
DOI: 10.1111/cgf.13957 COMPUTER GRAPHICS forum
Volume 39 (2020), number 6 pp. 133–143

Analysis of Schedule and Layout Tuning for Sparse Matrices
With Compound Entries on GPUs

J. S. Mueller-Roemer,1 A. Stork1 and D. Fellner1,2

1TU Darmstadt & Fraunhofer IGD, Darmstadt, Germany
{johannes.mueller-roemer, andre.stork, dieter.fellner}@igd.fraunhofer.de

2TU Graz, Graz, Steiermark, Austria,

Abstract
Large sparse matrices with compound entries, i.e. complex and quaternionic matrices as well as matrices with dense blocks, are
a core component of many algorithms in geometry processing, physically based animation and other areas of computer graphics.
We generalize several matrix layouts and apply joint schedule and layout autotuning to improve the performance of the sparse
matrix-vector product on massively parallel graphics processing units. Compared to schedule tuning without layout tuning, we
achieve speedups of up to 5.5×. In comparison to cuSPARSE, we achieve speedups of up to 4.7×.
Keywords: GPGPU, parallel computing, sparse matrix, SpMV

ACMCCS: Computing methodologies: Massively parallel algorithms; Parallel programming languages; Mathematics of com-
puting: Computations on matrices

1. Introduction

While the use of sparse matrices with complex coefficients is com-
mon in computational physics, due to their ability to represent
amplitude and phase in frequency-domain simulations, and there-
fore widely supported by linear algebra libraries, other extended
number systems and compound entries are used in many areas of
computer graphics. For example, quaternions have a long history
of use in computer graphics due to their usefulness in represent-
ing and interpolating orientations in the special orthogonal group
SO(3) [Sho85]. More recently, their dual extension, the dual quater-
nion algebra, has seen increasing use for interpolation and averag-
ing of rigid transformations in the special Euclidean group SE(3) as
well [KCŽO07].

As a result, sparse matrices with quaternionic entries have found
uses in diverse fields used in computer graphics such as the sim-
ulation of rigid multi-body systems [Tas01] or geometry process-
ing [CKPS18]. While workarounds using standard, real-valued ma-
trices are available, these are inefficient in both performance and
memory use (see Section 3.2).

In addition to extended number systems, the system matrices re-
sulting from the finite-element method (FEM) and other discretiza-
tions used in physically based animation of deformables exhibit

dense 3× 3-blocks. These matrices can be viewed as sparse ma-
trices with 3× 3-matrices as entries that are used with vectors of
three-dimensional vectors. We use the term compound entries as a
generalization for both scenarios.

To make efficient use of manycore graphics processing units
(GPUs), both memory layout and parallel schedule have to be cho-
sen well. For example, interleaving the components of a compound
entry, while natural due to how aggregate types are defined in most
programming languages, leads to suboptimal performance on GPUs
due to lack of coalescing (see Figure 5 and Section 3.1). Depending
on the hardware as well as the domain- and discretization-dependent
distribution of non-zero entries, different parallel schedules, e.g. dy-
namic or static scheduling, and different block sizes are necessary
to achieve good performance.

This is an extended version of [MSF19]. The original paper ex-
amined how the concept of layout optimization used in dense array
autotuners such as MATOG [WG17] can be applied to sparse ma-
trices with compound entries on the GPU. Furthermore, it demon-
strated tuning of and generalization over sparse matrix formats such
as CSR, ELLPACK-R [VOFG10] and Sliced ELLPACK [MLA10].
In addition, our autotuner performs schedule optimization to deal
with matrices with varying non-zero patterns and GPUs with a
varying number of cores. In this work, we analyse and discuss the

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in
any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

133

https://orcid.org/0000-0002-0712-0457
https://orcid.org/0000-0001-7756-0901
http://creativecommons.org/licenses/by-nc-nd/4.0/


134 J. S. Mueller-Roemer et al. / Analysing Sparse Matrix Layout and Schedule Tuning

Figure 1: Schedule tuning comparison for the default CSR–AoS–AoS layout (left) and the best performing ELL–SoA–AoS layout (right) for
the double precision fem/NX_MotorH67k matrix on the GP100. The choice of layout significantly affects which schedule is optimal. In both
cases, the base schedule type is static. The plot surface is coloured by time value.

memory overheads of each format and the effects of schedule opti-
mization in detail.

In the following sections, we provide an overview of related work
including sparse matrix formats and code generation, just-in-time
(JIT) compilation and autotuning for GPUs and use cases for sparse
matrices with compound entries in Section 2. In Section 3, we pro-
vide a brief overview of multi- and manycore architectures and pro-
gramming models, memory layouts and workarounds for the lack of
quaternionic matrix support in current linear algebra libraries. We
detail our approach in Section 4, followed by discussing the results
of our evaluation in Section 5. Finally, we summarize the paper and
suggest avenues for future research in Section 6.

2. Related Work

In this section, we list use cases and outline related work on for-
mats for sparse matrices with compound entries. Furthermore, an
overview over related JIT compilation, code generation and auto-
tuning approaches is given.

2.1. Sparse matrices with compound entries

Sparse matrices with complex coefficients are common in
frequency-domain simulations such as acoustic [Tho06] and elec-
tromagnetic simulations [Jin14]. In the latter case, system matrices
have dense 3× 3-blocks of complex entries. As complex matrices
are a common use case, commercial sparse linear algebra libraries,
e.g. NVIDIA cuSPARSE [NVI19b], provide well-tuned algorithms
for such matrices.

In the field of geometry processing, Crane et al. use sparse quater-
nionic matrices to compute conformal transformations of triangle
meshes inR3 [CPS11]. Later publications based on the quaternionic
Dirac operator defined by Crane et al. result in quaternionic ma-
trices as well [CPS13, LJC17, YDT*18]. Chern et al. use paral-
lel transport of unit quaternions representing triangle orientations
for the isometric immersion problem of orientable triangle meshes

Figure 2: Array of structures (AoS), structure of arrays (SoA) and
array of structures of arrays (AoSoA) layouts of an array of complex
numbers ck = rk + iki. For AoSoA, an inner array size of 2 is shown.

[CKPS18]. Both Crane and Chern et al. suggest using the 4 ×
4-matrix expansion of quaternions, which leads to a significant
memory and compute overhead (see Section 3.2).

In physically based animation, the FEM approach for simulat-
ing deformable models results in dense 3× 3-matrix blocks. Li-
braries such as cuSPARSE support the block compressed sparse row
(BSR) format, a variant of the compressed sparse row (CSR) format
[Saa03] for matrices with dense, fixed-size blocks that omits im-
plicitly computable column indices. In academia, some researchers
have used this fact to design GPU-optimized sparse matrix formats
for FEM simulation. Examples include Weber et al.’s binned block
compressed sparse row (Bin-BCSR) format [WBS*13], which only
uses the block structure along one dimension and was recently im-
proved to use it along both dimensions by Mueller-Roemer and
Stork [MS18]. For the simulation of flexible cables in interactive
and virtual reality applications, Lang et al. introduce a quater-
nionic discretization of the rotational degrees of freedomofCosserat
rods [LLA11]. A related approach was recently used for geometri-
cally exact simulation of beams under large displacements and con-
tact by Tasora et al. [TBMG20]. Furthermore, quaternionic matrices
can be used to improve the performance of rigid multi-body sys-
tem simulations, as shown by Tasora [Tas01]. Despite their use in
computer graphics and physics, sparse quaternionic matrices are,
to the best of our knowledge, not supported by any major (GPU-
accelerated) linear algebra library.

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



J. S. Mueller-Roemer et al. / Analysing Sparse Matrix Layout and Schedule Tuning 135

2.2. Schedule and layout autotuning

In the domain of layout tuning of dense arrays for GPUs, We-
ber and Goesele have combined text template-based layout vari-
ations combined with model-based autotuning to great effect in
MATOG [WG17]. Here, layout tuning refers to the selection of array
of structures (AoS), structure of arrays (SoA) or array of structures
of arrays (AoSoA) layouts (see Figure 2) and row-major or column-
major orders for dense n-dimensional arrays with compound entries.

In the area of compiler technologies for sparse matrices, Bik
introduced a compiler that automatically transforms dense codes
into sparse codes as well as performing CPU vectorization and par-
allelization [Bik96]. He also introduces more advanced transforms
that require the sparsity pattern at compile time. Cheshmi et al. also
perform compile time analysis but combine it with a polyhedral
loop optimizer to generate specialized direct solvers with improved
vectorization on CPUs [CKSD17]. Venkat et al. use a runtime
inspector and executer to analyse the sparsity pattern to perform
reordering for GPU sparse matrix operations [VHS15]. Kjolstad
et al. introduce the tensor algebra compiler TACO which allows
the user to select various layouts for each tensor in a tensor expres-
sion [KKC*17]. For two-dimensional tensors, the possible layouts
correspond to dense matrices in row- or column-major layout,
sparse CSR and compressed sparse column (CSC) formats or their
hypersparse (low-rank) extensions. However, the generated code is
serial. In all cases, extended number systems are not supported.

Monakov et al. introduce the sliced ELLPACK format and per-
form tuning of slice and thread block size [MLA10]. They reorder
matrix rows to achieve more compact storage. To efficiently use
reordered matrices, permutation has to be performed rarely, e.g.
before and after an iterative solver. Even though they do not con-
sider compound entries and compare cards of the same generation,
some cases are sped up by up to 10% when performing hardware-
specific tuning.

3. Background

In this section, we provide a brief background on the performance
properties of GPUs and describe the workarounds usedwith existing
linear algebra libraries when using quaternionic matrices.

3.1. GPU performance and terminology

Manycore GPU performance characteristics differ in many aspects
from those of multi-core CPUs. While this description focuses on
NVIDIA GPUs and terminology, similar considerations apply to
other manycore processors. CUDA follows a hierarchical single
program multiple data (SPMD) programming model. Kernels are
launched in a grid of blocks consisting of a number of threads.
Blocks are scheduled on streaming multi-processors (SMs), anal-
ogous to CPU cores. Threads are grouped into warps of 32 threads
that do not execute independently. Divergent code paths are implic-
itly serialized, as done explicitly when using vector instructions on a
CPU. For good performance, memory accesses must follow specific
patterns to achieve coalescing. Contiguous threads within a warp
must access contiguous locations in memory, where alignment and
size of the access must match and be a power of two between 1 and

16 bytes. As in the case of divergent control flow, this is done im-
plicitly, but has similarities with vector loads which have alignment
requirements too. Finally, multiple blocks are executed at once on
an SM using hardware multi-threading to perform latency hiding.
Therefore, it is important to consider occupancy, i.e. blocks should
ideally not use too many resources such as registers so that more
than one block can be scheduled at once. For additional details, re-
fer to the NVIDIA CUDA programming guide [NVI19a].

3.2. Alternative quaternion representations

Quaternions, like complex numbers, have equivalent, non-unique,
real matrix representations (see, e.g. [HL90]) such as:

q = w + xi+ yj+ zk ≡

⎛
⎜⎜⎜⎝

w −x −y −z
x w −z y

y z w −x
z −y x w

⎞
⎟⎟⎟⎠ , (1)

where q ∈ H, w, x, y, z ∈ R, and i, j, k are the fundamental quater-
nion units. As a result, any quaternionicmatrixA ∈ H

n×m can equiv-
alently be represented as a real matrix A′ ∈ R

4n×4m. However, this
equivalence leads to a 4× memory and compute overhead, but it
allows the reuse of existing direct and iterative solvers.

Another approach is to decompose the matrices and vectors ac-
cording to the Hamilton product:

A = W+ Xi+ Yj+ Zk

q = w+ xi+ yj+ zk

Aq = (Ww− Xx− Yy− Zz) + (Wx+ Xw+ Yz− Zy) i

+ (Wy− Xz+ Yw+ Zx) j + (Wz+ Xy− Yx+ Zw)k,

(2)

where A ∈ H
n×m, q ∈ H

m,W, X, Y, Z ∈ R
n×m and w, x, y, z ∈ R

m.
While this approach avoids the higher memory and compute over-
head, the serial chaining of multiple matrix-vector products leads to
increased latency, synchronization and kernel launch overheads. For
small- to medium-sized matrices typically used in computer graph-
ics, kernel launch overheads can make up a significant portion of
execution time. Furthermore, most existing solvers cannot be used
with this decomposition.

4. Approach

In this section, we describe howwe apply layout variations to sparse
matrices with compound entries, the resulting code generator and
the autotuning approach.

4.1. Sparse matrix formats and layouts

Much like layouts such as AoS, SoA and AoSoA as well as row-
or column-major orderings can be applied to dense n-dimensional
arrays without changing the semantics of the array (see Figure 2
and Section 2.2), we differentiate between semantically different
sparse matrix data structures and those that only differ in their

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



136 J. S. Mueller-Roemer et al. / Analysing Sparse Matrix Layout and Schedule Tuning

in-memory layout. For example, the CSR, ELLPACK(-R) and
Sliced ELLPACK formats are all semantically arrays of length n of
variable length arrays of tuples of column index and entry value for
a matrix with n rows. Semantically different data structures such as
hierarchical [DZSS17] or bitmap-based [ZG18] sparse matrix data
structures are not considered layout variants.

CSR stores the column index and value tuples in a pair of con-
tiguous arrays. Essentially, the tuples are stored in a 1D array in
SoA layout. To mark the starting and ending positions of the per-
row variable length arrays, CSR includes an array of n+ 1 offsets
into the contiguous arrays.

In the original ELLPACK format [RB85], the per-row arrays are
padded with explicit zeros such that they all have the same length.
The resulting dense 2D arrays are stored in column-major order.
With respect to CSR, which is in row-major order by definition, the
data are therefore padded and transposed. As the resulting arrays
are dense, the offset array can be omitted. The ELLPACK-R for-
mat [VOFG10] replaces it with a non-zero count array of length n
instead, which makes it possible to avoid performing any computa-
tions on added padding. If the stride between rows is additionally
padded to a multiple of the warp size, the column-major ordering of
these layouts leads to good coalescing on GPUs.

As ELLPACK(-R) can lead to a very large memory overhead
when a small number of rows has a much larger number of non-zero
entries than the others, Sliced ELLPACK [MLA10] first partitions
the matrix into slices of k rows before padding and transposing the
individual slices. As offsets within slices can be computed implic-
itly, only �n/k� + 1 offsets are required. For coalescing, k should
be 16 (half-warp-sized) or 32 (warp-sized). The number of stored
rows is padded to a multiple of k in the same way as the AoSoA
layout requires padding the length of a dense array to a multiple of
the inner array size.

We call the choice between row-major (CSR), padded column-
major (ELLPACK-R) and sliced padded column-major (Sliced
ELLPACK) orderings the outer layout of the sparse matrix. When
compound entries are used, the dense entry array and the vector can
be stored in AoS or SoA layouts. These choices define the inner and
vector layouts.

While the CSC format of matrixA is identical to storing the trans-
pose AT in CSR format, we did not implement such transposed in-
put layouts. As summation of each row and therefore entry of the
output vector cannot be performed independently, supporting these
requires different parallel algorithms. While Steinberger et al. have
shown that the naïve approach of using atomic summation only
leads to limited slowdown [SDZS16], doing so leads to the loss
of determinism.

4.2. Code generator

To generate the code for the layout variants, we use a text templat-
ing approach based on Jinja2. The generated code is compiled with
the system C++ and CUDA compilers and linker. We focus on the
sparse matrix-vector product (SpMV) as it is the most costly com-
ponent of iterative solvers such as the conjugate gradient algorithm.

To generate the code for a particular layout and schedule, the fol-
lowing inputs are required:

• A compound entry definition (a list of identifiers with associated
types). A separate definition can be given for vector entries.

• Multiplicative and additive operator definitions, as well as zero
initializer(s).

• The outer (including slice size if a sliced layout is chosen) and
inner layouts of the matrix, as well as the layout of the vector.

• The schedule type (static or dynamic), as well as the numbers of
SMs ns, blocks per SM nb and threads per block nt .

The generated kernels use constant size blocks and grids, indepen-
dent of the matrix size. Depending on schedule type, each block
processes either chunks of nt rows with a static stride of ns · nb · nt
or selects chunks dynamically using an atomic counter. The block
size nt and the number of blocks per SM nb are passed to the CUDA
compiler using the __launch_bounds__ annotation. This allows
the compiler to generate code with the appropriate number of regis-
ters per thread.

As an additional performance optimization, the pointers to the
vector array(s) for the right-hand side are annotated with the
__restrict__ keyword. This allows the optimizer to use non-
coherent loads which typically perform better for random access.
Furthermore, AoS entries are annotated with the largest power of
two alignment between 1 and 16 of which their size is a multiple.
This enables the use of vectorized loads where possible.

Besides the SpMV kernel, the code generator outputs header
files for the generated matrix and vector classes. In addition to
an interface callable from standard C++ code, the classes pro-
vide constructors to convert from CSR matrices in default AoS
layout on the host to the chosen layout on the GPU. The source
code of the generator is available for non-commercial use under
https://github.com/fh-igd-iet/FhSparseGen.

4.3. Autotuner

Given a set of matrices as well as the entry and operator definitions,
the autotuner jointly optimizes layout and schedule for the given
matrices. To do so, it first determines the compute capability (CC)
and the number of SMs ns of the GPU. The CC determines the warp
size w (32 for all currently available NVIDIA GPUs), maximum
numbers of blocks per SM and threads per block supported by the
GPU, as well as other indirectly relevant factors such as supported
instruction set and number of registers per SM.

This information determines the bounds for the tuning parame-
ters nb and nt . To limit the size of the resulting Cartesian product of
variants, nb is chosen from all 2i and 3 · 2i with i ≥ 0 that are within
the bounds. Similarly, nt is chosen from all w · 2i and w · 3 · 2i that
are within the bounds. The slice size k is limited to half-warp and
warp sizes. The scheduling parameters (static/dynamic, nb and nt )
can either be tuned separately, or jointly with the layout parameters
(outer, inner and vector layouts).

The generated variants are built with the CUDA compiler, passing
the CC as a parameter to generate code for the specific architecture.

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

https://github.com/fh-igd-iet/FhSparseGen


J. S. Mueller-Roemer et al. / Analysing Sparse Matrix Layout and Schedule Tuning 137

Figure 3: Distribution of non-zero entries per row for each matrix
used in the evaluation. For matrices beginning with ‘fem/’, this is
the number of non-zero 3× 3-blocks per group of three rows.

Figure 4: Distribution of bandwidths per row for each matrix
used in the evaluation. Given in percent normalized by number of
rows/columns in each matrix. For matrices beginning with ‘fem/’,
block-row and -column indices are used.

These are linked to a benchmarking fixture that calls and measures
the runtime of the SpMV a given number of times for each matrix.

5. Results

In this section, we describe the setup of the benchmarks performed
and evaluate their results. Figures 3 and 4 show statistical informa-
tion about numbers of non-zero entries and bandwidths of the rows
of thematrices used in the evaluation. The extent of the boxes ranges
from the lower to the upper quartile, with a line at the median. The
whiskers extend from the minimum to the maximum. The band-
width of a row is defined as

bi = max{ j|Ai j �=0}
j − min{ j|Ai j �=0}

j (3)

Table 1: Sizes of the matrices used in rows/columns and number of
compound non-zeros.

Matrix Rows/Columns Non-zeros

mhd1280b 1280 22 778
RFdevice 74 104 365 580
fem_filter 74 062 1 731 206
mono_500Hz 169 410 5 033 796
surfaces/bunny 34 834 243 410
surfaces/armadillo 172 974 1 210 806
surfaces/dragon 435 545 3 049 463
surfaces/buddha 543 524 3 805 882
fem/armadillo_1000.1 1016 11 180
fem/bunny2.4M 27 112 284 846
fem/nut_37k 9095 112 685
fem/dragon_100K 26 436 315 006
fem/NX_MotorH67k 66 840 899 478

and provides information about the locality of accesses. In addition,
the sizes of the matrices are given in Table 1.

The matrices ‘mhd1280b’, ‘RFdevice’, ‘fem_filter’ and ‘mono_
500Hz’ are complex matrices from the SuiteSparse Matrix Col-
lection [DH11] chosen to cover a large range of sizes and non-
zero entry distribution patterns. The matrices beginning with ‘sur-
face/’ are quaternionic matrices that were generated from meshes
available in the Stanford 3D Scanning Repository [Sta14] using
Crane et al.’s algorithm [CPS11]. The matrices beginning with
‘fem/’ are matrices with 3× 3-block entries resulting from a linear
FEM discretization on tetrahedral meshes. The tetrahedral meshes
were generated with Gmsh [GR09] (armadillo_1000.1), TetGen
[Si15] (bunny2.4M, dragon_100K), CGAL [CGA18] (nut_37k) and
Siemens NX [Sie18] (NX_MotorH67k). All matrices used in the
evaluation are square.

The evaluations were performed on three machines with GPUs
from various generations or CCs, including both professional and
consumer (restricted double precision performance) GPUs, with the
following hardware:

1. NVIDIA Quadro K2000 (CC 3.0, 2 SMs, 2 GiB GDDR5), Intel
i5-4670 (4 cores, 3.4 GHz), 16 GiB DDR3-1600

2. NVIDIA GeForce GTX 980 (CC 5.2, 16 SMs, 4 GiB GDDR5),
Intel i7-4790K (4 cores, 4.0 GHz), 16 GiB DDR3-1600

3. NVIDIAQuadro GP100 (CC 6.0, 56 SMs, 16 GiBHBM2), Intel
i7-6700K (4 cores, 4.0 GHz), 32 GiB DDR4-2133

All systems were running Windows 10 and benchmarks were com-
piled with Visual Studio 2015 and CUDA 9.2.

To determine the best layout-schedule combination, the gener-
ated SpMV was called 1000 times per matrix for each combination.
CUDA kernels were timed using CUDA events, to avoid primarily
measuring the CPU–GPU synchronization overhead on small ma-
trices. The full set of measurements (minimum, lower quartile, me-
dian, upper quartile, maximum and average times per matrix, layout
and schedule) is provided as supplemental material.

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



138 J. S. Mueller-Roemer et al. / Analysing Sparse Matrix Layout and Schedule Tuning

Figure 5: Speedup relative to cuSPARSE in single precision with (dark) and without (light) layout optimization. For large compound entries
(‘fem/*’) and extended number systems (‘surface/*’), speedups of up to 4.7× are achieved.

Figure 6: Speedup relative to cuSPARSE in double precision with (dark) and without (light) layout optimization. For large compound entries
(‘fem/*’) and extended number systems (‘surface/*’), speedups of up to 2.8× are achieved.

All matrix-vector multiplications were also performed using cuS-
PARSE, NVIDIA’s own highly tuned sparse linear algebra library.
For the complex matrices, the built-in support for complex linear al-
gebra was used. For the block-sparse matrices, the built-in support
for the BSR format was used. For the quaternionic matrices, we used
the matrix expansion (see Section 3.2) on the matrix only. x ∈ H

n

was represented as x′ ∈ R
4n. As the resulting matrices are block-

sparse too, BSR was used in this case as well. Therefore, only the
number of values, not the numbers of offsets and column indices,
of the matrix are quadrupled. The measured speedups are given in
Figures 5 and 6 for single and double precision, respectively.

5.1. Complex matrices

The best layouts per GPU for each complex precision matrix as well
as the speedups compared to only performing schedule tuning, i.e.
using the ‘natural’ CSR layout with entries in AoS layout, are given
in Tables 2 and 3.

While most cases show and absolute speedup of less than 1×
compared to cuSPARSE, speedups of approximately 1–1.5× are
achieved for double precision matrices on the Quadro K2000 (see
Figures 5 and 6). Furthermore, the largest layout tuning gains
are achieved on the K2000 as well. The speedups on the two
newer GPUs are similar, despite the significantly lower double
precision performance on consumer GPUs. While AoS is pre-
ferred for both inner and vector entry layout in most cases,
no clear preference in outer layout can be observed. As both
single and double precision complex entries can be aligned to
8 and 16 bytes, respectively, the preference of AoS layout is
expected.

5.2. Quaternionic matrices

As for complex matrices in the previous section, we list the best
layouts and speedups relative to not performing layout tuning for
all quaternionic sparse matrices in Tables 4 and 5.

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



J. S. Mueller-Roemer et al. / Analysing Sparse Matrix Layout and Schedule Tuning 139

Table 2: Best layouts and layout tuning speedups for all complex single
precision matrices. Layouts are given as outer-inner-vector, where ELL is
ELLPACK-R and Sl-k is Sliced ELLPACK with a slice size of k.

Matrix GPU Layout Speedup

mhd1280b K2000 ELL-AoS-AoS 2.09×
GTX 980 ELL-AoS-AoS 1.22×
GP100 CSR-SoA-AoS 1.05×

RFdevice K2000 ELL-AoS-AoS 1.64×
GTX 980 Sl-32-SoA-AoS 1.11×
GP100 CSR-SoA-AoS 1.18×

fem_filter K2000 ELL-AoS-AoS 3.20×
GTX 980 ELL-AoS-AoS 1.40×
GP100 ELL-AoS-AoS 1.52×

mono_500Hz K2000 Sl-32-SoA-AoS 3.74×
GTX 980 Sl-32-SoA-AoS 2.02×
GP100 ELL-AoS-AoS 2.09×

Table 3: Best layouts and layout tuning speedups for all complex double
precision matrices. Layouts are given as in Table 2.

Matrix GPU Layout Speedup

mhd1280b K2000 Sl-32-AoS-AoS 1.79×
GTX 980 Sl-16-AoS-AoS 1.05×
GP100 CSR-SoA-SoA 1.00×

RFdevice K2000 ELL-AoS-AoS 1.52×
GTX 980 CSR-AoS-AoS 1.00×
GP100 CSR-AoS-AoS 1.00×

fem_filter K2000 ELL-AoS-AoS 2.11×
GTX 980 ELL-AoS-AoS 1.10×
GP100 ELL-AoS-AoS 1.16×

mono_500Hz K2000 Sl-32-AoS-AoS 2.81×
GTX 980 Sl-16-AoS-AoS 1.59×
GP100 ELL-AoS-AoS 1.84×

While there was no clear outer layout preference in Section 5.1,
the padded transpose (ELLPACK-R) is preferred in all cases. As can
be seen in Figure 3, the difference between the longest and shortest
rows is much smaller for these matrices, therefore these matrices
incur a significantly smaller amount of padding. As expected for
the 16-byte aligned single precision quaternion entries, AoS layout
is preferred in Table 4. Double precision quaternions are 32 bytes in
size. Therefore, AoS layout requires two consecutive 16 byte loads
and cannot achieve full coalescing. However, in all but two cases
AoS layout continues to be preferred for the vector entries, due to
the mostly random access patterns. For the matrix entries, SoA is
preferred in many but not all cases for the double precision matrices.
As before, the largest speedups due to layout tuning are achieved on
the K2000. Unlike in the last section, the speedups on the GP100 are
slightly larger than on the GTX 980, potentially due to the higher
flops-per-byte ratio.

5.3. 3 × 3-block matrices

As in the previous sections, we list the best layouts and speedups
relative to not performing layout tuning for all sparse matrices with
3× 3-block entries (and vectors of 3D vectors) in Tables 6 and 7.

Table 4: Best layouts and layout tuning speedups for all quaternionic single
precision matrices. Layouts are given as in Table 2.

Matrix GPU Layout Speedup

bunny K2000 ELL-AoS-AoS 2.24×
GTX 980 ELL-AoS-AoS 1.27×
GP100 ELL-AoS-AoS 1.46×

armadillo K2000 ELL-AoS-AoS 2.18×
GTX 980 ELL-AoS-AoS 1.18×
GP100 ELL-AoS-AoS 1.68×

dragon K2000 ELL-AoS-AoS 2.33×
GTX 980 ELL-AoS-AoS 1.09×
GP100 ELL-AoS-AoS 1.54×

buddha K2000 ELL-AoS-AoS 2.35×
GTX 980 ELL-AoS-AoS 1.08×
GP100 ELL-AoS-AoS 1.48×

Table 5: Best layouts and layout tuning speedups for all quaternionic dou-
ble precision matrices. Layouts are given as in Table 2.

Matrix GPU Layout Speedup

bunny K2000 ELL-SoA-AoS 1.93×
GTX 980 ELL-SoA-AoS 1.18×
GP100 ELL-AoS-AoS 1.40×

armadillo K2000 ELL-SoA-AoS 1.88×
GTX 980 ELL-AoS-AoS 1.15×
GP100 ELL-SoA-AoS 1.42×

dragon K2000 ELL-SoA-SoA 1.87×
GTX 980 ELL-SoA-AoS 1.04×
GP100 ELL-AoS-AoS 1.31×

buddha K2000 ELL-SoA-SoA 1.84×
GTX 980 ELL-AoS-AoS 1.02×
GP100 ELL-AoS-AoS 1.31×

Both 3× 3 blocks and 3D vectors cannot be aligned to power-of-
two addresses without introducing padding, independent of scalar
precision. Combinedwith the large entry size, the preference of SoA
inner layout is expected. For the vector layout, AoS is preferred in
most cases except for the fem/armadillo_1000.1 and fem/nut_37k
matrices. As in the previous sections, the greatest gains are achieved
on the K2000. This is followed by the GTX 980 and the GP100
benefits the least. Except for the smallest matrix, the tuned matrix
layouts and schedules are faster than cuSPARSE using BSR as seen
in Figures 5 and 6.

5.4. Schedule tuning

In this section, we quantify the effects of schedule tuning and anal-
yse if it is necessary to perform schedule and layout tuning jointly
or not, whereas the speedups listed in Sections 5.1 to 5.3 compare
the best schedule for each layout with the best schedule for the ref-
erence layout.

As described in Sections 4.2 and 4.3, schedule tuning is per-
formed over schedule type, i.e. static or dynamic, the number of
threads per block nt and the number of blocks per SM nb. Figure 1
compares the median time per SpMV for all nt and nb using the

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



140 J. S. Mueller-Roemer et al. / Analysing Sparse Matrix Layout and Schedule Tuning

Table 6: Best layouts and layout tuning speedups for all single precision
matrices with 3× 3 blocks. Layouts are given as in Table 2.

Matrix GPU Layout Speedup

armadillo_1000.1 K2000 Sl-32-SoA-SoA 3.15×
GTX 980 Sl-32-SoA-SoA 1.44×
GP100 Sl-16-SoA-SoA 1.20×

bunny2.4M K2000 ELL-SoA-AoS 3.34×
GTX 980 ELL-SoA-AoS 1.58×
GP100 ELL-AoS-AoS 1.12×

nut_37k K2000 ELL-SoA-SoA 5.54×
GTX 980 Sl-32-SoA-SoA 2.03×
GP100 Sl-32-SoA-SoA 1.27×

dragon_100K K2000 ELL-SoA-AoS 3.67×
GTX 980 ELL-SoA-AoS 2.12×
GP100 ELL-AoS-AoS 1.61×

NX_MotorH67k K2000 ELL-SoA-AoS 4.28×
GTX 980 ELL-SoA-AoS 2.37×
GP100 ELL-SoA-AoS 1.95×

Table 7: Best layouts and layout tuning speedups for all double precision
matrices with 3× 3 blocks. Layouts are given as in Table 2.

Matrix GPU Layout Speedup

armadillo_1000.1 K2000 ELL-SoA-SoA 2.80×
GTX 980 Sl-32-SoA-SoA 1.26×
GP100 Sl-32-SoA-SoA 1.18×

bunny2.4M K2000 ELL-SoA-AoS 2.74×
GTX 980 ELL-SoA-AoS 1.31×
GP100 ELL-AoS-SoA 1.21×

nut_37k K2000 ELL-SoA-SoA 4.08×
GTX 980 ELL-SoA-SoA 1.53×
GP100 ELL-AoS-AoS 1.27×

dragon_100K K2000 ELL-SoA-AoS 3.05×
GTX 980 ELL-SoA-AoS 1.59×
GP100 ELL-AoS-AoS 1.52×

NX_MotorH67k K2000 ELL-SoA-AoS 3.52×
GTX 980 ELL-SoA-AoS 1.66×
GP100 ELL-SoA-AoS 1.67×

double precision fem/NX_MotorH67k matrix and static schedules
on machine 3. No values are available for large numbers of threads
per SM nt · nb, as these would exceed the capabilities of the GPU. In
both cases, the number of registers required varies between 32 and
40 registers, due to the __launch_bounds__ annotation causing
the CUDA compiler and PTX assembler to choose different opti-
mizations. No register spilling to local memory occurs in either case.

Despite the similarities in register use and therefore occupancy,
peak performance is achieved at a much lower number of threads
per SM for the CSR–AoS–AoS layout than for the ELL–SoA–AoS
layout. Therefore, schedule and layout must be tuned jointly for
best performance. However, it may be possible to reduce the search
space by one dimension with little loss of performance by tuning
nt · nb instead of nt and nb individually, as the schedule tuning graphs
are close to constant along diagonals of constant thread number
per SM.

Table 8: Cases in which dynamic schedules are preferred for either single
precision (SP), double precision (DP), both (SP/DP) or neither (—) when
using the best performing layout.

Matrix K2000 GTX980 GP100

mhd1280b — — —
RFdevice — — —
fem_filter SP/DP SP/DP —
mono_500Hz SP/DP — —
surfaces/bunny — — —
surfaces/armadillo SP SP —
surfaces/dragon SP SP DP
surfaces/buddha SP SP DP
fem/armadillo_1000.1 — — —
fem/bunny2.4M SP/DP SP/DP DP
fem/nut_37k — — —
fem/dragon_100K SP/DP SP DP
fem/NX_MotorH67k DP — —

Figure 7 compares the static and dynamic schedule types for all nt
and nb using the double precision fem/NX_MotorH67k matrix and
the ELL-AoS-SoA layout on machine 3. While similar in shape,
we observed that the dynamic schedules are more sensitive to the
effects of schedule tuning than the static schedules, i.e. the execution
time ratios between the worst and best schedules for a given layout
are larger. Dynamic schedules perform better in roughly 30% of all
evaluated cases, as shown in Table 8.

5.5. Memory overhead

The padding required for the padded column-major (ELLPACK/
ELL) and sliced padded column-major (Sliced ELLPACK/Sl-k)
outer layouts leads to a potentially significant memory overhead,
as does the matrix expansion for quaternionic matrices when

Table 9: Memory use of each memory layout for each input matrix. The
baseline is CSR/BSRwith the appropriate entry type and given in bytes (com-
puted using 4-byte indices and 8-byte values). All others are given as a mul-
tiple of the baseline. The value for cuSparse (cuSp.) is based on quaternion
to matrix expansion and 4×4 BSR for quaternionic matrices and otherwise
identical to the baseline.

Matrix CSR/BSR ELL Sl-16 Sl-32 cuSp.

mhd1280b 449.9 KiB 1.8× 1.5× 1.7× 1.0×
RFdevice 7.3 MiB 52.8× 1.0× 1.0× 1.0×
fem_filter 33.3 MiB 24.0× 1.8× 2.1× 1.0×
mono_500Hz 96.7 MiB 22.9× 1.2× 1.3× 1.0×
surfaces/bunny 8.5 MiB 1.7× 1.1× 1.2× 3.6×
surfaces/armadillo 42.2 MiB 1.8× 1.2× 1.2× 3.6×
surfaces/dragon 106.4 MiB 2.3× 1.3× 1.4× 3.6×
surfaces/buddha 132.7 MiB 2.5× 1.3× 1.4× 3.6×
fem/armadillo_1000.1 833.7 KiB 3.0× 1.5× 1.6× 1.0×
fem/bunny2.4M 20.7 MiB 7.4× 2.0× 2.3× 1.0×
fem/nut_37k 8.2 MiB 2.6× 1.3× 1.4× 1.0×
fem/dragon_100K 22.9 MiB 2.8× 1.5× 1.6× 1.0×
fem/NX_MotorH67k 65.4 MiB 1.9× 1.2× 1.3× 1.0×

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



J. S. Mueller-Roemer et al. / Analysing Sparse Matrix Layout and Schedule Tuning 141

Figure 7: Schedule tuning comparison between the static (left) and dynamic (right) base schedule types. In both cases, the double precision
fem/NX_MotorH67k matrix with ELL-AoS-SoA layout is shown and optimized for the GP100. The plot surface is coloured by time value.

quaternions are not directly supported. The amount of memory
required is affected by the outer layout and sparsity pattern of each
matrix, but not by the inner layout. The memory requirements for
all matrices and outer layouts evaluated in this paper are given in
Table 9 for 4-byte indices (offsets, counts and column indices) and
8-byte double precision values. While the CSR/BSR layouts are the
reference, they are not guaranteed to be optimal. For example, the
factor 1.0× for RFdevice using Sl-16 and Sl-32 are rounded from
0.98× and 0.99×, respectively. While the 4×4-block expansion of
the quaternionic matrices results in a 4× expansion of the values,
the index and offset arrays are not expanded due to the use of BSR,
resulting in a 3.6× expansion for cuSparse.

The overhead of the ELL layout is particularly significant for the
RFdevice, fem_filter and mono_500Hz matrices (and to a lesser ex-
tent fem/bunny2.4M). These matrices have a single row or small
number of rows with a significantly larger number of non-zero en-
tries than the average. The row with the largest number of non-zeros
directly determines the amount of memory required for the ELL lay-
out. However, even in the case of RFdevice a dense matrix would
require more than 200× more memory than the ELL layout.

While more compact layouts are preferred with respect to per-
formance for RFdevice on the GTX 980 and GP100 GPUs and
mono_500Hz for the K2000 and GTX 980 (see Tables 2 and 3),
this is not the case for the fem_filter or fem/bunny2.4M matrices or
on all GPUs (see also Tables 6 and 7). At the same time, more com-
pact layouts are preferred for mhd1280b, fem/armadillo_1000.1 and
fem/nut_37k even though these matrices do not suffer from exces-
sive memory overheads with the ELL layout. Despite potentially
higher cache pressure, even large memory overheads therefore only
slightly influence execution time.

6. Conclusion

We have shown that significant speedups can be achieved by per-
forming joint schedule and layout autotuning for sparse matrices
with compound entries. Compared to only performing schedule
tuning, speedups of up to 5.5× are achieved (see Table 6). Com-
pared to the highly tuned vendor library cuSPARSE, we achieve

speedups of up to 4.7× for the SpMV (see Figure 5). Even for
matrices with dense blocks, which are supported directly in cuS-
PARSE, we achieve speedups of up to 2.8× using our approach
(see Figure 6). While the speedups are smaller than what can
be achieved with sparsity pattern specific compilation approaches
[CKSD17], similar matrices typically require similar layouts (see
Tables 4 and 5). Therefore, our approach can be applied to domain-
specific tuning of SpMVs, which can be performed beforehand for
each new GPU using a domain-specific set of input matrices, result-
ing in shorter computation times, especially in computer graphics
applications.

6.1. Limitations

For complex matrices, performance does not match the well-tuned
operations provided by cuSPARSE, except on the older Quadro
K2000 GPU. However, there is no reason not to use the well-
supported vendor library in such cases.

The padded transposed layout without slicing can incur very
large memory overheads. As even large memory overheads only
slightly influence execution time, tuning for reduced memory while
maintaining performance would require weighting performance and
memory overhead for scoring. Alternatively, the compact CSR outer
layout could always be generated as a fallback.

6.2. Future work

Extension to a more complete set of linear algebra operations would
be beneficial. The axpby (y← ax+ by) and dot procedures are a
good choice, as they would allow for implementation of several it-
erative solvers such as the conjugate gradient solver. Aside from the
reduction within the dot product, however, they are trivially paral-
lelizable and perform significantly fewer operations than thematrix-
vector product, reducing the need for tuning.

While the Cartesian product approach to autotuning guarantees
that the best variant is found, it is very expensive. By collect-
ing a larger set of input matrices of varied structure, potentially
by reusing the sparsity structure but not the entries of matrices in

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



142 J. S. Mueller-Roemer et al. / Analysing Sparse Matrix Layout and Schedule Tuning

existing matrix collections, a predictive tuning model could be built.
This could potentially be achieved using machine learning (see, e.g.
[AKC*19]). In addition, the search space could be reduced by tun-
ing the number of threads per SM and factoring it into the number
of threads per block and blocks per SM, instead of tuning both in-
dividually (see Section 5.4).

An extension to sparse tensor algebras as TACO offers for CPU
codes [KKC*17] involves many interesting challenges. In particu-
lar, can the padded transposed and sliced layouts be generalized to
tensors? How would they interact with hypersparse (low-rank) ma-
trices or tensors? Slicing could potentially be represented as an in-
dex transform, i.e. yi = Ai jx j → yi = A′�i/s�(i mod s) jx j, where s is the
slice size.

Another extension would be the support of encoded entries. For
example, Mueller-Roemer et al. [MAS17] use sparse matrices to
describe meshes. They encode the sign of a ternary matrix in the
column index of CSR matrices. Compound entries can also bene-
fit from compact encodings. For example, unit quaternion matrices
used in various methods can be encoded using only three values
and a sign bit, reducing memory and bandwidth requirements by
nearly 25%. However, the advantage of alignment for single preci-
sion quaternions would be lost.

Acknowledgements

The authors are grateful to the best paper committee of VMV 2019
for recommending the original paper [MSF19] to Computer Graph-
ics Forum, and providing us with an opportunity for presenting this
extended work. This work was supported by the European Union
project CloudiFacturing which is co-funded by the Horizon 2020
Framework of the European Union under Grant No. 768892.

References

[AKC*19] Ashouri A. H., Killian W., Cavazos J., Palermo
G., Silvano C.: A survey on compiler autotuning using machine
learning. ACM Computing Surveys 51, 5 (2019), 13:1–13:42.
https://doi.org/10.1145/3197978.

[Bik96] Bik A. J. C.: Compiler Support for Sparse Matrix Compu-
tations. PhD thesis, Rijksuniversiteit Leiden, 1996.

[CGA18] CGAL: Computational Geometry Algorithms Library,
2018. https://www.cgal.org.

[CKPS18] Chern A., Knöppel F., Pinkall U., Schröder P.:
Shape frommetric. ACM Transactions on Graphics 37, 4 (2018),
63:1–63:17. https://doi.org/10.1145/3197517.3201276.

[CKSD17] Cheshmi K., Kamil S., Strout M. M., Dehnavi
M. M.: Sympiler: Transforming sparse matrix codes by decou-
pling symbolic analysis. In SC ’17: Proceedings of the Interna-
tional Conference for High Performance Computing, Network-
ing, Storage and Analysis (Denver, CO, USA, 2017), Associa-
tion for Computing Machinery (ACM). https://doi.org/10.1145/
3126908.3126936.

[CPS11] Crane K., Pinkall U., Schröder P.: Spin transfor-
mations of discrete surfaces. ACM Transactions on Graphics
30, 4 (2011), 104:1–104:10. https://doi.org/10.1145/2010324.
1964999.

[CPS13] Crane K., Pinkall U., Schröder P.: Robust fairing via
conformal curvature flow. ACM Transactions on Graphics 32, 4
(2013), 61:1–61:10. https://doi.org/10.1145/2461912.2461986.

[DH11] Davis T. A., HuY.: The University of Florida sparse matrix
collection. ACM Transactions on Mathematical Software 38, 1
(2011), 1:1–1:25. https://doi.org/10.1145/2049662.2049663.

[DZSS17] Derler A., Zayer R., Seidel H.-P., Steinberger M.:
Dynamic scheduling for efficient hierarchical sparse matrix oper-
ations on the GPU. In ICS ’17: Proceedings of the International
Conference on Supercomputing (Chicago, IL, USA, 2017), As-
sociation for Computing Machinery (ACM). https://doi.org/10.
1145/3079079.3079085.

[GR09] Geuzaine C., Remacle J.-F.: Gmsh: A 3-D finite element
mesh generator with built-in pre- and post-processing facilities.
International Journal for Numerical Methods in Engineering 79,
11 (2009), 1309–1331. https://doi.org/10.1002/nme.2579.

[HL90] Hile G. N., Lounesto P.: Matrix representations of Clif-
ford algebras. Linear Algebra and Its Applications 128 (1990),
51–63. https://doi.org/10.1016/0024-3795(90)90282-H.

[Jin14] Jin J.: The Finite Element Method in Electromagnetics (3rd
edition). Wiley-IEEE Press, Hoboken, NJ, 2014.

[KCŽO07] Kavan L., Collins S., Žára J., O’Sullivan C.: Skin-
ning with dual quaternions. In I3D ’07: Proceedings of the Sym-
posium on Interactive 3D Graphics and Games (Seattle, WA,
USA, 2007), Association for Computing Machinery (ACM),
pp. 39–46. https://doi.org/10.1145/1230100.1230107.

[KKC*17] Kjolstad F., Kamil S., Chou S., LugatoD., Amaras-
inghe S.: The tensor algebra compiler. Proceedings of the ACM
on Programming Languages 1, OOPSLA (2017), 77:1–77:29.
https://doi.org/10.1145/3133901.

[LJC17] Liu H.-T. D., Jacobson A., Crane K.: A Dirac opera-
tor for extrinsic shape analysis. Computer Graphics Forum 36, 5
(2017), 139–149. https://doi.org/10.1111/cgf.13252.

[LLA11] Lang H., Linn J., Arnold M.: Multi-body dynamics
simulation of geometrically exact Cosserat rods. Multibody Sys-
tem Dynamics 25, 3 (2011), 285–312. https://doi.org/10.1007/
s11044-010-9223-x.

[MAS17] Mueller-Roemer J. S., Altenhofen C., Stork A.:
Ternary sparse matrix representation for volumetric mesh subdi-
vision and processing on GPUs. Computer Graphics Forum 36,
5 (2017), 59–69. https://doi.org/10.1111/cgf.13245.

[MLA10] Monakov A., Lokhmotov A., Avetisyan A.: Auto-
matically tuning sparse matrix-vector multiplication for GPU
architectures. In Proceedings of 5th International Conference
on High Performance Embedded Architectures and Compilers

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

https://doi.org/10.1145/3197978
https://www.cgal.org
https://doi.org/10.1145/3197517.3201276
https://doi.org/10.1145/3126908.3126936
https://doi.org/10.1145/3126908.3126936
https://doi.org/10.1145/2010324.1964999
https://doi.org/10.1145/2010324.1964999
https://doi.org/10.1145/2461912.2461986
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/3079079.3079085
https://doi.org/10.1145/3079079.3079085
https://doi.org/10.1002/nme.2579
https://doi.org/10.1016/0024-3795(90)90282-H
https://doi.org/10.1145/1230100.1230107
https://doi.org/10.1145/3133901
https://doi.org/10.1111/cgf.13252
https://doi.org/10.1007/s11044-010-9223-x
https://doi.org/10.1007/s11044-010-9223-x
https://doi.org/10.1111/cgf.13245


J. S. Mueller-Roemer et al. / Analysing Sparse Matrix Layout and Schedule Tuning 143

(Pisa, Italy, 2010), Springer Berlin Heidelberg, pp. 111–125.
https://doi.org/10.1007/978-3-642-11515-8_10.

[MS18] Mueller-Roemer J. S., Stork A.: GPU-based polyno-
mial finite element matrix assembly for simplex meshes. Com-
puter Graphics Forum 37, 7 (2018), 443–454. https://doi.org/10.
1111/cgf.13581.

[MSF19] Mueller-Roemer J. S., Stork A., Fellner D. W.:
Joint schedule and layout autotuning for sparse matrices with
compound entries on GPUs. In VMV ’19: Proceedings of Vi-
sion, Modeling and Visualization (Rostock, Germany, 2019), The
Eurographics Association, pp. 109–116. https://doi.org/10.2312/
vmv.20191324.

[NVI19a] NVIDIA: CUDA C++ Programming Guide, Ver-
sion 10.2. 2019. http://docs.nvidia.com/cuda/pdf/CUDA_C_
Programming_Guide.pdf. Accessed 8 January 2020.

[NVI19b] NVIDIA: cuSPARSE Library, Nov. 2019. https://docs.
nvidia.com/pdf/CUSPARSE_Library.pdf. Accessed 8 January
2020.

[RB85] Rice J. R., Boisvert R. F.: Solving Elliptic Problems Using
ELLPACK. Springer, New York, NY, 1985.

[Saa03] Saad Y.: Iterative Methods for Sparse Linear Systems.
SIAM, Philadelphia, PA, 2003.

[SDZS16] Steinberger M., Derlery A., Zayer R., Seidel
H.-P.: How naive is naive SpMV on the GPU? InHPEC ’16: Pro-
ceedings of IEEEHigh Performance Extreme Computing Confer-
ence (Waltham,MA, USA, 2016), IEEE. https://doi.org/10.1109/
hpec.2016.7761634.

[Sho85] ShoemakeK.: Animating rotation with quaternion curves.
SIGGRAPH Computer Graphics 19, 3 (1985), 245–254. https://
doi.org/10.1145/325165.325242.

[Si15] Si H.: TetGen, a Delaunay-based quality tetrahedral mesh
generator. ACM Transactions on Mathematical Software 41, 2
(2015), 11:1–11:36. https://doi.org/10.1145/2629697.

[Sie18] Siemens: NX, 2018. https://www.plm.automation.siemens.
com/global/en/products/nx/. Accessed 1 November 2018.

[Sta14] Stanford University: The Stanford 3D scanning repos-
itory, 2014. http://graphics.stanford.edu/data/3Dscanrep. Ac-
cessed 31 October 2019.

[Tas01] Tasora A.: An optimized Lagrangian-multiplier approach
for interactive multibody simulation in kinematic and dynamical
digital prototyping. In Proceedings of International Symposium
on Computer Simulation in Biomechanics (Calgary, Canada,
2001), VIII ISCSB, International Society of Biomechanics.

[TBMG20] Tasora A., Benatti S., Mangoni D., Garziera R.:
A geometrically exact isogeometric beam for large displacements
and contacts. Computer Methods in Applied Mechanics and En-
gineering 358 (2020), 112635:1–21. https://doi.org/10.1016/j.
cma.2019.112635.

[Tho06] Thompson L. L.: A review of finite-element methods
for time-harmonic acoustics. Journal of the Acoustical Society
of America 119, 3 (2006), 1315–1330. https://doi.org/10.1121/1.
2164987.

[VHS15] Venkat A., Hall M., Strout M.: Loop and data
transformations for sparse matrix code. ACM SIGPLAN Notices
50, 6 (2015), 521–532. https://doi.org/10.1145/2813885.273
8003.

[VOFG10] Vázquez F., Ortega G., Fernández J. J., Garzón E.
M.: Improving the performance of the sparse matrix vector prod-
uct with GPUs. In CIT ’10: Proceedings of the 10th IEEE In-
ternational Conference on Computer and Information Technol-
ogy (Bradford, United Kingdom, 2010), IEEE, pp. 1146–1151.
https://doi.org/10.1109/CIT.2010.208.

[WBS*13] Weber D., Bender J., Schnoes M., Stork A.,
Fellner D.: Efficient GPU data structures and methods to
solve sparse linear systems in dynamics applications. Computer
Graphics Forum 32, 1 (2013), 16–26. https://doi.org/10.1111/j.
1467-8659.2012.03227.x.

[WG17] Weber N., Goesele M.: MATOG: Array layout auto-
tuning for CUDA. ACM Transactions on Architecture and Code
Optimization 14, 3 (2017), 28:1–28:26. https://doi.org/10.1145/
3106341.

[YDT*18] Ye Z., Diamanti O., Tang C., Guibas L., Hoffmann
T.: A unified discrete framework for intrinsic and extrinsic Dirac
operators for geometry processing. Computer Graphics Forum
37, 5 (2018), 93–106. https://doi.org/10.1111/cgf.13494.

[ZG18] Zhang J., Gruenwald L.: Regularizing irregularity:
Bitmap-based and portable sparsematrixmultiplication for graph
data on GPUs. In GRADES-NDA ’18: Proceedings of the 1st
ACM SIGMOD Joint International Workshop on Graph Data
Management Experiences & Systems (GRADES) and Network
Data Analytics (NDA) (Houston, TX, USA, 2018), Associa-
tion for Computing Machinery (ACM). https://doi.org/10.1145/
3210259.3210263.

Supporting Information

Additional supporting information may be found online in the Sup-
porting Information section at the end of the article.

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

https://doi.org/10.1007/978-3-642-11515-8_10
https://doi.org/10.1111/cgf.13581
https://doi.org/10.1111/cgf.13581
https://doi.org/10.2312/vmv.20191324
https://doi.org/10.2312/vmv.20191324
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/pdf/CUSPARSE_Library.pdf
https://docs.nvidia.com/pdf/CUSPARSE_Library.pdf
https://doi.org/10.1109/hpec.2016.7761634
https://doi.org/10.1109/hpec.2016.7761634
https://doi.org/10.1145/325165.325242
https://doi.org/10.1145/325165.325242
https://doi.org/10.1145/2629697
https://www.plm.automation.siemens.com/global/en/products/nx/
https://www.plm.automation.siemens.com/global/en/products/nx/
http://graphics.stanford.edu/data/3Dscanrep
https://doi.org/10.1016/j.cma.2019.112635
https://doi.org/10.1016/j.cma.2019.112635
https://doi.org/10.1121/1.2164987
https://doi.org/10.1121/1.2164987
https://doi.org/10.1145/2813885.2738003
https://doi.org/10.1145/2813885.2738003
https://doi.org/10.1109/CIT.2010.208
https://doi.org/10.1111/j.1467-8659.2012.03227.x
https://doi.org/10.1111/j.1467-8659.2012.03227.x
https://doi.org/10.1145/3106341
https://doi.org/10.1145/3106341
https://doi.org/10.1111/cgf.13494
https://doi.org/10.1145/3210259.3210263
https://doi.org/10.1145/3210259.3210263

