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ABSTRACT

Flexible, slender structures like cables, hoses or wires can be described by the geometrically exact

Cosserat rod theory. Due to their complex multilayer structure, consisting of various materials,

viscoplastic behavior has to be expected for cables under load. Classical experiments like uniaxial

tension, torsion or three-point bending already show that the behavior of e.g. electric cables is

viscoplastic. A suitable constitutive law for the observed load case is crucial for a realistic simu-

lation of the deformation of a component. Consequently, this contribution aims at a viscoplastic

constitutive law formulated in the terms of sectional quantities of Cosserat rods. Since the loa-

ding of cables in applications is in most cases not represented by these mostly uniaxial classical

experiments, but rather multiaxial, new experiments for cables have to be designed. They have to

illustrate viscoplastic effects, enable access to (viscoplastic) material parameters and account for

coupling effects between different deformation modes. This work focuses on the design of such

experiments.
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1 INTRODUCTION

ibed physically correctly by the

geometrically exact theory of Cosserat rods [1]. The principal constituents of the rod model are

iables and objective strain measures, ba-

lance equations that govern the dynamic equilibrium of the sectional quantities, and constitutive

equations, which yield the sectional forces and moments in terms of the deformation. Finding

an appropriate constitutive model is especially necessary to enable a realistic simulation of the

deformation behavior of a structure. A viscoelastic model formulated in the sectional force and

moment quantities and objective deformation measures of the Cosserat rod model was already

presented in [2] and [3]. In this contribution, we focus on vi

towards an application oriented modeling approach on the level of sectional quantities similar to

Simo et al. [4].

Cables and hoses are components with a complex multilayer structure, which consists for example

of parallel or twisted wires, insulating layers, woven fabrics and sheaths. Their behavior under

load can thus be investigated on different scales, for example on the microscale if single wires are

considered or on the macroscale by observing the deformation of whole cables. Due to various

effects like friction between the constituents, pull-out of wires or delamination, a treatment on the

microscale and subsequent coupling of the effects is computationally too complex. Furthermore,

these effects cannot be measured in experiments on the microscale. Therefore, the deformation of

cables and hoses will be investigated and modeled phenomenologically on the level of sectional

quantities.
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Since cables include a variety of materials like ductile metals, (hyper-)elastic polymers or brittle

itutive models if a realistic simulation is the

aim. Inelastic behavior like viscosity, plasticity and friction cannot be neglected. This can already

be seen when classical experiments like uniaxial tension, torsion or three-point bending tests are

executed cyclically, which will be shown in section 2.5. These classical tests provide information

about the tensile, torsional and bending stiffness of the specimens. However, they do not represent

realistic loading situations of cables in applications, which are mostly multiaxial and combine

several of the classical load cases. Therefore, multiaxial experiments providing information about

the coupling of the single stiffnesses have to be executed. Section 2.5.2 deals with the design of

suitable multiaxial experiments for the characterization

we test straight clamped cables and hoses in large deformation experiments combining bending,

torsion and tension after van der Heijden et al. [5, 6]. Since these experiments will prove to be

ed multiaxial experiments for clamped

cables are designed.

2 BASIC CONSIDERATIONS ONMODELING AND EXPERIMENTS

2.1 Kinematics of Cosserat rods

centerline curve r(s) and the moving frame R̂(s) are both a function of the arc length s in the

s 7→ r(s) ∈ R
3
, (1)

s 7→ R̂(s) ∈ SO(3). (2)

The orthonormal set of vectors a(α) a(1) and a(2) span the cross

section and a(3) is the normal vector. The material strain measures related t

s

e1

e2

e3

a(1)

a(2) a(3)

r(s)

Figure 1: The kinematics of Cosserat rods.

variables are

K(α) := 〈a(α)
,a(3) × ∂sa

(3) 〉; Γ(α) := 〈a(α)
,∂sr〉; α = 1, 2

K(3) := a(2) · ∂sa
(1); Γ(3) := 〈a(3),∂sr〉 − 1.

(3)

K(α) measures the bending curvatures for α = 1, 2 and K(3) the torsional twist. The transverse

shear strain components are given by Γ(α) for α = 1, 2 and the longitudinal strain is given by Γ(3).
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aint

t =
∂sr

‖∂sr‖

!
= a(3) (4)

for the tangent vector t of the centerline, which inhibits transverse shearing by keeping the cross

sections of the rod normal to the tangent vector [8]. Consequently, the components of ΓΓΓ are

Γ(α) ≡ 0; α = 1, 2 (5)

Γ(3) = ‖∂sr‖ − 1. (6)

2.2 Static equilibrium equations

The system of static equilibrium equations for Cosserat rods

∂sf + fext = 0

∂sm + ∂sr × f +mext = 0
(7)

is valid independent of the constitutive equations. It has t

forces f and moments m, which can be resolved with respect to the moving frame according to

f = R̂(s) ·F; m = R̂(s) ·M. (8)

2.3 Constitutive laws

The constitutive equations relate the material sectional forces F and moments M with the strain

measures given in equations (3). A linear-elastic constitutive law formulated in the material sec-

tional quantities is for example

F = CF · ΓΓΓel; M = CM · K
el (9)

with the effective stiffness matrices CF and CM.

2.4 Formulation of plastic constitutive laws

The simplest case of a rate-independent elasto-plastic constitutive equation can be derived from

h Young’s modulus E and a Coulomb

E

σ
σ

σy

ε

εel ε pl

Figure 2: One-dimensional friction device illustrating rate-independent elasto-plasticity, after [9].

friction element with yield stress σy. Due to the serial connection, the total strain ε can be split
into an elastic and a plastic part

ε = εel + ε pl. (10)

The elastic stress on the spring is

σ = E εel (11)

and can be formulated with equation (10) as

σ = E (ε − ε pl). (12)
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The plastic strain ε pl is an additional kinematic variable following the evolution equation

ε pl =
∂

∂ t
ε pl = γ

∂ f

∂σ
(13)

assuming that ε pl is a function of time t
if the potential relationship in equation (13) holds for the yield function f , γ is a plastic multi-
plier. The yield function serves as a criterion for determining the occurence of yield at a certain

load. Algorithmic approaches to solve elasto- or viscoplastic problems can be found exemplarily

in [9, 10].

Similar to equation (12), rate-independent elasto-plastic constitutive laws can be formulated in

terms of the sectional forces and moments as

F = CF · (ΓΓΓ − ΓΓΓpl); M = CM · (K − K
pl). (14)

The long-term goal of this work is to extend this formulation to rate-dependent viscoplastic consti-

tutive laws for Cosserats rods in terms of sectional quantities.

Remark: The primary interest lies in plastic bending and torsion of cables, since these cases occur

more often in applications. Longitudinal extensional and transversal shear strains are assumed as

approximately elastic, such that plastic effects herein can be neglected for practical reasons.

2.5 Experimental characterization of cables and hoses

Executing suitable experiments is an important part of modeling the deformation behavior of struc-

tural elements. Such experiments have to provide access to the model parameters and have to serve

as an appropriate database for simulating a certain load case. The work of several authors has al-

ready shown for example that in order to perform multiaxial s

determine the model parameters in uniaxial experiments [11

section, classical experiments for the characterization of beam-like structures will be described,

which enable access to linear-elastic stiffnesses. They already illustrate the necessity of inclu-

ding inelastic effects in the modeling of cables under load, when they are performed cyclically.

ormation about the coupling of diffe-

rent load cases and do not represent realistic loading of cables in application. Suitable multiaxial

experiments combining different load cases have to be designed and executed in order to get infor-

mation about the coupling of tension, torsion and bending. The second part of this section deals

with this issue.

2.5.1 Classical experiments

Classical experiments for the characterization of beam-like structures available in the literature

are for example uniaxial tension, torsion and three-point bending tests [15]. Figure 3 shows the

schematic setups of the executed experiments. The experimental results can be analyzed under the

assumption of linear-elastic behavior from the plot of the measured quantities y and x

4. The tensile stiffness (EA)uni, the torsional stiffness (GJ)T or the bending stiffness (EI)B can be
calculated respectively by a linear relation according to

y = kx (15)

from the linear slope k as shown in table 1. The stiffnesses (EA)uni, (GJ)T and (EI)B are rather
ey include information about the

geometry of the cable in form of the cross section area A, the area moment of inertia I and the

polar moment of inertia J in addition to the material parameters E , the Young’s modulus, and G,

the shear modulus.

These classical experiments already enable access to the stiffnesses for linear-elastic constitutive

models. By executing several consecutive cycles, they even provide information about the inelastic

behavior of cables.
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Figure 3: Schematic setups of a) uniaxial tension, b) torsion and c) three-point bending tests.

2.5.2 Multiaxial experiments

In order to get information about the coupling of different load cases, it is necessary to test cables

in multiaxial experiments.

Van der Heijden et al. [5, 6] describe the writhing of cylindric metallic wires as multiaxial experi-

ments for clamped rods. The experimental procedure is shown

men are clamped in one axis, the specimen is twisted about this axis and afterwards one clamp is

moved towards the other clamp. These experiments are executed for several torsion angles. After

Euler’s Theory of the elastica [16, 17], primary buckling of an untwisted specimen of length L and

bending stiffness (EI)B T according to

t =
TL2

4π2 (EI)B
= −1. (16)

Pretwisted specimens will buckle directly into a spatial co

- in certain cases - tension couple at another critical load. The ratio of bending to torsional stiffness

the specimen at maximum displacement D for D/L = 1 is a ring for any torsion angle. Stable as

ling modes are possible.

ents are measured during the experi-

ment. Van der Heijden et al. compare their experimental results for nitinol wires to semi-analytical

computations using an inextensible Kirchhoff rod model (i.e. a constrained variant of the Cosserat

rod with inhibited longitudinal extension and transverse shearing). They observe a characteristic

shape of the experimental and simulated curves resulting from a normalization of the measured

forces on the critical buckling load and the displacement D

Besides, curves for different original lengths coincide for the same torsion angle.
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Figure 4: Analysis of experimental results under assumption of linear-elasticity.

Table 1: Measured quantities y, x and value of slope k for classical tests.

y x k

tension uniaxial tensile force Funi displacement D
(EA)uni
L

torsion torsional moment MT torsion angle θT
(GJ)T
L

bending bending force FB ∆sB
48(EI)B
L3

oiding the possibility of unstable

eps of torsion and uniaxial tension

instead of compression. The torsion and tension steps can be arranged arbitrarily, which reveals

different coupling effects.

t one is used to investigate the

lic uniaxial tension. The second one

examines the effect of a prestretch on the behavior of the specimen under cyclic torsion.

3 CHARACTERIZATIONOF A COAXIAL CABLE

3.1 Experiments

A coaxial cable is characterized using the described classical and multiaxial experiments. The

cross section of the cable has a diameter of 2.8mm and is shown

The cyclic loading in the classical experiments is applied displacement-controlled and 5 cycles

are performed in each experiment. The maximum loading is 100N for the uniaxial tension test,

360◦ for the torsion test and 6mm for the three-point bending test. The results of the cyclic

. The stiffnesses calculated from

the loading paths of the experiments are summarized in table

cycle are calculated separately from cycles 2−5. This illustrates that especially the torsional and

xperiments have in common, that the

behavior is clearly non-linear and that hysteresis loops appear. The cyclic experiments also give

proof of remaining plastic deformation. In the uniaxial tension test, a plastic stretch occurs, which

results in a compressive force in order to reach the original length of the specimen. Similarly, a

negative torsional moment is necessary during unloading in the torsion test because of a permanent

twist. During three-point bending, the punch loses contact to the specimen while unloading at

. In case of the uniaxial tension

loading path, which can be interpreted
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Figure 5: Experimental procedure of multiaxial experiment: A straight specimen is clamped (left),

the upper clamp is rotated by 4π (middle) and afterwards moved down by 60mm (right).

as a yield point for the tensile load case. To determine if this kink is the tensile yield point for this

cable, cyclic uniaxial tension with a maximum axial force of 40N has been executed. The result

because in this case, no yield and nearly no hysteresis appears. Therefore, the yield point was not

reached in this experiment.

Table 2: Stiffnesses measured in the classical experiments.

(EA)uni [N] (GJ)T [N·m
2] (EI)B [N·m

2]

1st cycle 2.020 · 104 8.235 · 10−4 9.813 · 10−4

average of cycles 2−5 2.081 · 104 1.078 · 10−3 1.898 · 10−4

The experimental setup by van der Heijden et al. described in section 2.5.2 is used to test the

coaxial cable in a realistic multiaxial loading. Pretorsion angles of 0, π, 2π, 3π and 4π are applied
before the upper clamp is moved by 60mm. Specimens of two different lengths (100mm and

t shows the results for a specimen

of an initial length of 180mm for different torsion angles. The shape of the curves differs already

results for both initial lengths for no pretorsion and 4π pretorsion. In both cases, the measured
curves do not coincide after the normalization on length and critical buckling load. These results

show that this type of experiment is too complex and its interpretation too complicated to be use-

ful for determining the coupling between the different stif

multiaxial experiments have to be designed which provide access to the desired information. The

erent pretorsion angles θT from 0
◦ to

360◦ or different prestretches up to 100N are applied.

The uniaxial tensile force Funi is plotted versus the displacement D for different pretorsion angles.

The tensile stiffness decreases with increasing pretorsion angles. This effect can be interpreted as

a result of delamination and hence softening of the cable during the torsion. This result has to be
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Figure 6: Theoretical results of multiaxial experiments for different torsion angles of a) 0, b) π ,
c) 2π , d) 3π , e) 4π , after [5] (left) and own results of simulation based on a discrete Cosserat
rod model (right). Dashed lines symbolize instable branches, dots mark transition from stable to

n.

1.0mm

Figure 7: Cross section of investigated coaxial cable.

handled carefully. In a zoomed in plot of the loading path of t ◦ and 360◦ it is

visible that uniaxial tension force is already applied duri

the twist, the specimen is elongated effectively, which results in an axial force. Consequently, the

softening effect may be a result of the torsion induced pretension and is not a result of pure pre-

torsion. Therefore, the experimental procedure is slightly adapted in order to avoid this effect. A

pure pretorsion load is achieved by activating force control during the pretorsion, which keeps the

axial force at zero by adjusting the distance between the clamps. Besides, force control is already

activated during the clamping of the specimen in order to avoid tensile forces on the specimen

before testing. The adapted experimental procedure and resulting curves of uniaxial tension force

sing pretorsion causes a decreasing

tensile stiffness. Now, this result is only due to the combination of pure pretorsion and uniaxial

re, the hysteresis loops grow larger with

increasing pretorsion, which is equivalent to an increasing dissipation. The aforementioned kink

ible for the pretwisted specimens.

torsional momentMT is plotted versus the torsion angle θT for different prestretches up to a certain
size of the hysteresis loops or the

slope is visible. Consequently, the torsion behavior and plasticity of this cable are not a function

of prestretch.
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Figure 8: Results of cyclic classical experiments on a coaxial cable: a) uniaxial tension test,

b) uniaxial tension including test for yield point, c) torsion test, d) three-point bending.

Figure 9: Results of multiaxial experiment on coaxial cable. Left: Comparison of different torsion

angles for specimen of length 180mm. Right: Comparison of results for specimens of both lengths

for torsion angles of 0 and 4π .
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Figure 10: Experimental procedure of multiaxial experiments combining tension and torsion.

Left: A pretorsion of 180◦ is applied before cyclic uniaxial tension. Right: The specimen is

prestretched until Funi = 100N before cyclic torsion is applied.

clic tensile test. Right: Loading paths
◦ and 360◦ pretorsion.

Figure 12: Left: Adapted experimental procedure in order to

of pure pretorsion on behavior in cyclic tensile test.
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3.2 Simulation

Similar to van der Heijden et al. [5, 6], simulations of these experiments based on our implemen-

tation of a Cosserat rod have been performed for the material parameters of nitinol. The results

f van der Heijden. These results,

obtained based on an elastic constitutive law, show good agreement to the theoretical results. Since

the experimentally measured curves deviate not only quantitatively, but also qualitatively from this

theoretical shape, it is necessary to include viscoplastic effects in the modeling of the multiaxial

deformation of cables.

4 CONCLUSIONS& OUTLOOK

The results of the classical and multiaxial experiments show the necessity of including viscoplastic

effects in the description of cables. Since these effects have to be measured and observed in expe-

g access to the material parameters have to

be developed. Three kinds of multiaxial experiments have been executed in this work. In the case

of viscoplastic cables, the interpretation of the writhing experiment is too complicated and will

nation of cyclic tension and torsion

l experiments for the characterization of

viscoplastic cables. Similar experiments combining torsion and bending will be designed in future

work, because the primary interest lies in viscoplasticity herein. Furthermore, suitable constitutive

laws in accordance to the observed hysteresis curves have to be designed. They will be adapted

in analogy to three-dimensional constitutive laws but formulated in the terms of sectional kinetic

quantities of Cosserat rods.
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