

LEBJ

FRAUNHOFER INSTITUTE FOR INTEGRATED SYSTEMS AND DEVICE TECHNOLOGY IISB

12th European Conference on Silicon Carbide & Related Materials, September 2nd - 6th 2018, Birmingham, UK

Determination of compensation ratios of Al-implanted 4H-SiC by TCAD modelling of TLM measurements

M. Kocher^{1, a}, B. Yao^{1, 3, b}, J. Weisse^{2, c}, M. Rommel^{1, d}, Z. W. Xu^{3, e}, T. Erlbacher^{1, f}, A. J. Bauer^{1, g}

¹ Fraunhofer Institute for Integrated Systems and Device Technology (IISB), 91058 Erlangen, Germany

² Chair of Electron Devices, University Erlangen-Nuremberg, 91058 Erlangen, Germany

³ State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University 300072, Tianjin, People's Republic of China

^a Matthias.Kocher@iisb.fraunhofer.de, ^b Boteng.Yao@iisb.fraunhofer.de, ^c Julietta.Weisse@leb.eei.uni-erlangen.de,

^d Mathias.Rommel@iisb.fraunhofer.de, ^e zongweixu@tju.edu.cn, ^f Tobias.Erlbacher@iisb.fraunhofer.de, ^g Anton.Bauer@iisb.fraunhofer.de

Introduction	Simulation model	
Implantation and high temperature annealing can create compensation centers which reduce the free hole concentration in the implanted region	 Numerical simulation model (Sentaurus TCAD) of a TLM structure (see Fig. 1) Simulated TLM structure consists of 	
The ratio of these donor type impurities N _{comp D} to the activated acceptor	two ideal ohmic contacts	

concentration N_A is defined as compensation ratio [1, 2]

- Increasing compensation increases the
 - contact resistance
 - resistance of the implanted region (sheet resistance R_{sh})
 - power losses
- Commonly the compensation ratio is determined by the rather complex Hall effect measurements

IISB

- In this work, the compensation ratio is approximated by evaluating and simulating transfer length method (TLM) structure measurements
- TLM structures are commonly used to determine i.a. R_{sh} of implanted regions [3]

Samples

- TLM structures with different AI box profiles
- Al surface concentration ranging from 3.3-10¹⁸ cm⁻³ to 5.0-10¹⁹ cm⁻³ (see Table 1)
- Implantation annealing: 30 min at 1700 °C in Ar atmosphere with carbon capping
- The total fabrication process sequence has been previously described [4]

the Monte-Carlo-simulated AI implantation profile

an additional virtual nitrogen doping profile for local charge compensation

The virtual N profile

- is assumed to have the same shape as the implanted AI profile
- is scaled linearly by using the scaling factor f_{comp} (definition see Eq. (1))
- adds donor atoms with low ionization energy in the AI implanted region to reduce the free hole density through recombination
- allows to estimate an average compensation ratio by fitting the simulated sheet resistance with the measured values
- The numerical model
 - assumes full activation
 - includes carrier recombination (Shockley-Read-Hall and Auger)
 - considers the doping dependence of the carrier mobility
 - takes incomplete ionization into account

$$N_{comp,D} = f_{comp}N_A + N_D$$

Contact pads

Simulation results

 Compensation ratios are determined by adjusting f_{comp} until the deviation between measured and simulated R_{sh} is sufficiently small (see Tab. 1)

Table 1: AI box profile concentration, determined				
compensation ratio and deviation between measured and				
simulated sheet resistance for each shown sample				
sample	AI concentration [10 ¹⁹ cm ⁻³]	compensation ratio [1]	deviation [%]	
01	0.33	0.330	1.34	
02	0.67	0.222	1.37	
03	1.00	0.211	-1.20	
05	1.67	0.205	-1.83	
07	2.33	0.230	2.16	
08	2.67	0.210	-0.06	
11	3.67	0.240	-2.60	
13	4.33	0.250	0.08	
15	5.00	0.264	-1.81	

- Fig. 2 shows the comparison between determined compensation ratios by using the TLM approximation model (blue squares) and by using Hall effect measurements from literature [5] (red circles)
- Both types of evaluation show a consistent trend of the dependence of the compensation ratio on the AI concentration

Numerical fitting function

- Summarizing the compensation ratios determined by TLM approximation and from literature a numerical fitting function can be derived (see Fig. 2, dashed line)
- Equation (2) shows the determined fitting function, Table 2 the corresponding fitting parameters
- Fitting function allows for estimating the compensation ratio of similarly fabricated AI implanted regions in a wide concentration range

Fig. 2: Modelled compensation ratios of different samples (blue squares) by using our approximation model compared with ratios from Hall effect measurements from literature (red circles) [5]; black dashed line shows the resulting fitting function

$$f_{comp}(N_A) = f_{comp,A} + f_{comp,B} \exp\left(-\frac{N_A}{N_{A,ref}}\right)$$
(2)

Conclusion and Outlook

Table 2: Determined fitting parameters for equation (2)			
parameter	unit	value	
f _{comp,A}	[1]	0.230	
f _{comp,B}	[1]	0.625	
N _{A.ref}	[cm ⁻³]	2.11·10 ¹⁸	

- Compensation ratios determined from TLM measurements seem to be an easy and promising complement to those obtained from to Hall measurements
- The numerical fitting function allows to estimate compensation ratios of AI implanted 4H-SiC samples before actual device processing
- To generalize the TCAD simulation model and the numerical fitting function, further investigations will be necessary
- Especially for low AI concentrations more results are required to cross check the compensation ratios obtained with the newly introduced method to those obtained from Hall measurements

References

- [1] T. Kimoto and J. A. Cooper, Fundamentals of silicon carbide technology: Growth, characterization, devices and applications. Singapore, Piscataway, New Jersey: Wiley IEEE; IEEE Xplore, 2014.
- [2] M. Rambach, A. J. Bauer, and H. Ryssel, "Electrical and topographical characterization of aluminum implanted layers in 4H silicon carbide," phys. stat. sol. (b), vol. 245, no. 7, pp. 1315–1326, 2008.
- [3] D. K. Schroder, Semiconductor material and device characterization, 3rd ed. [Piscataway, NJ], Hoboken, N.J.: IEEE Press; Wiley, 2006.
- [4] M. Kocher, M. Rommel, T. Erlbacher, and A. J. Bauer, "Influence of AI Doping Concentration and Annealing Parameters on TiAI Based Ohmic Contacts on 4H-SiC," Mater. Sci. Forum (Materials Science Forum), vol. 924, pp. 393–396, 2018.
- [5] J. Weiße et al., "Analysis of Compensation Effects in Aluminum-Implanted 4H-SiC Devices," Mater. Sci. Forum (Materials Science Forum), vol. 924, pp. 184–187, 2018.