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Abstract—Global and local fluctuations in leading-edge semi-
conductor manufacturing affect today’s integrated circuits. While
the former had been known and counteracted for years already,
the latter arose when moving device dimensions into the deep
submicron regime. In industrial digital circuit design, global and
local variations are considered separately by process corners
and on-chip variations. Both approaches have been criticized
being inaccurate. As an alternative, for instance Statistical Static
Timing Analysis applies analytical standard cell models to handle
variability on gate level. We think, however, that multivariate
statistical models may be an attractive solution as well since they
may combine information on timing and power. In this paper, we
propose a fully statistical approach for standard cell modeling
and its application in statistical gate-level analyses combining
propagation delay and energy consumption for timing paths.
Using 45-nm predictive technology models, our gate-level results
are close to SPICE reference simulations. Nevertheless, further
research on statistical standard cell modeling is required on the
way towards statistical analyses of complete digital blocks.

I. INTRODUCTION

Random local variations, such as random dopant fluctua-
tion and line edge roughness, have gained importance since
device dimensions in leading-edge semiconductor technolo-
gies reached the deep submicron regime. In combination
with global fluctuations due to reticle-, wafer-, and lot-based
manufacturing, they lead to partially correlated device and
interconnect variations.

Corner-based design and analysis methods, such as place-
ment, routing, and Static Timing Analysis (STA) consid-
ering best-case and worst-case timing, have been state of
the art in digital circuit development for years. Although
some extensions, for instance on-chip variations (OCV) and
advanced OCV (AOCV) were introduced to capture variability,
these approaches have become unrealistic [1]. To increase
accuracy, a lot of research has dealt with modeling standard
cell variability and model application. As the most popular
topic, Statistical Static Timing Analysis (SSTA) [2], many
methods express standard cell performance characteristics as
linear or higher-order polynomial functions of varying process
parameters. While some approaches neglect global variability
[3] or limit themselves to timing data [4], others use only
linear approaches to combine timing and energy consumption
[5]. Since analytical models may be too inaccurate or com-
plex, a combined analytical and statistical timing model was
developed [6].

We consider multivariate statistical standard cell model-
ing as a suitable alternative. Conventional gate-level analysis

Fig. 1. Principle idea for statistical gate-level analyses

methods, such as STA or static power estimation, describe
standard cell performance by a fixed set of characteristics,
primarily delay times, dynamic energy consumption, and leak-
age power. Replacing numbers by statistical variables may
dramatically increase accuracy. Propagating joint probabil-
ity distributions of standard cell performance characteristics
through digital designs, as illustrated in Fig. 1, may capture
the statistics of timing and energy consumption at once and
provide information for further abstraction of variability.

For this purpose, a multivariate model needs to be chosen
to approximate

• marginal distributions of performance characteristics,
such as delay, leakage power, and dynamic energy con-
sumption;

• correlations of performance measures of a single cell;
• and correlations between different instances.

In general, standard cell performance characteristics follow
non-normal distributions. Though, they can be approximated
by Generalized Lambda Distributions (GLD) [7]. Intra-cell
correlations can be considered using rank correlation co-
efficients, which has already been applied to multivariate
statistical device compact models [8].

In this paper, based on Monte Carlo SPICE simulations, we
statistically model timing- and energy-related characteristics
of combinational standard cells as well as their correlations
using the GLD and rank correlation coefficients. We extend
the approach in [8] to preserve correlations between different
instances, too. A path-based gate-level analysis considering
timing and energy consumption is proposed to apply our
multivariate statistical models.

The remainder of this article is organized as follows. Sec-
tion II provides background information on statistical mod-
eling and model application. A cell characterization method
and the implementation of an adapted gate-level analysis
are outlined in section III. Example circuitry is analyzed in
section IV, before we draw conclusions and give an outlook



in section V.

II. THEORY OF MULTIVARIATE STATISTICAL MODELING

In general, a multivariate random variable X is determined
by marginal distributions of the single components Xi and
interdependencies between the components Xi and Xj .

Describing probability distributions of various shapes with
only 4 parameters, we use the GLD to approximate marginal
distributions. After Freimer et al. [9] and with renamed pa-
rameters [10], it is defined by the quantile function
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with the uniformly distributed random variable Ui∼U(0, 1)
and the distribution parameters for location (λi,1), scale (λi,2),
and shape (λi,3, λi,4). The parametrization in (1) differs from
the definition in [7], [8] to better suit data approximation [10].

With the expectation E[·], the mean value µk=E[Xk],

and the standard deviation σk=E
[
(Xk − µk)
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]1/2

, product-
moment correlation coefficients

cXi,Xj = corr[Xi, Xj ] =
E [(Xi − µi) · (Xj − µj)]

σi · σj
, (2)

express interdependencies between random variables Xi and
Xj . Replacing raw values Xi and Xj by ranks rk(Xi) and
rk(Xj), i.e. the positions in the ordered samples, results in
rank correlation coefficients

rXi,Xj = corr [rk(Xi), rk(Xj)] , (3)

being invariant under monotone transforms and hence ap-
plicable in non-Gaussian multivariate distributions [11]. For
simplicity, rank correlation coefficients are often summarized
in the (m×m) correlation matrix RX with RX(i, j)=rXi,Xj .

Multivariate modeling means that the parameters of
marginal distributions and correlation coefficients need to be
determined from training data. We generate samples from
Monte Carlo SPICE simulations as input for GLD fitting and
rank correlation coefficient calculations.

To use the obtained model in gate-level Monte Carlo
analyses, a sampling method has to be available. A four-step
approach solves this issue [11]:

1) Calculate a correlation matrix CZ from the rank corre-
lation matrix RX using

CZ(i, j) = 2 · sin
[π

6
·RX(i, j)

]
. (4)

2) Sample from an m-dimensional Gaussian variable Z
with the correlation matrix CZ.

3) Convert the Gaussian components into uniform com-
ponents applying the standard Gaussian cumulative
distribution function (CDF) Ui=Φ(Zi) such that
Ui∼U(0, 1).

4) Transform the uniform samples into performance char-
acteristics Xi using marginal quantile functions (1).

In the subsequent section, we implement multivariate statistical
standard cell modeling and statistical gate-level analyses.

III. IMPLEMENTATION DETAILS

A. Origin
Our starting point is the Nangate Open Cell Library [12],

which we use with 45-nm bulk CMOS Predictive Technology
Models (PTM) [13]. In this paper, we focus on transistor
variability as interconnect variability is beyond the scope
of this paper. To capture device variability, we treat PTM
corner models as ±3σ values of all shifted BSIM4 parameters:
lint, vth0, k1, u0, and xj. As in [14], instance parameter
distributions are considered Gaussian. We assume a correlation
of 0.5 between different devices and uncorrelated parameters
of single instances to account for local and global device
variability.

To keep the effort reasonable, we focus on combinational
timing paths in this paper. For circuit simulations, we define
an input signal waveform and the simulation end point te.

Extensive SPICE simulations, including the nominal case
and Monte Carlo simulations, create a set of reference data. To
implement a statistical characterization method and sampling-
based gate-level analyses, we use statistics software R [15]
because methods to handle the GLD are available [16]. With
increasing circuit complexity, a recursive sampling approach
as the one in [17] may have to be applied, but this is not
necessary in our examples.

B. Logic Gate Characterization Methods
1) Direct Extraction from SPICE Simulation: First, we have

to check whether the method of multivariate GLD modeling
and sampling-based gate-level analyses is feasible at all.
For this purpose, we directly extract cell delay and energy
consumption from SPICE reference simulations. Statistical
gate models including correlations are built for every instance.
Since this approach does not improve efficiency, alternative
modeling methods are required.

2) Piecewise Characterization: Piecewise characterization
[18] may be an approach to reduce simulation effort. As it
is illustrated for a 5-stage inverter chain in Fig. 2, the signal
path is split into parts containing three instances each to reduce
netlist complexity. While driver and receiver cells model the
circuit environment, the cell in between is statistically char-
acterized. The cell model has to contain gate delay, dynamic
energy consumption, and state-dependent leakage power.

Fig. 2. Piecewise statistical cell characterization; adapted from [18]

Taking input signal transitions from the nominal simulation,
SPICE simulations can be parallelized. Since this approach
neglects signal transition variability, it may introduce a system-
atic error affecting especially long timing paths, however. An
alternative, which increases accuracy at the cost of efficiency,
is to apply output waveforms of previous parts.



C. Implementation of Statistical Gate-Level Analyses

In Fig. 3, terms for the path-based statistical gate-level
analysis are defined on the example of an inverter.

Fig. 3. Definition of terms and principle of statistical gate-level analyses

The first required information is stage delay time td,i, which
is a figure of merit in both characterization approaches. Path
propagation delay is the sum of stage delays,

td,path =

n∑
i=1

td,i. (5)

It is straightforward to determine path energy consumption
using the direct extraction method. For piecewise characteri-
zation, though, the computation is a bit more complex since
state-dependent leakage power before and after switching,
Pl(bef),i and Pl(aft),i, as well as dynamic energy during
switching, Wdyn,i, need to be combined. Since the time points
for signal switching, tsw,(i−1) and tsw,i, are known from
delay calculations, stage energy consumption can be calculated
by

Wi = tsw,(i−1) · Pl(bef),i +Wdyn,i + (te − tsw,i) · Pl(aft),i. (6)

Finally, overall energy consumption is the sum of stage energy
consumption,

Wpath =

n∑
i=1

Wi. (7)

The calculations in (5) – (7) have to be repeated for sample
values of cell characteristics to provide statistical information
on path propagation delay td,path and energy consumption
Wpath including marginal distributions and correlation. This
may be an input to a further abstraction of variability to be
used in system-level examinations.

In the following section, modeling and gate-level analysis
will be applied to inverter chains comparing accuracy and
efficiency to SPICE reference simulations.

IV. PRACTICAL APPLICATION

As depicted in Fig. 4, our test vehicles are inverter chains
of up to 9 stages. SPICE reference simulations, including a
nominal run and a 1000-sample Monte Carlo simulation, are
conducted with a fixed input waveform, output load, and end
point te=1.2 ns. For piecewise cell characterization, further
1000-sample Monte Carlo SPICE simulations create the data
sets for statistical modeling. Statistical gate-level analyses use
the sample size N=10000.

Fig. 4. Inverter chain gate-level schematic

Fig. 5. SPICE results vs. direct extraction

The representative example of the 9-stage chain in Fig. 5
compares SPICE simulation results with the gate-level analysis
based on direct extraction of cell characteristics. Marginal
distributions of path propagation delay and energy consump-
tion are approximated accurately, and the correlation between
the figures of merit, which is moderate in this example, is
preserved. As an intermediate result, multivariate statistical
standard cell modeling using GLD and rank correlation coef-
ficients as well as its application in gate-level analyses appears
feasible, but the computational effort needs to be reduced.

Fig. 6. SPICE results vs. piecewise extraction

Piecewise characterization of involved standard cells is one
method to improve efficiency. The application of the resulting
cell models to the 8-stage inverter chain is shown in Fig. 6.
Both marginal distributions are slightly shifted towards higher
values compared to SPICE simulations, overestimating path
delay and energy consumption. Furthermore, this implemen-
tation of cell characterization and gate-level analysis tends to
overestimate negative correlation between path performance
measures to some extend.

Since these inaccuracies may be introduced by paralleliz-
ing SPICE simulations during characterization and neglecting
signal transition variability, they may be systematic. To check
this assumption, mean values µ, standard deviations σ, and
coefficients of variation CV =σ/µ of the path characteristics
are considered in Fig. 7. Mean values of delay and energy

Fig. 7. Accuracy of statistical gate-level analysis



distributions are within 1% compared to SPICE. Nevertheless,
a trend towards slightly overestimating both measures for
long paths appears. Delay standard deviations are within 2%,
while the spread in energy distributions is estimated too
high with up to 8% deviations from SPICE. This effect also
translates to coefficients of variation. Hence, delay distribution
calculation can be considered accurate with only insignificant
deviations. Further investigations on modeling and evaluating
energy consumption are required to reduce the errors in energy
standard deviations.

Fig. 8. Comparison of analysis runtimes

Although the 9-stage inverter chain as a single path is
not convincing, it provides a rough estimate about analysis
efforts. For this purpose, Fig. 8 contrasts analysis runtimes.
For our example, the runtime of the gate-level analysis is 50 s
and can be neglected while most effort has to be spent on
SPICE simulation runs. Overall, analysis effort can be reduced
by about 54% to approximately 2 h 45 min by the gate-level
analysis applying piecewise characterization.

V. SUMMARY, CONCLUSIONS, AND OUTLOOK

In this paper, we have presented an approach for multivariate
statistical standard cell modeling. The distributions of delay
and power characteristics are approximated by Generalized
Lambda Distributions (GLD), and correlations are captured
by rank correlation coefficients. A sampling-based gate-level
examination evaluates these models and enables a path-based
statistical analysis combining timing and power. Its results may
be an input to statistical digital block modeling using the GLD
and rank correlations.

Statistical cell characterization is a major task in this
context. We apply piecewise characterization to efficiently
generate path-specific standard cell models. However, neglect-
ing signal transition variations introduces inaccuracies that
especially affect energy distributions of long paths. To provide
more general cell models, introducing statistics into industry-
standard non-linear delay and power models or current source
models [19] may be subject to future research.

The proposed statistical gate-level analysis is demonstrated
using inverter chains of up to 9 stages. Reducing the effort
by 54% compared to SPICE Monte Carlo simulations, the
distributions of propagation delay and energy consumption as
well as their correlation are close to the reference data so that
the methodology of statistical modeling and multivariate gate-
level analysis is applicable. Mean values of delay and energy
distributions are nearly identical to SPICE results. The errors
in energy standard deviation of up to 8% depending on cell

count shows a trend towards larger deviations for longer paths.
Further research is required to identify and counteract the root
causes of this effect. Delay standard deviations and coefficients
of variation are within 2% to SPICE which offers a near-term
industrial application: the more efficient generation of AOCV
tables for sign-off STA.
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