend these traditional prototype approaches for mixed data, i.e.
for structured object descriptions that comprise heterogeneous feature groups with
different dissimilarity measures.

Concerning the data in biomedical applications that is used for the training of
the prototype based methods we face a twofold problem. We aim at differentiation
between types within one disease but there is no biomedical knowledge about the
number and characteristics of these different pathologies. Frequently suitable data
for the conceptual discrimination into disease types are missing. In our application
example, the breast cancer project Exprimage, the medical aim was the typing of
breast tumors for the control of adjuvant therapies after tumor surgery. The informa-
tion about the course of therapy was not given in the data. We had to approximate
the typing by relying on the information about the clinical follow-up of the patients.

Another problem concerning the data is that often data is rare and the data sets
in the applications are small and unrepresentative. From the statistical point of view
these data sets are not suited for the generation of reliable models. To cope with this
data-poor situation in the development of the prototype based methods we focus
on the confirmation of interim results. This confirmation is provided in a twofold
manner: by mathematical evaluation and by projecting the interim results back into
the biomedical domain. This coupling to the domain experts enables the evaluation
of the ecological validity1 of the learned model. In this thesis we show a stepwise
approach to reliable propositions on medical relations using the developed prototype
based methods.

In the following chapter we introduce basic computational concepts, strategies,
and necessities in the development of machine learning for cognitive support systems.
Chapter 3 considers different dissimilarity measures that are suitable for comparing
different feature groups as parts of an object description. The traditional prototype
based algorithms are introduced in chapter 4.

In chapter 5 we introduce the framework of extended approaches that allows the
handling of mixed data in prototype based methods. Our application scenario is
described in chapter 6. Chapter 7 presents the results of the framework in the appli-
cation scenario and explains the research process using the framework as cognitive

1Ecological validity is the extent to which research results can be applied to real life situations.
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support system. In chapter 8 we discuss these results and draw corresponding con-
clusions. Additionally we will discuss mathematical as well as medical subsequent
research aims that are based on the developed approaches.





Chapter 2

Basic concepts

This chapter has two objectives. The first is to introduce the underlying concepts of
vector quantization and learning to the readers that do not have a background in this
area. The second objective is to give the basic mathematical definitions corresponding
to these basic concepts.

2.1 Nomenclature

For the first part of this chapter we assume that a set of real world objects is given.
These objects are encoded as real-valued vectors vk ∈ V , with k ∈ {1, . . . ,K}. The
vectors are called input vectors and V ⊆ RM is the input vector set where M is called
the dimension of the vectors. The input vectors vk are distributed according to the
probability density p(v), with v ∈ V . The probability distribution P (v), with v ∈ V
is obtained from the probability density p(v) by integrating. In most cases only
examples for the input vectors are given and the probability density as well as the
probability distribution are unknown.

The input vectors are also called points in the input space. In later sections and
chapters an extended idea of object representations, going beyond simple real-valued
vectors, is presented. We refer to these representations as data points instead of input
vectors but still use vk in the mathematical formulation. In each of the cases single
dimensions of the object encoding are called feature or attribute of the object.

2.2 Crisp and fuzzy data representation
using prototypes

In prototype based approaches the input vectors vk ∈ V ⊆ RM are approximated
by a set of codebook or prototype vectors wn ∈ W = {w1, . . . , wN} ⊆ RM . The
prototype vectors are usually defined over the same space as the input vectors. The
traditionally crisp assignment is a winner takes all rule, mapping an input vector vk
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to the most similar prototype vector according to some (dis-)similarity measure
d (vk, wn):

Ψ : V → I : vk 7→ s = arg min
n∈I

(
d (vk, wn)

)
(2.2.1)

where s = s (vk) is called the winner index and I = {1, . . . , N} is the index set of W .
Instead of using the winner takes all rule, a fuzzy assignment from the input vector to
membership degrees for all prototype vectors is given by:

ΨF : V → [0, 1]N : vk 7→ ~ψW (vk) =
(
ψw1

(vk) , . . . , ψwN (vk)
)

(2.2.2)

where ψwn (vk) ∈ [0, 1] is the possibility (or probability if
∑N
n=1 ψwn (vk) = 1) with

which the input vk is represented by prototype wn. There are different definitions for
this assignment function ΨF , e.g. (Bezdek 1981) formulated this assignment function
in Fuzzy C-Means algorithm for the determination of fuzzy membership degrees
ψwn (vk) as

ψwn (vk) =
1∑N

l=1

(
d(vk,wn)
d(vk,wl)

) 2
f−1

(2.2.3)

including the fuzzifier value f. In the limit of f → 1 the assignments become crisp.
They can be either interpreted as probabilistic or as possibilistic. In crisp as well as in
fuzzy assignment functions, the dissimilarity function d = d (vk, wn) over the input
vectors vk ∈ V and the prototype vectors wn ∈ W is often defined as the Euclidean
metric.

Given the crisp assignment function in equation (2.2.1) the crisp receptive field of a
prototype wn is defined as those vectors in the input vector space V for which the
winner is wn according to the mapping function Ψ. This is formalized as:

Υn =
{
v ∈ V : Ψ (v) = n

}
. (2.2.4)

Two crisp receptive fields are called neighboring if their intersection is not empty, i.e.
Υ̃l,r = Υl ∩Υr 6= ∅. Then Υ̃l,r is a hyperplane in RM according to the dissimilarity
measure d. Furthermore, if d is the Euclidean metric all receptive fields are convex
and the border of a receptive field is piecewise linear. Using the fuzzy assignment
function in equation (2.2.2), a fuzzy receptive field of a prototype wn is defined as:

ΥFn =
{
vk ∈ V : ψwn (vk) > 0

}
(2.2.5)

If not stated otherwise we always refer to crisp receptive fields when using the term
receptive fields.

It is preferable to make fuzzy assignments in situations where the data are known
to be overlapping as every crisp decision in such a situation would be artificial. Also
in applications where the assignment is of interest for data analysis and exploration,
fuzzy approaches can be more informative and thus more suitable.
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2.3 Classification and clustering

This section is based on the standard work “Pattern Recognition and Machine Learn-
ing” of Bishop (Bishop 2007), its definitions and citations are used. Exceptions are
clearly marked.

2.3.1 Basic definition for classification

Assume a set of class labelsZ = {z1, . . . , zC}. The vectorial crisp classification problem
aims at assigning to each input vector vk ∈ V one ζvk ∈ Z. In vectorial fuzzy
classification to each input vector vk ∈ V a vector of membership degrees ~ζvk =(
ζvk (1) , . . . , ζvk (C)

)
is assigned with ζvk (c) ∈ [0, 1] giving the membership degree

of vk ∈ V to the corresponding class zc ∈ Z.
For classification problems two stages can be distinguished: the inference and

the decision stage. In the inference stage the training data set V is used to build a
model for the discrimination, which in the decision stage is used for creating class
assignments for unlabeled vectors. There are at least two main kinds of models for
discrimination:

1. Class typical models: They explicitly model typical properties of the different
classes that e.g. in vector quantization approaches are represented by a pro-
totypical vector. Learning class typical models often involves modeling the
class-conditional probability densities.

2. Class discriminating models: They emphasize properties that discriminate the
classes.

Examples for class typical models are Markov Models (MM) and Learning Vector
Quantizers (LVQ). Linear Discriminant Analysis (LDA) and derivatives belong to the
class discriminating models as well as decision trees and Support Vector Machines
(SVM).

In prototype based classification approaches the prototypes wn carry class labels
that are either crisp or fuzzy. The crisp class label of a prototype wn is referred to as
zwn ∈ Z. The fuzzy class labels of the prototypes are vectors of class memberships
~zwn = (zwn (1) , . . . , zwn (C)) with zwn (c) ∈ [0, 1] being the class membership degree
for prototype wn to class zc. In the probabilistic variant of fuzzy classification the
class memberships sum up to one, which is not necessarily the case in the possibilistic
variant.
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In crisp classification often the prototype class labels and the assignment function
Ψ are crisp. The class label zws of the winner prototype ws : s = Ψ (vk) is used as
class prediction ζvk for input vector vk and thus

ζvk (Z) = zws . (2.3.1)

In fuzzy classification approaches the label prediction is frequently calculated from
the labels of the prototypes according to the fuzzy assignments

ΨF (vk) =
(
ψw1

(vk) , . . . , ψwN (vk)
)

yielding a class label assignment vector

~ζvk (Z) =
(
ζvk (1) , . . . , ζvk (C)

)
(2.3.2)

with

ζvk (c) =

N∑
n=1

{
ψwn (vk)

∣∣zwn = zc
}

for prototypes with crisp labels (2.3.3)

ζvk (c) =

N∑
n=1

ψwn (vk) · zwn (c) for prototypes with fuzzy labels (2.3.4)

Also other configurations, e.g. using crisp assignments with fuzzy prototype labels
for fuzzy classification are possible and can be handled accordingly.

2.3.2 Basic definition for vector quantization and
clustering

In vectorial clustering the aim is to discover the inherent structure of the input vectors
vk ∈ V and group similar samples together. In the strict definition clustering also
determines the number of clusters itself. Frequently the term clustering is also used
for approaches that try to find a corresponding structure in the data for a given
number of clusters. This realizes an encoding or compression of the input vectors.
In clustering approaches most of the models are cluster typical models, explicitly
modeling the data structure with cluster typical property descriptions. Examples
for class typical models in the context of vectorial clustering are k-Means, Affinity
Propagation and Growing Neural Gas.

Clustering approaches can be interpreted as processing only the inference stage
of classification. In the case where an assignment function is learning, a newly
incoming input vector vk can be mapped – according to the assignment functions in
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equation (2.2.1) or (2.2.2) respectively – to the cluster index as a functional equivalent
of a label:

ζvk (Z) = Ψ (vk) for crisp assignments (2.3.5)
~ζvk (Z) =

(
ζvk (1) , . . . , ζvk (N)

)
= ΨF (vk) for fuzzy assignments (2.3.6)

2.4 Static and adaptive models

For building models of the data in clustering or classification there are two main
approaches:

• Static models are calculated in advance from a fixed set of data and remain static
afterwards. Newly incoming data can not be integrated into the model without
completely recalculating it.

• Adaptive models remain adaptive for newly arriving data within a given struc-
tural frame.

Examples for static models are the Linear Discriminant Analysis (LDA) or hierarchical
clustering approaches. Often the calculation of static models is efficient. Adaptive
models, e.g. the Self Organizing Map (SOM), are robust and fault-tolerant and can
change with newly incoming data. Because of their cognitive motivation adaptive
models are also called learning approaches.

2.5 Unsupervised and supervised learning

If the focus is put on learning approaches there is another important concept to
consider: the question whether to use supervised or unsupervised learning in the
given application. This question does not exactly coincide with the question of
classification or clustering, as we will point out in the following. In general: “In
supervised learning, the goal is to predict the value of an outcome measure based
on a number of input measures; in unsupervised learning, there is no outcome
measure, and the goal is to describe the associations and patterns among a set of
input measures.”(Hastie, T. et al. 2003, p. xi)

There is also much ongoing work on combinations of supervised and unsuper-
vised learning used in information processing especially in biomedical applications
where information about the inputs is rare or expensive. (Corsini et al. 2006) intro-
duce an example where the pairwise dissimilarities were known only for some of
the input vectors. To effectively use this rare information they first used supervised
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learning to generate a general dissimilarity measure for the given input vectors.
Using this dissimilarity measure they then could conduct the clustering.

Also in cases where the data are known to be multimodal, but the number and
kind of modes are unknown, unsupervised learning can be used to find data inherent
clusters. This provides a way of splitting the data into different subclasses, that can
increase classification power. This concept was used e.g. by (Yang and Qu Yang 2006)
who had the aim to create a tree-based classifier for functional protein classes. In
every step of splitting data for the decision tree they used unsupervised methods to
find the best split concerning the considered variable.

2.5.1 Issues of labeling data in biomedical domains

In biomedical classification problems the class labels can either be biomedical facts
(e.g. whether the patient is alive or dead of disease) or annotations the experts gave
to an encoded object. The later annotations are needed e.g. when different tissue
types are analyzed or different kinds of cells have to be recognized. The experts have
to annotate a set of inputs as training data for a classification approach. This process
is also called manual labeling.

Especially in biomedical domains manual labeling of the training data for su-
pervised learning can pose several severe problems. In some cases data sets are
so huge that a human scanning of all data points is unacceptable. One possibility
in this case is to use a small training set to train a preliminary classifier π in a first
iteration. Ideally this classifier provides a reliability measure for every single data
point’s classification. This classifier can then be used to label another small set of test
data points. If the experts are content with the performance of the classifier and the
reliability measure is valid all other data points can be labeled using this classifier.
Only the data labeled with low reliability is presented again to the experts to validate
and eventually correct the label. If the classifier π does not perform good enough yet,
it is retrained with the training and test set as new training data set. This process can
be iterated until good classifier performance and thus probably good labeling quality
is achieved.

Another approach to cope with very large data sets is to use so called semi-
supervised learning. We refer to (Chapelle et al. 2006) for an overview of the state of
the art. In these methods typically small amounts of labeled data are used together
with large amounts of unlabeled data to train a classifier. Inherent structural infor-
mation about the data is inferred from the unlabeled data and combined with the
external structure information given by the labeled data.

Another issue is that the human experts’ knowledge is complex and often implicit.
If confronted with a question broken down to a machine learning task, the experts
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often have difficulties to constrain on a simplified or abstracted task. In our applica-
tion example – the breast cancer project Exprimage – a tissue type characterization
based on pathological tissue images had to be conducted. We asked the experts to
annotate images of tissue samples (see section 6.5.1 on page 128 for details), a task
that is not part of their normal diagnostic work. The experts marked very small
areas and annotated a large number of tissue types. They did not want to loose any
possibly relevant medical detail for the model that had to be built up from the tissue
type representations.

As manual labeling in all biomedical domains is heavily biased by experience. It
is likely that different experts highlight different tissue details as relevant. This causes
the problem of bad intra- and inter-coder reliability. Intra-coder reliability refers
to the observation that one expert may code the same fact differently at different
points in time. Especially in pathology this is a very common phenomenon as the
decisions are biased towards recent cases. In addition inter-coder reliability expresses
the amount of agreement between different experts’ codings. From the technical
point of view the detailed manual coding can raise the problem of generalization as
a sufficient number of training examples for all classes are needed that may not be
available in any case.

It is possible to tackle this problem of manual labeling by computational approa-
ches using a combination of unsupervised and supervised methods. In our example
application of tissue type characterization we first applied unsupervised learning
using a subset of the input vectors – as representations of pixels. The pixels where
colored according to the corresponding cluster index of their representations. The
resulting false color image was overlaid to the contributing pathological images with
adjustable transparency. This way the experts evaluated the results and marked
wrongly colored pixels additionally giving the right coloring. As the experts dis-
cussed their evaluation of the computational labeling, a consensus process was
achieved. They agreed on cluster labels that are more likely to represent the exam-
ined biomedical reality (see also section “Post-labeling” below).

For computationally labeling the remaining data there are two possibilities:

• The trained unsupervised method together with the cluster labels is used to
label also the remaining data points.

• The labeled training data from the first step is used to train a classifier that is
evaluated again and used to label the remaining data accordingly.

The first approach is preferable if the clustering and its labels are totally accepted
by the experts. In contrast to this the supervised retraining approach is able to meet
requirements of editing the cluster membership of single input vectors.
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Current developments in learning approaches also show possibilities to model the
uncertainty in expert labeling directly, e.g. (Bouveyron and C. 2011) who introduced
a probabilistic version of the Fisher Discriminant Analysis and (Bootkrajang and
Kabán 2011) extending multi-class quadratic normal discriminant analysis with a
model of the mislabeling process.

2.6 Post-labeling

The possibility of post-labeling is tightly connected to the question of unsupervised
and supervised learning. It is well suited for prototype based, class typical learning.
First an unsupervised learning is executed on the whole input vector set. If the input
vectors already carry class labels the labeling of the prototypes can be conducted
as follows. If the prototypes ought to have crisp labels they can be chosen by the
majority vote from the class labels of the input vectors in the respective receptive field
of the prototype. For fuzzy prototype class labels the relative amount of different
class labels can be used as fuzzy labels.

If the given data points are unlabeled, there is also the possibility to generate
labels after unsupervised learning by using the domain experts’ judgment of the
unsupervised learning results. In a suitable visual evaluation process (a choice of
these processes is introduced in the sections 4.6 and 6.5.1) the domain experts are
asked to assign class labels to the identified clusters. This can be done by labeling the
cluster defining prototypes by hand and automatically classifying all input vectors
in the receptive field. Then this classification also has to be evaluated. Another
variant is to label every input vector by hand. This may be very time consuming and
impracticable.

In the case of unbalanced data sets using crisp post-labeling with majority vote
can lead to unrepresented classes. This occurs for data clouds where the small
quantity of data points for a small class is outvoted by the large quantity of data
points of a larger class. If that occurs for all data clouds in which the small class is
present, there is no prototype representing the small class with its label.

2.7 Online and batch learning

Adaptation in the learning approaches can be done in different schemes. One dif-
ference is their adaptation interval, i.e. how many data points are used for one
adaptation step. The adaptation schemes that we will focus on are:

• Online learning: data can come in over time and the adaptation takes place after
every single input vector. This approach is often used for adaptive models.
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• Batch learning: data is assumed to be independent and identically distributed
over time and adaptation takes place using the complete set of input vec-
tors. This approach is preferably used for static models and the adaptation is
often done using an Expectation Maximization principle (see e.g. (Hastie, T.
et al. 2003)). This does not necessarily require differentiable similarities in the
determination of the update rules for the prototypes.

Online learning often converges slower than batch approaches but is not that prone
to instability with respect to different initializations as compared to batch-learning,
see e.g. (Cottrell et al. 2006). If it is known that the underlying concepts of the data
drift over time, online learning is chosen and it is useful to integrate some kind
of memory that is able to forget older samples (see e.g. (Biehl and Schwarze 1993),
(Widmer and Kubat 1996) or (Vovk 2005)).

2.8 Learning for different dissimilarity types

More or less parallel to the question of online or batch learning, it is possible to
distinguish different forms of learning in class typical model approaches according
to the dissimilarities that are appropriate for comparing the chosen object encodings:

• Learning using dissimilarity functions: In these approaches the dissimilarity
between object encodings can be determined according to a given function or
procedure d. So for every possible point in the input space we can calculate the
dissimilarity to any other possible point in the input space. Thus, it is possible
for the prototypes to be placed on arbitrary points in the input space. If the
dissimilarity measure is differentiable gradient based methods can be applied.

• Relational learning: In some applications only dissimilarity values between pairs
of object encodings are given. A isometric projection of the object encodings
into another, potentially high dimensional, space is assumed. That means that
the given dissimilarities are Euclidean distances of these projected encodings.
The embedding is called (pseudo) Euclidean embedding, see section 3.4. It is
possible to describe the prototypes in the projection space.

• Median learning: If only pairwise data dissimilarities are available that allow
no (pseudo) Euclidean embedding, no other dissimilarities can be approxi-
mated reliably. The prototypes can only be selected among the training object
encodings themselves. Such prototypes are called exemplars.

A special case of learning is learning with adaptive dissimilarities. It is also called
relevance learning as introduced by (Bojer et al. 2001) for Learning Vector Quantization.
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In these approaches a dissimilarity function is specified only by its structure and is
adaptable according to special parameters (see chapter 3 for examples). The first
relevance learning approaches used metrics as basic structures and thus were also
called metric adaptation. Popular relevance learning approaches use dissimilarity
functions for learning. We will also introduce variants incorporating relational data
in chapter 5.

In the case where the input is vectorial data the dissimilarity measure structure
can for example be a weighted Euclidean distance. In this dissimilarity measure the
difference in every vectorial dimension m is additionally weighted by parameter αm.
In metric adaptation approaches, the dissimilarity parameters are inferred from the
training data during learning. For the parameter adaptation different strategies can
be applied:

• Global dissimilarity adaptation: In this case only one set of parameters (in our
example α) is adapted, which defines a global dissimilarity measure for all
inputs (in the example d = dα).

• Local dissimilarity adaptation: In local adaptation several dissimilarity measures
are optimized in terms of their parameters. In prototype based approaches this
is done e.g. by learning the parameters ~αn for one dissimilarity measure for
each prototype wn.

Under specific restrictions the parameters learned for the dissimilarity can be inter-
preted as relevance factors for features or combinations of features. The restrictions
are detailed in chapter 4 for example approaches.

As data are often encoded as real-valued vectors, traditionally the Euclidean
metric is used as dissimilarity function in learning. Metric adaptation is commonly
applied for further insights in the relevance of single feature dimensions. With
more complex data and dissimilarity representations the need for approaches using
pairwise dissimilarities arose. In section 3.4 we show the approach to ascertain
whether a pseudo Euclidean embedding is available for the given dissimilarities.
In the use of median learning a sufficiently large number of training data points is
required to receive stable and suitable results. This precondition was e.g. not met in
our application example Exprimage.

2.9 Integration of mixed data

Biomedical objects are often encoded by an ensemble of feature groups from different
data modalities. This goes beyond the encoding of objects as input vectors in a
vectorial feature input space. The question for classification or clustering is how the
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different feature groups for one object could be integrated to gain a description of
the object that is more appropriate as it contains more information. As mentioned
before, the individual feature groups are often of different types, e.g. numerical or
categorical features. There are several specialized approaches to cope with mixed
data1, especially in classification. One popular approach is the integration of mixed
data into the class discriminating model of a Support Vector Machine via mixed
kernels. The integration of simple mixed kernels was originally developed for
multivariate data analysis. The algorithmic foundation was laid by (Aitchison and
Aitken 1976), who parameterized this integration. The parameters used in the
integration can either be set to a fixed value or can, just as in metric adaptation, be
adapted during the learning or inference stage.

There are also methods for incorporating mixed data into basic statistic or cluster-
ing approaches, e.g. in General Linear Statistics (Levasseur et al. 2009), Similarity-
Based Agglomerative Clustering (Li and Biswas 2002) or Evidence-Based Spectral
Clustering (Luo et al. 2006). Furthermore simple prototype based, class typical
models were equipped with the possibility to handle mixed data, e.g. the Nearest
Neighbor Approach (Garcı́a-Borroto and Ruiz-Shulcloper 2005) or the K-Means ap-
proach (Huang 1998). Most of these methods are based on Euclidean dissimilarities.
Extensions for more complex prototype based methods exist but are restricted to
integral dissimilarity measures for all numerical and all categorical features. They
cannot cope with arbitrary dissimilarities or more groups of features in the data (see
e.g. for Learning Vector Quantization (Chen and Marques 2010)).

2.10 Evaluation of learning results

For the evaluation of learning results it is relevant to distinguish between two differ-
ent views:

The algorithmic view is concerned with the general evaluation of a method. Here
the computer science experts evaluate an algorithm with focus on aspects like
sensitivity against initialization, suitable choice of parameters, convergence
criteria, or algorithm complexity.

The application view is focused on the evaluation of a method for a concrete ap-
plication. Here the computer science experts as well as the domain experts

1Processing of mixed data types has to be distinguished from the processing of heterogeneous data.
In heterogeneous data each object can be of a different type (see e.g. (Globerson et al. 2005)), whereas in
mixed or structured data all objects have the same structure that can contain different types of feature
groups.
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evaluate the accuracy of the results and the consistency with earlier findings,
expert knowledge and with results obtained by other methods.

In both views there are two main evaluation approaches:

Numerical evaluation This evaluation uses measures like the recognition rate or
Cohen’s kappa values. It is often understood as a performance evaluation with
respect to some ground truth, e.g. labels or the assumed presence of compact
clusters.

Visual inspection In one perspective visual inspection allows the judgment of the
learning quality by the back projection of the learning results to the specific
learning task, e.g. in the case of image analysis. Furthermore cluster qualities
like compactness, separation or density are evaluated using visualizations of
the data space.

The methods for visual inspection depend more on the learning task, on the data and
the application than the numerical evaluation methods. We introduce the evaluation
methods in relation to the basic learning methods (see chapter 4).

When evaluating with respect to ground truth, labels given for the data are
interpreted as the true class membership. This assumption has to be checked carefully
in the biomedical domains. We refer to section 2.5.1 for general considerations
concerning labeling and section 6.5.1 for the concrete experiences in the application
example. If there is uncertainty in the class labeling, ways to reduce this uncertainty
are the application of unsupervised learning and post-labeling or semi-supervised
methods.

Visual inspection relies on an appropriate visualization quality. Faithful visualiza-
tion can be used for data exploration. The presentation of the results as well as the
conditions and data that lead to these results have to be accessible for the domain
experts in a plausible way. As far as possible, the presentation should be oriented
towards the experts’ cognitive abilities and common working environment. This
is related to the research field of suitable knowledge representation and cognitive
ergonomics.

The evaluation of learning results is necessary in the context of selecting an
appropriate training algorithm. Some algorithms are based on assumptions, e.g.
about the convexity of a problem, that cannot be proven easily by only looking at the
application or the data. In this case a pertinent approach is to apply several methods
with different underlying assumptions to the given problem. The comparison and
plausibility discussion of the results is a suitable way to evaluate the validity of the
different algorithms’ assumptions in the given application.
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Many evaluation approaches especially in numerical evaluation yield more repre-
sentative results the more data points are available in the data set, that is used for
evaluation. Especially in the biomedical domain the number of data points is often
limited. For most evaluation approaches workarounds or specialized evaluation
strategies exist that are able to cope with small data sets. We will detail them in the
context of the corresponding evaluation methods.

2.11 Discussion of suitable algorithm types

The choice of an algorithm is often affected by personal preferences that were formed
in previous work with the considered algorithms. This is not necessarily bad practice
as the personal experience and intuition in working with the preferred algorithms
can be beneficial for the parameter adaption of the algorithm to the current task.

There are fundamental advantages and disadvantages of different algorithm types
in cognitive support systems for biomedical research. In biomedical applications,
enabling systems are often used to identify interesting groups of data or patterns
defining such groups. From the definition of the different basic approaches in
sections 2.3.1 and 2.3.2 it follows that class discriminating models describe the borders
between the groups rather than the groups themselves. Thus it appears advantageous
to use class or cluster typical models for learning more about the groups in the data.

The class or cluster typical models also show advantages in evaluating the results.
In class or cluster typical models it is easy to explore representatives of groups and
patterns e.g. by displaying the representatives directly or choosing for every repre-
sentative the closest training data point. The data needed for pertinent evaluation
visualization are inherent results of the algorithms.

In enabling systems unusual events are of interest and a system for the detection
of outliers or novelty is indispensable. Class typical models allow an intuitive
introduction of such systems, see e.g. (Vovk 2005). If class conditional properties are
modeled, the reliability with which each data point is classified in this model can be
calculated. The classification of data points that yields a reliability under a certain
threshold is rejected. The data point is assumed to be too different from the model.
Often biomedical experts favor this option over a system trying to classify all data.
A display of rejected objects can show the necessity of more representative training
data, e.g. if the class of the object is not involved yet or this subtype of the class is not
adequately represented. It can also show the occurrence of a concept drift in the data
or a problem in biomedical probe preparation.

The choice of suitable algorithms is further influenced by known data properties.
Biomedical data are often subject to noise or errors. In this case the application of
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adaptive models or learning approaches is recommended. Most of the adaptation
algorithms that are commonly used are based on dissimilarities. We will detail this
concept in chapter 3. Many of these algorithms use the Euclidean metric to measure
how similar two object encodings are. Metric adaptation is frequently used as it
helps to identify the relevance of single features or combinations of them for the
classification or clustering at hand. It is especially suited to yield insight into the data
set and problem.

There are data for which the Euclidean metric or adaptive versions of it seem
not appropriate, e.g. in the case of categorical data2. For these data some kind of
relation between the objects should be used for defining their pairwise dissimilarities.
As detailed in section 2.8 there are dedicated learning approaches available for the
different kinds of dissimilarities. As the choice of the dissimilarity measure is highly
domain specific, it is not possible to give a general advise for choosing between
learning using dissimilarity functions, relational and median learning or metric
adaptation. The same holds for the question whether online or batch learning should
be used. The specification of the preconditions and the suitable algorithms in our
application example Exprimage is given in section 7.1.1.

Biomedical data are often represented by mixed data. That means they comprise
feature groups of different data types. It is possible that these different data types
adequately would be handled using corresponding different dissimilarities. As
the single feature groups are conceptually and semantically different, it may be
inadequate to just concatenate them and use some Euclidean overall measure of
dissimilarity. Neglecting single feature groups is just as inappropriate as the features
might express their relevance only in the combination and give a context for each
other. The relevance of the single groups should be reflected in the construction of the
overall dissimilarity measure used for comparing two encoded objects. The context
and relevance of the feature groups can be different for single prototypes of classes
or clusters. A local metric with different relevance parameters for the dissimilarities
in the single feature groups is required in this scenario. As setting these relevance
parameters by hand would be complex and prone to errors, we suggest to adapt
them during training in a dissimilarity adaption approach.

Another question about known data properties is whether classes in the data
are likely to contain multiple separated modes or data clouds. If this is the case, an
algorithm is needed that is able to either

• find the centers of the different data clouds and assign all of them to a common
class or

2Examples for categorical data are the gender or the blood group.
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• project the data into some space where the different data clouds for one class
are not distinct any more.

An approach like Linear Discriminant Analysis is not able to cope with such multi-
modal data as it projects only one mean per class. In approaches based on represen-
tatives or prototypes that problem does not arise if more than one representative per
class is used.

Furthermore, we have to decide on the mapping that is used in the clustering or
classification approach. If the focus is on gaining information about the data and the
data space, fuzzy mappings are preferred as they do not draw artificial borders in
the case of overlapping classes or clusters. These borders are needed if the clustering
or classification is embedded into some work flow or procedure that needs a crisp
decision to proceed.

2.12 Conclusion

Summarizing we advise to use prototype based methods that build class or cluster
typical models. These models should be built in an adaptive manner, where the
adaption scheme is chosen according to the time constraints and the data properties
as well as the resulting dissimilarity properties. It is preferable to use approaches that
are able to cope with multimodal data. In this thesis we chose Vector Quantization
as a base for all further developments as it fulfills these properties. In the following
chapter we discuss a choice of algorithms based on Vector Quantization (VQ) for dif-
ferent time constraints, data and dissimilarity properties. We show extensions of the
crisp median algorithms to yield fuzzy mappings instead. In chapter 3 we introduce
different kinds of dissimilarities used for comparing object encoding feature groups.

We extend the GLVQ approach as well as the BNG approach in this thesis to
object encodings that are composed of feature groups that need different dissimilarity
measures. Inspired by the metric adaptation methods introduced in the Vector Quan-
tization chapter (see chapter 4), we show two basically different ways to integrate
adaptive dissimilarities into learning:

1. Calculate the overall dissimilarity as weighted sum of dissimilarities in the
single feature groups. This idea is based on Generalized Relevance Learning
Vector Quantization (Hammer and Villmann 2002).

2. Calculate the overall dissimilarity as weighted sum additionally integrating
combinations of feature groups in a first order, an idea based on Generalized
Matrix Learning Vector Quantization (Schneider et al. 2009).
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We detail and formalize these conceptual ideas in chapter 5. Furthermore, we extend
the integrated dissimilarity adaptation to data comprising relational feature groups.
We did not extend median approaches as in our application example there are
not enough data samples available to expect reliable and stable results in median
learning.

2.13 Related publications and authors’ contributions

The work presented in this thesis was partly already published. The author col-
laborated in the fuzzy extensions of Median C-Means (Geweniger et al. 2010) and
Affinity Propagation (Geweniger et al. 2009) discussed in sections 4.3.2 and 4.3.2
respectively. The author was the main contributor in the extension of the evaluation
measure Fleiss’ kappa to fuzzy mappings (Zühlke et al. 2009) (see section 4.5.4).
In (Zühlke et al. 2010) we describe the extension of the traditional prototype based
approach GLVQ to handle mixed data that was developed mainly by the author. The
other algorithms introduced in chapter 5 as framework for the handling of mixed
data in prototype based methods were derived by the author and not published yet.
Concerning the application example discussed in chapter 6 the author initiated and
supervised the Master thesis of Khabirova (Khabirova 2011) and the Diplomarbeit of
Bornemeier (Bornemeier 2011).



Chapter 3

Dissimilarities

In this chapter we want to detail the concept of dissimilarity. This concept is associated
with a variety of terms, including distance, similarity, measures, metrics. For sake of
clarity we will first give the mathematical formalization starting with the definition
of a metric space. The definitions are in accordance with those given in (Pȩkalska
and Duin 2006).

Assume a set V1, then a mapping d(x, y) : V × V → R+ is called a metric if it
fulfills the following axioms:

1. d(x, x) = 0 (reflexivity),

2. d(x, y) = d(y, x) (symmetry),

3. d(x, y) = 0 =⇒ x = y (definiteness) and

4. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

Axiom (1) together with axiom (3) form the axiom of the so called identity of indis-
cernibles.

It may be conceptually more adequate in a considered application to drop one
or more of the axioms. Then we get the following categorization for mappings
d(x, y) : V ×V→ R+

1. d is called a (dis-)similarity measure if it is reflexive.

2. d is called a definite (dis-)similarity measure if it is reflexive and definite.

3. d is called a pre-(dis-)similarity measure if it is reflexive and symmetric and V is
then premetric.

4. d is called a quasimetric if it is premetric and satisfies the definiteness constraint
and V is then quasimetric.

5. d is called a semimetric if it is premetric and satisfies the triangle inequality and
V is then semimetric.

1Usually in our applications this setV is the input vector space and a subset of or equal toRM .
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Often the input data are encoded as real-valued vectors or – to put it into other words
– points in an input vector space. For such data the interpretation of similarity as
distance in the input vector space is intuitive. Thus the Euclidean distance is an
appropriate measure of dissimilarity. It fulfills all metric axioms. Many adaptation
schemes in learning algorithms are based on the Euclidean metric. Some of them can
also be used with other metrics – relying on the metric axioms.

With growing complexity of the applications the idea of input data being simple
vectors becomes more and more inappropriate. To model biomedical objects a variety
of other representations become interesting, e.g. spectra (being actually some func-
tions of wavelength or mass) or clinical data (often expressed in terms of membership
to some category). There are at least two possibilities to cope with these object repre-
sentations. Either these representations are recoded into a vectorial representation or
other dissimilarity measures are needed. As recoding often cannot be done without
loosing information, it is more suitable to use an appropriate dissimilarity measure.
This may also mean that a suitable learning approach for this measure has to be
found or that the learning approach has to be adapted to the chosen dissimilarity
measure.

The choice of the dissimilarity measure is based on the object encodings – ex-
pressed in terms of features, attributes or groups thereof – and their mathematical
properties as well as their conceptual meaning. Hastie et al. state: “Although simple
generic prescriptions for choosing the individual attribute dissimilarities [. . . ] can be
comforting, there is no substitute for careful thought in the context of each individual
problem. Specifying an appropriate dissimilarity measure is far more important in
obtaining success with clustering than choice of clustering algorithm. This aspect
of the problem is emphasized less in the clustering literature than the algorithms
themselves, since it depends on domain knowledge specifics and is less amenable to
general research.” (Hastie, T. et al. 2003, p. 506)

Furthermore, in the context of the choice of an adequate dissimilarity measure
the question of an adequate scaling of the features arises naturally. In the Euclidean
distance all feature dimensions considered are of equal weight and their order has
no influence on the distance calculation. In this case a scaling that normalizes every
feature dimension independently from the others is often adequate and commonly
used. For example for features representing functions this is not the case. Strickert
et al. introduced a general method for the assessment of data attribute variability
that “allows a mathematically rigorous characterization of attribute sensitivity given
not only Euclidean distance between data points but very general similarity mea-
sures” (Strickert et al. 2011, p.105). An approach towards scaling the data attributes
accordingly is an issue of current research.
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In the following sections we focus on the dissimilarity measures that are needed
later in the specific application (see section 7.1.4): metrics (especially the Euclidean
metric), dissimilarity measures (especially divergences) and relational dissimilarities
(in terms of pairwise dissimilarities). For these dissimilarity measures we will also
discuss adequate scaling approaches. A selection of other dissimilarity measures will
be mentioned and sketched roughly.

3.1 Metrics

As formalized before, metrics are a strictly defined category of dissimilarity measures.
An important special case of a metric is the Euclidean metric as it is the most intuitive
measure in terms of the psychology of perception and cognition. Humans in every
day life think space in terms of the Euclidean distance on an orthogonal coordinate
system. For example the triangle inequality satisfies the intuition that the distance
cannot be shorter when going from point a to point b via point c instead of going
directly from a to b. In this section we will also introduce other metrics with non-
Euclidean behavior.

3.1.1 Euclidean metric and relatives thereof

The Euclidean metric (also called Euclidean distance) is a special case of a metric
induced by the Lp-norm. The Lp-norm is given by:

|v|p =
(∣∣[v]1

∣∣p +
∣∣[v]2

∣∣p + · · ·+
∣∣[v]M

∣∣p) 1
p

where [v]m is the mth dimension of the vector v ∈ RM .
With p ≥ 1 a general metric – called Minkowski metric – is induced by this norm2.

It is defined as:

dp or Minkowski (v, w) =

(
M∑
m=1

∣∣[v]m − [w]m
∣∣p) 1

p

As the sum in the definition of the norm and the metric is commutative, the order
of the coordinates i is meaningless in the calculation. These metrics are therefore
suitable for vector representations of objects where the order of the dimensions is not
informative.

Important special cases of this Lp-norm-induced metric are:

2For 0 < p < 1 the norm induces a quasimetric that violates the triangle inequality.
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Manhattan metric with p = 1:

dManhattan (v, w) =

M∑
m=1

∣∣[v]m − [w]m
∣∣

It sums up the absolute differences in the single coordinates. This metric is also
known as taxicab metric as it follows axis-aligned directions.

Euclidean metric with p = 2:

dEuclidean (v, w) =

√√√√ M∑
m=1

(
[v]m − [w]m

)2
=

√
(v − w)

>
(v − w)

(3.1.1)

The Euclidean metric is the metric most widely used. In some applications the
squared Euclidean metric

dEuclidean (v, w) = (v − w)
>

(v − w) (3.1.2)

is used instead.

Chebyshev metric with p =∞:

dChebyshev (v, w) = max
m

(∣∣[v]m − [w]m
∣∣)

It assumes only this dimension as relevant that has the largest absolute dif-
ference between the single coordinates. This metric is associated to chess de-
scriptions, e.g. (van der Heijden et al. 2004), and sometimes used in warehouse
logistics, e.g. (Langevin and Riopel 2005).

These Lp-norm-induced metrics are commonly used for vectorial data. As the dimen-
sions are weighted equally in these metrics and there is no information in the order
of the dimensions, the features in the single dimensions are often independently
normalized. A common strategy is to test the values within one feature dimension
in the data set whether they are distributed according to the normal distribution by
applying the Jarque-Bera-test (Jarque and Bera 1980). If the feature dimension values
are distributed accordingly they are normalized to have zero mean and a standard
deviation of one – called zero-mean-normalization. If that is not the case often a
linear scaling to a range of −1 to 1 is applied.

There are metrics extending the abilities of the Euclidean metric to account for
different variances in the specific feature dimensions. The Mahalanobis distance is
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defined as a metric between two vectors v and w of the same distribution with the
covariance matrix Mcov :

dMahalanobis (v, w) =

√
(v − w)

>
M−1
cov (v − w) (3.1.3)

If the covariance matrix is the identity matrix, the Mahalanobis distance reduces to
the Euclidean distance.

Metrics cannot only be induced by a norm. A positive definite, symmetric bilinear
form on a real vector space V ⊆ RM induces a metric (see e.g. (Pȩkalska and Duin
2006) for definitions). If V is finite dimensional the symmetric bilinear form b with
respect to a special vector space base B = {vi}Mi=1 can be defined completely by the
defining matrix Λ of b with

Λ (b)i,l =
(
b (vi, vl)

)
(3.1.4)

for all i, l = 1, . . . ,M . The bilinear form b is symmetric if and only if Λ is symmetric.
Assume b to be a real, symmetric and non-degenerate bilinear form. The latter means
that the defining matrix Λ of b has full rank of M . If we further assume, that Λ is
positive definite then b defines a traditional inner product in V. It is denoted as
〈x, y〉Λ = x>Λy where x and y are expressed with respect to the basis B (Pȩkalska and
Duin 2006).

An important special case of a dissimilarity measure induced by such a bilinear
form is the quadratic form

dΛb
(v, w) = (v − w)

>
Λ (v − w) . (3.1.5)

where Λ is the defining matrix of a symmetric bilinear form b and v and w are
expressed in the same basis as Λ. For Λ = 1 this yields the squared Euclidean
distance.

To ensure the metric properties for the dissimilarity measure given in (3.1.5), the
matrix Λ must be symmetric and positive definite. It holds that for every matrix Ω,
the matrix Λ given by

Λ = Ω>Ω (3.1.6)

is positive semi-definite and symmetric. The other way round, each positive definite,
symmetric matrix Λ is decomposable according to equation (3.1.6), but in this case Ω

is not unique. Using equation (3.1.6), equation (3.1.5) and the definition u = v − w
we get dΛ = u>Λu = u>Ω>Ωu = (Ωu)

2 ≥ 0 for all u and thus guaranties positive
semi-definiteness. To guarantee strong positive definiteness additionally det Λ 6= 0

is required. If Ω = (j × i) it can be seen as a map Ω : Ri → Rj . Then (Ωu)
2 is the

quadratic Euclidean distance in Rj . This mapping property of the matrix Ω can be
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used to improve the conceptual validity of the comparison of different objects and
thus to enhance the quality of the learned model. In this sense, the matrix Λ or Ω

respectively can be used to integrate prior knowledge about the relevances of single
vector dimensions or combinations thereof.

The restriction to diagonal matrices yields:

dα (v, w) =

M∑
m=1

αm
(

[v]m − [w]m
)2
. (3.1.7)

with ~α = (α1, . . . , αM ), αm ≥ 0 and
∑M
m=1 αm = 1. This function in general is no

metric. Here again prior knowledge about the vector dimensions can be introduced
to enhance the conceptual validity of object comparisons.

As we will see in chapter 4, the matrix Λ and the vector ~α can be adapted during
the learning to create a discrimination optimal dissimilarity. To interpret these
parameters as a relevance weighting, it is necessary to normalize the single feature
dimension beforehand.

The Mahalanobis distance and its generalizations are used for vectorial data where
the order of the dimensions does not provide any information. These dissimilarities
yield a kind of intrinsic normalization and thus are suitable if the single dimensions
have variable ranges that should be equalized in distance calculation.

3.1.2 Other metrics

(Lee and Verleysen 2005) introduced a generalization of the Lp-norm for time se-
ries, inducing the functional metric that takes the order of the vector dimensions
into account. (Villmann and Hammer 2009) used the Sobolev metric, that is induced
by the Sobolev norm, to represent the dissimilarity of vectors that have a function
like character. Examples of biomedical applications where such functional vector
representations are used are: specified parts of an EKG curve or of an EEG curve, ab-
sorption or reflection spectra or action potentials as well as fluorescence distributions
around cell membranes.

Based on information theory the Kolmogorov metric is also suited for (normalized)
spectral data, see (Paclı́k and Duin 2003) for a detailed description. There are also
metrics that are neither induced by a norm nor by a real bilinear form, see (Pȩkalska
and Duin 2006).

3.2 Dissimilarity measure functions

As formalized at the beginning of this chapter every reflexive mapping d(x, y) :

V × V → R+ is a dissimilarity measures. This is a rather loose restriction. In
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this section we will focus on divergences and shortly introduce a choice of other
dissimilarity functions afterwards. Measures like the quasimetric induced by the
Lp-norm for 0 < p < 1 introduced before, are also examples for dissimilarity measure
functions.

3.2.1 Divergences

Divergences are a group of dissimilarity measures originally proposed for the com-
parison between density functions or positive measures (Villmann and Haase 2011).
Often used in physics divergences were introduced into learning approaches some
years ago. They are said to have a great potential in the representation of dissimilari-
ties in many real world applications. The following paragraph and definitions were
adapted from (Villmann and Haase 2011) who give an overview and the mathemati-
cal framework for using divergences in gradient based approaches.

We assume p and q to be positive measures in xwhich means that they are positive
functions for the support x ∈ X with finite weight, i.e.

∫
X
p(x) dx < ∞. If further∫

X
p(x) dx = 1 holds, p(x) is called a density measure, or simply density. In the

following we abbreviate p(x) by p for readability.
(Cichocki et al. 2009) classified the large variety of divergences into three, partially

overlapping, main classes:

• Bregman divergences

• Csiszár’s f -divergences

• γ-divergences

A choice of important divergences for the application in prototype based learning
are:

The standard Kullback-Leibler-divergence given by

dKL =

∫
p log

p

q
dx. (3.2.1)

It can be attributed to all three divergence classes mentioned before.

The generalized Rényi-divergences that are defined as

dGR
α (p, q) =

1

α− 1
log

(∫ [
pαq1−α − α · p+ (α− 1) q + 1

]
dx

)
. (3.2.2)
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The γ-divergences as a class of very outlier-robust divergences that are defined
according to

dγ (p, q) =
1

γ + 1
log

[(∫
pγ+1dx

) 1
γ

·
(∫

qγ+1dx

)]
(3.2.3)

− log

[(∫
p · qγdx

) 1
γ

]
. (3.2.4)

In the limit γ → 0 dγ (p, q) this becomes the standard Kullback-Leibler-divergence
for normalized densities. For γ = 1 the Cauchy-Schwarz-divergence

dCS (p, q) =
1

2
log

(
q2 (x) dx ·

∫
p2 (x) dx

)
− log

(∫
p (x) · q (x) dx

)
(3.2.5)

is obtained, which was suggested for information theoretic learning by (Principe
et al. 2000) investigating the Cauchy-Schwarz-inequality for norms.

The question when to use which divergence for what data is an issue of ongoing
research as the incorporation of divergences in information processing algorithms
is a quite new idea. For the parameterized divergences it is also possible to adapt
the parameter (e.g. γ or α) during learning to yield better and more stable results,
see (Villmann and Haase 2011). In principle divergences are suitable for all kinds of
probability densities and some are suited for unnormalized positive measures. As it
is possible to interpret histograms or distributions of image features as probability
densities, they can be compared using divergences. Other examples are spectra that
can be interpreted as positive measures. Due to measuring inaccuracy it is sometimes
necessary to renormalize the spectra so that they sum up to one.

(Mwebaze et al. 2011) give an example where classification rates after learning
from histograms were better when using γ-divergence than for the Euclidean compar-
ison of the histograms. The Rényi-divergence is in some cases more robust compared
to the Kullback-Leibler-divergence due to the fact that in the Rényi-divergence, see
equation (3.2.1), the integral is calculated first and then the logarithm is determined
afterwards. In the Kullback-Leibler-divergence the logarithm is calculated directly
over possibly very small values, which can cause numerical instabilities due to error
propagation.

In image processing frequently properties of the image e.g. the intensity values
are modeled by fitting a Gaussian distribution to them. The mean µ and the standard
deviation σ of the fitted Gaussian are then used as image features. Divergences offer
a good way to compare these Gaussian distributions g1, g2 with gi = g (µi, σi) for
i = 1, 2 and thus for comparing these image features. For example the Kullback-
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Leibler-divergence as given in equation (3.2.1) can be calculated for two Gaussian
functions in terms of their mean µ and standard deviation σ:

d (g1, g2) =
1

2

[
(µ1 − µ2)

2

σ2
2

+
σ2

1

σ2
2

− log
σ2

1

σ2
2

− 1

]
. (3.2.6)

3.2.2 Other dissimilarity measure functions

Another important dissimilarity measure function especially for functional data
represented by vectors vk and wn is the Pearson correlation coefficient, given by:

dr (vk, wn) =
1

M − 1

M∑
m=1

(
[vk]m − µvk

)(
[wn]m − µwn

)
σvkσwn

(3.2.7)

where µz and σz are the mean and the standard deviation over the vector components
[z]m, with z = wn, vk respectively, i.e.

µz =
1

M

M∑
m=1

[z]m and σz =

√√√√ 1

M

M∑
m=1

(
[z]m − µz

)2
.

(Pȩkalska and Duin 2006) give an overview over the large variety of different dissim-
ilarity measures and their properties. (Paclı́k and Duin 2003) review dissimilarity
measures suitable for spectral data e.g. the Spectral Angle Mapper.

3.3 Pairwise dissimilarities

In some applications only pairwise dissimilarities between the input data points
are given. This often occurs for categorical data. There are some suggestions for
the determination of pairwise dissimilarities in data comprising categorical and
numerical features. As we will introduce advanced integration approaches for mixed
data later we focus here on the calculation of the dissimilarity for the categorical
feature parts. We discuss two possibilities for pairwise dissimilarity calculation for
categorical features from literature that we used in our application example.

(Li and Biswas 2002) define a similarity measure for nominal data. For this
measure the similarity of the feature value matches between a pair of objects is
weighted by the frequency of occurrence of the feature value in the data set. The
idea is that two object representations are more similar to each other if they agree
in a less common feature value than if they agree in a frequent one. This idea is
based on the information theoretic assumption that importance of an information is
anti-correlated to its frequency.
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In the following a formalization of this concept is given. Without loss of generality
we assume two pairs of objects (vi, vl) and (vr, vu) with vi, vl, vr, vu ∈ V . Furthermore
we assume that for the mth feature dimension the values in the feature vector are
equal within each pair, i.e. [vi]m = [vl]m and [vr]m = [vu]m but [vi]m 6= [vr]m. We
further assume that the value [vi]m appears equally often or more frequent in the set
of input vectors V than the value [vr]m. (Li and Biswas 2002) express that fact as(

(pi)m = (pl)m
)
≥
(

(pr)m = (pu)m
)

where (pi)m , (pl)m , (pr)m , (pu)m define the probabilities (relative amounts) of occur-
rence of the respective feature values in V . Their idea is summarized in the following
relation (Li and Biswas 2002):(

[vi]m = [vl]m
)
∧
(
[vr]m = [vu]m

)(
(pi)m = (pl)m

)
≥
(

(pr)m = (pu)m
)} ⇒ (Si,l)m ≤ (Sr,u)m (3.3.1)

where (Si,l)m and (Sr,u)m are the similarity values for the respective feature values
and objects.

According to this relation Li and Biswas define for a pair of objects (vi, vl) with
equal value in feature dimension m the More Similar Feature Value Set, abbreviated
by MSFVS

(
[vi]m, [vl]m

)
. “This is the set of all pairs of values for feature m that are

equally or more similar to the pair ([vi]m, [vl]m)” (Li and Biswas 2002, p. 678). It is
given by:

MSFVS
(
[vi]m, [vl]m

)
=
{(

[vr]m, [vu]m
)

: (Si,l)m ≤ (Sr,u)m
}
.

We denote the number of occurrence for a special value [vr]m in the set V as (ηr)m
with (ηr)m ∈ {1, . . . , N}. Than the “probability of picking a pair ([vr]m, [vu]m) from
MSFVS ([vi]m, [vl]m) at random is

(pr)
2
m

(
[vr]m, [vu]m

)
=

(ηr)m ·
(

(ηr)m − 1
)

N · (N − 1)
,

where (ηr)m = (ηu)m as [vr]m = [vu]m and N is, just as before, the total number of
objects in the population” (Li and Biswas 2002, p. 678).

By summing up the picking probabilities for all pairs in MSFVS
(
[vi]m, [vl]m

)
the

dissimilarity score (Di,l)m of the pair
(
[vi]m, [vl]m

)
is given (Li and Biswas 2002):

(Di,l)m =
∑(

[vr]m,[vu]m

)
∈MSFVS

(
[vi]m,[vl]m

) (pr)
2
m

(
[vr]m, [vu]m

)
. (3.3.2)

with (Si,l)m = 1− (Di,l)m.
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To combine the single dissimilarity values, Li and Biswas use Lancaster’s mean
value χ2 transformation (Lancaster 1949):

(χ)
2
i,l = 2

∑
m:nominal feature

(
1−

(Di,l)m ln (Di,l)m − (Di,l)
′
m ln (Di,l)

′
m

(Di,l)m − (Di,l)
′
m

)

where (Di,l)m is the dissimilarity score for the nominal attribute value pair given
by
(
[vi]m, [vl]m

)
which is the actually observed event and (Di,l)

′
m which is the next

smaller dissimilarity score in the nominal set. The factor (χ)
2
i,l is χ2-distributed with

T degrees of freedom where T is the number of nominal features. The significance
value of this χ2-distribution can be looked up in standard tables or approximated
from the expression:

Di,l = e
−χ2

i,l
2

T−1∑
t=0

(
1
2χ

2
i,l

)t
t!

(3.3.3)

The overall similarity score representing the set of T independent similarity measures
is Si,l = 1−Di,l. We used the pairwise dissimilarities Di,l in our tests.

(Li and Biswas 2002) used their measure for clustering different publicly available
data sets from the UCI repository, cf. (Frank and Asuncion 2010), and interpreted
their clustering results by using known labels for post evaluation and looking for
semantic interpretations of the clustering. For the mushroom data (Lincoff 1981)
using 22 nominal values the clustering achieved a perfect separation into edible and
poisonous species. The heart disease data set (Detrano 1989) was clustered into two
clusters that according to the medical interpretation suitably separated patients with
low risk for cardiac diseases from patients with high risk. Taking into account the
diagnostic labels of diseased or not, they yielded a clustering accuracy of 75.2%.

Based on Li and Biswas’ results, (Luo et al. 2006) introduced the idea to define
the similarity between objects by the number of clusters shared by two objects in the
partitions of a clustering ensemble. For the categorical features they consider each
attribute with its attribute values as a clustering on the data set. A data set with T
nominal attributes has T clusterings. The co-occurrences of pairs of patterns in the
same cluster votes for their association. The T clusterings are mapped into a N ×N
co-association matrix

Si,l =
ni,l
T

=

∑T
t=1 C

t (vi, vl)

T
(3.3.4)

where ni,l is the number of times the pattern pair (vi, vl) is assigned to the same
cluster among the T clusterings, and Ct (vi, vl) = 1 if the pattern pair (vi, vl) is in the
same cluster of the tth clustering, else Ct (vi, vl) = 0.

They used their measure for mixed data successfully also for clustering the heart
disease data set (Detrano 1989) from the UCI Repository (Frank and Asuncion 2010).
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Using the given labels for post evaluation they yielded a clustering accuracy of 81.3%,
which is significantly better than the corresponding clustering by Li and Biswas.

This dissimilarity measure from Luo et al. is one variant of the Jaccard index or
Jaccard coefficient used to measure the dissimilarity of two sets A and B introduced
by Jaccard in 1901 for the comparison of flower growth distributions (Jaccard 1901).
This general index is given by

J (A,B) =
|A ∩B|
|A ∪B|

. (3.3.5)

Where |A| refers to the cardinality of the set A. The Jaccard index is for example
used as measure in information retrieval applications like spelling correction in
dictionaries and robust retrieval (Manning et al. 2008).

There are many more approaches towards pairwise dissimilarities. It is a very
application and domain specific question how to represent those dissimilarities. In
section 7.1.4 we introduce the considerations and an approach towards domain
knowledge based pairwise dissimilarities for our application example Exprimage.

3.4 Embedding arbitrary dissimilarities into the
Euclidean space

Many assertions about adaptive algorithms to converge to an optimum solution only
hold for Euclidean dissimilarities. For other metrics or even dissimilarity measures
there is no assertion that they converge to a useful solution as e.g. negative dissim-
ilarities can corrupt the approach towards the optimum. It is a matter of ongoing
research how cost functions, decision boundaries and prototype positions behave
during and after learning when non-Euclidean measures are applied. Neverthe-
less, in most practical applications the used dissimilarities behave almost like the
Euclidean distance so that it is likely that the approaches converge to an optimum
solution.

To avoid this problem of non-Euclidean dissimilarities or to control the error
resulting from it, it is desirable to embed arbitrary dissimilarities, e.g. given in the
dissimilarity matrix, into the Euclidean space. The following sections are based on
the tutorial of (Pȩkalska and Duin 2009) that is related to their book (Pȩkalska and
Duin 2006). They show two main approaches of embedding dissimilarities: the
so-called dissimilarity space and the embedding of the dissimilarity matrix. Furthermore
we give the basics for the application of kernelization to yield an implicit embedding.
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3.4.1 Dissimilarity space embedding

Given a training set V of data points v1, . . . , vK and a dissimilarity function d or a
dissimilarity matrix D we define a subset of V as representation set. The dissimi-
larities to the representation set are interpreted as features for the dissimilarity space
representations of the data points vk. Their characteristics of dissimilarities is not
used when a general classifier is applied to these dissimilarity space representations.
Thus the dissimilarity matrix is considered as a set of row vectors, one for each object.
They represent the objects in a vector space constructed by the dissimilarities to
the other objects. The resulting vector space is endowed with the traditional inner
product and the Euclidean metric. This distance is then computed on vectors defined
by original dissimilarities. This can lead to changes in the nearest neighbor objects.
The good side of this disadvantage is that the dissimilarity space can be used for any
dissimilarity representation, including ones that are negative or asymmetric.

3.4.2 Embedding the dissimilarity matrix into the Euclidean space

Embedding the dissimilarity matrix into the Euclidean space can only be realized error
free if the original set of dissimilarities are Euclidean themselves. In any other case
an approximation procedure has to be used or the objects should be embedded into a
non-Euclidean space. It appears that an exact embedding into a non-Euclidean space
is possible for every symmetric dissimilarity matrix with zeros on the diagonal. The
resulting space is the so-called pseudo-Euclidean space. Many of the dissimilarity
measures used in the pattern recognition practice appear to be non-Euclidean. In
this section we will concentrate on the test whether dissimilarities are Euclidean and
possibilities to correct dissimilarities towards Euclidean behavior as many adaption
processes require the corresponding conditions.

To formalize the underlying concepts we will give further definitions that are
based on the description in Pȩkalska and Duin’s “The dissimilarity representation
for pattern recognition” (Pȩkalska and Duin 2006). The Euclidean vector space is a
real vector space that is equipped with a positive definite, symmetric bilinear form.
A real vector space over the field of real numbers R is a set V together with two
binary operators (vector addition and scalar multiplication) that satisfy eight axioms:
Associativity of addition, commutativity of addition, identity element of addition,
inverse element of addition, distributivity of scalar multiplication with respect to
vector addition, distributivity of scalar multiplication with respect to field addition,
compatibility of scalar multiplication with field multiplication, and identity element
of scalar multiplication. The elements of the set V in a vector space are also called
points.
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If we look for an Euclidean embedding of the dissimilarities given in dissimilarity
matrix D, the task is to find a suitable set of vectors xk ∈ RM

′
, k = 1, . . . ,K that

is considered as a base for an M ′-dimensional embedding space F such that the
Euclidean distances between the vectors xk (represented in a matrix DF) are equal to
the given dissimilarities in D, i.e.

Dl,k = d (vl, vk)
!
= ‖xl − xk‖2 = DFl,k. (3.4.1)

We place all xk in rows of an K ×M ′ matrix X . Then according to (Pȩkalska and
Duin 2006) the Gram matrix for the vector representation X is defined as the matrix of
inner products and given by G = XX>. They also proved that this Gram matrix can
be expressed in terms of the dissimilarities DF between the base vectors:

G = −1

2
CK

(
DF
)?2

CK (3.4.2)

where CK is the centering matrix and
(
DF
)?2

= DF ◦DF is the Hadamard (entry-wise)
product of the dissimilarity matrix with itself. The centering matrix is a symmetric
and idempotent matrix, that, when multiplied with a vector, results in the subtraction
of the mean of the vector components from all components of a vector. The K-
dimensional centering matrix given by

CK = IK − 1
K11

>

“projects the data such that the final configuration has a zero mean vector” (Pȩkalska
and Duin 2006, p. 118). 1 is a column vector of all ones with length K and IK is the
K ×K dimensional identity matrix. We can interpret the matrix DF as the defining
matrix of the bilinear form representing the dissimilarities in the embedding space F
(cf. equation (3.1.4) in section 3.1.1).

Pȩkalska and Duin introduce a variety of different tests whether the given dissim-
ilarities D show Euclidean behavior or not. We will focus on one test that directly
implies possibilities of correcting the dissimilarities if they are non-Euclidean. First
we calculate G according to equation (3.4.2) assuming the embedding dissimilarities
in DF to be equal to the given dissimilarities in D. Then we test G for its sym-
metry and positive (semi-)definiteness which ensure the existence of an Euclidean
embedding of the dissimilarities. I f the embedding exists the dissimilarities are
Euclidean3.

To test G for its positive (semi-)definiteness we use the equivalent condition that
G is positive definite if and only if all eigenvalues of G are positive. We calculate the

3This embedding exists for every configuration of dissimilarities D that according to equation (3.4.2)
yield a symmetric and positive semidefinite Gram matrix G. The embedding is unique for positive definite
G.
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eigendecomposition of the Gram matrix G = QΛQ>, where Λ is a diagonal matrix of
eigenvalues λk with k = 1, . . . ,K and Q is the matrix of eigenvectors.

In the special case where we have positive eigenvalues followed by zero eigenval-
ues, the Gram matrix G is positive semidefinite. If we have K ′ ≤ K positive and no
negative eigenvalues, the representation X can be calculated from G = XX> and
equation (3.4.2) “as

X = QK′Λ
1
2

K′

where QK′ ∈ RK×K
′

is the matrix of K ′ leading eigenvectors, i.e. corresponding

to the K ′ largest eigenvalues, and Λ
1
2

K′ ∈ RK
′×K′ contains the square roots of the

corresponding eigenvalues.” (Pȩkalska and Duin 2006, p. 119)
In the case of general dissimilarities in D there are positive, negative and zero

eigenvalues. Without loss of generality we assume them to be ordered such that we
first have decreasing K ′ positive eigenvalues of G, then according to the absolute
value increasing K ′′ negative ones, followed by zeros. Pȩkalska and Duin introduce
four different approaches to change the dissimilarities D in order to make G positive
definite:

1. The dissimilarities are not corrected directly but for calculating the Euclidean
configurationX only the positive eigenvalues are taken into account, neglecting
the others. There are K ′ non-zero eigenvalues, yielding the configuration

X = QK′Λ
1
2

K′ .

2. Determining a positive constant τ ≥ −λmin where λmin is the smallest (negative)

eigenvalue of G such that D2τ =
[
D?2 + 2τ

(
11> − IK

) ]? 1
2 is Euclidean. The

original dissimilarities are distorted significantly if τ is a large value. In physics
this approach is called spectral shift.

3. Determine a positive constant κ ≥ λmax such that Dκ = D + κ
(
11> − IK

)
is Euclidean. The corresponding Gram matrix has different eigenvalues and
eigenvectors than the original one.

4. Determine a parameter p for the function g given in (Courrieu 2002) such that
Dp =

(
g (di,j ; p)

)
is Euclidean. Thereby g is a nonlinear, parameter dependent

transformation.

All those approaches are “useful when the negative eigenvalues are relatively small
in magnitude, which suggests that the original distance measure is nearly Euclidean.
In such cases, the negative eigenvalues can be interpreted as noise contributions. If
the negative eigenvalues are relatively large (in magnitude), then by neglecting them,
important information might be disregarded”(Pȩkalska and Duin 2006, pp. 121-122).
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This is in parallel with the interpretation of the Eigenvalues as measure of variance
in the single dimensions. As variance with a high magnitude is assumed to yield
much information, neglecting Eigenvalues that are large in magnitude is assumed to
introduce high information loss.

The described corrections are suitably applied to a definite, symmetric dissimilar-
ity matrix. For an arbitrary zero-diagonal matrix D of dissimilarities the following
preprocessing steps have to be conducted:

• make D definite by either

– change all zero dissimilarities between two different objects into a small
fixed value, depending on overall distances or

– consider objects with zero dissimilarity as belonging to the same equiva-
lence class

• make D symmetric by either

– averaging all di,j and dj,i or

– taking their maximum

It is a matter of ongoing research for which dissimilarity matrices the correction of the
non-Euclidean behavior is suitable. To give an orientation in this question Pȩkalska
and Duin introduced the Non-Euclidean Coefficient (NEC) to measure the “amount of
non-Euclidean influence”(Pȩkalska and Duin 2009, p. 8) in the embedding space. It
is defined as:

NEC =

∑K′+K′′

i=K′+1 |λi|∑K′+K′′

l=1 |λl|
∈ [0; 1] (3.4.3)

We will evaluate this coefficient for our application in chapter 7.

3.4.3 Kernelization

As opposed to the explicit embedding and calculation of the representation X it is
possible to apply the Kernel trick, cf. (Schölkopf et al. 1999). Using a given input
vector set V , a possibly nonlinear mapping function Φ (·) is assumed that maps an
input vector vk from the input data space RM to a feature vector Φ (vk) = xk in the
embedding or feature space F. We assume that the function kΦ (·) is a Mercer kernel
function (Schölkopf et al. 1999) associated to the mapping Φ that can be used to
calculate the inner product of two points xl = Φ (vl) and xk = Φ (vk) in the Hilbert
feature space F by

kΦ (vl, vk) =
〈
Φ (vl) ,Φ (vk)

〉
= 〈xl, xk〉 (3.4.4)
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without need of the knowledge about the specific form of the nonlinear mapping Φ (·).
In that case, any computations in the feature space F can be efficiently converted into
operations in the data space RM through this kernel function kΦ.

Assuming the existence of such a mapping function Φ with the corresponding
kernel function kΦ we can express the prototype vectors as linear combinations of the
images of the input vectors in the feature space F according to

wFn =

K∑
k=1

[βn]kΦ (vk) =

K∑
k=1

[βn]kxk (3.4.5)

where
∑K
k=1[βn]k = 1 for all n and [βn]k is the kth component of the prototype

representing coefficient vector ~βn for prototype wFn . The dissimilarity in the feature
space F between a projected sample Φ (vk) and the feature space prototype vector
wFn represented by the coefficients ~βn can be formulated as:

dFk,n = kΦ (vk, vk)− 2 ·
K∑
l=1

[βn]lkΦ (vk, vl) +

K∑
i,u=1

[βn]i[βn]ukΦ (vi, vu) . (3.4.6)

The kernel function can for example be chosen to be the Gaussian kernel function
given by

kΦ (vi, vu) = exp

(
−‖vi − vu‖

2

2σ2

)
(3.4.7)

as used by (Qinand and Suganthan 2004) in their kernelized version of the General-
ized Learning Vector Quantization approach.

As the kernel matrix K =
(
kΦ (vi, vu)

)
is a matrix of inner products, it can also

be interpreted as Gram matrix to the base X = (x1, . . . , xK) and thus the relation
given in equation (3.4.2) can be used to reformulate equation (3.4.6) in terms of
dissimilarities:

dFk,n =
∥∥wFn − Φ (vk)

∥∥2
=
(
DF · ~βn

)
k
− 1

2
· ~β>n ·DF · ~βn (3.4.8)

where DF =
(
dFk,l

)
=
∥∥Φ (vk)− Φ (vl)

∥∥2 with vk, vl ∈ V are the Euclidean distances
in the feature space F.

If dissimilarities D = (dk,l) = d (vk, vl) are given for the input vectors vk, vl ∈ V
in the input space, we further assume the mapping Φ to be isometric, i.e. that the
Euclidean distances in the feature space DF are equal to the dissimilarities D given
for the input space. By adapting the coefficient vectors in accordance with the given
dissimilaritiesD, an implicit representation in the high-dimensional feature spaceF is
learned. We discuss the corresponding unsupervised method Relational Neural Gas
in section 4.2.1 and the supervised approach Kernel Learning Vector Quantization in
section 4.2.2.





Chapter 4

Vector Quantization

In the following sections we will give definitions and details of a choice of Vector
Quantization (VQ) based algorithms, as well as their evaluation. Throughout the
chapter we will call the unsupervised methods Vector Quantization (VQ) methods
and the supervised approaches are referred to as Learning Vector Quantization
(LVQ)1 methods. The sections show algorithms that are approaches for learning
using a dissimilarity function, relational learning and median learning. In every
section we will first consider unsupervised algorithms, turning then to supervised
algorithms. Table 4.1 gives the overview over the introduced algorithms and the
order in which they will be given. Additionally, it provides information about the
supervision modality and mapping kind of the algorithms.

4.1 VQ based learning using a dissimilarity function

In this first section of Vector Quantization based algorithms we will consider all
the algorithms that need some kind of dissimilarity that can be determined at time
according to a given function or procedure. So for every possible point in the input
space we can calculate the dissimilarity to any other possible point in the input space
and thus the prototypes can be placed on arbitrary positions in the input space. We
will start with the unsupervised variants in ascending structural complexity and
dissimilarity function including a metric adaptation variant and a fuzzy variant,
proceeding with supervised algorithms in the same order, again including a metric
adaptation variant.

4.1.1 Unsupervised variants of VQ using a dissimilarity function

We look at unsupervised variants of VQ algorithms starting with the simplest ap-
proach: Standard Vector Quantization. Then a model inspired by physics, Neural
Gas in its batch version, is introduced, followed by its corresponding dissimilarity

1In publications by Bezdek (e.g. (Bezdek 1981)) the term Learning Vector Quantization is also used for
unsupervised methods. This is in contrast to the conventional terminology used here.
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Learning using a Standard VQ
dissimilarity measure Batch Neural Gas

Matrix Neural Gas
Fuzzy C-Means
Kohonen’s LVQ
Generalized LVQ
Gen. Relevance LVQ
Gen. Matrix LVQ

Relational learning Relational Batch NG
Kernel LVQ

Median learning Median C-Means
Affinity Propagation
M. Fuzzy C-Means
Fuzzy Affinity Prop.

Table 4.1: Overview of Vector Quantization based algorithms for clustering and classification
considered in this thesis and their properties

adaptation variant Matrix Batch Neural Gas. The last algorithm discussed in this
section is the Fuzzy C-Means as a variant developed for fuzzy mappings.

Standard Vector Quantization – SVQ

Standard Vector Quantization is a basic approach to encode or compress data using
simple competitive learning. The data are given as input vectors vk ∈ V in an input
space2. A codebook which is defined by a set W of N prototype vectors wn in the
same space is assumed. The number of prototypes N is chosen by the user and
the initial positions of the prototype vectors in the input space are often chosen
randomly3. In the first step of VQ – the learning or inference stage – the prototype

2usually V ⊆ RM

3We refer to section 4.4.2 for other prototype position initialization possibilities.
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vectors are adapted to minimize some cost or energy function. The cost function that
is referred to by Standard Vector Quantization in common sense is given by:

ESVQ =

∫
p(v) · d (v, ws)

2
dv

where p(v) is the probability density of the data in the input space and d (v, ws)
2 is

the squared dissimilarity of the input v to the closest prototype ws – the winner with
index s according to equation (2.2.1). Optimizing this energy function with respect
to the prototype positions wn with n = 1, . . . , N leads to prototypes which represent
the feature space proportional to the data density P (v). For a finite training set of K
input vectors VTr ⊆ V the cost function specified above reduces to

ESVQ =

K∑
k=1

d (vk, ws)
2

We assume VTr = V throughout the next sections and for reasons of simplicity will
only denote it by V . In the VQ implementation of online learning, randomly chosen
input vectors from the set V are “presented” to the prototypes one by one. For every
training input vector vk ∈ V the nearest prototype ws is adapted towards the training
input vector according to

∆ws = εw · (vk − ws) (4.1.1)

where εw is the learning rate controlling the adaption strength. The approach is
summarized in algorithm 4.1.1.

Algorithm 4.1.1 Standard Vector Quantization – SVQ

initialize prototype positions wn ∈W for all n = 1, . . . , N

repeat
randomly chose an input vector vk from V

determine the winning prototype ws according to equation (2.2.1)
adapt the winning prototype’s position according to equation (4.1.1)

until convergence

In the decision stage newly incoming input vectors are mapped to the cluster
indexes according to the mapping function Ψ, that was introduced in equation (2.2.1)
in section 2.2. If the used dissimilarity measure is the Euclidean distance this has the
effect that the receptive fields of the prototypes divide the input vector space into a
Voronoi tesselation, for definition cf. e.g. (Hastie, T. et al. 2003).
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Batch Neural Gas – BNG

Neural Gas (NG) is an unsupervised algorithm for finding compressed data repre-
sentations of feature vectors. The basic idea of NG was introduced by (Martinetz
and Schulten 1991). The name “Neural Gas” was inspired by the dynamics of the
prototype vectors during the adaptation process, which distribute themselves like an
ideal gas within the data space.

In contrast to SVQ where only one prototype vector is adapted, in the Neural Gas
adaption scheme all prototype vectors are adapted according to their dissimilarity
rank with respect to a specific input vector. This Neural Gas approach is “a very
robust clustering algorithm given Euclidean data which does not suffer from the
problem of local minima like simple vector quantization” (Cottrell et al. 2006, p. 2).

Batch Neural Gas was introduced by (Cottrell et al. 2006) as extension of NG
towards a batch adaption scheme. It is based on the cost function:

EBNG =

N∑
n=1

K∑
k=1

hσ
(
rW (vk, wn)

)
· d (vk, wn)

2 (4.1.2)

where d is a dissimilarity function, N is the number of prototype vectors wn ∈ W
and K is the number of input points vk ∈ V . Furthermore

rW (vk, wn) = rk,n =
∣∣∣{wl : d (vk, wl) < d (vk, wn)

}∣∣∣ (4.1.3)

is the dissimilarity rank of prototype wn with respect to input vector vk, given by the
number of prototypes that are closer to the input vector vk then wn itself. The rank
rk,n for some special pair (vk, wn) according to the current set of prototype vectors
W can also be expressed in terms of Heaviside step functions

rk,n =

N∑
l=1

Θ
(
d (vk, wn)

2 − d (vk, wl)
2
)

with wl ∈ W and Θ(x) the Heaviside step function, defined as 0 for x ≤ 0 and 1

for x > 0, cf. (Martinetz et al. 1993) for details. In Equation (4.1.2) the function hσ
defines a neighborhood on the ranks with range parameter σ2. Frequently a normal
Gaussian with σ2 variance is used as neighborhood function.

In BNG the cost function is optimized via a Newton scheme. For this purpose
the cost function EBNG is interpreted as a function depending only on wn and rk,n
(Cottrell et al. 2006). It is optimized in turn with respect to the now hidden variables
rk,n and the prototypes wn, with the constraint that the values rk,n (n = 1, . . . , N)

constitute a permutation of 0, ..., N − 1 for each point vk. That means that ties have
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to be broken. For the ranks we yield the update rule given in equation (4.1.3). The
prototype positions are updated as

wn =

∑K
k=1 hσ (rk,n) · vk∑K
l=1 hσ (rl,n)

. (4.1.4)

A summary of the BNG steps is given in algorithm 4.1.2.

Algorithm 4.1.2 Batch Neural Gas – BNG

initialize prototype positions wn ∈W for all n = 1, . . . , N

repeat
determine the rank of the given prototype positions wn ∈ W according to
equation (4.1.3)
based on the hidden variables rk,n set new prototpye positions according to
equation (4.1.4)

until convergence

(Cottrell et al. 2006) proved that Batch NG can be interpreted as Newton opti-
mization method, which takes second order information into account. Usually only
a few adaptation steps are necessary for convergence. Online NG in contrast is given
by a simple stochastic gradient descent.

Matrix Neural Gas – MNG

In BNG frequently the basic interpretation of dissimilarity, the Euclidean metric, is
used. Matrix Neural Gas, as introduced by (Arnonkijpanich and Hammer 2010),
extends the mapping abilities of BNG by locally adapting a real quadratic form as
given in section 3.1.1 by equation (3.1.5):

dΛn (v, wn) = (v − wn)
>

Λn (v − wn) (4.1.5)

where the Λn are associated to the prototypes wn.
In a global variant all Λn are constrained to be equal. The constraints of symme-

try, positive definiteness and a unity determinant for every parameter matrix “are
necessary to guarantee that the resulting formula defines a metric which does not
degenerate to a trivial form” (Arnonkijpanich and Hammer 2010, p. 87). Λn = 0

constitutes an obvious trivial optimum of the cost function.
Replacing the dissimilarity in the BNG cost function, we obtain the cost function

of MNG

EMNG =
1

2

N∑
n=1

K∑
k=1

hσ (rW (vk, wn)) · dΛn (vk, wn) (4.1.6)
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where rW (vk, wn) is the dissimilarity rank of prototype wn to a specific input vector
vk as introduced in equation (4.1.3) for BNG, but with the accordingly modified
dissimilarity:

rW (vk, wn) = rk,n =
∣∣∣{wl∣∣dΛl (vk, wl) < dΛn (vk, wn)

}
| (4.1.7)

Performing again a Newton optimization on this cost function (accordingly inter-
preting the other values as hidden variables) gives the following update rule for the
prototype positions

wn =

∑K
k=1 hσ (rk,n) vk∑K
l=1 hσ (rl,n)

(4.1.8)

and for the parameter matrix

Λn = S−1
n (detSn)

1
M where Sn =

K∑
k=1

hσ (rk,n) (vk − wn) (vk − wn)
>
. (4.1.9)

For detailed derivation of the update rules we refer to (Arnonkijpanich et al. 2011).
All update steps are summarized in algorithm 4.1.3. For locally adapted MNG “ellip-
soidal cluster shapes arise which are aligned according to local principal components
of the data.” (Arnonkijpanich and Hammer 2010, p. 87)

Algorithm 4.1.3 Matrix Neural Gas – MNG

initialize prototype positions wn ∈W for all n = 1, . . . , N

repeat
determine the rank of the prototypes wn ∈W according to equation (4.1.7)
based on the hidden variables rk,n update the prototype positions wn according
to equation (4.1.8)
based on the hidden variables rk,n and wn update the parameter matrix Λ

according to equation (4.1.9)
until convergence

Fuzzy C-Means – FCM

Fuzzy C-Means – an unsupervised algorithm – was first introduced by (Dunn 1973)
and later reformulated by (Bezdek 1981). As introduced in section 2.2 and equa-
tion (2.2.2) the basic idea of a fuzzy mapping is that an input vector is no longer
mapped to one single prototype index but rather to a vector of “membership degrees”
where ψwn (vk) is the assignment degree of input vk to the prototype with index n.
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Thereby the ψk,n = ψwn (vk) lie in the interval [0, 1]. The larger the ψk,n the higher is
the assignment degree.

Bezdek introduced the objective function of FCM to be:

EFCM =

N∑
n=1

K∑
k=1

(ψk,n)
f
d2
k,n (4.1.10)

where d2
k,n = (vk − wn)

>
(vk − wn) stands for the squared Euclidean distance be-

tween the training input vector vk and the prototype wn. The “fuzzifier” f > 1

controls how fuzzy the prototype memberships are. In the limit of f → ∞ for the
assignment degrees it holds that ψk,n = 1

N , i.e. the membership degree is equal for
all prototypes. If f is chosen near to one, mapping is done rather crisp with the
membership degrees being either near one or near zero, a choice of f = 2 often has
proven suitable in praxis (Geweniger et al. 2010).

The prototype positions and the membership degrees are determined by minimiz-
ing the objective function (4.1.10). This optimization is done under two constraints:

1. For every input vector the sum of the membership degrees is equal to one:∑N
n=1 ψk,n = 1,∀k.

2. The fuzzy receptive fields ΥFn (cf. equation (2.2.5)) of the prototypes wn are
non-empty:

∑K
k=1 ψk,n > 0,∀n.

For solving the constraint minimization problem the Lagrange function

L(ΨF ,W, λ) =

N∑
n=1

K∑
k=1

(ψk,n)
f
d2
k,n −

K∑
k=1

(
λk

(
N∑
n=1

ψk,n − 1

))
(4.1.11)

with W = {w1, . . . , wN} and Lagrange multipliers λ = (λ1, . . . , λK) is considered.
This yields the following update rules for the prototype positions

wn =

∑K
k=1 (ψk,n)

f
vk∑K

j=1 ψ
f
j,n

(4.1.12)

as well as for the assignment degrees

ψk,n =
1∑N

j=1

(
dk,n
dk,j

) 2
f−1

. (4.1.13)

All together we obtain the FCM algorithm as given in algorithm 4.1.4.
There is a huge variety of FCM variants, e.g. the assignment degrees can also be

interpreted in a possibilistic manner, cf. (Pal et al. 2005).
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Algorithm 4.1.4 Fuzzy C-Means – FCM

initialize assignment degrees ψk,n for all k, nwith
∑N
n=1 ψk,n = 1 and

∑K
k=1 ψk,n >

0

repeat
determine the prototype positions according to equation (4.1.12)
determine the assignment degrees according to equation (4.1.13)

until convergence

4.1.2 Supervised variants of VQ using a dissimilarity function

In this section we consider the supervised variants. Starting with the simplest
approach of Learning Vector Quantization we go further on with the Generalized
Learning Vector Quantization and its dissimilarity adapting variants Generalized
Relevance Learning Vector Quantization and Generalized Matrix Learning Vector
Quantization.

Kohonen’s Learning Vector Quantization – LVQ1

Kohonen’s Learning Vector Quantization as introduced by (Kohonen 1986) is a family
of heuristic LVQ schemes used for crisp classifications. We recall that for crisp
classification a set of class labels Z = {z1, . . . , zC} is predefined and that the set of
input vectors V is labeled, i.e. for every vk ∈ V there exists a zvk ∈ Z. The training
set is iterated and the input vectors are presented to the prototypes. For every input
vector the nearest prototype ws according to some dissimilarity measure d – that is
commonly interpreted as Euclidean distance – is determined, cf. equation (2.2.1).

The most prominent variant of Kohonen’s Learning Vector Quantization is LVQ1.
It updates the prototype positions as follows: If the winning prototype ws has the
same class label as the input vector vk under consideration, this winning prototype
is adapted towards the training vector. If in contrast the closest prototype has a
different class label it is repelled from the training vector.

This can be formalized as

∆ws =

εw · (vk − ws) , if zws = zvk

−εw · (vk − ws) , if zws 6= zvk

(4.1.14)

The adaption strength is controlled by the learning rate εw. Often the learning
rate is defined as decaying over time (number of epochs t), i.e. εw = f (t) with
εw (t1) > εw (t2) if t1 < t2. In 1978 Kushner and Clark proved that convergence of
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stochastic approximation methods can be guaranteed if the following set of conditions
holds for the decay of the learning rate:

lim
t→∞

εw (t) = 0 (4.1.15)∑
t

εw =∞ (4.1.16)∑
t

ε2w <∞ (4.1.17)

For a detailed discussion on the choice of the learning rate we refer to section 4.4.4.
The update rules of LVQ1 are summarized in algorithm 4.1.5.

Algorithm 4.1.5 Learning Vector Quantization – LVQ1

initialize the prototype positions wn ∈W for all n = 1, . . . , N

repeat
randomly choose an input vector vk from V with its label zvk
determine the winning prototypews according to equation (2.2.1) (ties are broken
arbitrarily), where d in general is interpreted as Euclidean distance
determine new prototype position for ws according to equation (4.1.14)

until convergence

Generalized Learning Vector Quantization – GLVQ

As mentioned before the LVQ1 update rules are heuristically motivated and not
explicitly based on the optimization of a cost function. In contrast to this (Sato and
Yamada 1996) developed Generalized Learning Vector Quantization to optimize a
cost function that approximates the classification error and allows to use gradient
descent. It considers not only one nearest prototype but selects two prototypes for
adaptation: the nearest prototype with the same class label as the considered input
vector and the nearest prototype with a different label.

Let W+
vk

be the set of prototype vectors, that have the same class label as the input
vector vk, i.e.

W+
vk

= {wn : zvk = zwn}

and accordingly we define W−vk to be

W−vk = {wn : zvk 6= zwn} .

Then we can formalize the considered prototypes for the update as

wvk+ = arg min
wn+∈W+

vk

(
d (vk, wn+)

)
(4.1.18)
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and

wvk− = arg min
wn−∈W

−
vk

(
d (vk, wn−)

)
. (4.1.19)

As in most cases the relation to the corresponding input vector vk is clear we drop
this explicit notation for the sake of readability and refer to the considered prototype
vectors as w+ and w−.

To optimize the classifier’s hypothesis margin4 the relative difference distance

µk =
d+ (vk)− d− (vk)

d+ (vk) + d− (vk)
(4.1.20)

is incorporated into learning. For sake of readability we abbreviated d (vk, w+) by
d+ (vk) and d− (vk, w−) by d− (vk) respectively.

The value µk gives a measure of the prototype-based classification confidence
(Schneider 2010). In the case where the numerator is smaller than 0, the classification
of the data point is correct. A correct classification decision is more certain, the
smaller the numerator is because the difference of the dissimilarity between the
closest correct and wrong prototype is large. The numerator term is scaled by the
denominator to satisfy −1 < µk < 1.

Sato and Yamada additionally defined a sigmoid loss function taking this relative
difference distance as input

L(µk) =
(
1 + exp(−µk)

)−1
. (4.1.21)

It determines the “active region of the algorithm”. With this sigmoid function
training samples lying close to the decision boundary influence learning more. They
are assumed to carry most information (Schneider 2010). The cost function is the sum
of the loss functions of the relative difference distances for all training data points:

EGLVQ =

K∑
k=1

L (µk) =

K∑
k=1

L

(
d+ (vk)− d− (vk)

d+ (vk) + d− (vk)

)
(4.1.22)

where K is the number of the training data points used.
The prototype positions w+ and w− are iteratively optimized with respect to the

cost function after every “presentation” of a training input vector, i.e. GLVQ is an

4Assuming some arbitrary input vector and interpreting the given dissimilarity in terms of distance
the hypothesis margin is the largest distance the prototype can travel without altering the label of the
presented input vector (Crammer et al. 2002).
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online learning approach. The update rules are given according to the stochastic
gradients on the cost function:

∆w+ = εw · L′ (µk) · 4 · d− (vk)(
d+ (vk) + d− (vk)

)2 · (vk − w+) (4.1.23)

and

∆w− = −εw · L′ (µk) · 4 · d+ (vk)(
d+ (vk) + d− (vk)

)2 · (vk − w−) (4.1.24)

where the learning rate εw controls the adaptation strength. Algorithm 4.1.6 summa-
rizes the learning steps.

Algorithm 4.1.6 Generalized Learning Vector Quantization – GLVQ

initialize the prototype positions wn ∈W for all n = 1, . . . , N

repeat
randomly choose an input vector vk from V with its label zvk
determine w+ and w− according to vk and zvk and dissimilarity d
determine new prototype position for w+ according to equation (4.1.23)
determine new prototype position for w− according to equation (4.1.24)

until convergence

Minimizing with respect to the GLVQ criterion using the squared Euclidean
metric, the optimal Bayesian boundaries are approximated by the piecewise linear
boundaries of the receptive fields of all prototypes (Schneider 2010).

Generalized Relevance Learning Vector Quantization – GRLVQ

The GLVQ algorithm as introduced before does not perform well in cases where
the squared Euclidean metric is not appropriate for the data or where the vector
dimensions are unequally scaled or unequally important, e.g. unequally subject to
noise. To overcome this problem (Hammer and Villmann 2002) introduced General-
ized Relevance Learning Vector Quantization, where the dissimilarity term given in
GLVQ is replaced by the parameterized variant of the Euclidean distance introduced
in equation (3.1.7) in section 3.1.1 as

dα (v, w) =

M∑
m=1

αm
(

[v]m − [w]m
)2

with ~α = (α1, . . . , αM ), αm ≥ 0 and
∑M
m=1 αm = 1. They focus on global dissimilarity

adaptation and thus one single parameter vector ~α is learned for all prototypes.
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The cost function of GLVQ, cf. equation (4.1.22), changes by this dissimilarity
measure and is given by

EGRLVQ =

K∑
k=1

L
(
µkα
)

=

K∑
k=1

L

(
d+
α (vk)− d−α (vk)

d+
α (vk) + d−α (vk)

)
(4.1.25)

with d+
α (vk) and d−α (vk) defined as d+ (vk) and d− (vk) before with the additional

dissimilarity parameter vector ~α.
Hammer and Villmann emphasize the interpretation of the dissimilarity parame-

ters in terms of relevance for the classification process. Appropriate values for the
dissimilarity parameters αm are determined by stochastic gradient learning:

∆αm = −εα · L′
(
µkα
)
·
((
µk,+α

)′ (
[vk]m − [w+]m

)2 − (µk,−α )′ (
[vk]m − [w−]m

)2)
.

(4.1.26)
where

(
µk,+α

)′ is now given by(
µk,+α

)′
=

4 · d−α (vk)(
d+
α (vk) + d−α (vk)

)2
and

(
µk,−α

)′ is determined accordingly. εα is the learning rate controlling the adapta-
tion strength of the dissimilarity. As the prototypes require a stationary dissimilarity
measure, it has been suggested to perform the ~α adaption using a smaller learning
rate εα � εw, see (Kato 1950) for the theoretic foundations and section 4.4.5. Addi-
tionally, the metric parameters in ~α have to be renormalized after every iteration, so
that they again sum up to one.

The prototype updates as given for GLVQ in equation (4.1.23) and (4.1.24) change
accordingly:

∆w+ = +εw · L′
(
µkα
)
·
(
µk,+α

)′ · ~α ◦ (vk − w+) (4.1.27)

and

∆w− = −εw · L′
(
µkα
)
·
(
µk,−α

)′ · ~α ◦ (vk − w−) (4.1.28)

where εw is the learning rate for the prototype vectors and the derivatives
(
µk,+α

)′
and

(
µk,−α

)′ are given as before. Elementwise multiplication is denoted by ◦, i.e.
the Hadamard product. For details of the derivation we refer to (Hammer and
Villmann 2002). All rules for GRLVQ are summarized in algorithm 4.1.7.

To interpret the vector ~α in terms of relevance for the classification process, the
feature dimensions have to be normalized to a common variance. Furthermore, it
is suggested to run the algorithm several times and analyze the variation of the
resulting vectors ~α.
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Algorithm 4.1.7 Generalized Relevance Learning Vector Quantization – GRLVQ

initialize the prototype positions wn ∈W for all n = 1, . . . , N

repeat
randomly choose an input vector vk from V with its label zvk
determine w+ and w− according to vk and zvk and dα (vk, wn) from equa-
tion (3.1.7)
determine new prototype position for w+ with equation (4.1.27)
determine new prototype position for w− with equation (4.1.28)
determine new dissimilarity defining vector ~α with equation (4.1.26)
renormalize metric parameters

until convergence

Generalized Matrix Learning Vector Quantization – GMLVQ

(Biehl et al. 2006) introduced the idea that later was elaborated as Generalized
Matrix Learning Vector Quantization (e.g. in Schneider’s PhD thesis on “Advanced
methods for prototype-based classification” (Schneider 2010)) to use the quadratic
form, as given in equation (3.1.5), in the GLVQ learning scheme. As discussed in
section 3.1.1, symmetry and positive semi-definiteness for this dissimilarity measure
are fulfilled when substituting the parameter matrix Λ according to equation (3.1.6)
by Λ = Ω>Ω. To guarantee positive definiteness additionally det Λ 6= 0 has to be
enforced. Schneider states in her thesis that “in practice, positive semi-definiteness
of the matrix is sufficient, since data often only populates a sub-manifold of the full
data space and definiteness has to hold only with regard to the relevant subspace of
data” (Schneider 2010, p. 17). We consider here only the global variant of dissimilarity
adaption, where one single parameter matrix Λ is adapted.

Introducing the matrix form into the cost function of GLVQ, cf. equation (4.1.22),
the cost function of GMLVQ is obtained as:

EGMLVQ =

K∑
k=1

L
(
µkΛ
)
, with µkΛ =

d+
Λ (vk)− d−Λ (vk)

d+
Λ (vk) + d−Λ (vk)

(4.1.29)

where d+
Λ (vk) and d−Λ (vk) are defined as before for GLVQ but using the quadratic

form with parameter Λ as dissimilarity measure.
The update rules summarized in algorithm 4.1.8 for the prototype vectors and

the metric parameters w+, w− and Ωl,m are given by

∆w+ = + εw · L′
(
µ+

Λ (vk)
)
·
(
µk,+Λ

)′
· Λ · (vk − w+) (4.1.30)
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and

∆w− =− εw · L′
(
µ−Λ (vk)

)
·
(
µk,−Λ

)′
· Λ · (vk − w−) (4.1.31)

as well as

∆Ωl,m =− εΩ · L′
(
µ+

Λ (vk)
)
·((

µk,+Λ

)′
·
((

[vk]m − [w+]m
)[

Ω (vk − w+)
]
l

)
−(

µk,−Λ

)′
·
((

[vk]m − [w−]m
)[

Ω (vk − w−)
]
l

)) (4.1.32)

where εw, εΩ and
(
µk,−Λ

)′
and

(
µk,−Λ

)′
are defined as for GRLVQ but with the

quadratic form with parameter Λ as dissimilarity measure. We refer to (Schneider
2010) for a detailed derivation. In practical applications the learning rates are often
set to satisfy εΩ � εw.

Algorithm 4.1.8 Generalized Matrix Learning Vector Quantization – GMLVQ

initialize the prototype positions wn
repeat

randomly choose an input vector vk from V with its label zvk
determine w+ and w− according to vk and zvk and dΛ (vk, wn)

determine new prototype position for w+ with equation (4.1.30)
determine new prototype position for w− with equation (4.1.31)
determine new metric defining matrix Ω with equation (4.1.32)
renormalize metric parameters

until convergence

Normalization is achieved by dividing the elements of the parameter matrix Λ

by
√∑

l,m (Ωl,m)
2 (Schneider 2010). A local variant of the GMLVQ can be derived

analogously and yields a higher degree of flexibility (Schneider et al. 2009).

4.2 VQ based relational learning

The two approaches discussed in the following section are applicable if only pairwise
dissimilarities are given for the input vectors. Assuming that the input vectors that
induce these dissimilarities are embeddable into the Euclidean space (for details
cf. section 3.4) we can find representations of prototypes in this embedding space.
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No explicit knowledge about the input vectors is needed. In relational learning
they are often referred to as data points. In this case we refer to the matrix of
pairwise data dissimilarities as relational data. The embedding trick is used in the
unsupervised approach Relational Neural Gas. In the kernelized version of Learning
Vector Quantization (KLVQ) the assumption is used that the embedding space is a
Hilbert space.

4.2.1 Unsupervised variant of VQ based relational learning

As unsupervised variant in the VQ based relational learning we consider Relational
Neural Gas that was developed as an extension of BNG.

Relational Neural Gas – RNG

The approaches BNG and MNG where designed for the use of explicit Euclidean
based dissimilarity functions. (Hammer and Hasenfuss 2007) introduced Relational
Neural Gas for learning using relational data. For this algorithm we assume the
existence of a mapping Φ from the data space into a feature space F such that equa-
tion (3.4.1) holds, i.e. the given pairwise relational dissimilarities D =

(
d (vk, vl)

)
are

equal to the Euclidean distances of the mapped data points DF = ‖Φ (vk)− Φ (vl) ‖2.

For RNG the prototypes are expressed in terms of the given data points vk ∈ V as
given in equation (3.4.5) and explained in detail in section 3.4.3:

wFn =

K∑
k=1

[βn]kΦ (vk) with
K∑
k=1

[βn]k = 1.

Together with the assumption in equation (3.4.1) thatD = DF and the distance defini-
tion given in equation (3.4.8) the cost function of Batch Neural Gas, cf. equation (4.1.2),
can be reformulated to:

ERNG
(
rk,n, [βn]k

)
=

N∑
n=1

K∑
k=1

hσ (rk,n)

 K∑
l=1

dk,l[βn]l −
1

2
·

K∑
l,l′=1

dl,l′ [βn]l[βn]l′


(4.2.1)

with coefficients [βn]k ∈ R. Here rk,n are the ranks from the prototypes wFn to the
projected data point Φ (vk). This cost function is optimized iteratively by a newton
scheme of alternating steps: all ranks rk,n are calculated for fixed [βn]k, then all [βn]k
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are adapted for fixed rk,n. For optimizing the coefficient vectors ~βn we determine the
derivative of the cost function:

∂ERNG
(
rk,n, [βn]k

)
∂[βi]u

=

K∑
k=1

hσ (rk,i) dk,u −
K∑
k=1

hσ (rk,i)

K∑
l=1

dl,u[βr]l (4.2.2)

=

K∑
k=1

dk,u

(
hσ (rk,i)−

K∑
l=1

hσ (rl,i) [βi]k

)
(4.2.3)

If D is nonsingular this derivative is zero for all i and u if and only if

[βi]u =
hσ (ru,i)∑
l hσ (rl,i)

. (4.2.4)

We obtain algorithm 4.2.1 for Relational Neural Gas.

Algorithm 4.2.1 Relational Neural Gas – RNG

initialize [βn]k with
∑K
k=1[βn]k = 1

repeat
determine the ranks rk,n according to equation (4.1.3) with the distance definition
given in equation (3.4.8)
determine the prototype position representations [βn]k according to equa-
tion (4.2.4)

until convergence

Often relational data are not completely embeddable into an Euclidean space.
Frequently in real life applications Relational Neural Gas is applied anyway. By cal-
culating the pseudo Euclidean embedding (cf. section 3.4.2) it is possible to calculate
the error term given in equation (3.4.3) representing a measure for the error made by
the assumption of the existence of an Euclidean embedding and the application of
Relational Neural Gas.

4.2.2 Supervised variant of VQ based relation learning

The supervised LVQ relational learning discussed here is Kernel Learning Vector
Quantization which is very powerful in modeling as dissimilarities can be based on
any Mercer kernel.

Kernel Learning Vector Quantization – KLVQ

The supervised variants of GLVQ (GRLVQ, GMLVQ) discussed so far used linear data
transformations. If the class boundaries are complex and non-linear there is need of a
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large number of prototypes per class to suitably approximate these class boundaries.
Local distances also correspond to non-linear decision boundaries. Localized GM-
LVQ, for instance, implements piecewise quadratic boundaries. Another possibility
to cope with the non-linearity of the problem is to map the data non-linearly into a
Hilbert space F by some mapping Φ such that the class boundaries become linear.
This linearity is usually obtained if the mapping space F is very high-dimensional or
has infinite dimensions. Using the theory of Mercer kernels (Schölkopf et al. 1999)
the distance calculation in the mapping space F can be done by application of the
Mercer kernel function kΦ associated to the mapping Φ, cf. equation (3.4.6). (Qinand
and Suganthan 2004) introduced an extension of GLVQ using this kernel trick: Kernel
Learning Vector Quantization.

In this approach the prototype vectors wFn are expressed in terms of linear
combinations of the projected data samples as given in equation (3.4.5) by wFn =∑K
k=1[βn]kΦ (vk). The given dissimilarities D = (dk,l) for the data points vk, vl in

the input set V are used according to equation (3.4.2) to calculate the corresponding
Gram matrix G. This is a matrix of inner products and can be interpreted as kernel
matrix K. The distance between a projected data point Φ (vk) and a prototype vector
wFn represented by the coefficient vector ~βn is, as already introduced in section 3.4.3,
given by equation (3.4.6) as

dFk,n = kΦ (vk, vk)− 2 ·
K∑
l=1

[βn]lkΦ (vk, vl) +

K∑
i,u=1

[βn]i[βn]ukΦ (vi, vu) .

Using these assumptions, we can determine the winning prototypes wF+ and wF− ac-
cording to the definition given in equations (4.1.18) and (4.1.19) with the dissimilarity
given in equation (3.4.6). The updating rules defined in equations (4.2.5) and (4.2.6)
given a data point vk can be generalized from the original data space RM into the
feature space F:

∆wF+ = ε ·
∂L
(
µ
(
Φ (vk) ,WF

) )
∂µ
(
Φ (vk) ,WF

) ·
4 · dF−

(
Φ (vk)

)(
dF+
(
Φ (vk)

)
+ dF−

(
Φ (vk)

))2 ·
(
Φ (vk)− wF+

)

and

∆wF− = ε ·
∂L
(
µ
(
Φ (vk) ,WF

) )
∂µ
(
Φ (vk) ,WF

) ·
4 · dF+

(
Φ (vk)

)(
dF+
(
Φ (vk)

)
+ dF−

(
Φ (vk)

))2 ·
(
Φ (vk)− wF−

)



56 4. Vector Quantization

with dF+
(
Φ (vk)

)
and dF−

(
Φ (vk)

)
defined as before in GLVQ but transferred to the

feature space F. Together with the abbreviation c = εw ·
∂L
(
µ(Φ(vk),WF)

)
∂µ
(

Φ(vk),WF

) and equa-

tion (3.4.5) the update rules for adaptation step t are rewritten as

[β+]r (t+ 1) =



1− c · 4·dF−
(

Φ(vk)
)(

dF+

(
Φ(vk)

)
+dF−

(
Φ(vk)

))2

 · [β+]r (t) if vr 6= vk

1− c · 4·dF−
(

Φ(vk)
)(

dF+

(
Φ(vk)

)
+dF−

(
Φ(vk)

))2

 · [β+]r (t)

+c · 4·dF−
(

Φ(vk)
)(

dF+

(
Φ(vk)

)
+dF−

(
Φ(vk)

))2 if vr = vk

(4.2.5)

and

[β−]r (t+ 1) =



1− c · 4·dF+
(

Φ(vk)
)(

dF+

(
Φ(vk)

)
+dF−

(
Φ(vk)

))2

 · [β−]r (t) if vr 6= vk

1− c · 4·dF+
(

Φ(vk)
)(

dF+

(
Φ(vk)

)
+dF−

(
Φ(vk)

))2

 · [β−]r (t)

+c · 4·dF+
(

Φ(vk)
)(

dF+

(
Φ(vk)

)
+dF−

(
Φ(vk)

))2 if vr = vk.

(4.2.6)

The summary of all adaptation steps is shown in algorithm 4.2.2.

Algorithm 4.2.2 Kernel Learning Vector Quantization – KLVQ

initialize all [βn]k with
∑K
k=1[βn]k = 1 for n = 1, . . . , N and k = 1, . . . ,K

repeat
randomly choose an input vector vk from V with its label zvk
determine winner prototypes ~β+ and ~β− according to vk, zvk and dFk,n
determine new prototype representation for coefficients [β+]r according to equa-
tion (4.2.5)
determine new prototype representation for coefficients [β−]r according to equa-
tion (4.2.6)

until convergence
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In 2010 Schleif et al. introduced a derivative based, generalized version of KLVQ
that operates on a “kernelized, differentiable metric called D-KGLVQ which allows
the non-linear representation of the data”(Schleif et al. 2010, p. 22). It avoids the
implicit mapping such that the prototypes still are defined in the original data space.

4.3 VQ based median learning

In this last section of the review of Vector Quantization based methods, four unsuper-
vised learning algorithms are considered that take a matrix of pairwise dissimilarities
as input, which does not need to be embeddable into the Euclidean space. We first
present two crisp variants followed by their fuzzy extensions.

4.3.1 Crisp variants of VQ based median learning

In this section two algorithms for median clustering are given that use crisp mappings.
The Median C-Means as well as the Affinity Propagation method are batch learning
schemes.

Median C-Means – M-CM

Median c-means is a variant of classic k-means introduced by (Cottrell et al. 2006) in
the generalization and extension of different VQ-based approaches towards median
learning. The cost function for M-CM is given by

EM-CM =
N∑
n=1

K∑
k=1

ΞΨ(vk) (n) · d (vk, wn) (4.3.1)

with ΞΨ(vk) (n) being the characteristic function of the winner index Ψ (vk) = s as
given in equation (2.2.1), which refers to the index of the prototype ws with minimum
dissimilarity d (vk, ws) to vk. The number N of the prototypes has to be chosen
beforehand. Only the dissimilarities between the data pointsD = (dk,l) =

(
d (vk, vl)

)
are given. Dissimilarities between data points and arbitrary prototypes cannot be
calculated. The idea of M-CM is to restrict the prototypes to be chosen from the
data points such that the dissimilarity between data points and prototypes can be
obtained from the data dissimilarity matrix D.

As introduced in batch neural gas, cf. section 4.1.1, the cost function EM-CM is
optimized by iteration through two alternating adaptation steps – one according to
the prototype memberships and the other according to the prototype positions:
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1. The first step in median c-means is the same assignment update as in classical
k-means, see also equation (2.2.1)

s = Ψ (vk) = arg min
n∈I

(
d (vk, wn)

)
where I = {1, . . . , N} and the prototypes wn are a fixed choice of data points,
i.e. wn = vl. From these assignments the characteristic functions ΞΨ(vk) = Ξs
are defined.

2. In the second step the prototypes are determined according to

wn = vl where l = arg min
l′

K∑
k=1

Ξn (l′) · d (vk, vl′) (4.3.2)

assuming fixed Ξn (l′) from step one. In this step it is necessary to avoid
wi = wu for i 6= u, the second best data point is chosen as prototype in this case.

These formulas lead to algorithm 4.3.1.

Algorithm 4.3.1 Median C-Means – M-CM

initialize prototype positions wn with data points vk
repeat

determine new cluster assignments (winners) Ψ (vk) for each input vector vk
according to the dissimilarity matrix D and equation (2.2.1)
determine new prototype positions according to equation (4.3.2)

until convergence

Affinity Propagation – AP

Another clustering approach where cluster centers are restricted to be data points and
hands only data dissimilarities are required is Affinity Propagation as introduced by
(Frey and Dueck 2007). It is based on message passing and closely related to spectral
clustering, cf. (von Luxburg 2007) for an overview on spectral clustering. It is no
median clustering in the above sense. The algorithm starts by assuming all input
vectors as potential prototypes (exemplars) whose number is reduced in the course
of calculation.

The idea of AP is to build a graph (or network) from the input vectors interpreted
as nodes and exchanging real-valued messages along the edges until a stable set of
prototypes and corresponding clusters emerges. Following (Frey and Dueck 2007) the
dissimilarities between theK input vectors vk – each one being a potential exemplar –
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are interpreted as log-likelihoods of the probability that the vectors assume each other
as prototypes, resulting in an exemplar-dependent probability model. Maximizing
the cost function:

EAP (Ψ) =

K∑
k=1

d
(
vk, vΨ(vk)

)
+

K∑
l=1

δl (Ψ) (4.3.3)

where Ψ : {1, . . . ,K} → {1, . . . ,K} is the mapping function defining the prototypes
for each data point. δl (Ψ) is a penalty function

δl (Ψ) =

{
−∞ if Ψ (vl) 6= l and there exists k with ,Ψ (vk) = l

0 otherwise,

penalizing invalid configurations where some data point k chooses l as an exemplar
without l being labeled as an exemplar by Ψ (vl) = l (Frey and Dueck 2007).

It is also possible to formulate the cost function in terms of log-probabilities:

EAP (Ψ) = log
(

ΠK
k=1P

(
vk,Ψ (vk)

)
· P (Ψ)

)
(4.3.4)

where P
(
vk,Ψ (vk)

)
is the probability that Ψ (vk) is the prototype for vk and P (Ψ)

is the probability that this assignment is valid. It is stated by Frey and Dueck that
normalization of this value has no effect on the solution.

The messages exchanged in the AP graph are of two (interdependent) kinds:

• The responsibilities

r (l, k) = d (vl, vk)−max
l′ 6=k

{
a (l, l′) + d (vl, vl′)

}
(4.3.5)

measure how well the data point vk can represent data point vl, also accounting
for other potential prototypes for vl.

• The availabilities

a(l, k) =

min
{

0, r (k, k) +
∑
l 6=l′,k max

{
0, r (l′, k)

}}
if l 6= k

maxl′ 6=k

{
max

{
0, r (l′, k)

}}
if l = k

(4.3.6)

measure how well vl is represented by vk, also taking into account the measure
of other data points to chose vk as a prototype.

Using the responsibilities and the availabilities, the mapping function describing the
prototypes is determined as:

Ψ (vl) = arg max
k

{
a (l, k) + r (l, k)

}
(4.3.7)
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The values a (l, k) and r (l, k) can be interpreted as log-probability ratios. Interpreting
the AP graph as factor graph (cf. e.g. (Pearl 1988) and (von Luxburg 2007)) and apply-
ing the max-sum-algorithm leads to an iterative alternating calculation of the a (l, k)

and r (l, k) that results in the clustering of the nodes. Altogether algorithm 4.3.2 is
obtained.

In AP the number of resulting prototypes is implicitly influenced by the self-
dissimilarities d (vk, vk) – also denoted as preferences. Data points with larger pref-
erences are more likely to be chosen as exemplars. If all data points have equal
preferences, the granularity of clustering is finer, the larger the self-dissimilarities are.
They are commonly chosen equal to the median of input similarities or the minimum
thereof.

Algorithm 4.3.2 Affinity Propagation – AP

initialize self-dissimilarities and a (l, k) = 0,∀ l, k
repeat

determine the responsibilities according to equation (4.3.5)
determine the availabilities according to equation (4.3.6)
determine the prototype defining function according to equation (4.3.7)

until convergence

All these explanations are mainly taken from (Frey and Dueck 2007). For further
reading we refer to this article.

4.3.2 Fuzzy variants of VQ based median learning

We introduce the extensions of the previously discussed median learning algorithms
to fuzzy mappings. We published these batch schemes for Median Fuzzy C-Means in
(Geweniger et al. 2010) and for Fuzzy Affinity Propagation in (Geweniger et al. 2009).

Median Fuzzy C-Means – M-FCM

We developed the median fuzzy c-means merging median c-means (M-CM) and
fuzzy c-means (FCM) (Geweniger et al. 2010) . It uses fuzzy assignments of the
objects to the cluster prototypes as in FCM but with the restriction of the prototypes
being objects themselves as in M-CM. The resulting cost function is given by

EM-FCM =
1

2

N∑
n=1

K∑
k=1

(
ψwn (vk)

)f · d (vk, wn)
2 (4.3.8)
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with the fuzzifier f > 1 as before in FCM (cf. section 4.1.1). It is the same as for FCM
apart from the fact that now the d (vk, wn) may be arbitrary data dissimilarities as for
M-CM.

Optimizing this cost function is again done by performing two alternating steps
iteratively, first updating the assignments with fixed prototype positions and then
taking the fixed assignments updating the prototype positions. The update rules are
defined as follows

1. The assignment update has the same structure as the assignment update in
FCM but with some differences in derivation of the cost function that can be
found in detail in (Geweniger et al. 2010). It is defined by

ψk,n = ψwn (vk) =

f−1

√
d (vk, wn)

−2

∑N
n′=1

f−1

√
d (vk, wn′)

−2
(4.3.9)

with fixed prototype positions wn = vl ∈ V at a choice of data point positions
and dissimilarities d (vk, vl) given in a dissimilarity matrix D =

(
d (vk, vl)

)
.

2. As in M-CM the prototype positions are restricted to be data point positions.
The prototype position update of M-FCM is obtained in accordance to that of
M-CM. It is given by

wn = vl with l = arg min
l′

[
K∑
k=1

(
ψwn (vk)

)f
d (vk, vl′)

2

]
(4.3.10)

for fixed assignments ψwn (vk).

These update steps together with the initialization are summarized in algorithm 4.3.3.

Algorithm 4.3.3 Median Fuzzy C-Means – M-FCM

initialize membership degrees ψk,n for all n, k with
∑N
n=1 ψk,n = 1 and∑K

k=1 ψk,n > 0

repeat
determine the prototype positions wn according to equation (4.3.10)
determine the assignment degrees ψk,n according to equation (4.3.9)

until convergence

We showed the convergence of the algorithm in (Geweniger et al. 2010) and omit
this proof here.
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Fuzzy Affinity Propagation – FAP

In 2009 we introduced Fuzzy Affinity Propagation (Geweniger et al. 2009) as a
heuristically motivated, direct fuzzy extension of the descriptions for original Affinity
Propagation as given in section 4.3.1. The set of exemplars W ⊂ V is defined as
in equation 4.3.7. We define a cluster member probability P (l, k) for each pair
vl, vk ∈ W to be P (l, k) = 0 if and only if l 6= k and P (l, l) = 1. To gain a valid
probability description of cluster assignments from the responsibilities as given in
equation 4.3.5, we introduce the normalized responsibilities for non-exemplars

r̂ (l, k) = C
r (l, k)−maxl|vl /∈W

{
r (l, k)

}
maxl|vl /∈W

{
r (l, k)

}
−minl|vl /∈W

{
r (l, k)

} . (4.3.11)

Choosing the normalization constant C appropriately according to the variance of
r (l, k) the probabilities for the mapping of data point vl to the cluster prototype
represented by vk is defined by

P (l, k) = er̂(l,k), with P (l, k) ∈ [0, 1].

These possibilistic cluster assignments can be interpreted as fuzzy degrees, subse-
quent normalization of the P (l, k) yields a probabilistic variant. Summarizing we
yield the update rules as given by algorithms 4.3.4.

Algorithm 4.3.4 Fuzzy Affinity Propagation – FAP

initialize self-dissimilarities and a (l, k) = 0,∀l, k
repeat

determine the responsibilities r (l, k) according to equation (4.3.5) and the
normalized responsibilities for the non-exemplars r̂ (l, k) according to equa-
tion (4.3.11)
determine the availabilities a (l, k) according to equation (4.3.6)

until convergence

4.4 Initialization, parameter setting and convergence of
VQ algorithms in general

There is a number of settings necessary for applying vector quantization based
methods concerning the initialization, the choice of parameters and the definition
of convergence. In this section we introduce general considerations about these
settings. The discussion of the specific settings in our application example is given in
section 7.1.2.
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4.4.1 Number of prototypes

With the exception of the Affinity Propagation based methods, the introduced VQ
based algorithms require a predefined number of prototypes. In general, the prob-
lem how many prototypes are optimal is ill-posed. Additional constraints or prior
knowledge are required. The initialization of the prototype positions is interdepen-
dent to the question of a suitable prototype number. We return to corresponding
considerations in the discussion of initialization in section 4.4.2.

If there is prior knowledge, e.g. biological evidence, about the data structure in
the given task this can be incorporated into the decision for the number of prototypes.
If classes are known or expected to be multi modal, i.e. comprising subtypes, it is
preferable to choose more than one prototype for these classes. The same holds for
classes that are expected to comprise more variability within their data cloud(s), e.g.
uneven formed data clouds in high dimensions.

For small data sets there is a trade off between the correct modeling of the
multimodality/variability and the complexity of the model that can be approximated
by the given samples. Careful evaluation of the results can narrow down the interval
of a suitable prototype number. For evaluation several validation measures and
visualizations were developed, see section 4.5 for the numerical evaluation and
section 4.6 for visual inspection.

This evaluation is also needed in tasks without prior knowledge or where the
prior knowledge is not reliable. A heuristic for the determination of a suitable
number of prototypes is to vary their number and determine corresponding external
or internal validation measures. The number of prototypes is chosen in accordance
to the optimum measure values.

An example for a growing model is an extension to the online Neural Gas variant
called Growing Neural Gas (GNG) by (Fritzke 1995). Its idea is to successively add
prototypes to an initially small model. To determine the location of this addition
a local statistical measure is gathered during the adaption steps. This can lead to
too complex models because of the local (greedy) view of the decision. Therefore
a reduction mechanism has to be installed in parallel. In GNG this is realized by
removing prototypes, if they were not adapted over a specific period of time during
training. Inspired by the GNG, (Qin and Suganthan 2004) introduced Growing
Generalized Learning Vector Quantization (G-GLVQ) as a variant for the supervised
algorithm GLVQ. These extensions are also applicable to the algorithms in our
framework. With respect to the given complexity of the approaches this integration
is postponed to further improvements of the system.

For the supervised algorithms it is possible to use an unsupervised (clustering)
algorithm to determine a suitable number of clusters and use its results as initial-
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ization for the supervised learning. This is only successful if the cluster structure is
congruent to the class structure.

4.4.2 Initialization of prototype positions

In the initialization of the prototypes the use of domain specific knowledge is possible
by pertinent suggestions of the human experts. This can be done for unsupervised
as well as for supervised methods. The experts can for example choose prototyp-
ical objects from the training data that are used as initial prototype positions for
the approaches. As this is an annotation based approach it can produce the same
problems as described for labeling in section 2.5.1.

If no reliable prior knowledge is available, for supervised as well as for unsuper-
vised learning, frequently the prototypes are initialized around the center of mass of
the training data. This has the advantage that there is no randomness of the result
of the algorithm with respect to initializations. This initialization method can be
misleading if the data for example are lying on a sphere.

Another common approach for initialization is to randomly initialize the positions
of the prototypes in the data space. This approach is applicable for supervised and
unsupervised data. If the method is sensitive to initializations, repeated trials have
to be performed. The random choice of data points used as initial prototypes is a
common alternative, e.g. for k-Means (Hastie, T. et al. 2003).

If label information is available it can be preferable to choose the prototype
positions and labels according to the distribution of labels in the training set with at
least one prototype per class. This can be interpreted as stratification.

For supervised learning it is possible to use the results of unsupervised method for
initialization, i.e. unsupervised vector quantization with post labeling, cf. section 2.6.
Difficulties arise with rare events and unbalanced data sets.

4.4.3 Initialization of parameters in dissimilarity adaptation

In approaches using dissimilarity adaptation the dissimilarity parameters have to be
initialized for the first step of adaptation.

If there is prior domain and task specific knowledge it often is integrated to yield
faster convergence and more stable results. For example, if some feature dimensions
are known to be more important for the discrimination between different classes or
clusters, the dissimilarity in these dimension should be weighted higher than the
others in the initialization. The same holds for combinations of feature dimensions
in the matrix-based integration. After the representation of the prior knowledge the
factors are normalized according to the requirements of the algorithms.
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A starting point for the initialization of the relevance factors without reliable prior
knowledge is to give them all similar weights. Correspondingly, relevance matrices
in GMLVQ are frequently initialized as the identity.

4.4.4 Learning rate for the prototype positions

In online learning processes the prototype positions are iteratively updated using a
stochastic gradient on the cost function of the algorithm. The strength of this update
is controlled by a factor – the learning rate. The pertinent choice of this learning rate
is crucial for the success of learning. The learning rate lies in an interval of (0, 1). If it
is near zero, adaptation is done relatively careful and convergence in learning can
take a long time. If the learning rate is close to one, adaptation is done in big steps
which can prolong the adaptation time when jumping around the optimum.

From theory a decay of the learning rate during the overall learning process is
needed for convergence. The respective theoretic base was provided by the theorem
of Kushner-Clark (Kushner and Clark 1978) proving guaranteed convergence for
the conditions given in section 4.1.2 in equations (4.1.15)–(4.1.17). These conditions
enforce learning that needs infinite time, which is not applicable in praxis.

Frequently a small but fixed learning rate is chosen. In this case it has to be
ensured that learning lasts sufficiently long. The learning rate is problem dependent
and has to be chosen carefully to be small enough, i.e. εw � 1. Experience influences
the adequate choice.

(Papari et al. 2011) introduced a general method for way point averaging and
step size control in gradient descent based learning approaches. After a predefined
number of adaptation steps the cost function for normal adaptation is compared to
the cost function of a sliding average over the most recent positions. If the latter has
a smaller value a jump is performed. The averaged position is the new starting point
for further adaptations and the step size is decreased by a predefined factor.

4.4.5 Learning rate for the dissimilarity adaptation

In online dissimilarity adaptation approaches like the GRLVQ we have a hierarchy
of learning. On the first level the prototype positions and on the second level the
dissimilarity is adapted. In theory, for suitable convergence of the whole model
it is necessary that the dissimilarity is fixed during the adaptation process of the
prototype positions. As stated in section 4.1.2 the dissimilarity has to change in an
adiabatic manner. To approximately yield this stationarity of the dissimilarity, the
dissimilarity has to be adapted significantly slower than the prototype positions. For
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the dissimilarity adaptation the frequent starting point is to use a learning rate of at
least one magnitude smaller then the learning rate for the prototype positions.

In batch learning the dissimilarity is fixed during one epoch and the changes are
applied afterwards. There is no strict condition for adiabatic dissimilarity adaptation
in this case.

4.4.6 Convergence

The convergence of a learning algorithm is often defined by some stopping criterion.
A frequent starting point is to use either the sum of the absolute amount of all
prototype movements in one iteration or the single maximum movement found in
the iteration. Both values are suited as a measure for the progress of learning. If
this measure drops below a predefined threshold the model is expected to be fully
adapted. This factor interacts with a controlled decrease of the learning rate. It leads
to smaller movements in later adaptation steps. Scaling the relative movement by
the learning rate prevents early termination of the learning process.

A computationally simple approach is to use a large number of sweeps through
the whole training data set. One sweep is also called epoch. A too small number
of sweeps will result in an underadapted model. In general a careful training is
mandatory.

A more advanced criterion can be applied if the algorithm optimizes an energy
or cost function. If the cost function does not change significantly any more, the algo-
rithm may have reached a, possibly local, optimum. A simple test for convergence
is (

E (t)− E (t+ 1)
)

E (t+ 1)
< ν (4.4.1)

where E (t) is the corresponding value of the cost function in sweep t and ν is some
predefined threshold. The choice of ν is highly application specific. The controlled
decrease of the learning rate has to be considered.

It is possible to calculate more sophisticated stopping criteria for example by
additionally estimating the slope of the cost function development. This way the
flattening of the cost function development can be identified easily. This calculation
can be time-consuming. Problems can occur where cost functions display flat regions
which do not correspond to locally optimal solutions and may result in so-called
quasi-stationary plateau states.

In supervised learning methods with a high model complexity the convergence
problem is related to the precision-generalization-dilemma, i.e. more precision of
E (t) can lead to a loss of generalization ability. This problem is called overtraining. It
is suitable to stop the training process before convergence if the generalization ability
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Figure 4.1: Example plot of a process controlling the generalization ability during adaptation.
In this example overtraining occurred. This is identified by an increasing training recognition
rate (red) by simultaneously decreasing error function (blue) and dropping test recognition
rate (green). In turquoise we show the jump function that is explained in detail in the text.

significantly decreases. The generalization ability can be estimated using a test data
set not used for training.

Figure 4.1 shows an example of overtraining in a process controlling the gener-
alization ability during the adaptation in every third epoch. The error function is
plotted over the number of epochs in the blue line. The recognition rates for the
training and the test data set are given by the red line and the green line respectively.
We coded the behavior in Papari’s gradient descent as introduced in section 4.4.4 by
the turquoise line. A value of 1.2 of the function corresponds to a jump event. In the
case of a normal adaptation step the function value is 1. The error function decreases
and the training recognition rate increases around epoch 40 but the test recognition
rate drops. This indicates overtraining.

4.5 Numerical evaluation of vector quantization results

In the following section about numerical evaluation of vector quantization results
we consider four constellations:
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• crisp clustering

• crisp classification

• fuzzy clustering

• fuzzy classification

Often the evaluation measures for methods with fuzzy mappings are derived from
evaluation measures for crisp methods. If the prototypes in VQ are interpreted as
cluster centers regardless of the procedure from which they are obtained, all methods
of cluster evaluation can be applied.

4.5.1 Evaluation of VQ based learning for crisp clustering

Our discussion of evaluation starts with the evaluation of crisp clusterings. Although
clusters can be represented by more than one prototype, for simplicity we assume in
the following that there is a unique correspondence between prototypes and clusters.
In general the clustering problem is ill-posed. That means that in clustering the
Hadamard’s properties of well-posed problems5 are not fulfilled.

Due to the task being ill-post the evaluation of clustering is manifold and many
different evaluation measures and methods exist, highlighting different aspects of
the clustering solution properties. To get an overall judgment of the quality, it
is useful to find a joint evaluation of several evaluation possibilities. Especially
for measures and indices a simple combination of the measures would frequently
result in information loss. Forming tuples from these measure values that are then
evaluated with respect to Pareto optimality is a comprehensive way of studying
an evaluation task, suggested e.g. by (Handl et al. 2005). As it is computationally
expensive it is seldom used.

For the numerical evaluation measures and approaches we focus mainly on
three references: (Handl et al. 2005) on evaluation of crisp clustering of biological
data, (Halkidi et al. 2001) on clustering validation techniques in general and the
different sections on evaluation from (Manning et al. 2008). The variety of evaluation
possibilities can be categorized in several ways (for examples we refer to (Duda
et al. 2001), (Manning et al. 2008) and (Halkidi et al. 2001)). We use the categorization
given by (Handl et al. 2005):

Internal validation measures These methods “attempt to measure how well a given
partitioning corresponds to the natural cluster structure of the data” (Handl

5existence of a solution, uniqueness of the solution, continuous dependency of the solution on given
data in some reasonable topology (Hadamard 1902)
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et al. 2005, p. 3203). Usually the quality is expressed in terms of properties like
compactness, separability or density information.

External validation measures These measures are applicable to evaluate the cluster
model if some kind of ground truth is given for the training and test data.
They can also be used for comparing different clustering algorithms, e.g. “on
benchmark data, for which the class labels are known to correspond to the true
cluster structure.” (Handl et al. 2005, p. 3203)

External measures frequently ignore any data dissimilarity information. They can
also be used in the evaluation of supervised methods. We will introduce them in
section 4.5.2 dealing with the evaluation of crisp classification.

Internal measures

Internal measures evaluate cluster quality properties like separation and compactness.
These properties are determined by the relation between the data points and the
prototypes in the data space that are given by the dissimilarity measure. Originally
most internal measures were defined for the Euclidean distance. Many of them can
be applied if other dissimilarities are used instead, paying attention to the possibly
changed properties of the measures. It is conceptually pertinent to use the same
dissimilarity measure in learning and evaluation.

In this section we restrict the detailed introduction to measures that we will use
in our application example (see chapters 6 and 7). (Handl et al. 2005) distinguish
three main internal clustering properties:

• compactness

• connectedness

• separation

Compactness and separation exhibit opposing trends. To get a more comprehen-
sive quality assessment for the clustering often combination measures, combining
the evaluation of these quality trends and allowing their trade off are used. Very
popular combination measures are the Dunn index and Dunn-like indices as well as
the Davies-Bouldin index. These measures integrate several cluster properties and
calculate one global value for the evaluation of a cluster solution. This is especially
suited for automatic evaluation e.g. in automated parameter tests. It does not allow a
local evaluation of the cluster quality for single data points.
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In our application example, see section 6.5.2, we used the silhouette width. To
introduce this measure, we recall the following definitions. We assume a learned
crisp clustering for a data point set V , represented by the assignment function

Ψ : V → I : vk 7→ s = arg min
n∈I

(
d (vk, wn)

)
according to equation (2.2.1) with the index set I = {1, . . . , N} of the prototypes and
their corresponding receptive fields

Υn =
{
vk ∈ V : Ψ (vk) = n

}
as defined in equation (2.2.4) in section 2.2.

The silhouette width S (vk) for every data point vk is a measure of how well the
data point matches the clustering. It is formalized as

S (vk) =
b (vk)− a (vk)

max
{
a (vk) , b (vk)

} (4.5.1)

where a (vk) is the average dissimilarity of vk to all other objects in the same cluster
Υs with s = Ψ (vk)

a (vk) =
1

|Υs| − 1

∑
vl∈Υs,vl 6=vk

d (vl, vk)

and b (vk) is the average dissimilarity of vk to the neighboring cluster given by

b (vk) = min
Υu 6=Υs

d (vk,Υu)

where d (vk,Υu) is defined as

d (vk,Υu) =
1

|Υu|
∑
vl∈Υu

d (vl, vk) .

The values for the silhouette width range from minus one to one, i,e, −1 ≤ S (vk) ≤ 1.
The S (vk) are calculated for all given data points vk ∈ V . The presence of many
negative silhouette values for one data set V and a given clustering indicates weak
separation of the clusters. The averaged silhouette index (over all S (vk) for vk ∈ V )
can be used for an overall cluster quality assessment. A higher value refers to better
cluster separation and compactness.

Additionally, silhouette plots allow a cognitive ergonomic presentation of all sil-
houette values at a glance. To generate these plots all silhouette values are sorted in
decreasing order for each cluster separately. Taking this order as curve and concate-
nating all of the several clusters we obtain an overall curve which allows an interpre-
tation according to the separation in the clustering. According to (Rousseeuw 1987)
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this interpretation is oriented mainly at the shape of the curve (heavy slopes, ranges
of negative values). There are no absolute criteria for the interpretation of the silhou-
ette plots in terms of quality. A suitable approach to yield an evaluation framework
in a given application is to compare the silhouette plots of several different clustering
results for the application. Figure 4.2 shows the comparison of two silhouette plots
using different cluster numbers for the same application.

Like the Dunn and Dunn-like indices and the Davies-Bouldin index, the silhouette
width is adequate when evaluating clusterings using large data sets. All these
measures represent the dissimilarity of clusters by data point dissimilarities between
these clusters. These dissimilarities are incalculable in the case of empty clusters.
Empty clusters appear for example when the test data set is small. A work around
that enables the use of these measures also for small data sets is to ignore empty
clusters in the evaluation.

To assess the predictive power or the stability of a clustering algorithm, it is rerun
several times with data re-sampled or perturbed from the original dataset. From
the consistency of the results for the different runs, e.g. in terms of cluster centers, a
non-deterministic statistical estimate of their significance can be determined. There
exist several different approaches for re-sampling or perturbing (cf. (Handl et al. 2005)
for details).

Hit statistics for crisp clustering

The hit statistics are instruments for evaluating the learning process. They are fre-
quently applied in crisp clustering approaches where during one iteration only
selected prototypes are adapted. This is often the case in online learning approaches.
The hit statistic counts for every prototype how often it was selected for adaptation.
This allows the identification of prototypes, that were seldom or never adapted
during training. Possible reasons for this underadaption are the presence of a small
subgroup in the data or that too many prototypes are used.

The first reason can only be approved by domain experts looking at the recep-
tive fields of the prototypes and validating the conceptual appropriateness of the
modeled groups. To identify the second constellation the dissimilarities between the
prototypes can be additionally evaluated. Reducing the number of prototypes or
choosing a different initialization are possible approaches to overcome the problem
of underadapted prototypes.
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(a) Example of a silhouette plot with five clusters.

(b) Example of a silhouette plot with seven clusters.

Figure 4.2: Example of two silhouette plots in one application for evaluating and comparing
the cluster quality for different cluster numbers. In figure 4.2(b) there are comparatively many
negative values and smaller positive values. The clustering quality is higher in figure 4.2(a).
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4.5.2 Evaluation of LVQ based learning for crisp classification

In the following section we will focus on the evaluation of crisp classifications. The
prototypes with their corresponding receptive fields can be handled as cluster centers
and respective evaluation methods can also be applied to these learning results.

External measures are useful tools in the evaluation of prototype based classifica-
tion. A suitable extension of the hit statistics gives further evaluation possibilities for
supervised VQ based learning.

We discuss further measures specialized for evaluating classification performance
independent from the underlying prototype structure that focus on correct class label
mappings:

• Cohen’s kappa for comparison of two classifiers and

• Fleiss’ kappa for more than two classifiers.

Furthermore the error rate measure is used in evaluation strategies like

• the error rate evaluation and k-fold cross-validation as well as in

• the leave-one-out validation.

External measures

We base our explanation of external measures on the definitions given in (Handl
et al. 2005) and (Manning et al. 2008). Only measures that we use in our application
example are introduced in detail.

Purity and completeness are two of the simplest external measures for evaluating
the quality of groupings using label information. Purity “denotes the fraction of
the cluster taken up by its predominant class label, whereas completeness denotes
the fraction of items in this predominant class that is grouped in the cluster at
hand.” (Handl et al. 2005, p. 3203) Both measures have trivial optima: singleton
groups for purity and one group for completeness. They are frequently used together.

To introduce two important measures of classification quality we give more
definitions. Consider a trained crisp mapping Ψ : V → I from the set of labeled data
points vk ∈ V to the index set I for the set of trained prototypes W . The classification
of a data point vk is given by ζvk (Z) = zws , see equation (2.3.1). By definition there
are the following sets for a considered class label zc:

TPc = {vk : ζvk = zc and zvk = zc} the set of true positives

TNc = {vk : ζvk 6= zc and zvk 6= zc} the set of true negatives

FPc = {vk : ζvk = zc and zvk 6= zc} the set of false positives

FNc = {vk : ζvk 6= zc and zvk = zc} the set of false negatives

(4.5.2)
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The cardinalities of these sets | · | are also called contingency values.
There are two important basic measures that are defined by these contingency

values. They are used to measure the classification quality separately for the single
classes zc ∈ Z:

The precision of class zc The precision is the fraction of all data points classified as
belonging to class zc that actually are labeled as belonging to this class. This is
formalized as:

Pc =
|TPc|

|TPc|+ |FPc|
(4.5.3)

The recall of class zc The recall is the fraction of all data points actually labeled
as belonging to class zn that were classified as belonging to this class. The
formalization yields:

Rc =
|TPc|

|TPc|+ |FNc|
(4.5.4)

These two measures express opposing trends. While the recall is a non-decreasing
function of the data points classified as belonging to class zc6, the precision usually
decreases as the number of data points classified as belonging to class zc increases7.

There exists a variety of other external quality measures. We refer to (Halkidi
et al. 2001) who gave a broad overview on these techniques.

Hit statistics for crisp classification

In every approach that discriminates different kinds of adaptations we use an exten-
sion of the hit statistic that was introduced in section 4.5.1. For every prototype it
counts the number of selections for the different adaptations separately. In GLVQ
based algorithms two kinds of adaptations take place: an attracting and a repelling
adaption. If a prototype was relatively often selected for the repelling adaptation it
was probably pushed out of the data space. Its position is no reliable model of the
data structure. Hit statistics are of limited expressiveness and have to be combined
e.g. to suitable visualization approaches of the data space8 for a differentiated quality
assessment of prototype based classification.

Cohen’s kappa κC

Cohen’s κC (see (Cohen 1960) and (Cohen 1972)) gives the inter-classifier agreement
of two classifiers by relating the relative agreement p0 among the classifiers C1 and

6as it ignores the false negatives
7as it incorporated the number of false negatives
8We refer to section 4.6 for corresponding visualization approaches in our application example.
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C2 to the agreement occurring by chance pc. This accidental agreement is expressed
by the expected value of the joined event of C1 and C2 classifying certain data points
to the same class.

Often the compared classifiers were trained on data sets with a large intersection
or even the same data set. In the strict sense, the probability of classifier C1 classifying
a data point to a certain class is not independent from the probability of classifier
C2 classifying the same data point to the same class. To model and incorporate the
dependence between these two events into a joined probability is virtually impos-
sible. Simplifying, it is assumed that both classifiers are independent. Under this
assumption the calculation of the joined probability reduces to the product of the
probabilities for the single classification events.

We express the classification result of classifier C for a data point vk in a vector
ζ̃C (vk) =

(
ζ̃C1 (vk) , . . . , ζ̃CC (vk)

)
. Its values sum to one,

∑C
c=1 ζ̃c (vk)

C
= 1, and are

either zero or one, ζ̃Cc (vk) ∈ {0, 1}. A value of the vector is one, ζ̃Cc (vk) = 1, if and
only if the classifier C assigns to the data point vk the class c, i.e. ζvk = zc.

Using this expression and the independence assumption, pc can be formalized as
follows (Zühlke et al. 2009)

pc =

C∑
c=1

1∑
ζ̃
C1
c =0

1∑
ζ̃
C2
c =0

πC1
c · πC2

c

(
ζ̃C1
c · ζ̃C2

c

)
.

Here πC1
c and πC2

c are the margin probabilities πCq
c = 1

K

∑K
k=1 ζ̃

Cq
c (vk), q = 1, 2.

The relative agreement p0 of the two classifiers C1 and C2 is given according to
the contingency table of the classifications of both classifiers

p0 =
1

K

K∑
k=1

C∑
c=1

ζ̃C1
c (vk) · ζ̃C2

c (vk)

Using these values of pc and p0 the Cohen’s kappa is given by

κC =
po − pc
1− pc

. (4.5.5)

The κC value range is [−1, 1]. In table 4.2 we show a commonly accepted categoriza-
tion of the values where e.g. values less than zero mean a poor agreement whereas
values between 0.8 and 1 describe perfect agreements (Sachs 2006).

Fleiss’ kappa κF

(Fleiss et al. 2003) extended Cohen’s kappa directly for more than two classifiers.
The respective expected value of the agreement by chance pFc is calculated under the
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κ value meaning

κ < 0 poor agreement
0 ≤ κ ≤ 0.2 slight agreement
0.2 < κ ≤ 0.4 fair agreement
0.4 < κ ≤ 0.6 moderate agreement
0.6 < κ ≤ 0.8 substantial agreement
0.8 < κ ≤ 1 perfect agreement

Table 4.2: Interpretation of kappa values according to (Sachs 2006).

assumption of the independence between the classification events. The formalization
of the probability for the joined event is the product of the single classification event’s
probabilities. This yields

pFc =

C∑
c=1

1∑
ζ̃
C1
c =0

· · ·
1∑

ζ̃
CQ
c =0

Q∏
q=1

πCq
c ζ̃Cqc (4.5.6)

where Q is the number of classifiers to be compared. The margin probabilities πCq
c

and the classification result values ζ̃Cqc are analogously defined as before for Cohen’s
kappa.

The relative agreement of the set of classifiers pF0 is obtained from the contingency
table and given as:

pF0 =
1

K

K∑
k=1

C∑
c=1

Q∏
q=1

ζ̃Cqc (vk)

The Fleiss’ κF is calculated from the expected agreement by chance and the relative
agreement with the structurally equivalent equation as for Cohen’s kappa

κF =
pFo − pFc
1− pFc

.

For the possible values of Fleiss’ kappa κF ∈ [−1, 1] holds and the value categoriza-
tion as found in table 4.2 can be applied.

Error rate (ER) evaluation and k-fold cross-validation (kCV)

The following descriptions on error rate evaluation of learning for labeled data are
based on Witten and Frank’s “Data Mining: Practical Machine Learning Tools and
Techniques” (Witten and Frank 2005). For classification models it is pertinent to
measure the credibility of the learned model in terms of the error rate.



4.5. Numerical evaluation of vector quantization results 77

Despite simply counting errors, the error rate ER can be determined from the
contingency values as

ER =
|FP|+ |FN|

|TP|+ |FP|+ |FN|+ |TN|
.

Equivalently, the recognition rate or accuracy of a classifier, with RR = 1− ER can be
used

RR =
|TP|+ |TN|

|TP|+ |FP|+ |FN|+ |TN|
. (4.5.7)

The overall contingency values TP, FP, FN and TN are given as sum of the contin-
gency values for the single classes, introduced in section 4.5.2 in the equations (4.5.2),
for example

TP =

C∑
c=1

TPc.

Testing the classifier on the training data in general leads to overly optimistic recog-
nition rates as the classifier was specialized for this data and may not generalize to
new data. Therefore the test recognition rate is a more adequate estimate. The test
recognition rate is unrepresentative if only a unrepresentative amount of data points
is available in the test data set.

One method to cope with a limited amount of data is k-fold cross-validation. A
rule of thumb for small data sets is to split the data set randomly into at least three
folds (thus k = 3) and use two of them for training and the third for testing. This can
lead to unrepresentative data sets as by the random splitting it is possible that seldom
classes are not represented in one of the sets. To overcome this problem, the data sets
are randomly sampled in a way assuring that every class is represented in about the
right proportion in training and test set. This technique is called stratification and
leads to the stratified cross-validation.

This stratified cross-validation still has a bias caused by the choice of the data
points for the folds. A way to reduce this phenomenon is to run the process several
times for different random fold splittings. Averaging the recognition rates on the dif-
ferent sets leads to an estimate of an overall recognition rate. To estimate the stability
of the recognition rate usually its standard deviation is evaluated additionally.

Leave-one-out validation (LOOV) and interpretation

A special case of the k-fold cross-validation is the leave-one-out validation where
k is chosen as the number of data points in V . This method yields the following
advantages:

• The greatest possible amount of data is used for training.
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• Sampling is deterministic.

• Outliers are easily detected.

The method has also some draw backs:

• The computational costs are high.

• The test sampling (only one data point) is unstratified.

The initialization of a LOOV run for a single data point is nondeterministic. To avoid
accidental unrepresentative results in the LOOV, we suggest to run it several times
for every data point with different initializations, cf. algorithm 4.5.1. We assemble
the results for such repeated runs in terms of single data point’s recognition rather
than in data set error rate estimation. These data point recognition rate results give
an estimate of how well a single data point is represented by the remaining set of
data points.

Algorithm 4.5.1 Leave-one-out validation for learning algorithms

Require: data set V , LearningAlgorithm
for all data points vk ∈ V do

Initialize countRight=0, countFalse=0;
for i = 1 to e.g. 100 do

Train classifier C with all data points except vk and the given LearningAlgo-
rithm
Classify vk using classifier C
if vk classified right then

countRight++

else
countFalse++

end if
end for
print countRight, countFalse for vk

end for

4.5.3 Evaluation of VQ based learning for fuzzy clustering

The evaluation of fuzzy mappings of unlabeled data is often not as straight forward as
for crisp mappings. For sake of completeness, we will mention some fuzzy clustering



4.5. Numerical evaluation of vector quantization results 79

evaluation possibilities. We will not go into detail as we do not consider fuzzy
clustering in our application example9.

(Kim et al. 2003) give a review of several frequently used indexes for fuzzy cluster
evaluation in the context of Fuzzy C-Means (FCM) algorithms. (Geweniger et al. 2011)
use a selection of these measures for non-Euclidean dissimilarities in FCM. They
considered

• the partition entropy by (Bezdek 1974)

• the partition coefficient by (Bezdek 1974)

• a validity index by (Xie and Beni 1991)

• a validity index by (Fukuyama and Sugeno 1989)

The partition entropy is a measure that solely reflects the compactness of the clus-
tering and should be evaluated together with its opposite measure, the partition
coefficient. The validity indices of Xie-Benii and Fukuyama-Seguno are both com-
bined measures reflecting separation in addition to compactness of the clustering.

4.5.4 Evaluation of LVQ based learning for fuzzy classification

In this section we focus on evaluation possibilities for fuzzy classification. The
methods that we introduce are direct extensions of the corresponding evaluation
approaches for crisp classification:

• Fuzzy Cohen’s kappa

• Fuzzy Fleiss’ kappa

• Fuzzy recognition rate

As defined in equation (2.3.2) in section 2.3.1, the output of a fuzzy classifier is a
vector of continuous assignment values ~ζvk (Z) =

(
ζvk (1) , . . . , ζvk (C)

)
. The assign-

ment values lie between zero and one, ζvk (c) ∈ [0, 1], and they sum up to one for
probabilistic classification, i.e.

∑C
c=1 ζvk (c) = 1.

9For the discussion of the algorithms that are suitable for our application example we refer to sec-
tion 7.1.1.
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Fuzzy Cohen’s kappa κF
C

To extend Cohen’s kappa to fuzzy mappings, (Dou et al. 2007) introduce the fuzzy
agreement between the fuzzy class assignments ~ζC1

vk
and ~ζC2

vk
of two classifiers C1 and

C2 for the data point vk. It is given by the fuzzy agreement function

fF (vk) =

C∑
c=1

(
ζC1
vk

(c) ∧ ζC2
vk

(c)
)

with the following properties:

• The function values lie in the interval zero to one, fF (vk) ∈ [0, 1].

• The function value for a data point vk is one, fF (vk) = 1, if and only if the
classifiers assigns for all classes zc ∈ Z the same assignment values to the data
point vk , i.e. ζC1

vk
(c) = ζC2

vk
(c).

In accordance to this agreement function the proportion of observed agreement
between two fuzzy classifiers on a data set V is

pF0 =
1

K

K∑
k=1

C∑
c=1

(
ζC1
vk

(c) ∧ ζC2
vk

(c)
)
.

To calculate the expected agreement by chance we assume the independence be-
tween the classification events and get the joined probability as product of the single
classification event probabilities. This is formalized as

pFc =

C∑
c=1

∫ 1

ζ
C1
c =0

∫ 1

ζ
C2
c =0

π
(
ζC1
c

)
· π
(
ζC2
c

) (
ζC1
c ∧ ζC2

c

)
dζC1
c dζC2

c

where π
(
ζC1
c

)
and π

(
ζC2
c

)
are the margin probabilities of the classification events

ζC1
c and ζC2

c and the abbreviation ζCqvk (c) = ζ
Cq
c is used (Geweniger et al. 2010). The

equation for the resulting fuzzy Cohen’s kappa structurally stays the same:

κFC =
pF0 − pFc
1− pFc

(4.5.8)

The important question for the evaluation of the given equations is the definition
of the fuzzy AND-Operation ∧. There is no unique determination of the AND-
operation for fuzzy values. The theoretic basis is the definition by t-norms (Geweniger
et al. 2010), that was detailed by (Hammer and Villmann 2007). According to their
definition a function T : [0, 1]2 → [0, 1] is called a t-norm if the following conditions
are fulfilled
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1. T(a, 1) = a (neutral element)

2. a ≤ b⇒ T(a, c) ≤ T(b, c) (monotonicity)

3. T(a, b) = T(b, a) (commutativity)

4. T
(
a,>(b, c)

)
= T

(
>(a, b), c

)
(associativity).

These conditions do not determine a unique norm. Possible implementations are
(Zühlke et al. 2009)

the min norm Tmin(a, b) = min{a, b}

the product norm Tprod(a, b) = a · b

the Lukasiewicz norm TLuka(a, b) = max{0, a+ b− 1}

In (Zühlke et al. 2009) we tested the behavior of the κ values using different norms on
different data sets and also compared these values to the crisp κ values. From the tests
we conclude “that the minimum norm Tmin seems to be most appropriate” (Zühlke
et al. 2009, p. 274) for the fuzzy κ calculation.

Fuzzy Fleiss’ kappa κF
F

Structurally analog to the fuzzy Cohen’s kappa derivation we introduced a fuzzy
variant of Fleiss’ kappa in (Zühlke et al. 2009). To use this structural analogy we
rewrite the expected value of agreement by chance for the crisp Fleiss’ kappa, see
equation (4.5.6), as

pFc =

C∑
c=1

1∑
ζ̃
C1
c =0

. . .

1∑
ζ̃
CQ
c =0

(
Q∏
q=1

πCq (c)

)
·

(
Q∏
r=1

ζ̃Crc

)

with separated products for the margin probabilities of the classification events
πCq (c) and the classification result vectors ζ̃Crc .

Analog to the Cohen’s kappa fuzzy extension, the product of the classification
result vectors is changed into the fuzzy AND-operator. The sums are changed into
integrals over the continuous values. Retaining the assumption of independent
classification events, the expected agreement by chance is formalized by

pF,Fc =

C∑
c=1

∫ 1

ζ
C1
c =0

. . .

∫ 1

ζ
CQ
c =0

(
Q∏
q=1

π
(
ζCqc
))
·

(
Q∧
r=1

ζCrc

)
dζC1
c . . . dζCQc
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and analogously for the relative agreement

pF,F0 =
1

K

K∑
k=1

C∑
c=1

Q∧
q=1

ζCqvk (c) .

The integration of the expected and the relative agreement is done in the structurally
known way

κFF =
pF,F0 − pF,Fc

1− pF,Fc

yielding the fuzzy Fleiss’ kappa. As in the fuzzy Cohen’s kappa, the fuzzy inter-
pretation of the AND-operator is ambiguous. A usual choice using t-norms is the
minimum norm (Zühlke et al. 2009).

Fuzzy recognition rate (FRR) evaluation

Using a suitable definition of a fuzzy recognition rate we can apply the recognition
rate evaluation and k-fold cross-validation described in section 4.5.2 as well as the
leave-one-out validation from section 4.5.2 analogously for fuzzy evaluation. For
such a pertinent fuzzy recognition rate definition the contingency values for the
single classes c have to be adapted. We define them as

TPAc =

K∑
k=1

{
ζvk (c) : zvk = zc

}
the amount of true positiveness

TNAc =

K∑
k=1

 ∑
zr 6=zc∈Z

ζvk (r) : zvk 6= zc

 the amount of true negativeness

FPAc =

K∑
k=1

{
ζvk (c) : zvk 6= zc

}
the amount of false positiveness

FNAc =

K∑
k=1

 ∑
zr 6=zc∈Z

ζvk (r) : zvk = zc

 the amount of false negativeness.

The overall contingency values are obtained as sums of the class-wise contingency
values over all classes, for example

TPA =

C∑
c=1

TPAc.

From these values we define the fuzzy recognition rate as

FRR =
TPA + TNA

TPA + TNA + FPA + FNA
. (4.5.9)
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(a) Tables of diagonal entries and eigenvalues for an ex-
ample relevance matrix of GMLVQ

(b) Visualization of off-diagonal en-
tries for an example relevance matrix
of GMLVQ (diagonal entries set to
zero for this visualization)

Figure 4.3: Evaluation visualizations for an example relevance matrix of GMLVQ (Schneider
et al. 2009)

4.5.5 Evaluation of metric adaptation results

An important insight possibility is the evaluation of the metric adaptation results as
they approximate a relevance voting for the single feature components as well as
for combinations thereof. This frequently allows a direct biological interpretation
of relevances. As we have seen, there are different kinds of relevance information
that can be learned. In the GRLVQ algorithm, cf. section 4.1.2, this is e.g. a vector of
weight factors for single feature dimensions.

In the GMLVQ algorithm, cf. section 4.1.2, the relevances are given by a matrix
describing relevant feature dimension correlations. Because frequently the diagonal
elements dominate over the off-diagonal, visualization of the full matrix is done by
setting the diagonal elements to zero (figure 4.3(b)) and depicting them separated,
as shown in figure 4.3(a) at the top. The diagonal gives a direct mapping to the
relevance of the single feature dimension.

The eigenvalues of the relevance matrix (figure 4.3(a) at the bottom) give a hint on
the number of relevant directions in the feature space. In the case where the first two
or three eigenvalues of the relevance matrix are significantly larger than the others, it
is convenient to project the data points according to this reduced form of the adapted
dissimilarity. This projection can directly be used for the cluster visualization in DPP
approaches mentioned in section 4.6.2.
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Normalization of the data and the used dissimilarity measures has a high influ-
ence on relevance learning and its interpretation. Without a suitable normalization,
for instance, a small relevance value does not necessarily indicate that the corre-
sponding feature is irrelevant for the classification.

4.6 Visual evaluation of LVQ based classification results

In addition to the numerical evaluation given in the last section, an evaluation of the
learning results by the domain experts is mandatory. In this section we introduce
pertinent methods for a back projection of the learning results to the original problem
domain. This is necessary for the proof of the ecological validity of the results as
well as for insight possibilities. We limit the introduction to the visual evaluation
of classification results as we do not consider these kinds of visual evaluation for
clusterings in our application.

Humans are only able to perceive two or three dimensional scenes. The data
have to be fitted into two or three dimensions. Visualizing clustering results of high-
dimensional data is always error prone and generally endangered to drop relevant
information. The visualization space usually is Euclidean. If learning is based on
other dissimilarities, the Euclidean visualization can be misleading for interpretation.
Instead of visualization of data points or prototypes the presentation should rather
visualize the relation between them.

In the following we explain two methods that are specifically suitable for our
application example, see e.g. section 7.3.3, where the dissimilarity between the data
points was adapted during learning. The receptive field density diagrams (RFDDs)
allow for VQ algorithms to judge the mapping of data points to the prototypes. The
data point projections (DPPs) illustrate the dissimilarity relation between the data
points and the prototypes respectively.

In the last part of this section we discuss possibilities of inducing domain specific
knowledge from the introduced visualizations.

4.6.1 Receptive field density diagrams (RFDD)

After learning, for every prototype the data points in its receptive field are plotted
according to their dissimilarity to the prototype. Figure 4.4 gives a crisp supervised
example. This shows the density of the data points around a prototype. In a cognitive
support system, it is pertinent to use an interactive plot linking the data points to
their underlying data.

Comparing the density plots for different prototypes, it is possible to identify
prototypes with different variations in the dissimilarity. This can argue for under-
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represented classes or possibly subclasses if e.g. there is a group of data points with
higher dissimilarity to their respective prototype. Running the learning process again
with additional prototypes can yield better results.

Using receptive field density diagrams, visual outlier detection is easy. If the
data points are close to the prototypes, i.e. the data clouds are compact, the result is
credible and can induce domain knowledge.

Labeled RFDDs (lRFDDs) in crisp classification

Using the receptive field density diagrams for the evaluation of crisp clustering a
label visualization is needed. In figure 4.4 we show an example from our application:
The first two prototypes should represent patients that were healthy five years after
the tumor surgery and the last two should represent patients that died in this time
period. The data points are color coded with green standing for healthy patients and
red standing for dead patients. This way misclassification is highlighted. For the
second prototype an outlier is identified.

Fuzzy labeled RFDDS (flRFDDs) in fuzzy classification

The receptive field density diagrams (RFDD) can be adapted to the fuzzy evaluation
such that for every prototype all data points with their corresponding assignments
are displayed in a two dimensional plot for each prototype. The dissimilarity between
the data point and the respective prototype is given on the abscissa whereas the class
assignment is given on the ordinate. It can be convenient to uniquely identify the
data points in all plots for easy comparison e.g. by color labels of data point indices.
Also interactive identification possibilities can ease evaluation.

4.6.2 Data point projections (DPP)

A complex visualization is the mapping of the high-dimensional, and possibly non-
metric, data space onto a low dimensional metric visualization space V. This exploits
the full information about the dissimilarities between the data points and prototypes
that were inferred during dissimilarity adaptation.

In case of local dissimilarity adaptation the learning result is a set of dissimilarity
measures. A single learned dissimilarity measure is commonly associated to one
or several prototypes. These dissimilarities are used in the visualization of the
corresponding prototypes. For the data points we have to determine which of the
learned dissimilarities is applicable for the specific data point. In crisp clustering for
every data point we calculate the mapping to the winner prototype. The dissimilarity
associated to this prototype is used to calculate the dissimilarity for the corresponding
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Figure 4.4: Visualization evaluation example of a classification with four prototypes in two
classes using a labeled receptive field density diagram (lRFDD)

data point to all other data points and all prototypes for visualization with respect to
this prototype. The dissimilarities between data can become non-symmetric. This
situation becomes even more complex in the case of fuzzy prototype mappings,
because the data points are mapped to all prototypes but with different degrees,
according to their own dissimilarity.

A particular problem arises if the dissimilarities in the data space are not symmet-
ric, whereas in the visualization space V often the Euclidean distance is used that is
symmetric. For embedding the data points using these asymmetric dissimilarities
it is either necessary to symmetrize the dissimilarities or to choose a visualization
method that can cope with these asymmetric dissimilarities between the data points.
Both solutions yield an error in the embedding, that has to be kept in mind when
conclusions are drawn from the visualization.

The appeal of incorporating all dissimilarities into the visualization lies in the
evaluation possibility of relations between the data clouds. If the mapping of the
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dissimilarities and data points is credible, in addition to the compactness of single
cloud representations10, this visualization allows the judgment of the separation of
different cloud representations.

The group of pairwise dissimilarity based visualization methods is capable for
the dimension reduction from the high-dimensional data space to a two or three
dimensional visualization space. (Hastie, T. et al. 2003) describe multi-dimensional
scaling (MDS) as a common example for pairwise dissimilarity based dimension
reduction. It minimizes a stress function. This stress function can be chosen to
emphasize the reduction of different visualization errors, e.g. large fractional errors.
Further examples are given e.g. in (Duda et al. 2001). All stress function definitions
are based on the data dissimilarities. If no further constraints are given, this can
cause errors in the neighborhood relations.

(Hastie, T. et al. 2003) mention two methods that focus on the preservation of
the neighborhood: isomap and locally-linear embedding. Their disadvantage is
that they are often restricted to special kinds of dissimilarities (e.g. metrics). Local
multidimensional scaling (Local MDS) as introduced by (Chen and Buja 2009) tries
to combine the advantages of both approaches. In the stress function the small
dissimilarities given in the dissimilarity data are used for building local embeddings.
The stress function is stabilized by the introduction of repulsion between points with
large distances.

All data point projection methods discussed so far intrinsically minimize some
cost criterion. The optimization of these criteria can end up in local minima. The
difference between the dissimilarities in the projected space and the dissimilarities
in the original space can be evaluated using a normal or a non-metric Shepard plot.
Figure 7.9 fives an example for a Shepard plot example in our application. It is
recommended to do this comparison for dissimilarities that came up using different
stress functions, e.g. Sammon mapping, stress, metric-stress; cf. (Buja et al. 2008) for
details.

Labeled DPPs (lDPPs) in crisp classification

To use data point projections in the evaluation of crisp labeled learning results, we
map the class labels to artificial colors. It is possible to visualize the actual class label
of the data points by coloring the drawn points correspondingly. The prototypes
with their class labels are highlighted by larger points with the corresponding color.

We can also visualize the predicted and the actual class label of the data points at
the same time. In figure 4.5 two possibilities of class label visualizations are shown

10which is suitably evaluable in RFDDs
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(a) Visualizing predicted
class via outer circle’s and
actual class as inner cir-
cle’s color

(b) Visualizing predicted
class via background color
and actual class as circle’s
color

Figure 4.5: Ideas for visualization of predicted and actual class label at the same time.

for an artificial two class problem. In this figure the prototypes are represented by
circles with greater diameter than the data points.

Fuzzy labeled DPPs (flDPPs) in fuzzy classification

The RFDDs for visualization of crisp labeled data are correspondingly applicable for
fuzzy labeled data if the fuzzy class assignments are used in the visualization of the
data points. Each class zc, is assigned a color cc = (rc, gc, bc). The respective color for
the predicted fuzzy label of a data point vk is a mixture, according to

cW (vk) =

C∑
c=1

ζvk (c) · cc = (rk, gk, bk) . (4.6.1)

where ~ζvk =
(
ζvk (1) , . . . , ζvk (C)

)
is the corresponding class membership vector.

This color can be chosen as body color of the data point display. This visualization
is only practicable for a small number of clusters. For many classes it can lead to
indistinguishable mixtures of color. To visualize the true label e.g. the border of the
data point can be colored correspondingly. For true fuzzy labels the same calculation
base as for the predicted fuzzy label can be used. If true crisp labels are available
for the data points, the respective class color is displayed. The prototypes can be
visualized as larger points. This concept is exemplified in figure 4.6(a).

If many clusters or many data points have to be visualized, one possibility is the
visualization of the membership degrees of every displayed data point in a bar chart.
Figure 4.6(b) exemplarily shows such a visualization. The prototypes are highlighted
by the title of the charts.
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(a) Visualizing fuzzy clus-
ter memberships for crisp
data points by gradually
mixing cluster colors

(b) Visualizing fuzzy cluster memberships by bar diagrams

Figure 4.6: Ideas for visualization of fuzzy cluster memberships in fuzzy data point projections.

4.6.3 Knowledge gain by visual evaluation

In this section we introduce possibilities to use the visual evaluation approaches for
inducing domain specific knowledge. We restrict this introduction to approaches
that we used in our application example.

General domain knowledge gain by outlier analysis

Outlier detection yields a high potential for deeper insights into the data and domain
specific knowledge. There exist many specialized methods that cope with the task
of detecting outliers. The receptive field density diagrams are well suited for this
approach. In the evaluation of the identified outliers there are different conclusion
possibilities for model or data adaption.

One possibility is that the data point that was identified as an outlier from the
experts point of view is no outlier and has to be integrated into the model. In this
case the model can be inadequate so that it has to be adapted for example in terms
of the number of prototypes. If that does not improve the situation the choice of a
different learning algorithm is possible. If both improvement possibilities fail, new
clusters or classes are created by hand, integrating human expert knowledge which
can be difficult to capture by any clustering or classification strategy.
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Figure 4.7: SOM evaluation image of the outlier identified in figure 4.4. It is a patient case that
underwent a bad slice preparation.

If in contrast the expert decides in the evaluation that the data point is a real
outlier, it is recommended to remove it from the data space. Thus additionally
this instrument is a tool for quality control of the underlying data generation or
measurement methods. Figure 4.7 shows the outlier identified in figure 4.4. It is a
patient case that underwent a bad slice preparation.

4.6.4 Specific domain knowledge gain by receptive field density
diagrams or data point projections

If the data clouds or classes in this visualization are compact, the biomedical experts
can analyze the data points mapped to one prototype to possibly find an underlying
biomedical concept for grouping these data points. The learned dissimilarities with
the relevance votings for the single feature groups should be taken into account, as
they lead to this compact data representation and their relevance weights can give
hints for the biomedical interpretation.



Chapter 5

Mathematical framework for learning mixed
data

This chapter introduces a framework developed for learning of mixed and structured
data. In the first section we will give some further nomenclature and settings. We
furthermore introduce the two principle ways of integrating different structural
components with different dissimilarity measures that will be used later in the
algorithms we developed.

In this chapter we start with supervised online learning of mixed data in the two
different kinds of integration for different dissimilarity measures. The second part of
the chapter is concerned with unsupervised learning in a batch manner.

5.1 Nomenclature

From now on we assume that the input objects are no longer encoded by simple
vectors of numbers but rather by data points comprising different feature groups of
possibly different data types. Still we use vk to refer to an input data point but we use
the notation [vk][j] with j = 1, . . . , J to refer to the single feature groups. The term dj

denotes the dissimilarity measure that is used to compare the jth feature group in
two data points.

5.1.1 Integrating different dissimilarities into a combined
dissimilarity

For the integration of different dissimilarities dj , j = 1, . . . , J into one combined
dissimilarity measureD? the ideas used in the Generalized Relevance Learning Vector
Quantization (GRLVQ) and the Generalized Matrix Learning Vector Quantization
(GMLVQ) on parameterized dissimilarities were an inspiration for our work. We
realized two different integration variants:
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1. Vector-based integration: Inspired by the GRLVQ, the overall dissimilarity D? =

Dα is a weighted sum of the dissimilarities dj in the single feature groups j,
given by

Dα (vk, wn) :=

J∑
j=1

(
αnj
)2
dj

(
[vk][j] , [wn][j]

)
(5.1.1)

with the constraint that
∑J
j=1

(
αnj
)2

= 1 for all n = {1, . . . , N}.

2. Matrix-based integration: Inspired by the GMLVQ, the overall dissimilarity
D? = DΛ is the weighted sum of the dissimilarities dj in the single feature
groups j and weighted first order combinations of them, given by

DΛ (vk, wn) :=


d1

(
[vk][1] , [wn][1]

)
...

dJ

(
[vk][J] , [wn][J]

)

>

Λn


d1

(
[vk][1] , [wn][1]

)
...

dJ

(
[vk][J] , [wn][J]

)
 (5.1.2)

with the constraint that Λn is symmetric and positive-definite for all n =

{1, . . . , N}.

So both overall dissimilarity measures are parameterized dissimilarities where the
parameters can be adapted during training using a stochastic gradient or other
suitable optimization methods.

Because we assume that the single dj only operate on the corresponding fea-
ture groups [vk][j] and [wn][j], we may neglect this explicit nomenclature and we

abbreviate dj
(

[vk][j] , [wn][j]

)
by dj (vk, wn).

5.2 Learning mixed data using only dissimilarity
functions

In this section we introduce methods applicable to such problems where the dissimi-
larity dj of each feature group [vk][j] of an object vk to another one can be determined
by a dissimilarity function instantaneously.

5.2.1 Unsupervised variants of mixed data learning using only
dissimilarity functions

In the following we demonstrate the integration of mixed data for batch learning
algorithms using BNG, cf. section 4.1.1. In the first part we show the vector-based
integration and in the second part the matrix-based integration of mixed data.
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Batch Neural Gas for vector-based integration of mixed data with dissimilarity
functions – vb-BNG

For this first variant we integrated the vector-based overall distance in equation (5.1.1)
into the cost function for Batch Neural Gas as given in equation (4.1.2)

Evb-BNG =

N∑
n=1

K∑
k=1

hσ
(
rW (vk, wn)

)
·Dα (vk, wn) (5.2.1)

where rW (vk, wn) is the dissimilarity rank as given in equation (4.1.3) but with the
corresponding dissimilarity

rW (vk, wn) = rk,n =
∣∣∣{wl : Dα (vk, wl) < Dα (vk, wn)

}∣∣∣.
Note that now the vk are objects and that the prototype vectors wn have the same
object structure. Together with the constraint that

∑J
j=1 α

n
j = 1 for every prototype

wn and the dissimilarity Dα given in equation (5.1.1), we get the following Lagrange
function

L (W,α) =
1

2

N∑
n=1

K∑
k=1

hσ (rk,n) ·
J∑
j=1

(
αnj
)2 · dj (vk, wn)

−
N∑
n=1

λn

 J∑
j=1

αnj − 1

 (5.2.2)

To update the prototype vectors, we treat each feature group separately. As in BNG
we consider the root of the derivative of L – this time with respect to a single feature
group j? of the prototype vector wn

∂L (W,α)

∂ [wn][j?]
=

1

2

K∑
k=1

hσ (rk,n) ·
(
αnj?
)2 · ∂dj? (vk, wn)

∂ [wn][j?]

!
= 0.

For solving this equation and determining the new [wn][j?] it is necessary to know
the structure of the dj? under consideration.

In the example of the squared Euclidean distance function used as dissimilarity
function dj? the derivative is determined as

∂L (W,α)

∂ [wn][j?]
=

1

2

K∑
k=1

hσ (rk,n)
(
αnj?
)2 (

[wn][j?] − [vk][j?]

)
.

Setting this term to zero we get

[wn][j?] =

∑K
k=1 hσ (rk,n) [vk][j?]∑K

k=1 hσ (rk,n)
(5.2.3)
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for the prototype vector in the corresponding feature group. A more detailed descrip-
tion of the derivation and realizations for other dissimilarity measures can be found
in the appendix A.

To adapt the dissimilarity parameter vector ~αn, the weights for the single feature
groups are considered separately. To yield the update rules for the dissimilarity
parameter of the j?th feature group, in the derivation of the Lagrange function for
αnj? we get

∂L (W,α)

∂αnj?
=

1

2
·
K∑
k=1

hσ (rk,n) 2αnj?dj? (vk, wn)− λn.

This must be 0 and we obtain

λn =
1

2
·
K∑
k=1

hσ (rk,n) 2αnj?dj? (vk, wn)

= αnj? ·
K∑
k=1

hσ (rk,n) dj? (vk, wn)

and

αnj? = λn

(
K∑
k=1

hσ (rk,n) dj? (vk, wn)

)−1

. (5.2.4)

If we consider the constraint
∑J
j=1

(
αnj
)2

= 1 we get

J∑
j=1

(
αnj
)2

= 1 =

J∑
j=1

λn( K∑
k=1

hσ (rk,n) dj (vk, wn)

)−1


which yields the following substitution for the Lagrange multipliers

λn =

 J∑
j=1

(
K∑
k=1

hσ (rk,n) dj (vk, wn)

)−1
−1

. (5.2.5)

Combining this substitution with equation 5.2.4 for αnj? we get the following update
rule:

αnj? =

 K∑
k=1

hσ (rk,n) dj?,k,n ·
J∑
j=1

(
K∑
k=1

hσ (rk,n) dj,k,n

)−1
−1

(5.2.6)
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with dj,k,n = dj

(
[vk][j] , [wn][j]

)
and dj?,k,n analogously. This update rule is used in

the determination of local dissimilarities. It gives single parameter vectors ~αn for
every prototype wn. In the case of global updates we additionally get the summation
over all prototypes but have only one Lagrange multiplier. This yields

αj? =

 N∑
n=1

K∑
k=1

hσ (rk,n) dj?,k,n ·
J∑
j=1

(
N∑
n=1

K∑
k=1

hσ (rk,n) dj,k,n

)−1
−1

(5.2.7)

as update rule for a global dissimilarity vector ~α. We renormalize the αj by dividing
them by their sum. In algorithm 5.2.1 all update rules are summarized and the whole
batch optimization is shown.

Algorithm 5.2.1 Batch Neural Gas for vector-based integration of mixed data with dissimilarity
functions

initialize the dissimilarity parameters αnj with
∑J
j=1 α

n
j = 1

initialize the prototype positions wn
repeat

for all prototypes wn do
determine the dissimilarity rank of wn to all data points according to the
dissimilarity given by (5.1.1)
for all feature groups j? do

if dj? is squared Euclidean then
set feature group [wn][j?] according to (5.2.3)

else if dj? is Kullback-Leibler-Divergence for Gaussians then
set µnj? according to (A.3.3)
set σnj? according to (A.3.4)

else if dj? is γ-Divergence with given γ then
set feature group [wn][j?] according to (A.2.2)

end if
if local updates then

set αnj? according to (5.2.6)
else if global updates then

set αj? according to (5.2.7)
end if
renormalize the dissimilarity parameters

end for
end for

until convergence
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In conjunction with this approach we want to mention recent mathematical find-
ings. The procedure of deriving the vb-BNG is structurally similar to the derivation
of FCM or FNG (Villmann et al. 2011). Instead of using

(
αnj?
)2 it is possible to use the

more general
(
αnj?
)f with f > 1. All equations have to be changed accordingly.

Batch Neural Gas for matrix-based integration of mixed data with dissimilarity
functions – mb-BNG

We introduce the matrix based integration given by equation (5.1.2) into the Batch
Neural Gas cost function from equation (4.1.2) and yield the cost function for mb-
BNG

Emb-BNG (W ) =

N∑
n=1

K∑
k=1

hσ
(
rW (vk, wn)

)
·DΛn (vk, wn) .

This cost function is equivalent in its structure to the Matrix Neural Gas cost function
given in equation (4.1.6) in section 4.1.1. We derive the mb-BNG analogously. In
batch optimization the ranks rW (vk, wn) are considered as hidden variables rk,n.
They are optimized iteratively for fixed Λn and W , and the optimal values for Λn
and W are in turn determined given fixed assignments for rk,n.

As in Matrix Neural Gas (Arnonkijpanich et al. 2011) we use the substitution Λn =

Ω>nΩn given in equation (3.1.6). We recall that this substitution forces the symmetry
and positive semi-definiteness of Λ. To ensure positive definiteness additionally
det Λ 6= 0 has to be enforced. To optimize the cost function under this last constraint,
we get the following Lagrange function:

L (W,Ω) =
1

2

N∑
n=1

K∑
k=1

hσ (rk,n) · dΛn (vk, wn)−
N∑
n=1

λn (det Λn − 1) (5.2.8)

with Lagrange parameters λn ∈ R.
The derivatives of L (W,Ω) with respect to the feature groups [wn][j] with j =

1, . . . , J are

~∇[wn]L (W,Ω) =

K∑
k=1

hσ (rk,n)


∂

∂[wn][1]

...
∂

∂[wn][J]

[~d (k, n)
>

Λn~d (k, n)
]

using the abbreviation

~d (k, n) =

d1 (vk, wn)
...

dJ (vk, wn)

 .
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Additionally abbreviating

~∇[wn] =
(
∇[wn][1]

, . . . ,∇[wn][J]

)
with∇[wn][j] = ∂

∂[wn][j]
, we get the following derivation

~∇[wn]L (W,Ω) =

K∑
k=1

hσ (rk,n) ~∇[wn]

(
~d (k, n)

>
Ω>nΩn~d (k, n)

)
=

K∑
k=1

hσ (rk,n) ~∇[wn]

(
Ωn ~d (k, n)

)2

=

K∑
k=1

hσ (rk,n) 2 · Ωn~∇[wn]

(
~d (k, n)

)
· Ωn~d (k, n)

=

K∑
k=1

hσ (rk,n) 2 · Ωn


∂d1(vk,wn)
∂[wn][1]

. . . 0

...
. . .

...
0 . . . ∂dJ (vk,wn)

∂[wn][J]

 · Ωn ~d (k, n)

= 2 ·
K∑
k=1

hσ (rk,n) Ω>nΩn~d (k, n)


∂d1(vk,wn)
∂[wn][1]

. . . 0

...
. . .

...
0 . . . ∂dJ (vk,wn)

∂[wn][J]


and get

~∇[wn]L (W,Ω) = 2Λn ·
K∑
k=1

hσ (rk,n) ~d (k, n)


∂d1(vk,wn)
∂[wn][1]

. . . 0

...
. . .

...
0 . . . ∂dJ (vk,wn)

∂[wn][J]

 .

(5.2.9)
This should be zero and has to be solved for concrete choices of the dj .

To derive the update rules for the dissimilarity parameters, we use the structural
equivalence to the MNG (Arnonkijpanich et al. 2011). For determining Λn in every
optimization step, we calculate the derivative of L with respect to Λn which gives us

∂L

∂Λn
=

K∑
k=1

hσ (rk,n)

d1(vk,wn)

...
dJ (vk,wn)


d1(vk,wn)

...
dJ (vk,wn)


>

− λn
(
det Λn · Λ−1

n

)
.
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We search for the stationary points of the Lagrange function – this time considering
Λn. We obtain the following equation

Λn =


K∑
k=1

hσ (rk,n)


d1

(
[vk][1] , [wn][1]

)
...

dJ

(
[vk][J] , [wn][J]

)


d1

(
[vk][1] , [wn][1]

)
...

dJ

(
[vk][J] , [wn][J]

)

>
−1

λn,

which yields
Λn = S−1

n (detSn)
1
K (5.2.10)

with

Sn =

K∑
k=1

hσ (rk,n)


d1

(
[vk][1] , [wn][1]

)
...

dJ

(
[vk][J] , [wn][J]

)


d1

(
[vk][1] , [wn][1]

)
...

dJ

(
[vk][J] , [wn][J]

)

>

(5.2.11)

The mentioned update rules are valid for det Λn = 1, which has to yield in the
initialization and is ensured during adaption by the constraint in the Lagrange
function in equation (5.2.8). For an algorithmic implementation of mb-BNG and a
general formulation of the update rules the specification of all dj is required.

5.2.2 Supervised variants of mixed data learning using only
dissimilarity functions

In this section we investigate the implementation of both vector- and matrix-based
integration of mixed data into a supervised online variant for Vector Quantization,
the Generalized Learning Vector Quantization as discussed in section 4.1.2.

Generalized Learning Vector Quantization for vector-based integration of mixed
data with dissimilarity functions – vb-GLVQ

For this algorithm we introduce the vector-based overall dissimilarity into the cost
function of the normal GLVQ, see equation (4.1.22). We use the loss function

L (µk) =
(
1 + exp(−µk)

)−1

as it was given in equation 4.1.21 for GLVQ with

µk =
D+
α (vk)−D−α (vk)

D+
α (vk) +D−α (vk)

(5.2.12)
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adapted from equation (4.1.20) with changed dissimilarity. Then the cost function of
the vb-GLVQ is

Evb-GLVQ =

K∑
k=1

L
(
µkα
(
Dα (vk, w+) , Dα (vk, w−)

))
=

K∑
k=1

L

(
Dα (vk, w+)−Dα (vk, w−)

Dα (vk, w−) +Dα (vk, w−)

)
.

Using the definition (5.1.1) for the vector-based integration in Dα we get

Evb-GLVQ =

K∑
k=1

L

(∑J
j=1

(
α+
j

)2
d+
j (vk)−

∑J
j=1

(
α−j
)2
d−j (vk)∑J

j=1

(
α+
j

)2
d+
j (vk) +

∑J
j=1

(
α−j
)2
d−j (vk)

)
(5.2.13)

where the winning prototypes w+ and w− are defined as before in equations (4.1.18)
and (4.1.19) but now according to the overall dissimilarity function Dα. We ab-
breviated Dα (vk, w+) by D+

α and use d+
j (vk) instead of dj

(
[vk][j], [w+][j]

)
for the

dissimilarity in the single feature groups. Furthermore we abbreviate

µkα
(
Dα (vk, w+) , Dα (vk, w−)

)
in the following by µkα. The weight update for the feature group j? of prototype w+

with respect to data point vk is obtained as derivative of the cost function

∆[w+][j?] ∝ −
∂L (vk,W, α)

∂µkα
· ∂µkα
∂D+

α (vk)
· ∂D

+
α (vk)

∂d+
j? (vk)

·
∂d+

j? (vk)

∂[w+][j?]
.

We have

∂L (vk,W, α)

∂µkα
=

exp(−µkα)(
1 + exp(−µkα)

)2 ,
∂µkα

∂Dα
+ (vk)

=
2D−α (vk)(

D+
α (vk) +D−α (vk)

)2 and

∂D+
α (vk)

∂d+
j? (vk)

=
(
α+
j?

)2
.

Using these equations we get

∆[w+][j?] = −εw ·
2 · exp(−µkα)(

1 + exp(−µkα)
)2 ·

(
α+
j?

)2
D−α (vk)(

D+
α (vk) +D−α (vk)

)2 · ∂d+
j? (vk)

∂[w+][j?]
(5.2.14)
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and analog for [w−][j?]

∆[w−][j?] = εw ·
2 · exp(−µkα)

(1 + exp(−µkα))
2 ·

(
α−j?
)2
D+
α (vk)(

D+
α (vk) +D−α (vk)

)2 · ∂d−j? (vk)

∂[w−][j?]
. (5.2.15)

For different dissimilarities the derivatives
∂d+
j?(vk)

∂[w+][j?]
and

∂d−j?(vk)

∂[w−][j?]
differ accordingly.

A choice of dissimilarity measures and their derivatives for the prototype weights
are given in appendix B.

The adaptation scheme of the weighting parameters α+
j? follows from the respec-

tive derivative of the cost function:

∆α+
j? ∝ −

∂Evb−GLVQ

∂α+
j?

= −∂L (vk,W, α)

∂µkα
· ∂µkα
∂D+

α (vk)
· ∂D

+
α (vk)

∂α+
j?

with
∂L (vk,W, α)

∂µkα
=

exp(−µkα)(
1 + exp(−µkα)

)2 ,
∂µkα

∂D+ (vk)
=

2 ·D− (vk)(
D+ (vk) +D− (vk)

)2 and

∂D+ (vk)

∂α+
j?

= 2 · α+
j?d

+
j?.

Thus for local updates of α+
j? we obtain

∆α+
j? = −εα ·

4 · exp(−µkα)(
1 + exp(−µkα)

)2 · α+
j?d

+
j? (vk)D−α (vk)(

D+
α (vk) +D−α (vk)

)2 (5.2.16)

and analog for α−j?:

∆α−j? = εα ·
4 · exp(−µkα)(

1 + exp(−µkα)
)2 · α−j?d

−
j? (vk)D+

α (vk)(
D+
α (vk) +D−α (vk)

)2 . (5.2.17)

For global updates according to the chain rule for derivation we get:

∆αj? = −εα · cα ·

(
α+
j?d

+
j? (vk)D−α (vk)− α−j?d

−
j? (vk)D+

α (vk)(
D+
α (vk) +D−α (vk)

)2
)

(5.2.18)

with

cα =
4 · exp(−µkα)(

1 + exp(−µkα)
)2 .

The dissimilarity parameters are renormalized after adaption by dividing the αnj? by∑J
j=1 α

n
j and the αj? by

∑J
j=1 αj respectively. All update rules are summarized in

algorithm 5.2.2.
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Algorithm 5.2.2 Generalized Learning Vector Quantization for vector-based integration of
mixed data with dissimilarity functions

initialize the dissimilarity parameters αnj with
∑J
j=1 α

n
j = 1

initialize the prototype positions wn
repeat

randomly choose an input vector vk from V with its label zvk
determine w+ and w− according to vk, zvk and the overall dissimilarity given in
equation (5.1.1)
for all feature groups j? do

determine new prototype position for [w+][j?] according to (5.2.14)
determine new prototype position for [w−][j?] according to (5.2.15)
if local updates then

determine new dissimilarity parameter α+
j? according to (5.2.16)

determine new dissimilarity parameter α−j? according to (5.2.17)
else if global updates then

determine new dissimilarity parameter αj? according to (5.2.18)
end if
renormalize the dissimilarity parameters

end for
until convergence

Generalized Learning Vector Quantization for matrix-based integration of mixed
data with dissimilarity functions – mb-GLVQ

For the cost function of the matrix-based integration of mixed data extending the
GLVQ we combine the matrix-based overall dissimilarity given in equation (5.1.2)
with the cost function of the normal GLVQ

Emb-GLVQ =

K∑
k=1

L
(
µkΛ
)

=

K∑
k=1

L

(
D+

Λ (vk)−D−Λ (vk)

D+
Λ (vk) +D−Λ (vk)

) (5.2.19)

with L
(
µkΛ
)

and µkΛ as defined for vector-based integration in vb-GLVQ with the
accordingly changed dissimilarity. We substitute Λ = Ω>Ω. In the derivation of mb-
GLVQ we use the structural equivalence to the GMLVQ and use the regularization
constraint trace (Λ) = 1 following the suggestion of (Schneider 2010) for GMLVQ
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(cf. section 4.1.2). The derivative of the mb-GLVQ cost function with respect to the
nearest prototype of the same class is given by

∂Emb-GLVQ

∂w+
[j?]

=
∂L (vk,W, α)

∂µkΛ
· ∂µkΛ
∂D+

Λ (vk)
·
∂D+

Λ (vk)

∂d+
j? (vk)

·
∂d+

j? (vk)

∂ [w+][j?]

with
∂L (vk,W, α)

∂µkΛ
=

exp(−µkΛ)(
1 + exp(−µkΛ)

)2 ,
∂µkΛ

∂D+
Λ (vk)

=
2 ·D−Λ (vk)(

D+
Λ (vk) +D−Λ (vk)

)2 and

∂D+
Λ (vk)

∂d+
j? (vk)

= 2 · Ω>Ω.

According to this the update rule for the prototype position is given as

∆[w+][j?] =− εw ·
4 · exp(−µkΛ)(

1 + exp(−µkΛ)
)2 · D−Λ (vk)(

D+
Λ (vk) +D−Λ (vk)

)2
·
J∑
j=1

λj?jd
+
j (vk) ·

∂d+
j? (vk)

∂ [w+][j?]

(5.2.20)

and analog for the nearest prototype of a different class, we yield

∆[w−][j?] = εw ·
4 · exp(−µkΛ)(

1 + exp(−µkΛ)
)2 · D+

Λ (vk)(
D+

Λ (vk) +D−Λ (vk)
)2

·
J∑
j=1

λj?jd
−
j (vk) ·

∂d−j? (vk)

∂ [w−][j?]
.

(5.2.21)

According to the derivation in GMLVQ (Schneider 2010), for the update rule of the
dissimilarity parameter matrix we calculate the derivate of the cost function with
respect to the parameter Ωlm

∂Emb-GLVQ

∂Ωlm
=
∂L (vk,W, α)

∂µkΛ
· ∂µ

k
Λ

∂Ωlm

which for local updating of Ω+
lm yields

∆Ω+
lm =− εΩ

2 · exp(−µkΛ)(
1 + exp(−µkΛ)

)2 · D−Λ (vk)(
D+

Λ (vk) +D−Λ (vk)
)2

·

d+
m (vk) ·

Ω

d+
1 (vk)

...
d+
J (vk)



l

 (5.2.22)
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and accordingly for Ω−lm changes to

∆Ω−lm =εΩ
2 · exp(−µkΛ)(

1 + exp(−µkΛ)
)2 · D+

Λ (vk)(
D+

Λ (vk) +D−Λ (vk)
)2

·

d−m (vk) ·

Ω

d−1 (vk)

...
d−J (vk)



l

 .

(5.2.23)

For global updates of Ω we get

∆Ωlm = −εΩcm·

c+ ·
d+

m (vk) ·

Ω

d+
1 (vk)

...
d+
J (vk)



l



−c− ·

d−m (vk) ·

Ω

d−1 (vk)

...
d−J (vk)



l




(5.2.24)

with

cm =
2 · exp(−µkΛ)(

1 + exp(−µkΛ)
)2 ,

c+ =
D−Λ (vk)(

D+
Λ (vk) +D−Λ (vk)

)2 and

c− =
D+

Λ (vk)(
D+

Λ (vk) +D−Λ (vk)
)2 .

These matrices have to be renormalized after every step with respect to the con-
dition trace (Λ) = 1. In this special case 1∑

x

∑
y Ωxy

can be used as normalization
factor (Schneider 2010). All the update steps are summarized in algorithm 5.2.3.

5.3 Learning mixed data containing also relational
dissimilarities

In this section we will discuss how to handle feature groups that are given as rela-
tional data, i.e. as indexed data points with a corresponding dissimilarity matrix. For
relational data we assume the matrix of dissimilarities to be error-free embeddable
into a finite-dimensional Euclidean space. We refer to section 3.4 for details. Under
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Algorithm 5.2.3 Generalized Learning Vector Quantization for matrix-based integration of
mixed data with dissimilarity functions

initialize the dissimilarity parameter matrix Ωn with trace
(
Ω>Ω

)
= 1

initialize the prototype positions wn
repeat

randomly choose an input vector vk from V with its label zvk
determine w+ and w− according to vk, zvk and the overall dissimilarity given
in (5.1.2)
for all feature groups j? do

determine new prototype position for [w+][j?] according to (5.2.20)
determine new prototype position for [w−][j?] according to (5.2.21)
if local updates then

determine new dissimilarity parameter Ω+
lm according to (5.2.22)

determine new dissimilarity parameter Ω−lm according to (5.2.23)
else if global updates then

determine new dissimilarity parameter Ωlm according to (5.2.24)
end if
renormalize the dissimilarity parameters correspondingly

end for
until convergence

this assumption we can represent the relational feature groups of the prototypes
by linear combinations of these groups in the data points. We combine the results
from the last section with the new update rules for relational feature groups to yield
algorithms that are able to handle both kinds of data. We consider both unsupervised
and supervised variants.

5.3.1 Unsupervised variants for learning mixed data containing
also relational dissimilarities

We will introduce the integration of the vector-based overall dissimilarities into the
batch learning variant of Neural Gas for relational data, Relational Neural Gas, see
section 4.2.1 for details. As the incorporation of the matrix-based integration into the
Batch Neural Gas for learning using a dissimilarity function did not yield general
update rules, we refrain from the additional matrix-based integration for Relational
Neural Gas.
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Relational Neural Gas for vector-based integration of mixed data containing also
relational data – vb-RNG

For handling mixed relational and dissimilarity function based (dfb) data in unsuper-
vised learning we combine vb-BNG from the last section with the idea of Relational
Neural Gas for the feature groups that are given by relational data. The update rules
for the dfb data remain unchanged. For the relational feature group updates we
adapt the Lagrange function for vb-BNG

L (W,α) =
1

2

N∑
n=1

K∑
k=1

hσ (rk,n) ·
J∑
j=1

(
αnj
)2 · dj (vk, wn)

−
N∑
n=1

λn

 J∑
j=1

αnj − 1


from equation (5.2.2).

The prototypes [wn]j? for a relational group j? are represented by coefficients
~βj?n =

( [
βj?n
]
1
, . . . ,

[
βj?n
]
K

)
. The dissimilarity between the data point vk and the

prototype wn for the relational feature group j? is expressed by

dj? (vk, wn) =
(
Dj? · ~βj?n

)
k
− 1

2
·
(
~βj?n

)>
·Dj? · ~βj?n

=
∑
m∈[j?]

dj? (vk, vm)
[
βj?n
]
m
− 1

2

∑
i∈[j?]

∑
u∈[j?]

dj? (vi, vu)
[
βj?n
]
i

[
βj?n
]
u
.

(5.3.1)

which is in accordance to the definition in equation (3.4.8). For the derivative ∂L(W,α)

∂[βj?n ]
l

we get

∂L (W,α)

∂
[
βj?n
]
l

=
(
αnj?
)2 K∑

k=1

d (vk, vl)

(
hσ (rk,n)−

K∑
i=1

hσ (ri,n)
[
βj?n
]
k

)
. (5.3.2)

If the dissimilarity matrix D is nonsingular and for αnj? 6= 0 this is zero if and only if

[
βj?n
]
l

=
hσ (rl,n)∑K
k=1 hσ (rk,n)

(5.3.3)

and so the update rules for the prototype representing coefficients from normal RNG
persist. Combining these update rules for the prototype positions with the update
rules for the dissimilarity parameters from vb-BNG we obtain algorithm 5.3.1.
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Algorithm 5.3.1 Relational Neural Gas for vector-based integration of mixed data containing
also relational data

initialize the dissimilarity parameters αnj with
∑J
j=1 α

n
j = 1

initialize prototype positions wn, for the relational groups initialize all prototype
representing coefficient vectors ~βn with

∑K
k=1 [βn]k = 1 for n = 1, . . . , N and

k = 1, . . . ,K

repeat
for all prototypes wn do

determine the dissimilarity rank of wn to all data points according to the
dissimilarity given by (5.1.1)
for all feature groups j? do

if dj? is squared Euclidean then
set feature group [wn][j?] according to (5.2.3)

else if dj? is Kullback-Leibler-Divergence for Gaussians then
set µnj? according to (A.3.3)
set σnj? according to (A.3.4)

else if dj? is γ-Divergence with given γ then
set feature group [wn][j?] according to (A.2.2)

else if dj? is relational with matrix Dj? of dissimilarities then
set
[
βj?n
]
k

according to (5.3.3)
end if
if local updates of dissimilarity parameters then

set αnj? according to (5.2.6)
else if global updates then

set αj? according to (5.2.7)
end if
renormalize the dissimilarity parameters

end for
end for

until convergence

5.3.2 Supervised variants for learning mixed data containing
also relational dissimilarities

In this section we introduce the integration of the vector-based overall dissimilar-
ities as well as the integration of the matrix-based overall dissimilarity into the
variant of Learning Vector Quantization for relational data, Kernel Learning Vector
Quantization discussed in section 4.2.2.
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Kernel Learning Vector Quantization for vector-based integration of mixed data
containing also relational data – vb-KLVQ

To handle a mixture of data with dissimilarity functions and relational data the
vector-based integration of dissimilarities as introduced in section 5.2.2 into GLVQ is
combined with the idea of handling relational data as given by KLVQ (section 4.2.2).
We use the assumption that the total dissimilarity of a prototype vector wn and a
data point vk in the mixed feature space is the sum of weighted dissimilarities in
the different feature groups. As mentioned in vb-RNG, for relational data we can
substitute the prototype vectors for the relational groups by a linear combination of
the values of the corresponding feature groups in data point vectors.

The update rules for the dfb groups remain unchanged, whereas the update
rules for the relational feature groups change from the equations in section 4.2.2 by
exchanging the dissimilarities and their derivatives

[
βj?+

]
l
(t+ 1) =



[
1− c · (α+

j?)
2·D−α (vk)

(D+
α (vk)+D−α (vk))

2

]
·
[
βj?+

]
l
(t) if vl 6= vk

[
1− c · (α+

j?)
2·D−α (vk)

(D+
α (vk)+D−α (vk))

2

]
·
[
βj?+

]
l
(t)

+c · (α+
j?)

2·D−α (vk)

(D+
α (vk)+D−α (vk))

2 if vl = vk

(5.3.4)

and

[
βj?−

]
l
(t+ 1) =



[
1 + c · (α−j?)

2·D+
α (vk)

(D+
α (vk)+D−α (vk))

2

]
·
[
βj?−

]
l
(t) if vl 6= vk

[
1 + c · (α−j?)

2·D+
α (vk)

(D+
α (vk)+D−α (vk))

2

]
·
[
βj?−

]
l
(t)

−c · (α−j?)
2·D+

α (vk)

(D+
α (vk)+D−α (vk))

2 if vl = vk

(5.3.5)

where c = εw · 4·exp(−µkα)

(1+exp(−µkα))2 .
The update rules and normalizations for the dissimilarity parameters αnj remain

unchanged. All update steps, including those for the dfb data, are summarized in
algorithm 5.3.2.

Kernel Learning Vector Quantization for matrix-based integration of mixed data
containing also relational data – mb-KLVQ

Mixed data with dfb and relational data can be integrated with a matrix-based
approach into GLVQ, combining the idea of handling relational data as given by
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Algorithm 5.3.2 Kernel Learning Vector Quantization for vector-based integration of mixed
data containing also relational data

initialize the dissimilarity parameters αnj with
∑J
j=1 α

n
j = 1

initialize prototype positions wn, for the relational groups initialize all prototype
representing coefficient vectors [βn]k with

∑K
k=1 [βn]k = 1 for n = 1, . . . , N and

k = 1, . . . ,K

repeat
randomly choose an input vector vk from V with its label zvk
determine w+ and w− according to vk, zvk and the overall dissimilarity given
in (5.1.1)
for all feature groups j? do

if dissimilarity in j? is defined by dissimilarity function dj? then
determine new prototype position for [w+][j?] according to (5.2.14)
determine new prototype position for [w−][j?] according to (5.2.15)

else if dissimilarity in j? is defined by dissimilarity matrix Dj? then
determine new prototype representation for all coefficients [β+]l (t+ 1)

according to (5.3.4)
determine new prototype representation for all coefficients [β−]l (t+ 1)

according to (5.3.5)
end if
if local updates then

determine new dissimilarity parameter α+
j? according to (5.2.16)

determine new dissimilarity parameter α−j? according to (5.2.17)
else if global updates then

determine new dissimilarity parameter αj? according to (5.2.18)
end if
renormalize the dissimilarity parameters

end for
until convergence

KLVQ (see section 4.2.2) with the findings for mb-GLVQ. We substitute the prototype
vectors for the relational feature groups by a linear combination of data point vectors
for these feature groups.

The update rules for the dfb groups remain unchanged. The update rules for the
relational components change from the equations in section 4.2.2 by exchanging the
dissimilarities and their derivatives.
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[
βj?+

]
l
(t+ 1) =



1− c ·

J∑
j=1

λj?,jd
+
j (vk)·D−Λ (vk)

(D+
Λ (vk)+D−Λ (vk))

2

 · [βj?+

]
l
(t) if vl 6= vk

1− c ·

J∑
j=1

λj?,jd
+
j (vk)·D−Λ (vk)

(D+
Λ (vk)+D−Λ (vk))

2

 · [βj?+

]
l
(t)

+c ·

J∑
j=1

λj?,jd
+
j (vk)·D−Λ (vk)

(D+
Λ (vk)+D−Λ (vk))

2 if vl = vk

(5.3.6)

and

[
βj?−

]
l
(t+ 1) =



1 + c ·

J∑
j=1

λj?,jd
−
j (vk)·D+

Λ (vk)

(D+
Λ (vk)+D−Λ (vk))

2

 · [βj?− ]
l
(t) if vl 6= vk

1 + c ·

J∑
j=1

λj?,jd
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(5.3.7)

where c is defined as for vb-KLVQ.
The update rules and normalizations for the dissimilarity parameters Λn remain

unchanged. All update steps, including those for dfb data, are summarized in
algorithm 5.3.3.
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Algorithm 5.3.3 Kernel Learning Vector Quantization for matrix-based integration of mixed
data with dissimilarity functions and relational data

initialize the dissimilarity parameter Λn = Ω>nΩn with trace (Λn) = 1

initialize prototype positions wn, for the relational groups initialize all prototype
representing coefficient vectors ~βn with

∑K
k=1 [βn]k = 1 for n = 1, . . . , N and

k = 1, . . . ,K

repeat
randomly choose an input vector vk from V with its label zvk
determine w+ and w− according to vk, zvk and the overall dissimilarity given
in (5.1.1)
for all feature groups j? do

if dissimilarity in j? is defined by dissimilarity function dj? then
determine new prototype position for [w+][j?] according to (5.2.14)
determine new prototype position for [w−][j?] according to (5.2.15)

else if dissimilarity in j? is defined by dissimilarity matrix Dj? then
determine new prototype representation for all coefficients [β+]l (t+ 1)

according to (5.3.6)
determine new prototype representation for all coefficients [β−]l (t+ 1)

according to (5.3.7)
end if
if local updates then

determine new dissimilarity parameter Ω+
lm according to (5.2.22)

determine new dissimilarity parameter Ω−lm according to (5.2.23)
else if global updates then

determine new dissimilarity parameter Ωlm according to (5.2.24)
end if
renormalize the dissimilarity parameters

end for
until convergence



Chapter 6

Building a cognitive support system in the
breast cancer research project Exprimage

In this chapter we introduce an application example for a cognitive support system
in biomedical research. We explain the rationales behind the design decisions and
discuss the necessary information processing. The context of the example develop-
ment is the breast cancer project Exprimage. This project was conducted in close
cooperation of the working groups

• at the Fraunhofer Institute for Applied Information Technology,

• the Information Systems Department of the RWTH Aachen and

• the Institute for Diagnostic Histopathology and Cytology at the Pathology
Hamburg-West.

Additional support in the mathematical foundation was given by

• the Computational Intelligence and Technomathematics Group at the Univer-
sity of Applied Sciences Mittweida,

• the Department for Theoretic Computer Science at the University of Bielefeld
and

• the Intelligent Systems Group at the University of Groningen.

The work was funded by the German Federal Ministry of Education and Research
(Fkz 13N9873).

6.1 Objective of the Exprimage project

The objective of the Exprimage project was to improve the adjuvant therapy1 sugges-
tions in breast cancer by incorporating information from several biomedical domains.

1There are two main kinds of therapy: on the one hand possibly neoadjuvant chemotherapy made
before surgery, in order to shrink the tumor. On the other hand, there are postoperative, adjuvant chemo-
and hormone therapies and radiation.
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For good therapy suggestions a detailed individual diagnosis based on the analysis
of the resected tumor tissue is an indispensable basis. The Exprimage project was
conceived as a retrospective study to analyze the relation between tumor properties
and the corresponding most suitable therapy. A comprehensive data base with reli-
able information concerning the therapeutic course of the single patients is needed
for this purpose. Due to several reasons this data base was not established during
the project. We did not have reliable information about the therapies the patients
underwent. Furthermore the amount of 2000 patient samples that was advised for
the study was not achieved. Our data set comprised 93 patients.

We shifted the focus of our subproject according to this data-poor situation.
We developed a cognitive support system that according to the methodological
requirements is capable of supporting the research on improvements of the therapy
suggestions. Instead of answering the actual pathological research question we
applied the system in research to improve the prognosis by a detailed diagnosis. This
shift was acceptable for two reasons:

• The detailed diagnosis is indispensable for achieving the original objective of
improved therapy suggestions.

• In the application of the cognitive support system its principle functionality
could be demonstrated.

Our system was based on the image analysis of digitized slice images of breast cancer
tissue and the available clinical data for the patients.

6.1.1 Traditional breast cancer diagnostics and its insufficiency

The available selection of cases, called cohort, in our subproject was a collection
of matched pairs. These are cases where the current standard diagnostics did not
generally succeed. For standard diagnosis these cases look quite similar, but they
differ in the clinical course and the follow-up of the patient.

The current standard processing of breast cancer diagnosis in diagnostic labora-
tories is characterized by complex human expert performance in a tight schedule.
The tissue that was surgically removed from the patient’s breast is sliced and stained
with the standard pathological stain that marks structural properties of the tissue.
The upper row of figure 6.1 shows this process. Then the following procedure is
executed:

1. The pathological expert chooses one single tissue slice.

2. He/she analyzes it by scanning the overview and instantly identifying a few
regions of interest (ROIs) with a normal optical microscope.



6.1. Objective of the Exprimage project 113

Figure 6.1: Schematic representation of the clinical probe preparation. In the current standard
diagnostic the preparation process ends at a normal optical microscope. In the Exprimage
project we used a digital microscope to store the images for computer analysis. This scheme
was adapted from (Bornemeier 2011).

3. In the regions of interest he/she magnifies the slice to a cell detail level.

4. On this level, a collection of commonly accepted analytic items2 is checked
that leads to a prognostic index. In Exprimage the pathologists used the current
world-wide standard: the Nottingham Index (Galea et al. 1992).

Figure 6.2 shows an example of this first part of the current standard diagnostic
process and the corresponding analytic scheme. It also indicates the size of the
analyzed region in relation to the whole slice. To complete the diagnostic process,
the expert carries out the last step:

5. To gain hints for personalized therapy suggestions, the expert considers se-
lected slices stained with functional markers. They indicate for example the

2Such items are e.g. cell nucleus abnormality and mitosis rate. These analytic items are identified in
a regular consensus process at the international breast cancer conference in Sankt Gallen. http://www.
oncoconferences.ch/dynasite.cfm?dsmid=98911

http://www.oncoconferences.ch/dynasite.cfm?dsmid=98911
http://www.oncoconferences.ch/dynasite.cfm?dsmid=98911
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Figure 6.2: Example of a current standard diagnostic process emphasizing subjectiveness

expression level of the hormone receptor for estrogen. The expert qualifies this
expression level into a categorical scheme analyzing selected ROIs on a cell
detail magnification.

Figure 6.3 shows an example of a breast cancer slice stained with a functional marker
highlighting the expression of the hormone receptor for estrogen on a tissue detail
magnification. The ellipses mark regions with different expressions inside one tumor
region. The expert has to compress this information into a singular expression
category for the whole patient, according to non-quantitative categories yes/no. This
yields an information loss. To summarize, we see that the current standard diagnostic
process in breast cancer is subjective especially in two perspectives:

• Selection: The pathologist chooses the slices as well as a few, small ROIs on
these slices and only considers the cell detail level. This gives a subjective,
selective opinion on the patient’s situation.

• Qualification: There is no reproducible, reliable mapping of the patient’s situa-
tion displayed in the ROIs in the chosen slices onto the scores used as analytic
items for the prognostic index. The same holds for the categories indicating
the functional marker expression level. The result is a subjective, qualitative
description of the patient’s situation.

6.1.2 Clues for improvement

In pathological literature there is a critical trend showing that improvements of the
standard diagnostic process are possible. An exhaustive and quantitative analysis
using automatic image analysis of digitized slices of the pathological probes leads to
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Figure 6.3: Example of a hormone receptor expression level image emphasizing heterogeneity
in functional marker expression

a significant improvement in diagnostic precision and therapy suggestions for breast
cancer by

• widening the selection of the material used e.g. by incorporating information
from the tissue overview like in (Rangayyan et al. 1997). In these studies
measures describing the acutance and shape of the tumor achieved a correct
prediction rate of 95% for the malignancy or benignity of a breast tumor.

• quantifying important parameters e.g. the hormone receptor status like (Rexhe-
paj et al. 2008) using the commercial Aperio image analysis system (Olson 2007).
This automatic image analysis on digitized, selectively stained slices gives better
thresholding for prognosis. In the case of the estrogen receptor the thresholding
found in the automated analysis improved the therapy response prediction.

Incorporating clues from different biomedical domains like biomolecular findings of-
fers an unrealizable variety and amount of clues. We concentrated on image analysis
as it gives a direct link to the experience of the pathological experts. Furthermore
we focused on properties of the patient’s tumor that can be identified on images of
the tissue magnification level. They give information about the embedding of the
tumor into its surrounding as well as its supplementary situation. These items play
an important role e.g. in the tumor’s response to chemotherapy, cf. (Tannock 2001).
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The tissue level clues were used to support the current standard diagnostics.
Therefore the information on the different levels – patient, tissue, cell and biochem-
ical properties – had to be integrated in multi-layer models, cf. (Klipp et al. 2009).
Advanced biomedical research uses such representations of objects that are collec-
tions of complex and heterogeneously structured characteristics.

6.1.3 Validation of additionally extracted clues

The suggested potentially relevant clues for improving diagnosis and prognosis have
to be validated over many patient cases. An evaluation of singular indications is
of limited significance as biological processes are driven by a network of influence
factors. Integrated multi-layer models are used as basis for an ecologically valid
evaluation. As these complex constructs are not cognitively manageable by human
experts anymore, approaches for automatic relevance analyses are needed. These
approaches can provide an initial orientation for clinical trials.

6.2 Selection and mapping of medical challenges onto
technical solutions

As the variety of possible clues for improving breast cancer diagnostics is incalculable,
we had to select medical challenges and identify possibilities of mapping these
challenges onto technical solutions.

6.2.1 Medically motivated suggestion of possibly relevant clues

Among the clues for diagnosis and prognosis improvement that are discussed in
biomedical literature, we concentrated on clues that are identifiable on images of
the tumor slices. Further focusing, only clues that are defined on the tissue level are
considered for the mapping onto automatically extractable feature groups.

In agreement with the pathological experts, we focused on characteristics that are
related to fields of tumor activity (Collins and Barker 2007): the distribution pattern
of the tumor, hormone receptor expression, inflammation processes and defense
of immune activity. This is in accordance with the influence factors on therapy
response discussed in literature. An additional level of information is given by the
heterogeneity of tumor properties in a patient’s slice. Especially the distribution of
the hormone receptors is important for the therapeutic success in hormone therapy,
see e.g. (Horsfall et al. 1989).
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6.2.2 Mapping the selected clues to machine extractable feature
groups

The pathological expert knowledge is often implicit, experience-based, hard to struc-
ture and focused on single case decisions rather than on differences between several
cases. The assumption that the pathological experts are able to explicitly annotate
relevant clues or categories is unrealistic. We introduced a stepwise process of
information extraction.

The process started with tissue characterizations based on machine learning
algorithms. The results were mapped onto the images and color coded. The experts
validated the relevance and appropriateness of the analytical results. This type of
evaluation was in accordance with their typical form of case based reasoning. Critical
annotations could be used in refinements of the technical analyses. The results of
the tissue characterization served as a basis for more complex feature groups like
the co-occurrence of tumor tissue with functional markers in a specific geometrical
constellation.

Extraction steps, building upon each others results, are able to adequately bridge
the semantic gap (cf. e.g. (Smeulders et al. 2000)) between the real biomedical clues
and their representations for information processing. Together with the pathological
experts we mapped the previously discussed clues for the tumors’ fields of activity
to sets of machine extractable feature groups. We focused on two main concepts:
heterogeneity and distribution patterns. These two concepts can be analyzed un-
der two perspectives: highlighting structural or functional aspects. This collection
seemed to account for many of the diagnostic indications needed to differentiate the
matched pairs given in our cohort. Table 6.1 shows a choice of these pairs and shows
the aspects that were considered to be clues for the different follow-up status.

6.2.3 Evaluating the relevance of feature groups in multi-layer
models

To yield a suitable, holistic representation of the patient’s tumor, it is essential to
evaluate the relevance of the chosen feature groups in every extraction step. To
reduce the complexity of these integral analyses we first checked the spectrum of
singular image and clinical feature groups with respect to their soundness and their
discriminative power with respect to the follow-up status of the patients.

The relevance of the chosen feature groups for the overall representation has
to be evaluated integrally. The mathematical integration requires an algorithmic
approach that is able to deal with different forms of quantitative and qualitative data.
The integration process is basically a kind of information aggregation according to
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Image examples of
good clinical course
(healthy)

Image examples of bad
clinical course (dead)

Potentially relevant clues

Heterogeneity characteri-
zation and quantification:
In the patient case with
good clinical course, the
dotted ellipse highlights
a tumor area that is com-
pletely heterogeneous
with a mix of dense spots
and loose regions. In the
patient example of a bad
clinical course, within the
dashed ellipse areas that
are homogeneous dense
are shown. This tumor
in addition had relatively
homogeneous loose re-
gions marked with the
solid ellipse.

Tumor distribution pattern
characterization and quan-
tification: The example for
the good clinical course
shows a filamentous dis-
tribution pattern that is
highlighted by the solid
lines. In the patient case
with a bad clinical course
the tumor grew in a ring
like structure marked by
the dotted ring section

Table 6.1: Image examples for matched pairs and potentially relevant clues
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various forms of dissimilarity. Some feature groups require the use of non Euclidean
measures. The algorithms are described in chapter 5. The pattern related aggregation
results and their potential relevance for the patients’ prognosis are presented to the
pathological experts in an interactive evaluation environment. Together with the
basic data, these relevance results support evaluation, correction and domain specific
insight.

6.3 Available data

The cohort that was available for our studies in the Exprimage project consisted of 93
patient cases. The Exprimage project was conceived as a retrospective study. That
means that the investigated patients’ tissue is older than five years3. The clinical data
for the patients were collected in the clinical routine during diagnosis and therapy.
The details about the disease course, especially whether

• the patient is still alive without disease or

• alive with disease (has a relapse) or

• dead from the disease,

are known. This follow-up status of the patients (alive, relapse, dead) was chosen as
medically relevant label, which we refer to in classification. The distribution of the
follow-up status in the data set was:

• Follow-up status one (alive): 50 patients

• Follow-up status two (relapse): 7 patients

• Follow-up status three (dead): 36 patients

We have a high imbalance between the classes. For all analyses the follow-up status
two was neglected as there were not enough data samples.

6.3.1 Clinical data

The clinical data are a necessary part of the representation of a patient’s situation.
They reflect pertinent findings for every patient according to the current state of the
art in diagnosis and prognosis. Most of the features collected in the clinical data are
related to the cell detail level. They are a complementary part of a multi-layer model

3The time interval of five years is the pertinent clinical frame to evaluate the further perspective of the
disease.
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of the patient’s situation with respect to information that is gained from the images
on the tissue level.

Table 6.2 summarizes the general clinical data that were available for the patients
in our cohort. For every feature a short explanation is given. We abbreviate the types
of features by: nu for numerical, ca for categorical, no for nominal and bo for boolean
features. For the categorical features the number of categories is given. A flag in
the table indicates whether the corresponding feature was chosen for our analysis.
The explanation for the choice is given in the following paragraphs. In table 6.3 we
show the categorization of the clinical feature representing the size and kind of a
tumor. This example shows the qualitative nature of the features. In that special case
different aspects of tumor properties are mixed within one feature.

For some of the clinical features there were missing values in the documentation4.
The selection of features for the analysis was done in accordance with the biomedical
experts.

The first criterion was that the selected features should be equally available for
patients with different outcomes. This was not the case for the time to follow-up and
for the survival time. We did not consider these features. As the number of distant
metastases was equal for most patients and missing for the others, we neglected this
feature.

According to the pathological experts, the medical features have different levels of
diagnostic reliability and impact on the disease progression. Currently the most im-
portant prognostic feature is the grading according to the Nottingham-Index (Galea
et al. 1992). It is composed of factors like the creation of tubular structures, polymor-
phisms of nuclei and the mitosis rate. For the available cohort this feature had no
good statistical correspondence with the follow-up status of the patients. Table 6.4
shows the contingency table between grading and follow-up status. We emphasize
that the gradings are not used to predict special follow-ups. Especially a relapse
is not prognosticated by grading two. Rather the tendency for survival or death is
expressed by the grading. Grading one expresses a good prognosis whereas grading
three is considered a bad prognosis. From grading two no reliable prognosis is given.

In the considered cohort 60% of the patients with grading one survived. Given
grading three, 41% of the patients survived. In the patients with grading two 64%

survived whereas 32% deceased. Only considering grading and follow-up status one

4The quality of clinical documentations is often insufficient. To use incompletely documented features,
computational methods that can cope with missing values are indispensable. The methods introduced in
this thesis are based on Vector Quantization. This can be extended to handling missing values. (Heskes
2001) e.g. introduced this extension by deriving an expectation maximization formulation of Vector
Quantization. This extension was outside the scope of this thesis. We did not implement this potential but
postponed it to future improvements of the system. Features with missing values were neglected in our
analyses.



6.3. Available data 121
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Age at surgery Age of the patient at time of
the surgery

nu - yes

Grading Grading of histo-pathological
differentiation of tumor according
to the Nottingham-Index on the
basis of creation of tubular
structures, polymorphism of
nuclei and mitosis rate

ca, no 3 yes

Size and kind
of tumor

Categorizing the size and kind
of tumor

ca 6 yes

Number of
affected lymph
nodes

Categorizing the number and kind
of affected lymph nodes

ca 5 yes

Number of
distant metastases

Categorizing the number of
distant metastases

ca, no 3 no

Invasion of
lymphatic vessels

Categorizing the grade of
lymphatic vessel invasion

ca, no 3 yes

Invasion of
veins

Categorizing the grade of
invasion of veins

ca, no 4 yes

Residual tumor Categorizing the existence of resid-
ual tumor

ca, no 4 yes

Estrogen receptor Immune-histochemical detection
of ER (more than 10%)

ca, bo 2 yes

Progesterone
receptor

Immune-histochemical detection
of PR (more than 10%)

ca, bo 2 yes

Human epidermal
growth factor
receptor 2

Immune-histochemical detection
of Her2

ca, no 4 yes

Time to
Follow-up [years]

Time from OP to
alive follow up

nu - no

Survival time
[years]

Time from OP to death nu - no

Table 6.2: Overview of prediction features from clinical data



122 6. A cognitive support system in breast cancer research

Category Explanation
Subcategory

TX primary tumor can not be analyzed
T0 no clue for some primary tumor
Tis carcinoma in situ

Tis(DCIS) ductal carcinoma in situ
Tis(LCIS) lobar Carcinoma in situ
Tis(Paget) M.Paget of mamilli without verifiable tumor

T1 tumor 2 cm or smaller in its peak open volume
T1mic micro invasion 0.1 cm or smaller in its peak open volume
T1a more than 0.1 cm, but not more than 0.5 cm in peak open

volume
T1b more than 0.5 cm, but not more than 1 cm in peak open

volume
T1c more than 1 cm, but not more than 2 cm in peak open vol-

ume
T2 tumor more than 2 cm, but not more than 5 cm in peak open

volume
T3 tumor more than 5 cm in peak open volume
T4 tumor of every size with direct extent to the chest wall or

skin, as far as described in T4a to T4d
T4a extent to the chest wall
T4b edema (including orange peel skin) or ulceration of the

breast skin or satellite nodes of the skin at the same breast
T4c criteria of 4a and 4b together
T4d inflammatory carcinoma

Table 6.3: Example for clinical categories representing combined tumor size and kind

Grading one Grading two Grading three

Follow-up status one 6 28 16
Follow-up status two 3 2 2
Follow-up status three 1 14 21

Table 6.4: Contingency table for grading to follow-up status for the cohort given in Exprimage,
explanation see text on page 120
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and three respectively yielded a Cohen’s κc of 0.23 which can be interpreted as slight
to fair agreement, see section 4.5.2 for details. For this configuration – neglecting the
grading two, which we will later refer to as clinical configuration – we determined
the recall of class one to be 27.3% and the precision of this class as 85.7%. The recall
of the third class for this data set was 95.5% and the precision 56.8%. The overall
recognition rate was 61.4%. As the grading is the standard diagnostic feature, it was
integrated into the pattern analysis.

Summarizing, the clinical features we used for the analysis were:

• the age of the patient at the time of surgery

• the grading according to the Nottingham-Index

• the size and kind of tumor

• the number and kind of affected lymph nodes

• the invasion of lymphatic vessels

• the invasion of veins

• the presence of residual tumor

• the expression of the estrogen receptor

• the expression of the progesterone receptor

• the expression of the human epidermal growth factor receptor 2.

Neglected features were:

• the time to follow-up (only available for alive and relapse patients)

• the survival time (only available for dead patients)

• the number and kind of distant metastases (equal value in all featured patients).

There was no information available on the therapeutic course of the patients. This
limits the medical expressiveness of the analysis model. The relevance of the feature
groups with respect to therapy response could not be examined. In the medical
perspective we could only generate tentative hypotheses that have to be evaluated by
pathologists. In order to become medically relevant, the results have to be systemati-
cally analyzed in clinical trials. Our goal was to develop a computer based analysis
system that is able to integrate mixed patient data and that builds an individual
profile for diagnosis and therapy out of this integrated data. These profiles have the
potential of pointing towards hypotheses for medical relations.
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6.3.2 Image data

For every patient we had two kinds of stained tissue slice images: structural and
functional stains. The starting point for image analysis in Exprimage were raw
digitized microscopic images of stained tissue. These images showed the whole
object slide. The original images were given to correspond to a 40 or 20 times optical
magnification. We standardized the magnification of all images to correspond to
a 20 times optical resolution. One pixel in the image thereby was equivalent to a
physical size of 5.2 µm× 5.2 µm. We reduced the processed area of the probes to the
actual tissue sample by hand. Thereby surrounding noise was excluded. After this
procedure the images sizes varied according to the tumor size. Our smallest sample
comprised 1398× 1036 pixel which corresponds to an area of about 7.3mm× 5.4mm,
whereas the biggest sample size was 2138× 2971 pixel corresponding to an area of
about 11.1mm× 15.4mm.

Structural stains

The structural marker stains highlight principle cellular modules that built the cells’
structure. In the Exprimage project, we considered the following structural stains:

HE The commonly used histological HE (hematoxylin and eosin) stain roughly
speaking stains cell nuclei blue and some cell plasma proteins in various shades
of red.

VIM The mesenchymal marker Vimentin highlights connecting tissue in shades of
brown. It has a blue counter stain.

AE1AE3 The pan-cytoceratin stain AE1AE marks epithelial tissue that is lining
cavities and forming glands. The main stain is brown, the counter stain is blue.

These structural stains were available for all patients. Within these different stains
the HE stain marks a broader spectrum of structural information than all other stains
used in Exprimage. Figure 6.4 shows the original digitized images of the structural
stains for one patient.

Functional stains

The functional markers stain structures that are associated to special functions within
the tissue. For all patients we analyzed the following functional stains:

CD45 The CD45 stain highlights leukocytes and is used to detect inflammatory
processes in the tumor slice.
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Figure 6.4: Example of the structural stains for one patient as they are available as digitized
images.

ER Using the ER marker cells that express the receptor for estrogen are identified.

PR The PR stain highlights cells expressing the progesterone receptor.

The inflammatory processes are known to influence the therapy response of tumors,
e.g. (Grivennikov et al. 2010). Hormone therapy is suggested based on the analysis
of the hormone receptor status of the patients. Figure 6.5 shows the original digitized
images of the functional stains for one patient.

6.4 Information processing for setting up multi-layer
models

To build a suitable cognitive support system for breast cancer research in Exprimage
our working group developed three information processing complexes:

Image processing and feature calculation This first complex of processing steps
comprised the network of preparation and extraction steps for groups of image
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Figure 6.5: Example of the functional stains for one patient as they are available as digitized
images.

features that represent the potentially relevant medical clues of a patient’s
tumor situation.

Isolated relevance analysis The extracted feature groups were, in a second complex
of information processing steps, evaluated according to their relevance for
the description of a patient’s situation with respect to prognosis prediction.
Therefore the single feature groups were evaluated by the human expert as well
as in automatic evaluation procedures to get a selection of possibly relevant
candidate feature groups for a multi-layer model.

Integrated relevance analysis The selection of feature groups identified in the sec-
ond step was analyzed integrally according to the relevance of the feature
groups within the context of the multi-layer model. Together with the basic
data and the interim results, the integral analyses results were displayed to the
pathological expert. The objective was to allow the evaluation of the results
and induce possible insights.

The image processing for the feature extraction is introduced in section 6.5. As it is
not in the focus of this thesis we will not give a detailed scientific comparison to other
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possibilities to solve the image processing problems. The discussion of the feature
groups is necessary to understand their heterogeneity and their embedding into the
overall patient’s tumor representation.

In an ideal situation all feature groups would be analyzed integrally for their
relevance in the multi-layer model. This yields a complex model with a high number
of free variables. There was a limited amount of patient data samples available in
our project for the adaptation of the free variables. It was possible that this amount
of data was too small to reliably estimate the free variables from it. We interposed
the isolated relevance analysis to get a reduced set of candidate feature groups.

In section 7.2 the isolated relevance analysis for the selection of single feature
groups as candidates for a holistic multi-layer model is discussed. The focus of this
thesis is on the integrated relevance analysis and its evaluation. We will describe it
section 7.3.

6.5 Image processing and feature calculation

Together with the pathologists we conducted a requirement analysis, identifying
which medical clues have to be mapped to automatically calculable feature groups to
yield suitable representations of tumor situations. As mentioned before, we selected
two main concepts of tumor description – heterogeneity and distribution patterns –
and analyzed them under structural or functional perspectives. Table 6.5 shows these
tumor properties together with the conceptual description of a set of automatically
computable feature groups that we extracted for their representation.

To map these potentially relevant medical clues to machine extractable feature
groups, a network of image and information processing steps was needed that we
discuss in the following sections. We show a coarse schematic representation of the
network of image processing steps in figure 6.6. For sake of clarity we dropped some
details of interconnection between the single processing steps as well as the detailed
input and output characterization. They will be discussed for the single processing
steps in the following sections.

The image processing and feature calculation in the Exprimage project was mainly
implemented and conducted by two students. The subject orientation and technical
supervision of the students was given by the author. The students work resulted in
two theses: Elionora Khabirova’s master thesis on “Image processing descriptors for
inner tumor growth patterns” (Khabirova 2011) and Jan Bornemeier’s Diplomarbeit
on “Development of descriptors for the determination of spatial distribution patterns
in histopathological tissue slides of the mammary carcinoma” (Bornemeier 2011). We
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Potentially medically relevant
tumor property

Conceptual description of automatically
computable feature groups

Structural heterogeneity Differentiation of inner tumor growth
structures

Functional heterogeneity Co-occurrence analysis for functional
marker expression

Structural tumor distribution
patterns

Graph and morphometry based analysis of
tumor distribution patterns

Functional tumor distribution
patterns

Relation based analysis of tumor
distribution patterns in correlation to func-
tional marker expression

Table 6.5: Selected medical tumor describing aspects and their mapping to conceptually
described automatically computable features

will base our descriptions of the image processing network in the following sections
on these theses.

Our report starts with the tissue type differentiation that in figure 6.6 is shown at
the center because it was the basis for all other feature extraction tasks.

6.5.1 Basic recognition task: tissue type differentiation

To characterize the general tissue situation on a patient’s probe, a discrimination of
tissue types like tumor or healthy tissue was needed. In this section we discuss an
intuitive evaluation possibility of tissue type characterizations. We introduce our
supervised approach for tissue type discrimination and explain why this approach
failed in evaluation procedures. We further focus on the finally applied procedure –
a clustering approach. This was chosen for the working system as it proved to be
reliable in evaluation. The fourth part of this section is concerned with the question
of triggering domain knowledge by the evaluation of the tissue type characterization.
At least we will shortly sketch the extraction of tissue regions from the tissue type
characterization.

Evaluation of tissue type differentiation by pseudo-colored images (PCIs)

VQ based algorithms are frequently used for segmenting images into regions of
similar properties, e.g. similar texture or intensity. Often a feature representation is
calculated for every single pixel in the images. These pixel features are clustered or
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Figure 6.6: Schematic representation of the processing steps in image analysis for the feature
group extraction in the Exprimage project.

classified. New images are created with the same dimensions as the input images.
Every pixel of these evaluation images is colored according to the prototype index or
classification result of the corresponding pixel feature representation. This process is
also called pseudo-coloring.

For evaluating a clustering the prototype indices are assigned to colors. For the
evaluation of a LVQ based classification the assigned classes are mapped to colors.
The choice of the color set can reflect conceptual aspects. It has to be done carefully.
From the psychological point of view misleading, suggestive color representations
are possible. (Flatla and Gutwin 2010) introduced in 2010 a possibility for auto-
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matic individual adjustment of colors to improve the interpretability of information
visualization.

We mapped the classes or the prototype indices respectively to colors according to
the default colormap in MATLAB. The resulting pseudo-colored evaluation images
were overlaid to the corresponding input images and by adjusting the transparency
the images were compared according to their inherent structures of the regions.
Figure 6.7 shows an example of the evaluation of a clustering conducted on image
pixel representations using texture features. The pseudo-colored evaluation image
was overlaid to the histological input image. The figure shows a variation of the
transparency from 100% to 0% transparency of the evaluation image.

Figure 6.8 shows an example of an image pixel classification evaluation using the
same method. The pseudo-colored evaluation image was overlaid to the histological
input image with different transparency settings from 100% to 0% transparency. The
legend of the class to color mapping is given on the right. This visualization allowed
an easy evaluation by the domain expert.

If the result visualization differs from the expectation, this can be due to several
causes: failure in learning, inadequate visualization method or wrong expectation.
Every potential explanation has to be checked with the domain experts.

Supervised tissue differentiation approach

To establish a tissue differentiation we needed examples for suitable classes as well
as for features that are able to discriminate these classes. We asked the patholog-
ical experts to annotate pertinent regions on a single HE stain. We also asked for
potentially computer graspable image features like texture or distribution of edges
that appropriately distinguish the tissue regions that were marked. The criteria that
the experts highlighted were the graininess of the tissue as well as the intensity of
the stain, i.e. the texture of the tissue. We chose the simplest way of representing
the texture for each pixel – calculating the mean and standard deviation of the gray
values within an area of 19× 19 pixel around each pixel. This area corresponds to
a sample area of approximately 0.1 mm× 0.1 mm and is adjusted to the size of the
expected differentiating textures. For the smallest image that makes approximately
1.5 million feature samples with a feature dimension of two each. For the biggest
image there are over 6 million samples.

In the annotation of example areas for classes the experts were free to choose the
number and type of the tissue classes. We used these annotations to train a Linear
Discriminant Analysis (LDA) using squared Euclidean distances5. As the annotations
were not done with pixel accuracy we did not evaluate the LDA performance with

5For details about the LDA we refer to section 4.3 of (Hastie, T. et al. 2003).
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Figure 6.7: Example for the evaluation of a clustering of image regions, in this case tissues,
using a pseudo-colored image (PCI). The pseudo-colored evaluation image was overlaid to
the image using different transparency settings.

an accuracy measure. We rather used a visual evaluation by the pathological experts.
The classes annotated by the pathologists were mapped to artificial colors for an
evaluation using pseudo-colored images as described in the last section. Figure 6.9
shows the evaluation of a classification result, overlaying the pseudo-colored image
to the HE image with a transparency of 50%.

The experts confirmed the correctness of the results for the annotated image. The
generalization using the learned parameters on other patients’ images was poor,
as highlighted in figure 6.10. The rectangles mark examples of tumor tissue that
was wrongly classified as healthy tissue. This observation is in accordance with the
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Figure 6.8: Example of an evaluation process for a classification of image regions, in this case
tissues. The pseudo-colored evaluation image is overlaid over the microscopic image of the
tissue using different transparency settings.

Figure 6.9: Result of a LDA on a single patient’s image learned on expert annotations given
on this HE stain.
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Figure 6.10: Generalization result of a LDA that was trained on one single patient’s image, see
figure 6.9. In this example the LDA is applied to four other patients’ images with unsatisfying
results.

expectation that the tissue texture in one single patient is not representative for the
tissue texture in other patients. Consistent annotations over a larger number of cases
are needed to establish a good generalization ability for the LDA. The annotations
are necessary to cover the variety of manifestations of different tissue classes.

We asked one expert to apply the annotation scheme used for the first patient
image to ten patient images. When we analyzed this annotation procedure it was
obvious that it was very difficult for the expert to define consistent classes over
more than one patient. He often wanted to introduce specialized classes for single
patients. The degree of detail in the class definition was not clear and he asked
for the possibility of a hierarchical annotation scheme. These observations led us
to the assumption that the annotations were not reliable in terms of inter-observer
reliability.

We conducted a reliability test: We asked one expert to mark regions of similar
tissue in different probes and name them – as described above. Then we presented
the marked regions isolated from the complete probe image to another expert and
asked her to choose one of the following options:

• Name the given tissue region using one of the predefined names.

• Mark the tissue region as ambiguous.
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no. of cases percentage (%)
class validated conflict consistent conflict consistent

Fat tissue 53 0 53 0.0 100.0
Necrosis 45 20 25 44.4 55.6
DCIS 9 2 7 22.2 77.8
Tumor-solid 41 30 11 73.2 26.8
Tumor stroma 93 17 76 18.3 81.7
Tumor parenchyma 84 48 36 57.1 42.9
Inflammation-normal 15 10 5 66.7 33.3
Adenoid tissue 4 2 2 50.0 50.0
Vessels 72 9 63 12.5 87.5
Tumor-dissociated 15 6 9 40.0 60.0
Tumor-tubular 21 20 1 95.2 4.8
Inflammatory tumor 39 19 20 48.7 51.3
Normal mammary 26 10 16 38.5 61.5

parenchyma

Table 6.6: Class-wise statistic of an inter-observer reliability test for the annotations given by
two experts over 10 patient images

For some classes the annotations were often marked as ambiguous. This was espe-
cially the case for: solid tumor (22%), tubular tumor (19%) and inflammatory tumor
(18%). In contrast to this, the annotations of the classes DCIS, adenoid tissue and
normal mammary parenchyma were never marked as ambiguous.

For the inter-coder reliability statistics we counted the number of consistent and
conflicting codings. Regions marked as ambiguous were not considered for this
statistic. The results for the reliabilities in the single classes are shown in table 6.6.
Fat/healthy tissue was consistently classified in 100% of the cases. In contrast to
this, normal tumor parenchyma was only consistently marked in 36 out of 84 cases,
yielding a reliability of less than 50%. Averaged over all annotations the consistency
percentage was 62.7%. The overall reliability is shown in table 6.7.

The low agreement rate between the experts’ codings had two apparent reasons:

• the large number of coded classes and

• the difficulty for the human experts to overlook ten cases.

Pathological experts are not used to integrative thinking over many cases as their
analysis usually is concentrated on a single case. We assumed that suggestions of
general tissue types which were created via unsupervised learning could help the
pathological experts in the identification and naming of common tissue types for
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total number of validation cases 517
total number of consistent cases 324
total number of conflict cases 193

total conflict percentage 37.3 %
total consistency percentage 62.7 %

Table 6.7: Overall statistic of an inter-observer reliability test for the annotations given by two
experts over 10 patient images

many cases. In a modified approach we grouped the tissue using an unsupervised
clustering procedure. The resulting groups were mapped onto artificial color codings
of the probes. These images were presented to the experts who post-labeled the
various tissue regions. It turned out that this procedure was reliable and the results
were acceptable for the experts.

In this computer based generation of annotations we used the advantage that
for the computer based analyses the information of different structural stains can be
integrated. We assumed that the integrated structural tissue stains in a registered
stack deliver more stable features for discrimination than the HE stain alone. For this
integrated analysis the stain images had to be aligned or registered.

Registration of stain image

The conceptual idea of the alignment or registration process is to find a transformation
from the coordinate system of one image to the coordinate system of the other image,
such that the information at a certain point in one image is most similar to the
information at the corresponding point in the other image. That means, that after
the transformation the informative structures in the images overlap as exactly as
possible.

For the tissue type differentiation we registered the structural stains into a com-
mon stack of images. In the following, we introduce the preprocessing and the
registration process that we used in Exprimage.

Preprocessing As noise or other perturbing data on the images change the gray
or color value information, they can cause suboptimal registration results. We
preprocessed the single images, preserving the information that is relevant for the
registration process and removing perturbing data.

The stains varied significantly in their staining intensity as can be seen in the
examples given in figure 6.4. The information of this variance often disturbs the
registration process. Furthermore the specific color information in the images is most
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Figure 6.11: Summary of preprocessing steps for registration displayed on an example of raw
staining images to be aligned.

often irrelevant for the registration process. The conversion of the color images to
gray-scale images was a useful reduction of variance in this processing step6. In
contrast to the intensity and color information, the structural information of the
single images was used to full extent. For this purpose the contrast of the generated
gray-scale image was enhanced by adjusting the images’ histograms.

All preprocessing steps for the registration of the images are summarized in
figure 6.11. After the preprocessing a selection of registration relevant information is
preserved.

Registration process We used the enhanced gray values gained in the preprocess-
ing to represent the information that had to be aligned in the images. As the different
markers highlight different aspects of the tissue, the gray values of similar tissue were
not be the same in different marker images. Thus it was not appropriate to simply
compare the gray values and use their difference as a measure of correspondence in
information when evaluating the overlapping quality.

Instead we used a measure evaluating the correlation between the aligned gray
values in the different images. This quantitative measure is called mutual information.

6We implemented this by using the “rgb2gray” function from MATLAB’s Image Processing Tool-
box (Mathworks n.d.b).
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It expresses how much information of one image can be gained from the other one,
cf. (Pluim et al. 2003). If the images are optimally aligned, they contain the maximum
information about each other. As the HE stain contained most structural information
it was used as reference stain to which all other stains were aligned.

Additionally to the measure that was used to evaluate the overlapping quality, a
procedure to optimize this measure during registration was introduced. To determine
a suitable approach for the optimization of the mutual information, it was necessary
to know which kinds of transformations was possible between the images that had to
be aligned. Often the possible transformations are differentiated into rigid, affine and
non-affine transformations7. Rigid transformations allow translations and rotations.
In affine transformations additionally anisotropic scaling and skews are allowed.
They can be represented in a matrix form and have the characteristic that under their
application parallel lines stay parallel. In addition to the mentioned transformations,
non-affine transformations allow any degree of freedom in the mapping.

In Exprimage, these non-affine transformations were necessary, as the tissue slice
was deformable before it was fixed to the object holder. Non-affine transformations
bear the risk that potentially any point in one image can be mapped to any point in
the other image. To reduce the degree of freedom for the non-affine transformation,
in Exprimage, it would have been necessary to model the tissue properties. This
would have been error prone.

As the tumor slices experienced only slight and local non-affine deformations,
aligning them using a rigid transformation was legitimate. The additional slight non-
affine deformations were handled in a second process step using a locally non-affine
registration. This gives the following two-stepped registration process:

1. Preregistration: rigid registration to adjust the coarse region of interest

2. Fine registration: non-affine registration to compensate small non-affine trans-
formations.

The process was implemented as follows: For the rigid registration the preprocessed
scene image was rotated and shifted against the preprocessed reference image within
a certain range. In every position the mutual information of the transformed images
was calculated. This was optimized using the Amoeba algorithm, that is also known
as Nelder-Mead algorithm (Press et al. 2007).

For the fine registration, every preregistered scene image was divided into four
non overlapping tiles. Then every tile was slided on the model image in a given range
using again the Amoeba algorithm (Press et al. 2007) to find an optimal mapping. To

7(Hill et al. 2001) give a comprehensive survey on the basics of registration, possible transformations,
registration techniques and their applications in medicine.
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Figure 6.12: Summary of processing steps for registration displayed on an example of prepro-
cessed staining images to be aligned.

integrate the different results for the tiles, we projected a grid of size 16× 16 onto the
reference image. For every grid point its transformation vector according to the best
correlation transformation of the tiles was calculated.

To smooth the resulting vector field, we applied the interpolation approach intro-
duced by (Fornefett et al. 1999). In this approach the interpolation transformation
function was approximated by a sum of polynomials plus the sum of Radial Basis
functions (RBFs). Because of the rigid preregistration we did not need the polynomi-
als for the approximation of general shifts or rotations. The RBFs were implemented
by Wendland splines, see (Wendland 1995), as suggested by (Fornefett et al. 1999).
The interpolation transformation function as sum of Wendland splines was applied
to all pixel in the scene image to get the registered scene image. Figure 6.12 summa-
rizes all steps in the registration process and applies them to two example images.
The result of the registration process was a stack of registered structural tissue slice
images.

The preprocessing introduced before was not capable to remove all data that
can disturb the registration procedure. We faced artifacts of missing tissue regions
as the slices are spoiled during cooking in the staining process. Figure 6.13 shows
on the left side an example of a partially disrupted HE slice image marked with an
ellipse. As the number of prepared tissue slices with all background information
available was small, even this slice was valuable and had to be registered and used
in further analyses. For the spoiled areas the registration process could not find a
valid correspondence when comparing the corresponding AE1AE3 slice image at the
right side of figure 6.13. This nonexistent correspondence caused misalignments. To
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Figure 6.13: Example of a spoiled HE stain slice image to which an AE1AE3 stain slice image
should be registered

overcome this problem, we modified the process of mutual information calculation
such that missing tissue areas were identified and ignored.

Evaluation of registration The grain-size on which combined features could be re-
liably calculated depends on the registration quality and reliability that was achieved.
Registration errors would be passed through the whole processing chain. Before
proceeding we evaluated the quality of the registration. There were different factors
that had a negative influence on the registration quality, e.g.:

1. The 3D tumor was cut into 2D slices. The stained slices we used in the analyses
had different distances between each other. Slices with a higher distance to one
another in the basic tumor showed higher differences in the tissue distribution.

2. A slice was partially spoiled as shown in figure 6.13.

3. There were recording artifacts like inhomogeneous lighting, shadows or stain-
ing artifacts that were not correctable by the automatic preprocessing.

The last two influence factors occurred seldom. In contrast to this, the first influence
factor concerned every patient’s probe. In registration the underlying assumption
is that the considered images comprise more or less the same information. Strictly
speaking this was not the case in the Exprimage project’s images as on different
images there were different tissue slices with different stainings. Distant slices
showed bigger differences in their informative structures than consecutive ones.
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In principle there are two ways of quality assurance (QA): automatic processing
or manual evaluation. The mutual information of two slice images is itself a measure
of quality. It is a technical term that solely builds on local gray-value correspondences
of the stain images. As it is not normalized it is not pertinent for the comparison over
different image pairs. We ran human evaluations of the stack of registered images.

To yield a reliable QA procedure, it was necessary to fix relevant criteria for the
evaluation of the registration quality. The relevance of the criteria in our case was
determined by the processing steps following the registration. A suitable registration
was fine-grained enough to support further analyses of structures with pathological
relevance. We divided the quality judgment into four categories with an associated
measure, representing the pertinence of the registered images:

-1 – Unusable bad quality in registration and slices’ preparation

0 – Critical bad slices’ preparation and critical registration quality (as good as pos-
sible)

1 – Good good quality in registration and slices’ preparation

2 – Perfect very good quality in registration and slices’ preparation

We built an evaluation tool allowing an overlay of two images with adjustable
transparency. Figure 6.14 shows a registered sample in this environment at different
settings for the overlay transparency. The transparency slider is highlighted by the
ellipses. To clarify the idea of registration quality, areas of bad registration quality
are marked using solid rectangles whereas regions of good registration quality are
highlighted using dotted rectangles.

Averaging the categorical measure over all 93 patients’ slices in all structural
stains, the overall registration quality was about 0.87 with a variance of 0.37. In most
cases a sufficiently good registration was possible. Different stains contributed to
this average with different precision averages. The average quality of registering the
AE1AE3 stain to the HE stain was at a value of 1.01, whereas 0.72 was the average
quality value of registering the VIM stain to the HE stain. This was expected as the
VIM stain highlights less structural information than the AE1AE3 stain.

Unsupervised tissue differentiation approach

The clustering process was based on the images of the HE, VIM and AE1AE3 stain
that were preprocessed as described in section 6.5.1 and registered as introduced
in section 6.5.1. We used the simple texture representation by the mean and the
standard deviation of the intensity that were calculated for every pixel in the images
in a 19 × 19 pixel area around the pixel. Figure 6.15 depicts the process of feature
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Figure 6.14: Example of the evaluation of a HE and a AE1AE3 stain using the overlay evalua-
tion tool.

extraction schematically. This yielded between 1.5 and 6 million feature samples per
image.

Together with the pathological experts, we selected ten patients to cover a large
variety of tissue types. The feature data for this selection – approximately 37.5 million
samples – were analyzed using the SOM toolbox for Matlab (Alhoniemi et al. n.d.).
We trained a Self Organizing Map with a hexagonal grid in sheet form with 106× 47

units. For details on the Self Organizing Map we refer to (Kohonen et al. 2001).

Together with the pathological experts, we decided to allow three clusters – and
thus three tissue types. We expected this choice to yield enough information and
context for further processing and to lead to a stable tissue recognition. This approach
was motivated by the multi-layer processing in the human visual cortex, where
several simple but stable processing steps realize a complex information processing
in their suitable collaboration. Correspondingly we clustered the trained SOM using
the k-means algorithm with a k of 3. For evaluation we used pseudo-colored images.
Figure 6.16 shows the pseudo-colored evaluation image of the resulting clustering for
the image example that was used to depict the results for classification in figure 6.9
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Figure 6.15: Schematic depiction of the feature extraction process for tissue type characteriza-
tion.

Figure 6.16: Result of a tissue clustering trained over ten patient cases. In this example the
clustering is applied to the patient case that was used in the first classification test, cf. figure 6.9.

on page 132. The best clustering – according to the domain experts’ evaluation – was
analyzed in a post-labeling procedure, cf. section 2.6. It showed three tissue types,
that the pathological experts identified to be:

• Tumor tissue, also called tumor parenchyma: the actual, vital part of the tumor,
represented by the blue cluster
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Figure 6.17: Generalization result of the clustering trained over ten patient cases. We applied
this clustering to the four patient cases that were used in the generalization test for the
classification in figure 6.10.

• Tumor supporting tissue, also called tumor stroma: supplying the tumor with
nutrients, represented by the turquoise cluster

• Healthy tissue: often fatty tissue that gets invaded by the tumor and by the
tumor supporting tissue, represented by the green cluster

Figure 6.17 shows the distribution of these tissue types in the four patient cases that
were used in the generalization test of the classification in figure 6.10 on page 133. In
figure 6.17 for comparison we highlight the regions that were wrongly classified in
the generalization test of the supervised approach based on the experts’ annotations.
These regions were consistently identified by the clustering.

The unsupervised tissue type differentiation procedure gave a coarse-grained
and stable pixel-wise representation of the structural tissue situation of the tumor
slice. We refer to the pseudo-colored images used in the evaluation as SOM images.
They were used as basis for more complex features. For the calculation of complex
features that are cognitively more intuitive for the pathological experts, regions of
single tissue types and their contact lines had to be identified. These relevant regions
were handled as objects for which we could calculate pertinent properties, e.g. their
morphology.
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Triggering specific domain knowledge by pseudo-colored images

In the tissue characterization evaluation the experts decided whether the results
seemed plausible by going through the clustering results of several images. If that
was the case in an overview, the experts searched for affirmations of common sense
domain knowledge. If some results seemed to contradict these expectations there
was a range of possible causes reaching from algorithm failure to new insight.

In our application the experts expected a tumor region within the image to be
segmented into different subregions but the clustering result united these subregions.
They confirmed their expectation in the overlay of the SOM images to the HE stains.
When evaluating the overlay with the cytokeratin AE1AE3, the experts saw their
fault in the expectation as the delineation of the tumor was more precise there.

In a situation where the result of the learning is not in accordance with the experts’
expectations, the experts have to be encouraged to reassure its correctness. Perhaps
the algorithm found a weak spot of the experts’ normal procedure. If the parameters
of the learning, e.g. the features and dissimilarities, have a strong domain motivation,
the domain experts have to test the hypothesis that the details shown by the clustering
are a pointer towards interesting further research perspectives.

Identification of regions

The region extraction was a processing step that was needed in nearly all feature
extraction chains. This is depicted in the third row of the schematic network represen-
tation in figure 6.6. Computationally it meant to extract connected components (CCs)
of pixel with equal properties, e.g. with equal tissue type from the SOM evaluation
images, see section 6.5.1. To remove small noise structures, we smoothed the borders
before calculating the connected components. For the details of the region calculation
we refer to section 5.2.2 in (Bornemeier 2011).

Summary of processing sequence and data used

The identification of tissue areas was finally based on the digitized color images of all
structural stains that we introduced in section 6.3.2: HE, VIM and AE1AE3. These im-
ages were preprocessed using the methods described in section 6.5.1 which includes
a conversion into gray values. The preprocessed images were registered to an image
stack in the two-stepped registration process explained in section 6.5.1. The resulting
image stacks were the input for the calculation of features that were clustered using
an unsupervised Self Organizing Map based approach, see section 6.5.1. In the
evaluation process the clusters were mapped to tissue types. The pseudo-colored
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images arising from the evaluation of the clustering were the basis for quantitative
analysis of tissue type presence.

6.5.2 Structural heterogeneity: inner tumor growth patterns

The heterogeneity of a tumor as a potentially relevant medical clue also reflects the
different inner growth structures within a single tumor. A characterization of the
inner tumor growth structures can answer questions like: Are there areas in the
tumor that are dense? Is the tumor completely loosely structured? These questions
are important for the characterization of the microembedding of the tumor. It also
gives hints about the tumor physiology that is known to influence the response to
chemotherapy (Tannock 2001).

Figure 6.18 shows the AE1AE3 images and the SOM images, see section 6.5.1, of
a matched pair that was the motivation for the characterization of the inner growth
pattern of the tumor. The differences in the inner tumor structures that were apparent
in the AE1AE3 stain were not discriminated in the SOM image. This was due to
the registration of the structural stains that was not reliable enough to extract stable
fine-grained features from the registered stacks. We conducted the detailed inner
tumor growth pattern analysis using the AE1AE3 stain alone. The left column in
figure 6.6 shows the corresponding information processing steps.

The characterization given by the SOM tissue type differentiation (see section 6.5.1)
oriented the fine-grained inner structure characterization. pixel that in the SOM im-
age were identified as tumor parenchyma were considered for the second tissue
characterization using the AE1AE3 stain. The discrimination of the different inner tu-
mor structures by human experts was roughly based on texture differences. For their
description we used more complex texture representing features as in the SOM anal-
ysis. In different tests, that are described in detail in section 4.2 of (Khabirova 2011),
we identified a suitable set of four Haralick texture features (Haralick et al. 1973):
Haralick’s Homogeneity, Sum of squares (variance), Sum Average and Sum Variance.
By applying them to the preprocessed gray value images of the AE1A3 stains the
texture of the different inner tumor structures was appropriately described over the
different patient cases.

As in the SOM tissue characterization, see section 6.5.1, we used an unsupervised
approach for the identification of different types of inner growth structures. We
conducted different clusterings using the “kmeans” function of the Statistics Toolbox
for Matlab (Mathworks n.d.c) with the squared Euclidean distance and k varying
from 4 to 7 according to the pathological expectation of a suitable number of inner
growth patterns. The clustering was trained using the feature vectors of ten chosen
patient cases. The most appropriate cluster number according to Silhouette plots was
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(a) Example of a patient case that showed a relatively homogeneous mix of dense
spots and loose regions. This patient was alive five years after surgery.

(b) Example of a matched pair patient case with different tumor regions in one tumor
that show different internal growth patterns. At the upper part of the tissue probe
there were tumor regions with a very dense and compact expression of the epithelial
marker AE1AE3 whereas the lower tumor regions showed looser expression. This
patient was dead five years after surgery.

Figure 6.18: AE1AE3 stain and SOM images for a matched pair that was the motivation to
quantize different inner tumor growth structures. The SOM did not distinguish between the
different inner tumor structures.
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five (Khabirova 2011). We show the Silhouette plots for five and seven clusters in
figure 4.2. The pathological experts associated the five clusters with the following
inner tumor growth structures:

• red cluster: solid homogeneous structures

• blue cluster: half-homogeneous structures

• green cluster: heterogeneous structures

• yellow cluster: sparse heterogeneous structures

• turquoise cluster: traces of tumor

Figure 6.19 shows on the left-hand side the results of the inner tumor structure
clustering in pseudo-colored images for the matched pair that was introduced in
figure 6.18.

To quantify the distribution of the inner tumor growth structures we calculated
how much of the tumor parenchyma was identified as belonging to the five clusters.
These statistics are shown at the top of the right-hand sides for both cases of the
matched pair in figure 6.19.

To yield a measure of heterogeneity we identified the connected components
(CCs) for every inner growth structure cluster using the approach described before
in section 6.5.1. The number of the CCs of the inner growth structure clusters gave a
measure for the scattering of these inner growth structures. We show these measures
in the middle of the right-hand sides for both cases of the matched pair in figure 6.19.
The mean and the standard deviation of the area of the CCs were measures for the
heterogeneity in the scattering of the single inner structure regions within the tumor.
We show these statistics at the bottom of the right-hand sides for both cases of the
matched pair in figure 6.19.

Summary of processing sequence and data used

The characterization of the structural heterogeneity was based on the digitized
color image of the AE1AE3 stain and the SOM evaluation image resulting from
the basic tissue type differentiation presented in section 6.5.1. These images were
spatially related according to the registration that was conducted for the tissue
type differentiation. The AE1AE3 stain image was preprocessed according to the
processes introduced in section 6.5.1. From the SOM evaluation images the regions
representing tumor parenchyma tissue were identified using the method introduced
in section 6.5.1. Within the spatially corresponding regions of the preprocessed
AE1AE3 image, features representing the texture of the inner tumor structure were
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(a) Analysis result of the patient case that showed a relatively homogeneous mix of
dense spots and loose regions. This was highlighted in the clustering as well as in the
statistic, where the dense red cluster yielded similar values as the green loose cluster.

(b) Analysis result of the patient case with different internal growth pattern tumor
regions in one tumor. At the upper part of the tissue probe the dense regions were
highlighted in red. The red cluster also had the highest area value. In the lower part
the tumor regions that showed looser expression were highlighted in yellow and
green.

Figure 6.19: Result excerpt for the inner growth structure clustering for the matched pair cases
introduced in figure 6.18. The evaluation images are given at the left-hand side, the calculated
statistics at the right-hand side . Details concerning the statistics can be found in the text.
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calculated. We used these features in a clustering process to identify different types
of inner tumor structure. Within an evaluation process the experts mapped the
clusters to inner tumor structure types. The resulting pseudo-colored inner structure
image was the basis for the characterization of the heterogeneity. We also identified
regions of different inner tumor structures with the corresponding approach from
section 6.5.1 and analyzed them statistically.

6.5.3 Functional heterogeneity: co-occurrence analysis of
functional marker expression

The co-occurrence of the functional marker expression with the identified tissue types
or with other functional marker expressions is a medical clue with significance for the
therapy response prediction concerning e.g. hormone therapy (Horsfall et al. 1989).
In current clinical diagnosis the estrogen and progesterone receptor expression is
described qualitatively. The decision “positive” is based on a human pathological
expert’s judgment whether more than 10% of the tumor parenchyma show hor-
mone receptor expression. (Rexhepaj et al. 2008) showed that a precise and reliable
quantification of the hormone receptor expression using automatic image analysis
gives a thresholding that better corresponds with the prognosis of the patient. In
the case of the estrogen receptor the improved thresholding is a valuable diagnostic
differentiation for the therapy response prediction.

In our automatic analyses of the functional heterogeneity as it is depicted in the
second column of figure 6.6 we considered images showing the expression of the
estrogen and the progesterone receptor. Besides these images we analyzed images of
the inflammation marker CD45. Inflammation with its different forms is a further
relevant factor for different prognosis of the patients. For example (Jahkola et al. 1998)
showed that special inflammation markers expressed in the invasion border of the
tumor are predictors of local and distance recurrences. (Grivennikov et al. 2010)
discuss the general influence of inflammatory processes on the therapy response.

Together with the pathological expert we divided the variety of possibly relevant
questions concerning functional heterogeneity into categories that were mappable to
computational analysis tasks. We considered

• the local co-occurrence using pixel statistics, as well as

• the heterogeneity of the co-occurrence in different tumor regions based on the
connected component information and

• the geometrical heterogeneity analyzing in which part of the tumor regions the
functional markers are expressed, e.g. in the periphery.
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Figure 6.20 shows the PR stain and SOM images of a matched pair that was the
motivation for the characterization of the co-occurrence analysis of functional marker
expression for the tumor.

To relate the functional information of a patient to the structural information,
we applied the registration process introduced in section 6.5.1 to the HE stains and
the functional stains ER, PR and CD45 (figure 6.5). To model functional aspects of
heterogeneity, the expression of the functional markers was localized in the tumor
slice.

Localization of functional marker expression

To detect and quantify the functional marker expression, we used the preprocessed
registered CD45, ER and PR stain images. This was appropriate as within most
cases the stain of the functional marker was significantly more intensive than the
counter stain. The color information was neglected without significant information
loss. Because of the high variation of the staining intensity in different patients, it was
not suitable to identify the marker expression using a single intensity threshold over
all stain images. We learned the marker expression identification for every functional
marker in a supervised manner. The mean and standard deviation of the intensity
were extracted as features representing the texture of the tissue for each pixel of the
functional marker images in an area of 19× 19 pixel around this pixel.

The pathological experts annotated regions of marker response on the original
functional marker images and as contrast also highlighted non responding regions.
In order to induce stable identification it was necessary to mark especially such
regions that were near to the decision boundary of whether there is marker response
or not. The annotations of four patients were used to train a Linear Discriminant
Analysis with the squared Euclidean distance as dissimilarity measure.

The results of this binarization were evaluated by computer scientists as well as
pathological experts using an overlay of the binarized image over the original image
with adjustable transparency. If the binarized image is interpreted as a classification
into background and marker response this is comparable to the pseudo-color image
evaluation introduced in section 6.5.1. From this characterization we gained a LDA
image for every probe highlighting pixel with detected functional marker expression.
On the left-hand side of figure 6.21 we show the LDA images for the cases of the
matched pair introduced in figure 6.20 overlaid to the corresponding SOM images.

Co-occurrence analysis based on pixel statistics

The co-occurrence feature groups based on pixel statistics described a local context of
co-occurrence and answered questions like: Is there any estrogen receptor expression
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(a) Example of a patient case with the PR marker distributed all over the tumor tissue. This patient was
alive five years after surgery.

(b) Example of a matched pair patient case with a heterogeneous distribution of PR over the different
tumor regions, some regions did not show an expression whereas others were partly expressing PR. This
patient was dead five years after surgery.

Figure 6.20: Registered PR stain and SOM images for the matched pair that was a motivation
to calculate the co-occurrence of functional expression and structural information.
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(a) Analysis result of the patient case with the PR marker distributed all over the tumor tissue.

(b) Analysis result of the matched pair patient case with a heterogeneous distribution of PR over the
different tumor regions.

Figure 6.21: Result extract for the co-occurrence analysis for the matched pair cases introduced
in figure 6.20. At the left-hand side the overlay of the PR marker expression localization
highlighted in magenta over the SOM images is shown. At the right-hand side statistics for
every co-occurrence category – pixel wise, regions based, geometrical – are shown. A detailed
description is given in the text.
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Medical question Computationally implemented feature groups

Expression of [CD45, ER, PR]
relative to tumor parenchyma

Number of pixel highlighted as [CD45, ER,
PR] by the number of pixel classified as tumor
parenchyma

Expression distribution of [CD45,
ER, PR] in relation to [tumor
parenchyma, tumor stroma, nor-
mal tissue]

Number of pixel highlighted as [CD45, ER, PR]
and classified as [tumor parenchyma, tumor
stroma, normal tissue] by the number of pixel
highlighted as [CD45, ER, PR]

Amount of co-occurrence for
[CD45, ER, PR]

Number of pixel highlighted as [CD45, ER, PR]
and highlighted as [CD45, ER, PR] by the number
of pixel highlighted as [CD45, ER, PR]

Table 6.8: Overview of local context co-occurrence feature groups from pixel in classified
images

in the tumor, and if so, how much? Does the progesterone receptor co-occur with the
estrogen receptor? Is there inflammation in the tissue and if so, how much in which
tissue type?

Table 6.8 shows an overview of the local context co-occurrence feature groups that
we calculated for every patient case. It lists the medical question that characterizes
the patient’s situation in a potentially relevant way. Correspondingly the right part
shows the mapping to machine calculable feature groups. These feature groups were
derived from the tissue characterizing SOM evaluation image as well as from the
LDA images representing the functional marker expression.

The amount of functional marker expression in relation to the tumor parenchyma
area, is currently the base for the categorization in diagnostic parameters. We ex-
pressed this relative amount by the number of pixel identified as functional marker
expression divided by the number of pixel identified as tumor parenchyma. Fig-
ure 6.21 shows this basic expression statistic for all considered functional markers at
the top of the right-hand side for both cases of the matched pairs.

We quantized the distribution of the functional marker expression in different
tissue types. For this purpose we related the number of pixel that showed a func-
tional marker expression in a specific tissue to the overall number of pixel showing
this functional marker expression. The co-occurrence distribution of various func-
tional markers was gained by relating the number of pairwise combined functional
marker expression pixel to the overall number of pixel for a single functional marker
expression.
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Medical question Computationally implemented feature groups

Degree of scattering of [CD45,
ER, PR, tumor parenchyma]

Number of CCs identified as [CD45, ER, PR, tumor
parenchyma]

Mean area of CCs identified as [CD45, ER, PR,
tumor parenchyma]

Standard deviation of area of CCs identified as
[CD45, ER, PR, tumor parenchyma]

Distribution of [CD45, ER, PR]
in regions classified as tumor
parenchyma

Number of CCs classified as tumor parenchyma
containing pixel highlighted as [CD45, ER, PR]
by the overall number of CCs classified as tumor
parenchyma

Table 6.9: Overview of heterogeneity characterization for co-occurrence from regions in
classified images

Co-occurrence analysis based on connected components

This analysis handled a more complex interpretation of the concept of heterogeneity
in functional marker distribution which is closer to the domain experts’ view. It
answered questions like: Is the distribution of the estrogen receptor expression
similar in all tumor regions of the tumor excerpt?

To answer such questions a more global context of the marker expression was
needed. For these medical clues the pathological experts identified different tissue
regions in the patient’s HE stain and the functional marker image. We calculated the
connected components (CCs) gained from the tissue characterizing SOM evaluation
image as well as from the functional marker LDA evaluation images for every patient
case according to the approach introduced in section 6.5.1. Table 6.9 summarizes
the functional questions and feature groups that we identified using the structural
and functional CCs. It lists the medical questions that characterized the patient’s
situation in a potentially relevant way, and correspondingly gives the mapping to
the computationally implemented feature groups.

With the CCs of the tissue types, the question for the degree of scattering of a
functional marker was expressed in terms of feature groups on the CCs. The degree of
scattering was specified through three interacting properties: the number of regions
of a specific type as well as the size and the size variation of these regions. It was
mapped to corresponding computational feature groups: the number of the CCs and
the mean and standard deviation of the area of the CCs.

The distribution of the functional markers in the tumor regions was represented
by the relative number of CCs identified as tumor parenchyma containing the specific
functional marker. To avoid misinformation by noise, a CC was defined as containing
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Medical question Computationally implemented feature groups

Geometrical distribution of
[CD45, ER, PR] in regions clas-
sified as tumor parenchyma

Number of CCs classified as tumor parenchyma
showing [peripheral, central or holohedral] distri-
bution of [CD45, ER, PR] by the overall number of
CCs identified as tumor parenchyma

Table 6.10: Overview of heterogeneity characterization for co-occurrence concerning geomet-
rical constellations from regions in classified images

a functional marker when a minimum of 0.5% of the CC’s area was covered by the
marker. Figure 6.21 shows the relative number of expression regions for ER and PR
at the middle of the right-hand side for both cases of the matched pairs.

Co-occurrence analysis based on geometric constellations

The last category of co-occurrence feature groups was related to the geometric con-
stellation of the functional marker expression with respect to the tumor regions, e.g.
tumor regions that had peripheral inflammation. As given in table 6.10 we distin-
guished whether the functional marker was expressed in the periphery of the tumor
region, in its center or all over the region (holohedral). These medical clues are of
special importance for the prognosis as discussed e.g. in (Jahkola et al. 1998).

To map these questions onto machine extractable feature groups, we sectioned
the tumor parenchyma CCs into inner and outer “rings” using the so-called distance
transform, cf. (Fabbri et al. 2008). It gives the radial distance of a pixel to the border
of a CC. At a distance of half the mean radius of the CC we determined the cut
for the rings. The pixel that were highlighted by a functional marker inside the
inner and outer region were counted respectively. We calculated the distribution of
holohedrally, peripherally and centrally covered regions from this characterization of
the functional coverage per CC. Figure 6.21 shows this distribution of the geometrical
constellation for PR at the bottom of the right-hand side for both cases of the matched
pair.

Summary of processing sequence and data used

For the characterization of the functional heterogeneity the digitized color images
of the functional stains CD45, ER and PR were preprocessed using the methods
described in section 6.5.1. The resulting functional images were spatially related to
the coordinate system of the tissue type differentiation using the registration process
introduced in section 6.5.1 for the HE and the functional stain images. In the spatially
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aligned functional images the localization of the corresponding marker expression
was achieved by the LDA based classification process explained in section 6.5.3.

The pseudo-colored LDA images, arising in the evaluation process of the classifi-
cation, together with the SOM evaluation image of the tissue type differentiation, see
section 6.5.1, were the basis for the calculation of the co-occurrence characterization
based on pixel statistics. For the second complex of feature groups we calculated the
marker expression regions from the pseudo-colored LDA images using the region
identification approach described in section 6.5.1. The different tissue regions were
identified using this approach on the SOM evaluation image. With this information
the co-occurrence analysis based on connected components was conducted. For the
co-occurrence analysis based on geometric constellations the same set of marker
expression and tissue regions was used. The tumor tissue regions were split addition-
ally into an inner and an outer ring using the distance transform, see section 6.5.3, to
gain a geometrical characterization of the marker expression.

6.5.4 Structural tumor distribution patterns: morphometry and
graph based analysis of tumor distribution patterns

This collection of feature groups was concerned with questions about the structural
distribution pattern of the tumor such as: Is the tumor scattered or compact? Are
there separated small tumor regions besides the main tumor? Figure 6.22 shows the
AE1AE3 and SOM images of a matched pair that was the motivation to characterize
the structural tumor distribution pattern. According to (Rangayyan et al. 1997) a
compact growth pattern is less risky as compared to a tumor distribution pattern
which shows invasive tumor regions outside the compact main tumor.

In our corresponding automatic feature extraction, shown in the fourth column
in figure 6.6, we modeled two aspects of the structural distribution:

• For the discrimination of scattered and compact distribution patterns we used
graph based representations of the tumor tissue distribution.

• To account for information about the single tumor regions, we analyzed the
morphometry of the regions.

These morphometric representations were analyzed on two levels of detail. For
the coarse-grained description we used the SOM tissue characterization as basis.
For the finer characterization of the distribution pattern of the tumor also a finer
characterization of its structures was needed. We analyzed the AE1AE3 stain images
on their own, to get a fine-grained view on the tumor’s structural distribution
properties. For this purpose we calculated the fine AE1AE3 marker expression that
was used as basis for the graph as well as for the morphometric representation.
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(a) Example of a patient case with a compact tumor distribution pattern and one main tumor region. This
patient was alive five years after surgery.

(b) Example of a matched pair patient case with many small regions of compact growth spreading in the
tissue. This patient was dead five years after surgery.

Figure 6.22: Registered AE1AE3 stain and SOM evaluation images for the matched pair that
was a motivation to characterize the structural tumor distribution pattern.
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AE1AE3 marker expression identification

In the AE1AE3 images the area that responds to the marker is stained in shades of
brown whereas the area responding to the counter stain is violet. Color gave relevant
information for the identification of the fine tumor regions that was not contained
in the preprocessed AE1AE3 stains. To remove the influence of irrelevant intensity
variation between the images, we used the CIE L*a*b* color space representation of
the images. For the details of this color space conversion we refer to section 5.2.1 in
(Bornemeier 2011).

We applied Otsu’s thresholding approach (Otsu 1979) to every single channel in
the L*a*b* color space and combined the results to yield the pixel characterization of
the marker expression. This approach proved to be the most stable over all cases. It
removed staining artifacts at the margin of the tissue. The discrimination between
brown and violet was appropriate (Bornemeier 2011). The evaluation of the results
was realized by overlays of the binarized image to the original image with adjustable
transparency.

We calculated the fine tumor regions from this AE1AE3 expression analysis by
applying the connected component identifying approach that was introduced in
section 6.5.1. Figure 6.23 shows at the left-hand side the fine tumor regions as base
for the graph models.

Graph based representation

The graph based analysis of the tumor distribution considered the fine distribution
patterns. It was based on the fine-grained AE1AE3 expression analysis described
above in the last section. To derive a basic graph representation from this tissue
analysis, the nodes of the graph model had to be placed adequately among the pixel
identified as tissue responding to the AE1AE3 marker. We used a grid based method
to determine the position of the graph nodes that is explained in detail in section 5.4.1

of (Bornemeier 2011). Using this basic graph we induced two graph models:

• a minimum spanning tree (MST) and

• a Delaunay graph (DG).

We calculated features that described the resulting tree models to discriminate the
various forms of tumor distributions.

The MST was applied to model a rough estimate of the distribution and con-
nectivity of the tumor regions. From the previously determined graph nodes we
calculated the minimum spanning tree using Prim’s algorithm (Prim 1957) as it
was implemented in the Bioinformatics Toolbox for Matlab (Mathworks n.d.a). The
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(a) Analysis result of the graph based analysis of the patient case with a compact tumor distribution
pattern and one main tumor region.

(b) Analysis result of the graph based analysis of the matched pair patient case with many small regions
of compact growth spreading in the tissue.

Figure 6.23: Result extract for the graph based analysis of the matched pair cases introduced
in figure 6.22. At the left-hand side the MST and in the middle the DG graph models were
overlaid to the fine AE1AE3 tumor regions. At the right-hand sides features gained from the
graph models are depicted. They are explained in the text.

lengths of the edges were represented by the Euclidean distances of the image pixel
coordinates of the graph nodes adjacent to the considered edge. Figure 6.23 shows
an example of the resulting MSTs at the left-hand sides for both cases of the matched
pair that was introduced in figure 6.22.
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Medical question Computationally implemented feature groups

Distribution variation of tumor
parenchyma

Mean and standard deviation of the edge lengths

Variation coefficient of the edge lengths

Relation from minimal to maximal edge lengths

Connectivity characterization of
the tumor parenchyma

Average weighted node degree (sum of edge
lengths for a node to its neighbors)

Cyclomatic number

Randić index

Connectivity variation of the
tumor parenchyma

Mean and standard deviation of the node degrees

Variation coefficient of the node degree

Relation from minimal to maximal node degrees

Table 6.11: Overview of feature groups calculated from the graph models for a structural
tumor distribution pattern characterization

The DG gave a model of the connectivity and distribution that was more complete
and detailed than the MST. We calculated the Delaunay graph using Matlab’s build-in
“delaunay” function. Figure 6.23 shows an example of resulting DGs at the middle for
both cases of the matched pair.

For each graph model we calculated the set of feature groups that is given in
table 6.11. This feature group set described properties of the structural represen-
tations by the graph models to map potentially relevant medical questions. For
the motivation, definition and calculation of the single feature groups we refer to
section 3.2.3 in (Bornemeier 2011).

Figure 6.23 shows at the upper part of the right-hand sides examples for the
representation of the distribution variation using the mean and standard deviation
of the edge lengths for the MST for both cases of the matched pair. In the lower part
of the right-hand sides the connectivity variation by the relation from minimal to
maximal node degrees and the variation coefficient of the node degree is depicted
respectively.

(Bornemeier 2011) stated that in the case of the MST the cyclomatic number was
no pertinent feature as the MST is defined to be cycle free. We will not consider this
feature for the MST in the analyses.
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Morphometric representation

The morphometric representation aimed at characterizing the overall tumor region
properties that concern the shape and the contour of the regions. We realized two
kinds of morphometric representations:

coarse-grained representation gained from the tumor regions identified by the SOM
tissue characterization in section 6.5.1 and

fine-grained representation based on the fine tumor regions from the AE1AE3 ex-
pression analysis introduced in section 6.5.4.

To generate these representations for the tumor regions of the SOM as well as of the
AE1AE3 we calculated a variety of shape and contour describing features: Fourier de-
scriptors, Fourier energies, moment invariants, irregularity, compactness, roundness,
area and perimeter. One example for the applied contour describing features were
the Fourier descriptors, see e.g. (Zhang and Lu 2002), that are capable of describing the
contour of the regions invariant from rotation, translation and scale. For details of
the applied features we refer to section 3.1 in (Bornemeier 2011).

These features were calculated for all fine and all coarse regions larger than 15

pixel in area for every patient. For the fine regions in 93 patient cases this is a total of
216196 samples. The coarse as well as the fine tumor regions were clustered according
to their morphometric properties expressed in the features. As the sample size was
that big we decided to train the clustering using a subset of the data. The pathological
experts chose 31 patient cases for this purpose. We trained different clusterings over
all regions from that choice using the “kmeans” function of the Statistics Toolbox for
Matlab (Mathworks n.d.c) with the squared Euclidean distance varying the k from 3

to 7 according to the pathological experts’ suggestion.
Neither the pathological nor the mathematical evaluation of the clustering yielded

a clear preference of a cluster number. Only the clustering with 6 clusters did not
yield pertinent results. We incorporated all other clustering variants with their
corresponding statistical features into the relevance analysis described in chapter 7.

Figure 6.24 shows the results of a coarse clustering using three clusters at the
left-hand sides for both cases of the matched pair that was introduced in figure 6.22.
In the middle the corresponding fine clustering with four clusters for both cases is
shown.

From the clustering results we calculated for every patient case the area that was
covered by regions belonging to the coarse and the fine clusters. These statistics are
shown at the right-hand sides of figure 6.24. In the upper part the statistic for the
coarse clustering is depicted whereas the lower part represents the statistic for the
fine clustering.
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(a) Analysis result of the morphometric analysis of the patient case with a compact tumor distribution
pattern and one main tumor region.

(b) Analysis result of the morphometric analysis of the matched pair patient case with many small regions
of compact growth spreading in the tissue.

Figure 6.24: Result extract for the morphometric analysis for the matched pair cases introduced
in figure 6.22. At the left-hand side the clustering according to the morphometric properties
of the coarse tumor regions using three clusters and in the middle of the fine tumor regions
with four clusters is shown. The distributions extracted for the coarse and fine morphometric
clusterings are depicted at the right-hand side.

Summary of processing sequence and data used

We based the characterization of the structural tumor distribution pattern on the digi-
tized color image of the AE1AE3 stain and the SOM evaluation image resulting from
the tissue type differentiation in section 6.5.1. The AE1AE3 stain was analyzed using
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the Otsu based clustering approach described in section 6.5.4 for the identification of
the marker response.

For the graph based analysis of the structural tumor distribution pattern the area
identified as marker responding was represented by a basic graph that was used
to induce a minimum spanning tree as well as a Delaunay graph, see section 6.5.4.
Features calculated over these graphs were used for the tumor distribution pattern
representation.

The morphometric representation was based on the pseudo-colored Otsu image
created in the evaluation of the marker response identification as well as on the SOM
evaluation image. We calculated the fine regions of structural marker response using
the region identification approach explained in section 6.5.1 from the Otsu image. The
same approach was used for the identification of coarse tumor parenchyma regions
from the SOM evaluation image. For each of the fine and coarse tumor regions
respectively a set of morphometric features was calculated. Separate clustering over
these features for the fine and the coarse regions led to a characterization of different
morphometric tumor region types. Statistics over the regions according to these
region types yielded the morphometric representation of the tumor distribution
pattern.

6.5.5 Functional tumor distribution patterns: relation based
analysis of tumor distribution patterns in correlation
with functional marker expression

This collection of feature groups gave hints for answering questions such as: What is
the relation of the functional marker distribution pattern to the distribution pattern
of the tumor? Are they equal? Figure 6.25 shows the CD45 and SOM images for the
matched pair that motivated these analyses. To answer the corresponding questions
we considered two relational approaches:

• the Region Connection calculus features, known as RCC8 features cf. (Randell
et al. 1992), as well as

• the Linear Distance Quantification, cf. section 5.5.2 in (Bornemeier 2011).

The third column in figure 6.6 depicts the corresponding processing chain. Both
representations were calculated using the regions gained from the SOM tissue char-
acterization, see section 6.5.1, and the regions from the functional marker expression
analysis, see section 6.5.3. The left-hand side of figure 6.26 shows the functional
marker expression results overlaid to the SOM images for both cases of the matched
pair.
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(a) Example of a patient case with the CD45 marker expressed mainly at the periphery of the main tumor.
This patient was alive five years after surgery.

(b) Example of a matched pair patient case with peripheral and central expression of CD45 in different
tumor regions. This patient was dead five years after surgery.

Figure 6.25: Registered CD45 stain and SOM images for the matched pair that was a motivation
to calculate the relational tumor distribution for functional expression.
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The region connection calculus features for a set of regions give the distribution
of the present pairwise relations between the regions, e.g. partially overlapping,
tangential proper part or disconnected. In our application, we used these features
to characterize the relation between the tumor parenchyma regions and the func-
tional marker regions of CD45, ER and PR. For details we refer to section 5.5.1 in
(Bornemeier 2011). Figure 6.26 depicts at the upper part of the right-hand sides the
distribution of the RCC8 relations for both cases of the matched pair.

Additionally (Bornemeier 2011) developed the Linear Distance Quantification.
This approach was analog to the geometrical representation in the heterogeneity of
the functional marker expression, cf. section 6.5.3. Figure 6.26 shows the results of
the LDQ for the matched pair at the bottom of the right-hand side.

Summary of processing sequence and data used

The characterization of the functional tumor distribution pattern was based on the
result images of the tissue type differentiation, see section 6.5.1, and the functional
marker expression localization, see section 6.5.3, respectively. From all these evalua-
tion images the corresponding regions were calculated using the region identification
approach introduced in section 6.5.1. These regions were analyzed according to their
relations using the RCC8 and the LDQ approach.
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(a) Analysis result of the patient case with the CD45 marker expressed mainly at the periphery of the
main tumor.

(b) Analysis result of the matched pair patient case with peripheral and central expression of CD45 in
different tumor regions.

Figure 6.26: Result extracts for the relational analysis for the matched pair cases introduced
in figure 6.25. At the left-hand side the overlay of the CD45 marker expression localization
highlighted in red over the SOM images is shown. At the right-hand side the statistics for the
RCC8 relations is shown in the upper part. The relations calculated by the LDQ are shown at
the bottom of the right-hand side.



Chapter 7

Relevance analysis for medical clues –
Application of VQ based framework for mixed
data in breast cancer research

To analyze the relevance of the chosen medical clues in breast cancer in general it is
necessary to integrate all clue representing feature groups in an overall multi-layer
model. This way all possible contextual influences between the different feature
groups are considered in the automatic relevance analysis.

According to the identified relevance of the feature groups in the integration
the choice of the feature groups has to be reduced in order to become relevant for
diagnostic processes in the clinical routine or in following pharmacological research.
In every case the pathological experts have to be coupled to the system to validate
and interpret the relevances and choices.

In the complete integration our set of 72 feature groups with a total of 234 di-
mensions yields an enormous amount of free variables. For example with only one
prototype for every follow-up status and the vector-based integration of the feature
groups1 we have a total of 72 + 2× 234 = 540 free variables. This number is opposed
to the number of 93 patient samples in the Exprimage data set, see section 6.3, from
which the free variables have to be inferred2.

We introduce a preliminary reduction step to select a set of candidate feature
groups that we use for the integrated analysis. This reduces the number of integrated
feature groups and the overall dimension. We provide evidence in this isolated
relevance analysis in a twofold manner:

Mathematical evidence We analyze every feature group singularly according to
its discriminative power against the follow-up status of the patients in terms

1The vector-based integration has an order of J + N × M free variables which is much less than
J2 + N × M free variables for the matrix-based integration. J is the number of feature groups, N the
number of prototypes and M the overall feature dimension.

2There are research activities in the field of statistical learning theory that work on good approximations
for the needed number of samples given a known model complexity (cf. e.g. McAllester (Mcallester 2003)).
As these approximations are often conservative they lead to large numbers of samples. These numbers
can not be expected in our application example and thus we do not consider these approximations.
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of recognition rate and Cohen’s kappa. This neglects potential contextual
interactions between the feature groups.

Pathological evidence The results of the automatic isolated relevance analysis are
evaluated by and discussed with the pathological experts. They provide the
contextual embedding of the feature groups and gather potentially interesting
candidate sets of feature groups from the ones scoring best in terms of the
discriminative power.

The candidate sets are intentionally chosen larger than suited for clinical routine
to show the process of feature group selection in the integrated relevance analysis.
In our application example this reduction is needed to reduce the number of free
variables and provide a recognition that has a better generalization ability. The
reduction prevents overfitting the model to the training data. In applications with a
sufficient number of samples the reduction is necessary for the identification of clear
and stably conductible diagnostic patterns.

The analyses as well as the remarks in this chapter aim to test the following
hypotheses

1. Candidate sets of feature groups can be reduced using the relevances identified
in the integrated relevance analysis such that the generalization of the learned
classification becomes more stable and better. We estimate the stability of a
system by the standard deviation of the considered evaluation measure over
several runs. In our application, the quality of the results is measured by the
recognition rate and/or Cohen’s kappa over the test set according to the ability
of the learned model to predict the follow-up status of the patients.

2. A suitably integrated combination of feature groups yields more stable and
better generalization results than the use of a single feature group. Additional
to the above mentioned estimation of stability, the reliable convergence of the
system is subsumed in this term.

3. A suitably integrated combination of feature groups yields better results than
the commonly accepted classification by the pathological grading alone.

4. A suitably integrated combination of feature groups with their conceptually
adequate dissimilarities yields more stable and better generalization results
than the use of a comparable classification with overall applied Euclidean
distance.

5. The outliers identified by the application of a leave-one-out validation on
the previously identified best integrated combination of feature groups are
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salient in their pathological interpretation, e.g. they show preparation failures
or exceptional distribution patterns.

The comparison with the current clinical diagnosis is not straight forward. As
discussed in section 6.3 the grading is the summary of the current diagnostic process.
It comprises three categories that express a good, a medium and a bad prognosis
for the patient. From the second category no conclusions on the outcome can be
made. Furthermore the follow-up status, which is the actual benchmark, can also be
a relapse. We neglect this fact as we do not have enough sample data for this class.
We return to the question of comparability in section 7.3.2.

General considerations about the settings in the application of VQ based algo-
rithms can be found in section 4.4. In the following section we give a summary of the
settings and optimizations used in our application.

Section 7.2 is concerned with the isolated relevance analyses yielding the basis
for the identification of feature group candidate sets as well as the reference frame
for the comparison of the discriminative power achieved with the integrated feature
groups. In this section also the discussion and decision on candidate sets is reflected.
It was conducted together with the pathological experts.

In section 7.3 we show the evaluation of relevances for integrated feature group
sets. Furthermore the relevances are used for the reduction of the candidate feature
group sets. In this section we test the hypotheses 1 to 3. We conduct tests concern-
ing hypothesis 4 in section 7.4. In section 7.5 we discuss the possibility of testing
hypothesis 5. In this chapter we give the results and a short discussion of the tests as
well as the resulting changes for subsequent tests. The validity of the hypotheses is
discussed in section 8.1.

Additionally to the tests of the hypotheses we analyzed the behavior of a reduction
process that is only calculated from patient samples with the grading value two. As
mentioned before from this grading value there is up to now no reliable prognosis
possible in the current clinical prognostic process.

7.1 Vector Quantization methods in the Exprimage
context

In this section we give pragmatic considerations about the settings for a pertinent use
of Vector Quantization methods in our biomedical context. We do not give theoretical
foundations but rather rules of thumb that proved good results in the Exprimage
project.
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7.1.1 Chosen algorithms for workflow

An overview of the whole set of 72 potentially relevant feature groups is given in
table 7.2. For the isolated relevance analysis we used an adapted GLVQ algorithm,
introduced in section 4.1.2, with the conceptually adequate dissimilarity for every
single feature group. For the relational feature groups the KLVQ algorithm, see
section 4.2.2, was used. The relevance of the single feature groups was judged
according to their predictive ability for the clinical follow-up of the patients.

In the integrative analyses we considered the algorithms introduced in chapter 5
that use the vector-based integration of the mixed data as they have a significantly
smaller number of free variables, cf. footnote 1 in this chapter, than the matrix-
based integration. The relevance in the integrative analysis was determined by
the dissimilarity parameters identified by dissimilarity adaptation. Dissimilarity
adaptation in the context of clustering is critical as with unsuitable initializations
the results are inappropriate. With small data sets the suitability of initializations
in terms of representativeness is not likely. For that reason, we did not consider
unsupervised dissimilarity adaptation approaches in the Exprimage application. As
for median approaches more data samples would have been required we also did not
implement these variants for our application. Due to the relational feature groups in
our data set we used the vb-KLVQ, introduced in section 5.3.2.

The test of the complex integrative handling of mixed data against the simple
Euclidean integration was done by comparing the results of using a GLVQ and the
results using the vb-KLVQ on several feature group sets in parallel.

In all these tests we repeated the runs 20 times, altering the splitting between
test and training samples and the order of the training sample presentation. We
considered 86 patient samples: 50 patients with follow-up status one and 36 with
follow-up status three, neglecting follow-up status two. These samples were split into
72 samples for training and 14 samples for testing. As we will discuss in section 7.2
we identified in first tests that the balancing of the data set can be preferable to
prevent degenerated results. In later tests we additionally used a balanced setting
with 60 samples for training – 30 from each class – and 12 for testing – 6 for each
class.

For the outlier analyses we applied the leave-one-out validation introduced in
section 4.5.2 with the vb-KLVQ for the feature group set that performed best during
the integrative relevance analysis. We ran the vb-KLVQ 20 times for each left out
data point. We initialized one prototype per class by a random data point from the
training set.
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7.1.2 Initialization, parameter setting and convergence of
algorithms in our application

There are several settings necessary for applying vector quantization based methods
to a specific problem. They concern the initialization, the choice of parameters and
the definition of convergence. The general considerations about these settings were
introduced in section 4.4. In the present section we discuss heuristics and approaches
for the appropriate setting in our application domain the breast cancer research
project Exprimage.

Number of prototypes

To use the prior domain knowledge for the choice of the number of prototypes
reliable expert annotations are required, see section 4.4.1. The experience in our
application showed that the prior knowledge in the form of pathological annotations
was not reliable, for details cf. section 6.5.1. We did not use it to determine the number
of prototypes. A preliminary clustering was not applied as there was not enough
representative training data available to cope with the freedom of the integrated
dissimilarity measure. Due to the small number of training data as a starting point
we restrict our model to one prototype per follow-up status.

Initialization of prototype positions

In section 4.4.2 we introduced several initialization possibilities for the prototype
positions. Due to the insufficient reliability of the prior biological knowledge in the
Exprimage project we chose a non oriented version of initialization. To reduce the
influence of randomness in the tests with random training and test set splitting, we
used the initialization in the center of mass from the Euclidean point of view. Tests
using initializations with an adequate center of mass for the different dissimilarities
are outside the scope of this thesis but postponed to further improvements of the
systems. In the leave-one-out validation, see section 4.5.2, there is no random training
and test set splitting. We applied the initialization by random data point choice in
this case.

Initialization of dissimilarity parameters

In our framework for the learning of mixed data we distinguish two types of integra-
tion introduced in section 5.1.1:

• the vector-based integration of dissimilarities given in equation (5.1.1) and
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• the matrix-based integration of dissimilarities given in equation (5.1.2).

From the initialization methods proposed in section 4.4.3 we used similar values for
all parameters in one run.

Learning rate for the prototype positions

The learning rate of the prototypes was adapted according to Papari’s method intro-
duced in section 4.4.4. We used the batch implementation of the method where the
prototype updates are calculated and collected during one epoch but not applied
directly. The collected update vector is normalized and scaled with the step size
given by the learning rate. We worked with an initial learning rate of 0.5 and a
reduction factor of 2

3 in the case of a jump. The condition for jumping was controlled
every three epochs.

Learning rate for the dissimilarity parameters

The learning rate of the dissimilarity parameters was chosen as a fifth of the proto-
types’ learning rate. The need for adiabatic updates is reduced as the dissimilarity is
stationary over one epoch, see section 4.4.5.

Convergence

We ran the tests for 600 epochs initially. Using the visualization introduced in
figure 4.1 we identified non-converged tests. In this case we repeated the 20 runs for
the corresponding setting with 1200 epochs. In later tests with higher stability we
reduced the number of epochs to 300.

7.1.3 Evaluation of learning results

In section 4.5 we introduced measures and approaches for the numerical evaluation of
the learning results. In the tests described in this chapter we evaluated the recognition
rates for the training and test set, the achieved cost function value and the Cohen’s
kappa between the actual labels of the samples and the predicted ones. Furthermore
we evaluated the recall and the precision of the recognition for the single follow-up
status classes. For the analysis of the last hypothesis we used the leave-one-out
validation.

To couple the pathological experts to the results, we introduced visual feedback
methods for the learned model. They were discussed in section 4.6. This coupling
was necessary for the proof of the ecological validity of the results as well as for
insight possibilities. In the combined analysis we used RFDDs and lDPPs to display
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the results of the best run for the best combination to the medial experts. This
evaluation could induce further medical experiments and studies. We decided to use
the non-classical multidimensional scaling as it is available in the Matlab Statistics
Toolbox together with various visualization and evaluation possibilities.

7.1.4 Determining appropriate dissimilarities for the feature
groups from image analysis and clinical data

The grouping of features to semantically valid feature groups as well as the deter-
mination of the dissimilarities just within these groups was induced by judgments
of the human domain experts, see section 7.1.4. Grouping is suitable to reduce the
complexity of the computations. It significantly reduces the number of entries in the
dissimilarity matrices for relational data and with this the computational complexity
of the learning calculations. The single feature groups were tested independently in
the isolated relevance analysis.

Categories of feature groups

In the algorithms and the application in this thesis, we considered four different
categories of feature groups. These categories are associated with properties con-
cerning the choice of dissimilarities and the normalizations that were used for the
corresponding feature group. The four feature group categories with their properties
are given in table 7.1.

For the simple numerical descriptors the squared Euclidean distance, cf. equa-
tion (3.1.2), is a suitable dissimilarity measure. In this metric every feature dimension
contributes to the overall distance with the same weight. If some feature dimensions
have high variances they have a major influence on the overall distance. As this was
not intended in our application, a normalization of the features was useful. We tested
the values in each feature dimension whether they were distributed according to the
normal distribution using the Jarque Bera test (Jarque and Bera 1980). If that was the
case, the corresponding feature was normalized to fit a normal distribution with zero
mean and unit standard deviation. Otherwise the values of the feature dimension
were linearly scaled to be within a minus one to one range.

If the considered feature group was representing a distribution, we measured
the dissimilarity in this group according to the Cauchy-Schwarz divergence, cf.
equation (3.2.5), which is a γ-divergence with γ = 1. A normalization in the sense as
for the Euclidean distance was not necessary. The values of distributions according
to theory sum to one within their feature group. During learning a renormalization
had to be done after every adaption step to ensure this condition.
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Simple numerical descriptors Squared Euclidean distance yes no

Distributions Cauchy-Schwarz-
divergence

no yes

Gaussian distribution
representatives
(mean, standard deviation)

Kullback-Leibler
for Gaussian

yes no

Relational data Pairwise dissimilarities no yes

Table 7.1: Overview of considered feature group categories and their properties concerning
the choice of dissimilarity and normalization

The feature groups that represented Gaussian distributions via mean and standard
deviation values were compared using the specialized Kullback-Leibler divergence
given in equation (3.2.6). For this category normalization is a necessary step as
this divergence is sensitive to variations in the features. Numerical instabilities can
occur if the features are not normalized. A normalization that considers mean and
standard deviation as independent from each other is conceptually inadequate. An
adequate normalization strategy requires the normalization of the values from which
the mean and standard deviation are calculated. From these normalized basic data
the corresponding mean and standard deviation have to be calculated and used
as adjusted features. If the feature extraction and the normalization are separated
process steps this normalization is not possible. Because of the work flow design in
our application we used a separate normalization of mean and standard deviation
according to the Jarque Bare test described above for the numerical descriptors.

For the forth considered category, the relational data, pairwise dissimilarities were
used for the comparison. They were either gained in the investigation of expert
domain knowledge, as shown in section 7.1.4 for the process in Exprimage, or
calculated from the value distribution in the data, cf. section 3.3. As relational data
represents a distribution, the single feature values within a group have to sum up
to one. Renormalization of the feature values during the adaptation assured this
property.
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Determining appropriate dissimilarities for features extracted from tissue level
images

The groups for the image based features were defined by the different representations
that were realized to map possibly relevant medical clues. The feature groups were
categorized as numerical descriptors, distributions, representations of Gaussian
distributions or relational data. The category of the feature group is related to
properties concerning a suitable dissimilarity measure and normalization method as
discussed in the the previous section. The mapping of the extracted feature groups
in the image analyses to their corresponding category is given in table 7.2. We
abbreviate the category of the groups by N for simple numerical descriptors, by D for
distributions, by G for Gaussian distributions. For the relational feature groups we
used R1 and R2 as abbreviation for the different statistically calculated dissimilarities
and RH for the dissimilarities based on the human expert knowledge.

Determining appropriate dissimilarities for clinical data

For the clinical data that we used in the analysis, cf. section 6.3.1, there are established
groups in clinical routine:

1. the tumor characterization by tumor size and number of affected lymph nodes
(T, pN) that are in clinical practice grouped together with the metastases sta-
tus (neglected here) to the so called TNM characterization3 that is used for
prognosis,

2. the tumor characterization by hormone receptor status (ER, PR, HER2) that is
used for therapy suggestion and

3. the tumor characterization by invasion and residual tumor (L,V, R) that is
used in addition to the other groups in the Sankt Gallen consensus for therapy
suggestion.

The grading was considered as a singleton relational data feature. The age was also
handled separately as it has a natural influence on the death rate of the patients. We
used the difference as dissimilarity measure for the age.

The relevance analysis approaches realized an information aggregation according
to various forms of dissimilarities. We needed dissimilarities between different
constellations within the clinical data feature groups. The features were categorical.
Commonly in computational approaches the dissimilarities between constellations

3This characterization was suggested by the Union for International Cancer Control (http://www.uicc.
org/) for determining the stage of the tumor. This characterization is not specific for breast cancer. It can be
used in all cancer diseases.

http://www.uicc.org/
http://www.uicc.org/
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of categorical features are gained from the available data using statistical measures,
see section 3.3.

To improve the conceptual validity of the dissimilarities and the information
aggregation we determined a dissimilarity measure for the available data that uses
the biomedical domain knowledge. For pathological experts the determination of
dissimilarities across many cases was counter intuitive. They are used to a case based
judgment of the riskiness of tumors in the context of single findings expressed in
the clinical features. An extensive explanatory conversation with the pathological
experts was indispensable introducing the need of the dissimilarity determination
and the necessary abstract perspective respectively.

In the following section we present an attempt to mediate between the case based
human expert thinking and the need for dissimilarities in the learning approaches.
In the Exprimage project we conducted this dissimilarity determination approach
with two pathological experts who had the possibility to discuss their contributions
during the process. The experts emphasized that their contributions are vague and
incomplete. With every new patient case that is handled in an enabling system the
biomedical background knowledge grows. It is necessary to adapt the dissimilarities
when the background knowledge indicates it4.

The statistically gained dissimilarities model different evidence for the semantical
dissimilarity than the human dissimilarity judgment based on riskiness. It would
probably yield the best ecological validity to suitably combine these both dissimilarity
measures. This is outside the scope of this thesis. For the moment we decided to
incorporate all dissimilarity aspects by using copies of each feature group with
every dissimilarity measure. The relevance analysis over all feature groups provided
evidence for the adequate choice of dissimilarity for the clinical data in different
constellations. In the first section of table 7.2 we summarize the clinical feature
groups with the corresponding dissimilarities.

Dissimilarity determination by experts knowledge An abstract dissimilarity de-
termination is not connectible to the pathological procedures of case based reasoning.
We did not ask the domain experts to determine the dissimilarities. Rather we let
them judge the riskiness of specific constellations in the clinical data. From the differ-
ences of the riskiness for different constellations we calculated the dissimilarities.

4In an ideal system an incrementally growing ontology of the biomedical relations with their contextual
influences would be represented. It would grow in informative value by an adaptation process that
results from the human evaluation and interpretation of patient’s analysis in the system. This idea is far
from realization as many formalizations cannot cope with the structured complexity of the real-world
phenomena.
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To gain the abstract riskiness judgment for the data in the feature groups we
conducted a stepwise approach. For every feature within a feature group we listed
the feature values that were present in the data. They were sorted according to their
riskiness, see figure 7.1(a). The experts had the possibility to adjust the riskiness of
specific feature values in the sorted list, see figure 7.1(b).

Based on this isolated riskiness judgment we asked the experts to judge combi-
nations of two feature values within a group. For the constellations present in the
data, the experts chose whether the riskiness of the feature values add or multiply
or cancel each other out. The figures 7.1(c) – 7.1(e) show such correlation tables with
the riskiness that the experts related to the considered combinations. In the cases
where three features were evaluated for one feature group the domain experts de-
cided to combine the risk levels of the single feature values via addition. For every
feature group the dissimilarity matrix was calculated from the differences between
the riskiness of the feature value constellations present in the data, see figure 7.2.

Automatically determined dissimilarities In different tests we used both approa-
ches introduced in section 3.3 to determine the dissimilarities in the groups of cat-
egorical clinical features. We considered the combinations of categories inside the
groups that were found in the training data set. This would have been inappropriate
if the training data was not representative for all combinations that appear in real
data.

7.2 Isolated relevance analysis

In chapter 6 we introduced a collection of potentially relevant medical clues and
mapped them to computationally implemented feature groups that are summarized
in table 7.2. These features were analyzed according to their relevance for the overall
tumor representation in the discrimination of different cancer subtypes correlating to
the known follow-up status of the patients. We introduced the preliminary selection
step by an isolated relevance analysis as the number of patient samples is small and
the results of an overall integration using all implemented feature groups may not
lead to generalizable results.

In this isolated relevance analysis we tested the single features according to their
discriminative power in the prediction of the follow-up status of the patients. We
used the results of this analysis to guide the selection process of candidate sets
according to medical and computational aspects, cf. section 7.2.1. The candidate sets
formed a multi-layer model of the patient’s tumor situation. The relevance of the
feature groups within the multi-layer model was analyzed integrally, cf. section 7.3.
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(a) Ranking of the feature values (SC) within the feature groups according to the riskiness (RL)

(b) Ranking of the feature values (SC) within the feature groups with their adjusted riskiness (RL)

(c) Correlation table with combined risk-
iness of tumor size and number of af-
fected lymph nodes

(d) Correlation table with combined riskiness of in-
vasion and residual tumor

(e) Correlation table with combined riskiness of hormone receptor status

Figure 7.1: Determination of medically motivated dissimilarities in Exprimage.
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(a) Dissimilarity matrix for clinical data of TNM characterization

(b) Dissimilarity matrix for clinical data of invasion and residual
characterization

(c) Dissimilarity matrix for clinical data of hormone receptor status characterization

Figure 7.2: Resulting medically motivated dissimilarity measures for clinical data in Exprim-
age.
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7.2.1 Overview over implemented feature groups

The whole variety of feature groups that were implemented to represent the clinical
clues is given in table 7.2. For every feature group we give the full name as well as
an abbreviation that we will use in the discussion of the tests in the next sections. At
the right side of the table in the left column the type of the feature groups is given, cf.
section 7.1.4. We abbreviate numerical descriptors by N, representatives of Gaussian
distributions by G and representatives of distributions by D. For the relational fea-
ture groups we used different types related to the dissimilarities mentioned in the
previous section: R1 and R2 for the different statistically calculated dissimilarities
and RH for the dissimilarities based on the human expert knowledge. In the right
most column we show the dimensionality of the corresponding feature group that
gives the number of features within the group.

Clinical data

Feature group full name Abbreviation Type Dim

TN characterization of the tumor Clinical TN R1 7
R2 7
RH 9

LVR characterization of the tumor Clinical LVR R1 5
R2 5
RH 8

Hormone receptor characterization Hormonereceptors R1 8
of the tumor R2 8

RH 16
Age of the patient at surgery Age N 1
Grading Grading R1 3

R2 3
RH 3

Basic quantification of different tissues in a patient’s probe

Feature group full name Abbreviation Type Dim

Absolute tissue area AbsoluteArea N 2
Relative area stroma

to overall tumor
RelAreaStroma N 1

Size variation of tumor regions RegionSize G 2
Perimeter variation

of tumor regions
RegionPerimeter G 2

Number of AE1AE3 tumor regions NumberOfIslands N 1
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Mean area of AE1AE3 tumor regions
to tumor area

MeanAreaToTumor N 1

Structural heterogeneity characterization: inner growth structures

Feature group full name Abbreviation Type Dim

Distribution of
inner tumor structure

InnerTumorStructure D 5

Number of regions of different
inner tumor structures

ClusterRegNumber N 5

Area distribution for cluster one AreaRegionsCluster1 G 2
Area distribution for cluster two AreaRegionsCluster2 G 2
Area distribution for cluster three AreaRegionsCluster3 G 2
Area distribution for cluster four AreaRegionsCluster4 G 2
Area distribution for cluster five AreaRegionsCluster5 G 2

Functional heterogeneity characterization: Co-occurrence analysis of
functional and structural information based on pixel statistics

Feature group full name Abbreviation Type Dim

Relative area of functional marker
to tumor parenchyma

RelativeAreaToTumor N 3

CD45 distribution in tissue types CD45inTissue D 4
ER distribution in tissue types ERinTissue D 4
PR distribution in tissue types PRinTissue D 4
CD45 co-occurrence with other

functional markers
CD45co-occurrence D 3

ER co-occurrence with other
functional markers

ERco-occurrence D 3

PR co-occurrence with other
functional markers

PRco-occurrence D 3

Functional heterogeneity characterization: Co-occurrence analysis of
functional and structural information based on connected components

Feature group full name Abbreviation Type Dim

Number of regions NumberRegions N 3
Area distribution for

tumor regions
AreaRegionsTum G 2

Area distribution for
ER positive regions

AreaRegionsER G 2
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Area distribution for
PR positive regions

AreaRegionsPR G 2

Number of tumor regions covered by
hormone receptors

HRTumorRegions N 2

Functional heterogeneity characterization: Co-occurrence analysis of
functional and structural information based on geometric constellations

Feature group full name Abbreviation Type Dim

Spatial distribution of CD45 in
tumor regions

DistributionCD45 D 3

Spatial distribution of ER in
tumor regions

DistributionER D 3

Spatial distribution of PR in
tumor regions

DistributionPR D 3

Structural tumor distribution pattern characterization: graph based
representation

Feature group full name Abbreviation Type Dim

Mean and standard deviation of the
edge lengths in MST

MSTDist1 G 2

Variation coefficient of the edge
lengths and relation from
minimal to maximal edge lengths
in MST

MSTDist2 N 2

Average weighted node degree
in MST

MSTWeightedDeg N 1

Number of nodes in MST MSTnNodes N 1
Randić index in MST MSTRandicIndex N 1
Distribution of the node degrees

in MST
MSTDeg1 G 2

Variation coefficient of the node
degree and relation from
minimal to maximal node
degrees in MST

MSTDeg2 N 2

Mean and standard deviation of the
edge lengths in DG

DGDist1 G 2
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Variation coefficient of the edge
lengths and relation from
minimal to maximal edge lengths
in DG

DGDist2 N 2

Average weighted node degree
in DG

DGWeightedDeg N 1

Number of nodes in DG DGnNodes N 1
Cyclomatic number in DG DGCyclNumber N 1
Randić index in DG DGRandicIndex N 1
Distribution of the node degrees

in DG
DGDeg1 G 2

Variation coefficient of the node
degree and relation from
minimal to maximal node
degrees in DG

DGDeg2 N 2

Structural tumor distribution pattern characterization: morphometric
representation

Feature group full name Abbreviation Type Dim

Morphometric clustering on
SOM regions using
two clusters

SOMnCl2 D 2

Morphometric clustering on
SOM regions using
three clusters

SOMnCl3 D 3

Morphometric clustering on
SOM regions using
four clusters

SOMnCl4 D 4

Morphometric clustering on
SOM regions using
seven clusters

SOMnCl7 D 7

Morphometric clustering on
AE1AE3 regions using
two clusters

MoAE1AE3nCl2 D 2

Morphometric clustering on
AE1AE3 regions using
three clusters

MoAE1AE3nCl3 D 3
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Morphometric clustering on
AE1AE3 regions using
four clusters

MoAE1AE3nCl4 D 4

Functional tumor distribution pattern characterization

Feature group full name Abbreviation Type Dim

Ratio CD45 to AE1AE3 CD45Ratio N 1
Ratio ER to AE1AE3 ERRatio N 1
Ratio PR to AE1AE3 PRRatio N 1
Distribution of RCC8 relations

for CD45
CD45RCC8 D 7

Distribution of RCC8 relations
for ER

ERRCC8 D 7

Distribution of RCC8 relations
for PR

PRRCC8 D 7

Linear Distance Quantification
for CD45

CD45LDQ D 2

Linear Distance Quantification
for ER

ERLDQ D 2

Linear Distance Quantification
for PR

PRLDQ D 2

Table 7.2: Overview over all feature groups that we considered
for the development of a multi-layer model for breast cancer in
Exprimage

Tests of discriminative power for single feature groups

For the selection of single feature groups we tested the discriminative power of
the single feature groups with respect to the follow-up status in the KLVQ for the
relational feature groups and in the GLVQ for all others. We used the settings
discussed in section 7.1.2.

First series of tests We conducted the twenty runs for each of the feature groups
with an unbalanced setting in the training and test data. The learning was performed
over 600 epochs. We evaluated the test recognition rate as well as precision and recall
for all test data. These values are not comparable to the clinical evaluation values
as introduced in section 6.3 because we include here the grading two. Restricting
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the measures to the test data yields a more valid comparison between the single test
series concerning the generalization ability.

The results exhibited the following phenomena:

• In all feature groups representing Gaussian distributions there were runs that
did not properly converge. They showed sustained alternations in the training
and/or the test recognition rate. This was also the case for the SOMncl4 feature
groups that represented a distribution.

• In the recall and precision values for the classes we saw that for all feature
groups of numerical descriptors the system tended to classify the data to
follow-up status one. This was in accordance with the prior distribution of
the data samples in the classes. The evaluation of the prototypes showed that
the prototype of follow-up status three was pushed out of the data space. A
similar phenomenon was observed for some distribution representing feature
groups. Due to the renormalization of the prototypes’ feature values after the
adaption these prototypes were pushed to the border of the data space and did
not probably represent the follow-up status three.

For the feature groups that did not constantly show proper convergence we repeated
the tests with 20 trials that were run 1200 epochs. That yielded constant proper
convergence for two feature groups: the SOMncl4 and the AreaRegionsPR. For
all other feature groups the convergence was not improved. Papari’s method for
learning rate control did not intervene in this behavior. Another mechanism is
necessary to identify alternating behavior and force the decrease of the learning rate.
We expected that this instability would not occur in combined feature group settings.

The second phenomenon is known in learning and data mining, see e.g. (Chawla
2005) for an overview on data mining for imbalanced data sets. To cope with this
phenomenon we changed the setting to balanced training and test sets. The training
data set comprised 30 samples for each follow-up status and the test set 6 samples
each. As this also influenced the convergence properties we repeated the tests for all
feature groups with this balanced setting.

Second series of tests The settings for the second test series were identical to the
first test series except for the balancing of the data set. We performed 600 learning
epochs for every run in all feature groups. There was no additional learning rate
control included in these tests.

The runs for the Gaussian distribution representatives converged significantly
more often than in the unbalanced setting. For all these feature groups there were
enough converged runs to estimate their discriminative power, at least 16 out of 20

converged. All other feature groups converged reliably during the 600 epochs.
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Feature group Average test
recognition rate

Standard deviation
of recognition rate

Grading RH 66.7% 14.0%
SOMnCl3 65.0% 13.1%
Grading R1 66.7% 16.2%
SOMnCl4 60.0% 10.7%
Clinical TN RH 55.8% 6.7%
Clinical LVR RH 57.9% 9.9%
ERRatio 50.8% 3.7%
Grading R2 60.0% 13.1%
CD45co-occurrence 52.1% 5.3%
Hormonereceptors R1 50.8% 4.6%

Table 7.3: Overview of results for best ten feature group categories in isolated relevance
analysis

For the numerical descriptors the representation of class three was improved.
This was shown by higher recognition rates in general and higher recall values for
class three. In recall and precision for class one and three we still saw a tendency of
the learned models to classify the data as class one.

The second test series yielded enough suitable information for the selection of
feature group combinations for the integrated analysis. Table 7.3 as an example shows
the best ten feature groups according to their discriminative power measured by the
average test recognition rate and its standard deviation. The feature groups were
sorted according to the average test recognition rate minus its standard deviation.
The overview over all feature groups can be found in table C.1 in the appendix.

The results for the clinical data feature groups showed that except for the hormone
receptor feature group the dissimilarities gained using expert knowledge perform
throughout better in terms of the average recognition rates. Partially the experts’
dissimilarities also yielded more stable results than the statistic ones.

Selection of candidate feature group combinations under different aspects

We chose the candidate feature group combinations from the set of feature groups
according to different aspects:

pathological selection We selected the feature groups together with the pathological
experts according to the medical clues to be covered in the description of breast
cancer.
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computational selection We selected the feature groups according to the best recog-
nition rates in the isolated analysis. For semantically similar feature groups
we skipped worse recognition rates for the benefit of other feature groups.
This was done in accordance to the pathological experts’ definition of semantic
similarity.

random selection We randomly draw a preselected number of feature groups from
the whole set. There was no previous orientation in this selection.

no selection For these test runs we used all available feature groups without any
selection.

We started with the pathological selection. From these considerations we also got the
magnitude for the number of feature groups to be combined. We used this number
in all other selections.

Pathological selection The basic idea for the pathological selection was to cover
every field of medical clues that was represented by our image analysis, see section 6.5.
We selected the feature groups from the single fields according to their discriminative
power in the isolated relevance analysis. We subsumed the functional heterogeneity
and the functional distribution pattern as they are semantically close. From the
pathological point of view the feature groups for the distribution pattern description
are more promising for the breast cancer representation. We put more weight on
them. Additionally the age was chosen as it is expected to give a context for the other
feature groups.

This yielded the following assignment of the selected feature groups to the medi-
cal clues – P1:

Structural heterogeneity: AreaRegionsCluster5

Functional heterogeneity & distribution

for CD45: CD45co-occurrence

for ER: ERRatio

for PR: PRLVQ

Structural distribution pattern

by graphs for macro structure: MSTDist1

by graphs for micro structure: DGDeg2

by morphometry for macro structure: SOMnCl3

by morphometry for micro structure: MoAE1AE3nCl4
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Clinical data: Age

We selected nine feature groups for the integrative relevance analysis. Four of
them were distributions, three numerical descriptors and two Gaussian distribution
representatives.

Computational selection As there were nine feature groups selected according to
the pathological evidence we also selected nine feature groups according to com-
putational considerations. Starting with the most discriminative one according to
the difference of the average test recognition minus its standard deviation. In the
question which feature group to choose next a precise way is to calculate the corre-
spondence between the classification given by the first feature group and the one
analyzed next. For this purpose the Cohen’s kappa introduced in section 4.5.2 is a
suitable measure of correspondence. For a comprehensive candidate selection it is
pertinent to choose feature groups with high recognition rates and low values for the
Cohen’s kappa as they are expected to model different aspects of the classification
tasks. If already a selection of more than one feature group was chosen the classifica-
tion correspondence can be measured using the Fleiss’ kappa, see section 4.5.2. This
precise selection approach is computationally expensive.

In our application we conducted a pragmatic selection process according to the
semantic interpretation of the feature groups. We only chose feature groups that
according to the pathological experts were semantically different from the ones before.
This resulted in the following feature group selection – C1:

• Grading RH

• SOMnCl3

• Clinical TN RH

• Clinical LVR RH

• ERRatio

• CD45co-occurrence

• Hormonereceptors R1

• AreaRegionCluster5

• RegionsPerimeter

There were four relational feature groups, two distributions, two Gaussian distribu-
tion representatives and one numerical descriptor in the selected set.
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Random selection To randomly select nine feature groups from the whole data set
we used matlab’s built-in function “randperm” for the feature group set size of 72.
The first nine indices were chosen for the resulting feature group selection – R1:

• Clinical LVR RH

• CD45co-occurrence

• DistributionPR

• AreaRegionCluster4

• AreaRegionCluster1

• MSTDist1

• CD45inTissue

• AreaRegionCluster3

• ERLDQ

The set comprised one relational feature group, four distributions and four Gaussian
distribution representatives.

7.3 Integrative relevance analysis – Application of
algorithms from the introduced framework to
the Exprimage data set

The aim of this thesis is not primarily the identification of medically relevant findings
or the advanced development of the algorithms or the best discriminating result.
More patient cases, comprehensive therapy information and a closer interaction
with the pathological experts are necessary for these research aims. Rather we show
the principle approaches for the interleaving integrative relevance analysis on the
example of follow-up status prediction.

We focus on the experimental application of the algorithms together with the
evaluation of the tendency of the results. The preliminary aim is to show an approach
to a relevant contextual feature group combination. We conducted the necessary
reduction process according to the relevance values identified by the system using
different incorporation strategies for statistical and pathological evidence. Checking
carefully whether dropping of feature groups improved and stabilized the results
we tried to find a suitable incorporation strategy. For that reason this section is
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structured to give a process-oriented presentation of interim results and the reflection
of their consequences in addition to the general description.

In the following section we will mention the results of tests rather than interpret
them in detail. This discussion is given in chapter 8.

7.3.1 Discussion of the interpretability of the relevance values

In the following tests we interpret the dissimilarity parameter vector ~α that is adapted
during the learning process of the vb-KLVQ (see section 5.3.2) as a vector of relevance
values for the corresponding feature groups. It estimates their relevance for the dis-
crimination of different cancer subtypes. This interpretation is valid if the following
conditions are met:

• The dissimilarities in the single feature groups are comparable to each other.
That means that if the dissimilarity value is mathematically equal in two feature
groups the dissimilarity of the underlying feature group values is conceptually
equal.

• The dissimilarities in the single feature groups vary in a similar range. That
means that the variance of the dissimilarities is about the same in the different
feature groups.

These conditions are not commonly fulfilled in the application to biomedical data
with a range of different dissimilarity measures. The verification of the conditions is
no trivial task as it needs to mediate between the mathematical and the conceptual
validity. This touches the issues of finding medically valid dissimilarities that we
discussed in section 7.1.4.

To meet the considered conditions as good as possible in our tests, we normalized
the dissimilarities for every feature group. We determined the median and the
interquartile range of the pairwise dissimilarities in the single feature groups for
the training data in every test run. We used these values to normalize all feature
group specific dissimilarity values in the approach. The detailed mathematical and
medical analysis whether this normalization was able to answer the purpose is
outside the scope of this thesis. Throughout the next sections we assume that the
introduced normalization procedure assured the fulfillment of the conditions and
that the dissimilarity parameters can be interpreted as relevance values.

7.3.2 First test series using candidate feature group combinations

For the first tests on feature group combinations we used the principle settings
described in section 7.1.2 except for the update of the prototypes. We changed



7.3. Integrative relevance analysis 191

this procedure such that the winning correct prototype was attracted ten times
stronger to the presented data point than the winning wrong prototype was repelled.
We assumed that this mechanism is capable of compensating the influence of an
unbalanced data set. We used the whole data for follow-up status one and three
without balancing.

For the evaluation of the results we determined the test recognition rate as well as
the recall and precision of the classes for the test data set. In addition, we calculated
these measures on all data that had grading values one or three. For this evaluation
we did not distinguish between training and test set. Using only patient samples
with grading values one and three of the test set would not have been enough data
for a valid estimation. The described prediction evaluation measures are better
comparable to the clinical prediction measures given in section 6.3. We refer to these
values as clinical recognition rate, clinical recall and clinical precision.

We ran 20 tests for each of the selected combinations of feature groups introduced
in section 7.2.1. We applied Papari’s approach for learning rate control but no
additional control to force a decrease in the case of alternating behavior. For the
combinations all the tests converged properly during less than 600 epochs. We
reduced the number of epochs to 300. In the random choice there were several
feature groups that did not show proper convergence in the isolated analysis. In the
combination there was proper convergence for every test run. The combination of
the instable feature groups with others appeared to stabilize the learning process.

Table D.1 in the appendix summarizes the results of this first test series. There
was no clear best model in these selections. For the different evaluation measures test
recognition rate, test Cohen’s kappa, clinical recognition rate and training recognition
rate different selections scored highest. According to the test recognition rate the
whole feature group set had the best prediction ability for the follow-up status with
an average of 59.6% and a standard deviation of 4.8%. For comparison, the test
recognition rate of the trivial case classifying all data to the dominant class one
would be 57.1%.

Except for the random choice in all feature group combinations the recall and
precision values revealed the tendency of the system to classify samples as class one.
This tendency was the same for the clinical configuration. The clinical recall and
precision values that were given by the grading for our data set showed an opposing
tendency, see section 6.3. There class three was preferred.

For all feature group combinations the average recognition rate for the test set over
ten runs was worse than the average for the training set. The generalization ability
of the learned models was limited. We reduced the single feature group selections
to decrease the number of free variables and potentially increase the generalization
ability.
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We conducted a relevance ranking analysis to determine the feature groups that
were selected out of the feature group combinations. There are different possibilities
for the relevance ranking, e.g. determining the average relevance value over all runs
for every feature group and rank them accordingly. This approach is suitable if the
relevance values are stable.

In our application the relevance values for the single runs were variable. To
reduce this unsteadiness, we used a statistic over the ranking of the feature group
relevances in the different runs. We ranked the feature groups for every run according
to their relevance value, i.e. the dissimilarity parameter in the vb-KLVQ. We summed
up the inverse rank number for the feature groups over all runs. If a feature group
out of a set of nine feature groups constantly won the relevance ranking it got an
overall ranking score of nrTrials · highestInverseRankingNumber = 20 · 9 = 180. In
contrast if it always was least relevant the overall ranking score was 20 · 1 = 20.

We analyzed the ranking scores for every feature group within one selection. The
differences between the ranking scores were used to determine the cut off for the
reduction to the most relevant features. For example in the computational feature
group selection the ranking scores were given by the values shown in table 7.4. We
used the highest difference as identification point for the cut off. Feature groups that
scored lower than the one above the cut-off were dropped. In this example the cut-off
was between the ERRatio and the AreaRegionCluster5 feature groups. We dropped
the AreaRegionCluster5, the CD45co-occurrence and the RegionsPerimeter feature
groups for the next test series.

With the described relevance ranking score analysis we yielded the following
reduced feature group selections:

Pathological selection – P2

• PRLDQ

• DGDeg2

• SOMnCl3

• MSTDist1

Computational selection – C2

• Grading RH

• SOMnCl3

• Clinical TN RH

• Clinical LVR RH

• ERRatio
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Feature group Ranking score Difference to next fea-
ture group in ranking
score

Clinical LVR RH 168 18
Grading RH 150 10
Clinical TN RH 140 35
SOMnCl3 105 1
Hormonereceptors R1 104 12
ERRatio 92 41
AreaRegionCluster5 51 5
CD45co-occurrence 46 2
RegionsPerimeter 44

Table 7.4: Relevance ranking score for the computational feature group selection. The min-
imum achievable ranking score was 20, the maximum 180. The cut-off for the selection of
feature groups for subsequent tests was the difference of 41 in the ranking score between the
ERRatio and the AreaRegionCluster5 feature group.

• Hormonereceptors R1

Random selection – R2

• Clinical LVR RH

• DistributionPR

In the reduced pathological selection there are three distributions and one numerical
descriptor. The reduced computational selection comprised four relational feature
groups, one distribution and one numerical descriptor. In the reduced random
selection there was one relational feature group and one distribution.

For the computational selection the highest scoring feature groups were in accor-
dance with the results of the isolated relevance analysis. In the random selection the
DistributionPR scored significantly better in combination with the Clinical LVR RH
than the CD45co-occurrence (rank 2 to rank 6) which was the other way round in
the isolated analysis (rank 9 to rank 19). In the pathological selection the four feature
groups that scored best in the isolated relevance analysis were dropped according to
their relevance score in the integrated analysis.

In the feature group set comprising all implemented feature groups there was
no clear cut-off possible. In accordance with the feature group selection based on
the isolated relevance analysis we used the nine best scoring feature groups for
subsequent tests:
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No selection – N2

• RelAreaStroma

• Hormonereceptors R2

• MSTDist2

• MSTWeightedDeg

• DGDist2

• DGDeg2

• DGWeightedDeg

• CD45Ratio

• ERRatio

As the systems showed the tendency to classify the samples to class one we changed
the setting of the tests to the balanced data sets and repeated the trials for the basic
feature group selections. Table D.2 in the appendix shows the test results in detail.
For all selections except the random one the test recognition rate was smaller in
the balanced setting. For the test recognition rates the pathological selection scored
highest with an average of 56.3%. The quality of this result was limited as the
standard deviation was 12.1%.

We applied the same relevance ranking score based reduction approach as de-
scribed before to the results of the balanced tests. For the random and the pathological
selection the chosen feature groups were the same as in the unbalanced tests. For the
computational selection the results of the balanced runs suggested to additionally
drop the ERRatio. This resulted in the following selection:

Computational selection – C3

• Grading RH

• SOMnCl3

• Clinical TN RH

• Clinical LVR RH

• Hormonereceptors R1

For the whole feature group set (no selection) the relevance ranking score results
differed significantly. The Hormonreceptors R2 feature group was the only one that
was under the nine best scoring feature groups for both test settings. The reduced
feature groups selection from the whole feature group set according to the balanced
tests was:
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No selection – N4

• DistributionER

• DistributionPR

• Clinical TN R2

• Clinical LVR R1

• Hormonereceptors R2

• Grading R1

• Grading R2

• SOMnCl4

• DistributionCD45

7.3.3 Subsequent test series for the reduction of candidate feature
group combinations

Using the reduced feature group sets from the first test series we conducted further
tests to reduce these feature group selections. In every stage we ran balanced as
well as unbalanced tests and applied the relevance ranking score approach to further
reduce the selections. For some tests the described reduction was not possible as
the highest score difference was between the first and the second feature group
or between the last two. We used the second largest difference instead for the
determination of the cut-off if it was approximately the same size as the largest
difference. The reduction of the feature group selections stopped if only two feature
groups were left or if the cut-off could not be determined according to the given
procedure.

For the evaluation of the results all measures mentioned before were calculated.
For sake of clarity we focus the following result discussion on the test recognition
rate and the clinical recognition rate for the judgment of the generalization ability
of the systems. For every series of tests we further analyzed the run with the best
test recognition rate. For these runs additionally the Non-Euclidean Coefficient, as
given in equation (3.4.3) in section 3.4.2, was calculated. Basis for this calculation
was a matrix of dissimilarities that was build as data dissimilarity matrix from the
dissimilarity measure that was result of the dissimilarity adaptation in the vb-KLVQ.

Reduction results for the pathological selection

Figure 7.3 shows the reduction process for the pathological selection. The feature
group selections of the corresponding reduction steps are shown in the rectangles
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Figure 7.3: Reduction process for the pathological feature group selection.

with the rounded corners. For every test series the average test recognition rate over
twenty runs is given with the standard deviation. The best recognition rate for the
pathological selection is highlighted with a dashed outline. At the left side of the
feature group selection the results for the balanced setting are given and at the right
side the ones for the unbalanced setting. The arrows point towards the reduced
set that is calculated from the corresponding relevance values using the relevance
ranking score approach. The circle depicts the termination of the reduction process.
In table D.3 in the appendix we give the detailed learning results for the reduction
process.



7.3. Integrative relevance analysis 197

The reduction in the first test series yielded the same reduction for the balanced
and the unbalanced setting. The generalization results for the unbalanced setting in
the first test series yielded a higher average recognition rate with a lower standard
deviation than the for balanced setting. In the second test series the best recognition
rate was achieved in the unbalanced setting. For these test runs no further reduction
of the set was identifiable. In the balanced setting the results were worse than before
the reduction. The subsequent reduction identified in these test runs did not lead to
an improvement of the generalization ability.

There was no clear pattern in the reduction of the feature group selection for
example in the type of the feature groups. From the pathological point of view no
underlying concept for the reduction was identified. It is probable that in the initial
pathological selection relevant feature groups were missed.

Reduction results for the computational selection

In figure 7.4 the reduction process for the computational selection is depicted. We
use the same symbols as described before for figure 7.3. Additionally, we highlight
the generalization result that yields a better test recognition rate than random classifi-
cation by a gray background. We give the detailed learning results in table D.4 in the
appendix. For the first test series the resulting reduction was similar for the balanced
and the unbalanced settings with the exception that the ERRatio feature group was
dropped under the balancing. With both reductions the recognition rates improved.
For the reduction resulting from the unbalanced setting, higher average recognition
rates and lower standard deviations were achieved. When analyzed in a balanced
setting this feature group selection yielded the best generalization results compared
to all other tests. Taking into account the standard deviation the test recognition
rate was higher than random classification. This result showed a higher clinical
recognition rate than the grading for the current prognosis discussed in section 6.3.

A further reduction as identified in the discussed balanced test led to the same
reduced set as the balanced first test series. Subsequent reduction to a feature group
selection of two clinical data feature groups showed no improvement. Either the
model complexity fell below the necessary extend or relevant feature groups were
dropped. That last phenomenon occurs if all features in the selection are relevant. As
the relevance values are relative to each other, the normalization of the dissimilarity
parameters can lead to low relevance values for relevant features.

Reduction results for the random selection

Figure 7.5 shows the reduction process for the random selection. The detailed
learning results are given in table D.5 in the appendix. The balanced as well as the
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Figure 7.4: Reduction process for the computational feature group selection.

unbalanced test settings led to the same reduction in the two possible reduction steps.
For both reduction steps the balanced setting yielded better average recognition rates
over the twenty test runs but with larger standard deviations than for the unbalanced
settings. In the reduction process an improvement of the generalization ability was
achieved. The second reduction in the balanced setting resulted in the best test
recognition rate for the random selection. Taking the standard deviation into account,
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Figure 7.5: Reduction process for the random feature group selection.

none of the results was better than random classification or the trivial classification
according to the classes’ prior distribution.

Reduction results for the whole feature group set

In figure 7.6 we depict the reduction process for the whole feature group set. Both re-
ductions according to the first test series yield a decrease in the mean test recognition
rate. Analyzing the feature group set resulting from the unbalanced first test series in
the unbalanced test runs ended with a trivial system classifying all data to class one.

Table D.6 in the appendix shows the detailed learning results. The reduction
resulting from the unbalanced setting yielded no good results all over the reduction
process. With further reduction the generalization ability got worse.

The reduction process building on the results of the balanced setting in the first test
series showed a continuous improvement in the generalization ability of the system.
The test recognition rate increased in every subsequent reduction step starting from
the second reduction for both balanced and unbalanced settings. The standard
deviation did not show a steady improvement. It varied without recognizable pattern.
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Figure 7.6: Reduction process for the whole feature group set.

In tendency the test with the balanced settings yielded slightly better recognition
rates than the ones with the unbalanced settings. The best result was achieved in
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the balanced setting for the maximum reduced feature group set: Grading R1 and
Grading R2. With an average recognition rate of 65.4% and a standard deviation of
12.2% it was better than random classification.

Tendencies in all the reduction results

In the reduction processes there was a tendency to improvements in the test and
clinical recognition rates. Often the improvement in the average recognition rate was
associated to an increase in the standard deviation of the corresponding measure.
That means that the stability of the prediction decreased. This was contrary to our
preliminary expectation that the reduction stabilizes the predication. In tendency this
phenomenon was larger for the unbalanced data settings. One possible interpretation
is that there were constellations in the data that could not be modeled sufficiently by
the sharply reduced feature group selections.

The suggested procedure for the determination of the cut-off for the reduction
tended to reduce the feature group selection significantly. This reduction was too
drastic in some of the tests. Further approaches towards the reduction of the feature
groups selections based on the relevance values for the single test runs have to be
analyzed in their corresponding behavior. This is outside the scope of this thesis. A
larger data set could help analyzing the phenomenon with respect to the influence of
the data set size.

It is probable that the strong reduction tendency of the relevance ranking score
approach prevented the reduction of the whole feature group set from achieving
better generalization results. This mechanism was compensated by the introduction
of pathological knowledge at the right time. For the pathological selection the incor-
poration of pathological knowledge was probably too early and dropped relevant
features. For the computational selection the introduction of pathological knowledge
by skipping semantically equivalent features came at about the right time.

Analyzing the non-Euclidean coefficient (NEC) for the best learning results in
each test series did not show a clear tendency. The NEC values are given in the
detailed result tables D.3 to D.6 in the appendix. The NEC did neither decrease
generally during reduction nor did it generally increase. There was also no clear
dependency between the generalization ability in terms of the test recognition rate
and the NEC. With few exceptions there was a slight tendency that the higher the
test recognition rate, the higher was also the NEC. This indicates that the modeled
discrimination task is non-Euclidean in its nature.

A relevant result was that the two best generalization results incorporated the
grading as a feature group. These feature group selections yielded test recognition
rates that even considering their variation achieved better values than random
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Figure 7.7: Labeled receptive field density diagram for the test data points in the trial with the
best test recognition rate for the computational selection – C2 balanced.

classification or classification according to the prior distribution of the classes. These
feature selections were: the first reduction of the computational selection in an
unbalanced setting – C2 – and the last reduction of the whole feature group set
starting with a balanced setting – N8. A possible strategy for the proceeding in the
reduction that considers these best results would be: Start the reduction using a
balanced as well as an unbalanced setting. For all subsequent reduction steps use the
balanced setting.

The overall best evaluation values were achieved for the first reduction of the
computational selection – C2. With a test recognition rate of 66.7% and its standard
deviation of 7.6% as well as a clinical recognition rate of 65.8% and its standard
deviation of 7.3% it yielded better results than the current clinical prediction given
by the grading in section 6.3. This tendency was confirmed in the recall and precision
values for the classes one and three. A further reduction of this selection decreased the
generalization ability. This is an evidence that the model lost necessary complexity
or feature group information in this reduction. The ERRatio may be of pathological
relevance in this context. This tendency would have to be confirmed in further
pathological studies involving prospective samples.

For this test runs we also evaluated the best trial using the visual evaluation
methods introduced in section 4.6. This test run yielded a test recognition rate of
83.3% and a non-Euclidean coefficient of 0.500. Figure 7.7 shows the labeled receptive
field density diagram for the best run over the test data points.

For the data point projections we conducted three MDS trials using the sam-
mon function, the stress function and the metric stress function using the “mdscale”
function in MATLAB from the statistics toolbox (Mathworks n.d.c). We mapped
the training data points as well as the test data points. For the training data points
the MDS with the sammon function did not converge within the default maximum
iteration number MATLAB considers for it. We neglect this mapping. In the fig-



7.4. Comparing pure Euclidean LVQ with integrative LVQ 203

ures D.1 and D.2 in the appendix we show the MDS results for the training data
points for stress and metric stress optimization as well as the corresponding Shepard
plot. The Shepard plot shows that the distances for the stress function in tendency
are overestimating whereas the distances for the metric stress are underestimating.

Figure 7.8 shows the labeled data point projection of the test data points that
were generated using the stress function and the metric stress function in MDS. The
abscissa and ordinate show the visualization coordinates of the mapped data points
and prototypes. The prototypes are identified by larger dots. Class one is mapped to
the blue color whereas class three is mapped to the green color. The multi dimensional
scaling result in the upper diagram (figure D.1(a)) was achieved by optimizing the
stress function. For the lower MDS diagram (figure D.1(b)) the metric stress function
was applied. In figure 7.9 the Shepard plot for these two MDS optimization strategy
results is shown. The distances that were found in the optimization process of MDS
are plotted along the abscissa against the actual dissimilarities from the vb-KLVQ
learning along the ordinate. Both optimization criteria – stress and metric stress –
show satisfying consistency between the dissimilarities and the distances.

A three-dimensional example of a MDS plot as a labeled data point projection
is given in figure 7.10. Here the mapped visualization coordinates were calculated
to stretch over three dimensions by the “cmdscale” function in MATLAB’s statistics
toolbox (Mathworks n.d.c). Data points labeled as class one are given by blue dots
and data points of class three by green dots. The larger dots are the two prototypes of
the corresponding classes. In figure D.3 in the appendix we show the corresponding
three-dimensional MDS result for the training data points.

7.4 Comparing results of pure Euclidean LVQ with
integrative LVQ for mixed data

We conducted the following test series on the reduced feature group selections that
resulted from the unbalanced first test series – P2, C2, R2 – except for the whole
feature group set that was used in its unreduced form – N1. This way we had a
variety of suitably and unsuitably integrated feature groups to check whether this
influences the results. The feature group sets were analyzed using GLVQ with a
squared Euclidean distance as introduced in section 4.1.2. The settings were the
same as for the combined feature group sets in the subsequent reduction tests. We
expected the Euclidean GLVQ to suffer more from the unbalanced data set than the
vb-KLVQ. For fair conditions we conducted the tests only for the balanced setting.
Table D.7 in the appendix summarizes the results. In table D.8 we summarize the
evaluation measures for direct comparison between the GLVQ and the vb-KLVQ.
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(a) Multidimensional scaling to two dimensions for lDPP of the test data points using stress
function.

(b) Multidimensional scaling to two dimensions for lDPP of the test data points using metric
stress function.

Figure 7.8: Labeled DPPs for the best result in integrative relevance analysis over the test data
samples.

From this comparison no clear-cut picture of the advantages or disadvantages could
be derived.
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Figure 7.9: Shepard plot for the evaluation of the corresponding mappings in figure 7.8.

For the computational selection C2 the training recognition rate was higher than
in the vb-KLVQ with a small standard deviation. All other evaluation measures were
significantly lower in the analysis based on the pure squared Euclidean distance and
showed high variances between the single runs. This indicates that the vb-KLVQ
in this case had a higher generalization ability over the particular feature group set
than the GLVQ with the squared Euclidean distance.

In the unselected case the pure squared Euclidean analysis yielded better results
except in the test recognition rate. For the pathological selection the clinical recogni-
tion rate was slightly better in the vb-KLVQ whereas all other evaluation measures
were worse. In the random selection the results of the vb-KLVQ and the GLVQ were
comparable to each other in all evaluation measures.

7.5 Outlier detection – Leave-one-out evaluation

Using the best feature group selection C2 in the vb-KLVQ we conducted a leave-one-
out validation as introduced in section 4.5.2 on page 77. We ran the tests twenty times
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Figure 7.10: Multidimensional scaling to three dimensions for a lDPP of the test data point
using classical multidimensional scaling.

for every data sample in the Exprimage data set except for the samples of follow-
up-status two. The settings were the same as for the integrated tests on balanced
data sets except for the prototype initialization. In the LOOV the randomness of the
training and test set splitting is removed. With a random choice of data points as
initial prototype positions we could evaluate the influence of this source of random
behavior.

The results were collected in terms of the recognition ratio for every single data
sample. This gave an approximate measure of how well a data sample is represented
by a model learned from the feature group selection and the remaining data samples.
We associated this measure with a display of the basic data for the patient samples.
Figure 7.11 shows an example of the LOOV result displayed in the InfoZoom ap-
plication (humanIT Software GmbH n.d.) that in the Exprimage project was used
for the described tasks. In this overview possible relations to other data, e.g. the
registration quality, could be identified. We did not identify a simple correlation with
the registration quality or clinical data.

Figure 7.12 illustrates the detail view of the LOOV result in InfoZoom that allowed
the correlation and inspection of the corresponding basic images from which the
tumor representation was calculated. It shows the data section with patient samples
for which the follow-up status was not suitably predicted. We highlighted two special
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Figure 7.11: Result presentation of the leave-one-out validation for the computational feature
group selection C2 in the compressed view of the InfoZoom application together with clinical
data.

outlier patient samples. The dashed rectangle in figure 7.12 marks an example of
bad slide preparation in histopathology. Figure 7.13(a) shows the corresponding HE
image in more detail. The dotted rectangle in figure 7.12 marks a special tumor type
with a high proportion of DCIS that non-invasively spread inside the milk ducts. Its
detailed HE image is shown in figure 7.13(b).

7.6 Analysis of patient samples with grading value two

According to the pathological experts the grading value two gives no reliable prog-
nosis. We conducted the reduction process with the strategy defined in section 7.3.3
starting with the whole feature group set using only samples with the grading value
two. The aim was to identify feature groups that are relevant for the prognosis of
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Figure 7.12: Result presentation of the leave-one-out validation for the computational feature
group selection C2 in the detailed view of the InfoZoom application together with the basic
image data.

these patients. Figure 7.14 shows this reduction process and table D.9 in the appendix
gives the detailed learning results.

An important finding was that the standard deviation of the test recognition rate
as well as of the clinical recognition rate was significantly higher than in all other tests
before, at least 20%. It is probable that there are different subtypes of surviving and
deceasing patients. Further tests with different numbers of prototypes are needed to
analyze this hypothesis. These tests are outside the scope of this thesis but will be
considered for future work.

The pathological experts emphasized the tendency in the reduction process to
prefer feature groups related to the functional markers. In the best result there were
two functional marker describing feature groups, one from clinical data and one
describing the heterogeneity in the geometrical distribution of the progesterone
receptor in tumor regions. The pathological experts considered the identified best
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(a) HE image of a patient sample that due to the bad
histopathological preparation of the slide could not
be suitably predicted in its outcome from models
learned using all other patient samples.

(b) HE image of a patient sample that due
to its special tumor type – high proportion
of DCIS which non-invasively spreads inside
milk ducts – could not be suitably predicted
in its outcome from models learned using all
other patient samples.

Figure 7.13: Digitized color images of the HE stains for two outlier patient samples detected
by the leave-one-out validation.

feature group set, comprising the DistributionPR and the Hormonereceptors R2
feature groups, as potentially relevant starting point for further pathological research
for a better prognosis in the unclear patients with grading two.
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Figure 7.14: Reduction process for the whole feature group set using only samples with a
grading value of two.



Chapter 8

Discussion and conclusion

In the following sections we will discuss the results of the work presented in this
thesis. After concluding the scientific contribution of the thesis we provide ideas for
future work building on the thesis’ achievements.

8.1 Discussion of test series with respect to introduced
hypotheses

In this section we discuss the test series with respect to the hypotheses formulated in
the introduction of chapter 7. We cannot give a definite assessment of the validity of
the established hypotheses. More example data and a closer long-term interaction
with the pathological experts would have been necessary for a detailed analysis.
The actual pathological scientific question was the prediction of the therapy success
for different patients. To answer this question it is particularly important to know
whether the patient was treated with chemotherapy. A combined label from follow-
up status and therapy has to be analyzed for a pertinent therapy success prediction.
We used the follow-up status as single label as the therapy information was not avail-
able in our cohort. The classification based on the follow-up status is no ecologically
valid implementation of the actual question. In this section we provide and discuss
tentative evidence of the hypothesis validity for the computational aspects of the
follow-up status classification.

8.1.1 Hypothesis 1 – improvement in reduction

The first hypothesis stated that it is possible to reduce candidate feature group
sets according to the identified relevance values such that the generalization of the
learned classification becomes better and more stable. The generalization ability was
measured in terms of the recognition rates and Cohen’s kappa for classification of
the test set. A detailed introduction of the test results was given in the sections 7.3.2
and 7.3.3.
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We conducted reduction series according to a relevance ranking analysis over the
dissimilarity parameters for four different settings:

Whole feature group ensemble – N1 For this choice we did not apply any previous
knowledge from computational or pathological analysis.

Pathological selection – P1 According to current pathological research interests fea-
ture groups for every tumor typical activity field were chosen according to
their computational isolated relevance analysis. Conceptually the choice was
driven by pathological knowledge and corrected by computational insight. The
resulting number of nine feature groups was taken as a bench mark for the
other selections.

Computational selection – C1 We chose nine feature groups that scored highest in
the isolated relevance analysis according to the stable generalization ability. The
choice was influenced by the pathological corrective to avoid semantic redun-
dancy in the feature groups. For this selection the computational knowledge
was driving the choice of feature groups whereas the pathological knowledge
corrected it.

Random selection – R1 For this selection we randomly drew nine feature groups
out of the whole feature group ensemble without the influence of computational
or pathological criteria.

For the whole feature group ensemble the reduction yielded generalization results
that were significantly different for the first reduction step based on the balanced or
the unbalanced setting. For the subsequent reduction of the reduced set from the
unbalanced setting no improvement of the recognition rate was achieved. For the
balanced first reduction in the subsequent tests the results became stably better with
every reduction process for the test recognition rate. For the clinical recognition rate –
evaluation of the recognition rate over the whole data set but just samples for grading
one or three – the mean value was increasing during the reduction process but also
the variation of this recognition rate. The best result according to the test recognition
rate was achieved for the maximum reduction. It resulted in the selection of the
feature groups: Grading R1 and Grading R2. That was a small set that also comprised
a semantically narrow field of tumor description. Even taking the variation into
account its recognition rate was better than for random classification.

For the pathological selection there was only a slight improvement in one re-
duction during the reduction process. Possible reasons for the reduction to fail
are:

• The available training data is not representative enough to conclude dissimilar-
ity parameters and consequently relevance values from it.
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• The dissimilarity values in the feature groups are not comparable and conse-
quently the dissimilarity parameters can not be interpreted as relevances.

• The relevance ranking score is not suited for the integration of the single
relevance values in the trials. That means it cannot model adequately the
overall relevance of a feature group.

• The selection of the cut-off in the ranking score is not adequate.

• Relevant information was dropped before.

The most probable reason is the last one. Evidence for that reason can also be found in
the evaluation of the reduction steps for the other feature groups. None of the feature
groups identified as most relevant in the other reduction processes were present in the
basic pathological selection. This provides evidence for the pathological knowledge
to be incorporated too early into the selection process. Relevant feature groups could
have been dropped.

The best generalization results in the whole test series were generated by the
reduction in the balanced analysis of the reduced computational selection C2. The
same holds for the Cohen’s kappa for the classification of the test set. The clinical
recognition rate was also best in the first reduction step but slightly lower than in the
last reduction of the whole feature group ensemble. The computational selection in
this stage comprised four clinical feature groups as well as the coarse morphometric
tumor representation using three clusters and the computationally determined ratio
of ER expression. The further reduction of the computational selection in the second
step that removed the ERRatio feature group decreased the generalization ability in
all pertinent measures. This indicates that information relevant for the classification
was dropped. This phenomenon can be defined as an overselection of feature groups
where no further suitable reduction of the model complexity is possible without a
loss of predictive power.

In the random selection of feature groups the reduction process showed a ten-
dency to improve the generalization ability. As the random selection did not comprise
relevant features the recognition rates were not better than random classification.

Summarizing the discussion of the single reduction processes there is evidence
that hypothesis 1 is valid. As another result of these tests we found that the system
tends to reduce the number of feature groups too much. In order to avoid this effect it
proved to be advantageous to incorporate the pathological knowledge as a corrective
at the right time.



214 8. Discussion and conclusion

8.1.2 Hypothesis 2 – stability in combinations

In hypothesis 2 we assumed that a suitable combination of feature groups yields
better and more stable results than the single feature groups on their own. We
introduced the test results for the single feature groups in section 7.2.1. In section 7.3.3
we discussed the results for the feature group combinations. Using the combined
feature group selections all runs converged within a smaller number of epochs than
the runs for the single feature groups. Convergence was also reliable in combinations
with single feature groups that did not show proper convergence in the isolated
analysis.

For the best reduction result in the computational selection we achieved test
recognition rates that in average were the same as for the best single feature group
(Grading RH). According to the smaller standard deviation (7.6% instead of 14%)
the results for the feature group combination was stably better. Thus the suitable
combination yielded more stable results.

There is evidence that hypothesis 2 is valid.

8.1.3 Hypothesis 3 – improvement of grading

We formulated the hypothesis that the suitably integrated combination of feature
groups yields better results than the pathological classification by the grading. We
discussed the question of comparability of the results in section 7.3.2 and applied the
corresponding measures in the different tests for the combined feature groups.

For the reduced computational feature group selection as well as for the reduction
of the whole feature group ensemble we achieved a classification that is slightly
better than the classification given by the grading in section 6.3 according to the
clinical recognition rate (65.8% compared to 61.4%). The values for the recall and
precision of the classes are comparable with the difference that the grading gives
higher preference to class three than our classification.

This test series provides evidence that hypothesis 3 is valid. The stability of the
classification cannot be judged as we did not have comparable data, i.e. reliability
tests, for the grading in our data set.

8.1.4 Hypothesis 4 – improvement by structure

Hypothesis 4 expressed the expectation that a suitably integrated combination of
feature groups with their conceptually adequate dissimilarities yields more stable and
better results than the use of a comparable classification with an overall Euclidean
distance. We compared the results of a GLVQ using the squared Euclidean distance
with the results of the vb-KLVQ on the feature group selections resulting from the
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first unbalanced reduction step except for the whole feature group set that was used
in its unreduced form. In section 7.4 we show the results of these tests.

For the feature group selection that showed a significant increase of generalization
ability in the previous reduction step – the reduced computational selection C2 – the
vb-KLVQ in tendency achieved better recognition rates and Cohen’s kappa values
than the GLVQ. For the unreduced whole feature group selection N1 an improvement
in the test recognition rate was achieved but not in Cohen’s kappa. For the other
feature group selections the generalization ability was better in the squared Euclidean
GLVQ.

In the overall analysis of the results the GLVQ shows higher training recognition
rates whereas the generalization ability in tendency is higher for the vb-KLVQ. The
hypothesis 4 is tentatively warranted. A series of tests with more complete data has
to be conducted in future work to clarify the validity of the hypothesis.

8.1.5 Hypothesis 5 – identification of saliency

We hypothesized that the leave-one-out validation conducted with focus on the recog-
nition rate for every single patient sample is capable of identifying pathologically
salient patient samples. In section 7.5 the results of the leave-one-out validation are
shown in exemplary form. There were three kinds of patient samples for which no
reliable prediction of the follow-up status was achievable by the learned models:

• samples with preparation problems in histopathology,

• samples with known special tumor types and

• samples with no directly comprehensible modeling problem.

The samples of the last type can provide evidence either for necessary model adap-
tations or necessary pathological research. In the discussion with the pathological
experts it turned out that in some cases there is need for a known medical clue
to be represented additionally. Further relevance analyses incorporating feature
groups representing this medical clue can probably improve the predictability of the
follow-up status for the corresponding patient samples.

When the pathological experts cannot associate known complementing patholog-
ical factors for improving the reliable prediction of the corresponding patient sample,
pathological research based on the relevances and combination of feature groups
used in the leave-one-out validation might be necessary. This effort is justifiable if
there are identified salient and potentially relevant patient samples. This depends
from large, representative data sets.

From the first two kinds of samples that we identified in the conducted leave-one-
out validation we gained tentative evidence that hypothesis 5 is valid.
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8.2 Conclusion

We developed the methods in this thesis as a framework to approximate relevant
contextual feature group combinations for the identification of disease subtypes in
pathological research. These feature group combinations are neither known nor
could they be understood immediately in detail if a computer system marks them as
significant.

In our application the situation is even worse as neither a necessary amount of
data is available nor does the data provide a sound statistical basis for the exact
definition of a testable research aim. Even the labels of the patient data samples
provide no conceptually adequate assessment base. This would be the case if there
was an information about the applied adjuvant therapies. Then the various patient
data could be matched against the adequacy of the treatment scheme. That does not
change the fact that the introduced reduction process provides a suitable method-
ological extension to the computer supported learning and identification processes.
It shows where to carefully check the behavior of the system in detail.

In the prediction of breast cancer follow-up we could show that using the devel-
oped learning and evaluation approaches it is possible to identify medically relevant
feature group combinations. The hypotheses formulated in the introduction of
chapter 7 were tentatively warranted.



8.3. Future prospects 217

8.3 Future prospects

For future research concerning the system we see the following subjects of study:

1. We want to analyze the creation of feature group selections from the isolated
relevance analysis by an approach incorporating the evaluation of the Cohen’s
or Fleiss’ kappa between the classifications of the single feature groups. Different
feature groups that yield good recognition rates with different classifications
are assumed to provide a more comprehensive model of the tumor situation in
a patient.

2. In the application of the integrative relevance analysis the normalization of the
dissimilarities is an important issue that influences the interpretability of the
dissimilarity parameters as relevance values. A study analyzing the suitability
and the influence of different normalizations on the reduction process and
the corresponding generalization ability of the system as well as the patho-
logical relevance of the findings has to be conducted to further improve the
applicability of the framework as cognitive support system.

3. Another study subject relates to the appropriate determination of the cut-off
for the reduction of the feature group selections. Different methods have to
be analyzed in their influence on the reduction process with respect to the
computational and pathological performance.

4. For the clinical data we mentioned in section 7.1.4, that we assume there are
more suitable dissimilarities for the clinical feature groups that result from a perti-
nent combination of statistical and human judgment on the dissimilarities. A
close long-term interaction with the pathological experts is needed to achieve a
common understanding of the domain specific underlying concepts of dissimi-
larity. Based on this understanding a suitable dissimilarity definition for the
clinical data can be found.

5. A life-long learning ability that allows the system to learn during pathologi-
cal routine will enhance the possibilities of a long term interaction with the
pathological experts.

6. A valuable enhancement for the real-world application of the system is the
ability to cope with missing features as the quality of medical documentation of
the patient cases is often insufficient.

Summarizing, our central aim for further research is to apply the system in a study
with a larger number of patient cases and a more continuous interaction with the
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experts of the application domain. The underlying concepts of the framework are gen-
erally used to support cognitively difficult insight processes. The cognitive support
system can be adapted to the specifics of other application domains by introducing
other feature groups from pertinent image analysis or biomedical measurements.
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Distance measures in Structured Batch Neural
Gas

Basis for all following calculations is the equation:
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the new [wn][j] it is necessary to know the structure of the dj? under consideration.
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A.2 γ-Divergences

Collection of parameterized divergences (e.g. Cauchy-Schwarz-Divergence for γ = 1,
see (Villmann and Haase 2010) for more detail)
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A.3 Kullback-Leibler-Divergence for Gaussians
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Distance measures and their derivatives

B.1 Squared Euclidean distance
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B.3 Kullback-Leibler-Divergence for Gaussians
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Test result tables for isolated relevance
evaluation

Feature group selection Mean test recogni-
tion rate

Standard deviation

Grading RH 66.7% 14.0%
SOMnCl3 65.0% 13.1%
Grading R1 66.7% 16.2%
SOMnCl4 60.0% 10.7%
Clinical TN RH 55.8% 6.7%
Clinical LVR RH 57.9% 9.9%
ERRatio 50.8% 3.7%
Grading R2 60.0% 13.1%
CD45co-occurrence 52.1% 5.3%
Hormonereceptors R1 50.8% 4.6%
SOMnCl2 60.0% 13.9%
Hormonereceptors RH 55.0% 9.1%
AreaRegionCluster5 52.9% 7.3%
Clinical LVR R1 57.5% 12.1%
RegionPerimeter 52.9% 7.8%
PRLDQ 55.0% 10.3%
DGDeg2 53.3% 8.7%
DGDeg1 50.0% 5.4%
DistributionPR 58.7% 14.4%
NumberRegions 55.0% 10.9%
AreaRegionsER 51.3% 7.3%
RegionSize 50.4% 7.4%
PRintissue 50.4% 7.4%
ERRCC8 55.0% 12.2%
DGDist1 47.9% 5.3%
RelativeAreaToTumor 50.0% 7.6%
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MoAE1AE3nCl4 54.6% 12.2%
AreaRegionCluster4 50.8% 8.5%
SOMnCl7 53.3% 11.6%
Clinical TN R1 51.7% 10.0%
CD45Ratio 52.9% 11.2%
AreaRegionCluster1 50.0% 8.5%
Clinical TN R2 54.2% 13.1%
Clinical LVR R2 55.4% 14.4%
AreaRegionsPR 48.8% 7.8%
DGRandicIndex 50.4% 10.3%
AreaRegionCluster2 49.6% 9.5%
MeanAreaToTumor 47.5% 8.2%
AreaRegionsTum 47.5% 8.2%
MSTDist1 47.1% 8.2%
ERinTissue 51.3% 12.5%
CD45RCC8 49.6% 11.0%
InnerTumorStructure 53.3% 15.2%
CD45inTissue 48.3% 10.3%
Hormonereceptors R2 47.5% 9.8%
PRRatio 46.7% 9.1%
AreaRegionCluster3 47.5% 10.2%
DGCyclomaticNumber 47.1% 9.9%
PRRCC8 47.9% 10.8%
ERLDQ 46.7% 9.9%
DistributionER 49.6% 13.1%
DGDist2 46.7% 10.3%
ERco-occurrence 44.6% 8.7%
NumberOfRegions 47.5% 11.8%
MoAE1AE3nCl3 44.2% 8.6%
DGWeightedDeg 44.6% 9.1%
DistributionCD45 45.4% 9.9%
Age 50.0% 14.8%
DGnNodes 47.5% 13.8%
HRTumorRegions 48.3% 14.7%
AbsoluteArea 46.7% 13.1%
MSTDist2 46.3% 13.9%
MoAE1AE3nCl2 42.1% 11.0%
ClusterRegionNumber 43.8% 12.6%
RelAreaStroma 45.0% 14.4%
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CD45LDQ 42.1% 12.8%
PRco-occurrence 41.3% 15.2%

Table C.1: Overview of the generalization results for all feature
groups in the isolated relevance analysis
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Test results for integral relevance analysis and
related tests

D.1 Test results for first test series

The test results for the first test series are given for four different feature group
selections. The evaluation measures that we concerned where: training recognition
rate, test recognition rate, clinical recognition rate and the test Cohen’s κ. Table D.1
shows the results for the unbalanced setting whereas table D.2 gives those of the
balanced setting.

D.2 Test results for subsequent reduction of feature
group sets

The following tables give the detailed test results for the reduction processes of the
four different feature group selections. The training recognition rate, test recognition
rate, clinical recognition rate and test Cohen’s κ were used as evaluation values.
Their average value as well as their standard deviation was considered. Furthermore
for the test run in each test series that showed the highest test recognition rate we
calculated the corresponding non-euclidean coefficient. It is given in the tables
together with the corresponding test recognition rate.

The reduction process for the pathological selection is given in table D.3. For
the computational selection the detailed results of the reduction are depicted in
table D.4. Table D.5 shows the reduction results for the random selection. For the
reduction process of the whole feature group ensemble the detailed results are listed
in table D.6.
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Feature group
selection

Type of evaluation
value

average
value

standard
deviation

No selection Training RR 62.1% 2.0%

Test RR 59.6% 4.8%
Clinical RR 47.5% 3.6%
Test Cohen’s κ 0.405 0.062

Pathological Training RR 64.2% 3.7%

selection Test RR 57.9% 8.0%
Clinical RR 51.5% 3.9%
Test Cohen’s κ 0.410 0.097

Computational Training RR 64.5% 3.8%

selection Test RR 56.8% 12.4%
Clinical RR 49.7% 2.0%
Test Cohen’s κ 0.438 0.135

Random Training RR 66.0% 3.5%

selection Test RR 49.3% 6.5%
Clinical RR 51.1% 4.6%
Test Cohen’s κ 0.427 0.082

Table D.1: Results for different feature group selections in first test series with unbalanced
setting. We abbreviate the recognition rate by RR.
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Feature group
selection

Type of evaluation
value

average
value

standard
deviation

No selection Training RR 56.3% 4.5%
Test RR 52.5% 8.6%
Clinical RR 46.7% 9.2%
Test Cohen’s κ 0.386 0.097

Pathological
selection

Training RR 62.4% 6.3%

Test RR 56.3% 12.1%
Clinical RR 55.8% 20.1%
Test Cohen’s κ 0.459 0.150

Computational
selection

Training RR 66.7% 4.2%

Test RR 54.6% 8.3%
Clinical RR 49.5% 14.3%
Test Cohen’s κ 0.467 0.098

Random selec-
tion

Training RR 68.1% 4.1%

Test RR 52.5% 12.1%
Clinical RR 51.9% 17.6%
Test Cohen’s κ 0.477 0.130

Table D.2: Results for different feature group selections in first test series with balanced test
and training data sets. We abbreviate the recognition rate by RR.
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Feature
group
selection

Setting Type of evaluation
value

average
value

standard
deviation of
value

P1 balanced Training RR 62.4% 6.3%
Test RR 56.3% 12.1%
Clinical RR 55.8% 20.1%
Test Cohen’s κ 0.459 0.150
Best test RR 75.0%
NEC for best test 0.500

unbalanced Training RR 64.2% 3.7%
Test RR 57.9% 8.0%
Clinical RR 51.5% 3.9%
Test Cohen’s κ 0.410 0.097
Best test RR 71.4%
NEC for best test 0.500

P2 balanced Training RR 59.4% 3.9%
Test RR 53.8% 11.0%
Clinical RR 53.0% 18.5%
Test Cohen’s κ 0.438 0.126
Best test RR 75.0%
NEC for best test 0.416

unbalanced Training RR 61.1% 1.7%
Test RR 58.2% 8.8%
Clinical RR 58.1% 13.2%
Test Cohen’s κ 0.431 0.116
Best test RR 71.4%
NEC for best test 0.411

P3 balanced Training RR 60.0% 2.4%
Test RR 52.1% 11.7%
Clinical RR 56.8% 14.7%
Test Cohen’s κ 0.405 0.141
Best test RR 75.0%
NEC for best test 0.421

unbalanced Training RR 58.8% 4.2%
Test RR 54.2% 11.3%
Clinical RR 57.4% 16.9%
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Test Cohen’s κ 0.442 0.136
Best test RR 75.0%
NEC for best test 0.426

Table D.3: Results in the reduction process for the pathological
selection. The abbreviations for the feature sets correspond to the
marks in figure 7.3. Furthermore we abbreviate recognition rate by
RR.

Feature
group
selection

Setting Type of evaluation
value

average
value

standard
deviation of
value

C1 balanced Training RR 66.7% 4.2%
Test RR 54.6% 8.3%
Clinical RR 49.5% 14.3%
Test Cohen’s κ 0.467 0.098
Best test RR 75.0%
NEC for best test 0.530

unbalanced Training RR 64.5% 3.8%
Test RR 56.8% 12.4%
Clinical RR 49.7% 2.0%
Test Cohen’s κ 0.438 0.135
Best test RR 85.7%
NEC for best test 0.501

C2 balanced Training RR 67.1% 4.9%
Test RR 66.7% 7.6%
Clinical RR 65.8% 7.3%
Test Cohen’s κ 0.609 0.080
Best test RR 75.0%
NEC for best test 0.416

unbalanced Training RR 65.1% 3.9%
Test RR 57.5% 11.0%
Clinical RR 56.6% 21.3%
Test Cohen’s κ 0.474 0.120
Best test RR 78.6%
NEC for best test 0.418
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C3 balanced Training RR 65.8% 4.5%
Test RR 60.0% 15.2%
Clinical RR 61.7% 21.2%
Test Cohen’s κ 0.529 0.178
Best test RR 75.0%
NEC for best test 0.500

unbalanced Training RR 64.7% 1.8%
Test RR 60.7% 8.8%
Clinical RR 55.0% 14.6%
Test Cohen’s κ 0.518 0.106
Best test RR 71.4%
NEC for best test 0.500

C4 balanced Training RR 67.8% 2.9%
Test RR 57.1% 12.8%
Clinical RR 57.4% 16.9%
Test Cohen’s κ 0.510 0.160
Best test RR 83.3%
NEC for best test 0.500

unbalanced Training RR 65.8% 2.2%
Test RR 55.7% 12.2%
Clinical RR 56.3% 18.3%
Test Cohen’s κ 0.488 0.134
Best test RR 78.6%
NEC for best test 0.386

Table D.4: Results in the reduction process for the computational
selection. The abbreviations for the feature sets correspond to the
marks in figure 7.4. Furthermore we abbreviate recognition rate by
RR.

Feature
group
selection

Setting Type of evaluation
value

average
value

standard
deviation of
value

N1 balanced Training RR 56.3% 4.5%
Test RR 52.5% 8.6%
Clinical RR 46.7% 9.2%
Test Cohen’s κ 0.386 0.097
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Best test RR 66.7%
NEC for best test NaN

unbalanced Training RR 62.1% 2.0%
Test RR 59.6% 4.8%
Clinical RR 47.5% 3.6%
Test Cohen’s κ 0.405 0.062
Best test RR 64.3%
NEC for best test NaN

N2 balanced Training RR 55.3% 5.1%
Test RR 49.2% 6.0%
Clinical RR 46.7% 15.0%
Test Cohen’s κ 0.357 0.082
Best test RR 66.7%
NEC for best test 0.500

unbalanced Training RR 58.3% 0.0%
Test RR 57.1% 0.0%
Clinical RR 40.9% 12.7%
Test Cohen’s κ 0.364 0.000
Best test RR 57.1%
NEC for best test 0.500

N3 balanced Training RR 57.9% 3.0%
Test RR 44.6% 11.9%
Clinical RR 51.5% 24.4%
Test Cohen’s κ 0.356 0.141
Best test RR 66.7%
NEC for best test 0.428

unbalanced Training RR 56.9% 5.6%
Test RR 50.7% 8.9%
Clinical RR 53.7% 11.3%
Test Cohen’s κ 0.410 0.089
Best test RR 64.3%
NEC for best test 0.500

N4 balanced Training RR 73.6% 5.0%
Test RR 54.6% 11.3%
Clinical RR 58.7% 14.6%
Test Cohen’s κ 0.515 0.124
Best test RR 75.0%



236 D. Test results for integral relevance analysis

NEC for best test 0.431

unbalanced Training RR 70.3% 4.0%
Test RR 48.9% 11.2%
Clinical RR 47.6% 23.6%
Test Cohen’s κ 0.447 0.139
Best test RR 71.4%
NEC for best test 0.454

N5 balanced Training RR 69.3% 3.4%
Test RR 51.7% 7.9%
Clinical RR 52.0% 10.2%
Test Cohen’s κ 0.471 0.100
Best test RR 66.7%
NEC for best test 0.428

unbalanced Training RR 67.8% 2.4%
Test RR 56.4% 9.5%
Clinical RR 57.0% 13.0%
Test Cohen’s κ 0.526 0.099
Best test RR 78.6%
NEC for best test 0.419

N6 balanced Training RR 66.5% 3.9%
Test RR 61.2% 11.6%
Clinical RR 67.5% 9.0%
Test Cohen’s κ 0.554 0.138
Best test RR 83.3%
NEC for best test 0.486

unbalanced Training RR 67.2% 3.4%
Test RR 55.0% 11.1%
Clinical RR 56.7% 15.4%
Test Cohen’s κ 0.493 0.130
Best test RR 78.6%
NEC for best test 0.419

N7 balanced Training RR 64.1% 4.3%
Test RR 57.5% 14.5%
Clinical RR 61.2% 16.5%
Test Cohen’s κ 0.501 0.174
Best test RR 91.7%
NEC for best test 0.500
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unbalanced Training RR 61.0% 4.4%
Test RR 59.6% 13.6%
Clinical RR 62.0% 17.2%
Test Cohen’s κ 0.520 0.148
Best test RR 85.7%
NEC for best test 0.500

N8 balanced Training RR 62.7% 3.0%
Test RR 65.4% 12.2%
Clinical RR 69.9% 14.9%
Test Cohen’s κ 0.591 0.141
Best test RR 91.7%
NEC for best test 0.500

unbalanced Training RR 64.0% 2.3%
Test RR 63.9% 11.7%
Clinical RR 68.2% 16.8%
Test Cohen’s κ 0.546 0.128
Best test RR 85.7%
NEC for best test 0.500

Table D.6: Results in the reduction process for the whole feature
group ensemble. The abbreviations for the feature sets correspond
to the marks in figure 7.6. Furthermore we abbreviate recognition
rate by RR.

D.3 Test results for comparison with pure Euclidean
LVQ

The following tables allow the comparison of the test results for the vb-KLVQ and
the LVQ. The detailed test results for the LVQ runs are given in table D.7. For
comparison a choice of evaluation measures is summarized for both vb-KLVQ and
LVQ respectively in table D.8.
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Feature
group
selection

Setting Type of evaluation
value

average
value

standard
deviation of
value

R1 balanced Training RR 68.1% 4.1%
Test RR 52.5% 12.1%
Clinical RR 51.9% 17.6%
Test Cohen’s κ 0.477 0.130
Best test RR 83.3%
NEC for best test 0.534

unbalanced Training RR 66.0% 3.5%
Test RR 49.3% 6.5%
Clinical RR 51.1% 4.6%
Test Cohen’s κ 0.427 0.082
Best test RR 64.3%
NEC for best test 0.502

R2 balanced Training RR 62.4% 3.2%
Test RR 56.3% 11.7%
Clinical RR 60.6% 3.6%
Test Cohen’s κ 0.503 0.130
Best test RR 83.3%
NEC for best test 0.391

unbalanced Training RR 63.5% 2.6%
Test RR 55.0% 8.4%
Clinical RR 49.6% 16.3%
Test Cohen’s κ 0.475 0.082
Best test RR 71.4%
NEC for best test 0.411

Table D.5: Results in the reduction process for the random selection. The abbreviations for the
feature sets correspond to the marks in figure 7.5. Furthermore we abbreviate recognition rate
by RR.

D.4 Test results for reduction process using only
samples of grading two

The detailed test results for the reduction process that was conducted using only
samples that showed a grading value of two are given in table D.9.
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Feature group
selection

Type of evaluation
value

average
value

standard
deviation of
value

No selection
(N1)

Training RR 79.1% 4.7%

Test RR 50.4% 9.9%
Clinical RR 56.3% 20.0%
Test Cohen’s κ 0.428 0.113

Pathological
(P2)

Training RR 63.5% 3.5%

selection Test RR 54.6% 11.6%
Clinical RR 52.7% 18.4%
Test Cohen’s κ 0.457 0.126

Computational
(C2)

Training RR 70.2% 3.2%

selection Test RR 57.9% 12.2%
Clinical RR 58.7% 17.1%
Test Cohen’s κ 0.517 0.146

Random (R2) Training RR 61.7% 4.1%
selection Test RR 58.8% 16.1%

Clinical RR 57.8% 18.0%
Test Cohen’s κ 0.533 0.173

Table D.7: Results for pure Euclidean analysis of the reduced feature group selections resulting
from the first unbalanced test series. We abbreviate the recognition by RR.
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(a) Multidimensional scaling to two dimensions for lDPP of the training data points using
stress function.

(b) Multidimensional scaling to two dimensions for lDPP of the training data points using
metric stress function.

Figure D.1: Labeled DPPs for the best result in integrative relevance analysis over the training
data samples.
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Figure D.2: Shepard plot for the evaluation of the corresponding mappings in figure D.1.
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Figure D.3: Multidimensional scaling to three dimensions for a lDPP of the training data point
using classical multidimensional scaling.
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Feature group
selection

Type of value
to compare

value for
GLVQ

value for
vb-KLVQ

No selection
(N1)

Training RR 79.1% 56.3%

Test RR 50.4% 52.5%
Clinical RR 56.3% 46.7%
Test Cohen’s κ 0.428 0.386

Pathological
(P2)

Training RR 63.5% 59.4%

selection Test RR 54.6% 53.8%
Clinical RR 52.7% 53.0%
Test Cohen’s κ 0.457 0.438

Computational
(C2)

Training RR 70.2% 67.1%

selection Test RR 57.9% 66.7%
Clinical RR 58.7% 65.8%
Test Cohen’s κ 0.517 0.609

Random (R2) Training RR 61.7% 62.4%
selection Test RR 58.8% 56.3%

Clinical RR 57.8% 60.6%
Test Cohen’s κ 0.533 0.503

Table D.8: Results comparing pure Euclidean GLVQ with vb-KLVQ for the reduced feature
group sets resulting from the first unbalanced test series.
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Feature
group
selection

Setting Type of evaluation
value

average
value

standard
deviation
of value

G1 balanced Training RR 66.5% 14.0%
Test RR 55.0% 23.8%
Test Cohen’s κ 0.456 0.301

unbalanced Training RR 55.4% 16.0%
Test RR 42.9% 21.7%
Test Cohen’s κ 0.336 0.189

G2 balanced Training RR 79.0% 5.1%
Test RR 57.5% 24.5%
Test Cohen’s κ 0.525 0.304

G3 balanced Training RR 72.7% 5.8%
Test RR 55.0% 22.4%
Test Cohen’s κ 0.485 0.290

G4 balanced Training RR 73.7% 6.2%
Test RR 58.8% 24.7%
Test Cohen’s κ 0.537 0.311

G5 balanced Training RR 76.9% 5.8%
Test RR 58.8% 20.3%
Test Cohen’s κ 0.558 0.227

G6 balanced Training RR 62.9% 4.5%
Test RR 65.0% 23.5%
Test Cohen’s κ 0.599 0.266

Table D.9: Results in the reduction process for the whole feature group ensemble using only
samples with grading two. The abbreviations for the feature sets correspond to the marks in
figure 7.14. Furthermore we abbreviate recognition rate by RR.
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