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Abstract

Neural network based object detectors are able to automatize many difficult,

tedious tasks. However, they are usually slow and/or require powerful hardware.

One main reason is called Batch Normalization (BN) [1], which is an important

method for building these detectors. Recent studies present a potential replace-

ment called Self-normalizing Neural Network (SNN) [2], which at its core is a

special activation function named Scaled Exponential Linear Unit (SELU). This

replacement seems to have most of BN’s benefits while requiring less computational

power. Nonetheless, it is uncertain that SELU and neural network based detectors

are compatible with one another. An evaluation of SELU incorporated networks

would help clarify that uncertainty. Such evaluation is performed through series of

tests on different neural networks. After the evaluation, it is concluded that, while

indeed faster, SELU is still not as good as BN for building complex object detector

networks.
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Introduction

1.1 Motivation

Deep convolutional neural network based object detectors are computer pro-

grams, which detect and label objects in images automatically, without human

interaction. These detectors are a crucial part in automatizing many tedious tasks

that normally require human, such as: maintenance, surveillance, driving.

For these networks to be operational, they have to go through the process of

training. However, trainings are often unreliable, and time consuming. One method

to partially deal with this problem is called normalization. This method usually

enables faster and more stable training of deep networks [1, 5, 2, 6]. The most

widely adopted normalization method, for deep convolutional networks, is Batch

Normalization (BN) [1]. However, BN adds an unignorable amount of calculations

to the network. This raises hardware requirements, and slows down inference speed

significantly – which will be shown in section 7.1. Therefore, resulting detectors are

not suitable for applications that require high processing speed, and/or applications,

in which powerful hardwares are unavailable. An example of such application is

autonomous driving.

In order to speed up detector while keeping the training process manageable, a

replacement for BN is likely required. One potential candidate is Self-normalizing

Neural Networks (SNN) [2], which is built using Scaled Exponential Linear Unit

(SELU) activation function. Utilization of SELU seems to yield similar normaliza-
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Chapter 1. Introduction

tion effects to BN with only a fraction of BN’s computational cost. Nevertheless,

there are still problems. SELU is built specifically for MLP. Furthermore, it relies

heavily on mathematical theorems, and assumptions. This means any change in

its operating environment could strongly affect SELU’s functionality. There is no

concrete evidence to claim that SELU would function properly inside arbitrarily-

configured convolutional neural networks. Although there are several successful

SELU-Based convolutional networks [7, 8, 9, 10], these simply apply SELU without

further considerations. These projects do not mention whether SELU’s normaliza-

tion effect actually happens within the hidden layers.

1.2 Problem Statement

With the long-term goal of speeding up detectors without abandoning the

benefits of normalization, this thesis intends to evaluate SELU’s normalization

effect in convolutional neural networks, as well as look into the effects of different

variables on SELU’s functionality.

1.3 Challenges and Difficulties

For this work, several challenges and difficulties are expected. The first challenge

is determining how to check whether SELU operates properly inside a network.

Due to the black-box nature of neural networks – especially deeper networks –

simply adding SELU to a network, and looking at its accuracy result is not enough

to validate SELU’s functional correctness. Those positive accuracy results could be

produced by SELU functioning only as an activation function, without any of its

normalization effect. They could also be entirely due to other parts of the network

– in which case, SELU contributes little or even causes harm to the network.

The second challenge is finding out how different parameters are affecting

SELU’s operation. The black-box nature of neural networks is again a big difficulty

in this task. Performance of networks, and by extension SELU, are determined

by many parameters: layer amount, layer type, neuron amount, training duration,

optimizer, etc. There are also other unknown parameters. Thus this project will

certainly not produce an exhaustive list. For this task, it must be ensured that

only one variable is different from the control configuration in each and every test.
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Chapter 1. Introduction

1.4 Thesis Outline

This report is divided into 8 chapters:

• Introduction: This chapter is intended to give readers a general idea of rea-

sons for doing this project, core tasks of this project, and expected challenges.

• Background: Background chapter provides necessary knowledge for under-

standing this work.

• Related Work: This chapter presents some earlier scientific researches that

are relevant to SELU and this thesis. Their shortcomings are also discussed

in this chapter.

• Approach: Chapter 4 describes approaches that are taken to properly

evaluate SELU.

• Network Architecture: This chapter gives detailed information on different

architectures, which are tools used for performing core tasks of this project.

• Experiment Setup: Chapter 6 describes experiments that are performed

in the scope of this thesis.

• Results: This chapter presents outcomes of the aforementioned experiments.

• Conclusions: Final chapter is dedicated to presenting contributions, learned

lessons, and potential future works.

3



2

Background

The purpose of this chapter is providing readers with the background and

relevant scientific concepts which are necessary for understanding the work in

this thesis. These concepts are presented in the following order: normalization

methods, convolutional network building techniques, object detection networks,

and optimizers.

2.1 Normalization Methods

In neural network, normalization means transforming a set of value so that it

has a certain distribution. In most case, normal distribution with mean µ = 0, and

variance σ2 = 1 is used.

Normalization is mainly used to tackle two problems: covariate shift [11], and

exploding/vanishing gradient [12].

• Covariate shift: layers’ input distribution changes during training. This is

caused by changes of previous layers’ variables. Covariate shift slows down

neural network training because it forces networks to also adapt to input

distribution changes.

• Exploding/vanishing gradient: scale of calculated gradients is too large/s-

mall in comparison to layers’ variables. This is caused by the large difference

in scalar scale between hidden layers’ output. For example, layer 5, and layer

6 output are in the range of [0,1], and [0, 100], respectively. This causes the
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Chapter 2. Background

exploding gradient problem. Exploding gradient destabilizes training, and

can lead to divergence. On the other hand, vanishing gradient slows down

training, and can result in a complete halt.

Solving those problems allow networks to be trained reliably, and faster.

There are several methods of normalization: layer normalization [13], weight

normalization [14], batch normalization (BN) [1], and self-normalizing neural

network (SNN) [2]. They are different on their methods of transformation and/or

the set of value, on which they apply transformations.

• Layer normalization: performs explicit transformation on each layer’s

output for each training sample – not batch.

• Weight normalization: performs normalization on each layer’s weight by

separating weight vectors’ length, and direction. After that optimization is

done directly on the length component, and direction component, instead of

the weight vector itself.

• Batch normalization: performs explicit transformation feature-wise on

layers’ output across each training batch.

• Self-normalizing neural network: performs implicit normalization on

layers’ output using SELU activation function, and LeCun weight initialization

[16].

This thesis focuses only on BN, and SELU. In which, BN is used as benchmark,

and SELU is the main test subject. Reasons for this decision are the following. BN

is currently the most successful and widely used normalization method [5, 2, 13, 14],

thus it is a good choice for a benchmark. This is especially true for convolutional

neural networks – which is the target network type of this thesis. On the other hand,

SELU is a new method, which seems to be faster than BN without sacrificing much

of the normalizing effect. Furthermore, SELU presents a novel way of implicitly

normalizing layers’ output, which is different from other normalization methods.

Section 2.1.1 will provide more details on BN. Details on SELU can be found in

section 2.1.2.
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Chapter 2. Background

2.1.1 Batch Normalization

Batch normalization [1] is the current de facto standard in deep CNN [5, 2, 13, 14]

for dealing with exploding/disappearing gradients. BN is a technique of explicitly

performing normalization on the input of hidden layers, not just the network’s

first input. Normalization is performed over each mini-batch, or the entire dataset.

BN is applied to each feature individually. A special property of BN is that its

calculation during training, and inference are different. For training, BN consists

of two steps. The first step, which is on the left, is normalization using mini-batch

mean, and variance. On the right side is the second step: ”scale and shift”.

x̂i ←
xi − µB√
σ2
B + ε

yi ← γx̂i + β

µB, σ
2
B: mean, and variance over mini-batch

γ, β: must-be-learned parameters

The ”scale and shift” step allows layers to retain their representation after normal-

ization. For inference, there is no mini-batch. Therefore, normalization has to be

done differently. Running mean E[x], and running variance Var[x] are calculated

using mean µ, and variance σ2 of all mini-batches that were used during training.

E[x]← 1

N

N∑
n=0

µn

V ar[x]← m

m− 1

(
1

N

N∑
n=0

σ2
n

)

y =
γ√

V ar[x] + ε
· x+

(
β − γE[x]√

V ar[x] + ε

)
N : number of trained mini-batch

m: mini-batch size

γ, β: learned during training
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Chapter 2. Background

For CNN, normalization is not applied to each individual feature. Instead, it

is applied feature-map wise. All activations in each feature-map are normalized

together. Each feature-map is assigned one pair of (γ, β). A note on using BN,

β essentially acts as bias, thus a separate bias in the convolutional layer is not

necessary.

In the original BN paper, BN is placed before activation function, such as:

Rectified Linear Unit (RELU), Leaky Rectified Linear Unit (LRELU), sigmoid.

However, bench tests [15] suggest that placing BN after RELU, or LRELU leads

to better result. BN improves the stability, and training speed of neural network,

especially deep CNN [1]. Nonetheless, BN adds additional computations to the

network. Specifically, two must-be-trained parameters for each and every feature-

map in a CNN.

BN’s performance in Feed-forward Neural Network (FNN) is not as good as

its CNN counterpart. FNNs trained with BN suffer from perturbations and have

high variance in the training error. This high variance hinders learning and slows

it down [2].

2.1.2 Self-Normalizing Neural Networks

Self-Normalizing Neural Networks [2] are networks with SELU, which is a

customized Exponential Linear Unit (ELU) activation function. Unlike RELU,

and other sigmoid functions, an extra step must be done to correctly utilize SELU.

Weights in the network must be initialized using LeCun normal distribution [16]

with mean µ = 0, and variance ν = 1
n
. In which, n is the size of input. For example,

in case of a convolutional layer with kernel of size 3x3, n = 9. There is another

important requirement for SELU to operate correctly – Each neuron in a layer

must be connected to a large number of inputs.

A normalization method’s final goal is to ensure that activations have zero

mean, and unit variance over a mini-batch, or the entire dataset. SELU’s goal is

similar. However, there are three differences:

• Output of SELU’s activation are already normalized, thus requiring no explicit

normalization operation like in BN.
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Chapter 2. Background

Figure 2.1: SELU activation function with α ≈ 1.6733 and λ ≈ 1.0507

• In SELU, desired activation’s mean, and variance (µ, ν) can be in the range of

[−0.1, 0.1], and [0.8, 1.5] respectively. Naturally, zero mean, and unit variance

are still the most desired values.

• SELU does not ensure that earlier layers’ activations have desired (µ, ν).

The core idea behind SELU is the following: Given that all weight matrices are

initialized using LeCun normal distribution, and network inputs are well conditioned

(normalized, and standardized) – definition in section 6.2. By applying SELU to

each and every layer, the (µ, ν) of previous layers will push the (µ, ν) of later layers

closer to a fixed point in the desired range. As a result, SELU’s full potential

can only be realized in networks with high number of layers. Here is the actual
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Chapter 2. Background

implementation of the above idea:

selu(x) = λ

{
x if x > 0

αex − α if x ≤ 0

α ≈ 1.6733 and λ ≈ 1.0507

SELU’s author provided a good explanation for this activation function:

”The activation function is required to have (1) negative and positive values

for controlling the mean, (2) saturation regions (derivatives approaching zero)

to dampen the variance if it is too large in the lower layer, (3) a slope larger

than one to increase the variance if it is too small in the lower layer, (4) a

continuous curve.” – Klambauer [2]

In the SELU paper [2], for empirical evaluation, SELU is compared against

RELU (without BN), BN, layer normalization, weight normalization, highway

networks, and residual networks. In term of Area Under Curve (AUC), SELU

outperforms other techniques on FNN with high number of layers. For example,

with the Tox21 challenge dataset, on 32 layer FNNs, SELU receives a score of 82.5

while BN gets 76. Since SELU only replaces other activation functions (i.e RELU),

it adds negligible amount of additional computations to an existing network.

It is important to note that residual/skip connections might negatively affect

SELU [17]. On a different note, the difference in accuracy between a SELU+BN

combination and pure SELU is only marginal [9, 18]. This means that SELU’s

performance is not further improved by combining it with BN, and vice versa.

2.2 Convolutional Neural Network Building Techniques

Normalization methods by themselves are not useful. To properly evaluate these

methods, they have to be placed inside a functioning neural network. To gather

more data, each method should be tested with two different networks. The first

network should be a smaller, carefully built, and controlled network for precision

testing. The architecture of this network is described in section 5.2. The second

network should be a complex, high performing network for competency testing.

Details on such networks can be found in section 2.3. This section focuses on

9



Chapter 2. Background

Figure 2.2: Explicit Max-pooling layer functions similarly to 2-stride Convolutional
layer

introducing different techniques that are used for building the first network, as well

as those that are used in complex CNNs. These techniques are listed below:

• Max-pooling with 2-stride convolution

• Kernel-doubling design

• Residual connection

• Anchor box

• Region proposal

• Region of interest pooling

Max-pooling with 2-stride convolution, and kernel-doubling design are used to

build the first network.

2.2.1 Max-pooling with 2-stride Convolution

First is some information on pooling. Pooling means combining values from a

cluster of neurons on a previous layer into a single neuron in the next layer. There

are max-pooling, average-pooling, and min-pooling. However, max-pooling is the

10



Chapter 2. Background

Figure 2.3: Example of kernel-doubling design

most useful and often used. It allows networks to converge faster, and also makes

networks more tolerant to local changes in inputs [19, 20]. On the other hand,

especially in deep CNNs, pooling leads to loss of information, which stops networks

from learning deeper features [21].

Normally, max-pooling is explicitly performed by placing a max-pooling layer

after a convolutional layer. However, it has been found that max-pooling’s full

benefit can be achieved by setting a convolutional layer’s stride to 2 [22]. This

design enables cleaner and easier-to-implement CNNs. Therefore, it is being used

in several recent deep CNNs [4, 5, 23, 24].

2.2.2 Kernel-doubling Design

Kernel-doubling design means increasing the amount of kernels by 2 times

after pooling is performed. This design is first used in VGG-16. The main benefit

is mitigating the loss of information associated with pooling, as mentioned in

section 2.2.1 [21]. The kernel-doubling design is used in many complex deep CNNs,

especially those with VGG-16 as backbone [4, 5, 25, 26].

2.2.3 Residual Connection

Residual connection [24] – also called skip connection – is defined as taking

input of a layer and perform element-wise addition to the output of that same

layer, or another layer several levels deeper. Residual connection is designed to

improve training of deep CNNs. It is shown that deep networks with residual

connection converge better, and achieve higher accuracy [24]. This is due to the

connection preventing a bad layer from ruining the whole network by skipping

11
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Figure 2.4: Example of a residual (skip) connection

it. Another advantage is that residual connections are easy to implement, and

they adds an insignificant amount of computation to the network. However, since

residual connection performs element-wise addition, two addends matrices must

have the same size.

Residual connection is used in several large networks, such as: ResNet [24],

Inception-resnet [27], RetinaNet [28], and YOLO v3 [5].

2.2.4 Anchor Box

Anchor box [25] is only applicable to bounding box detectors. Anchor boxes

are rectangular boxes with different known sizes, and aspect ratios. Their sizes,

and ratios are either chosen by hand [25], or dynamically using K-mean clustering

[29] before the network is trained. These chosen sizes, and ratios of anchor boxes

are not changed by the training. During training, transformations from these

anchor boxes to object bounding boxes are learned. The main idea behind the

anchor box technique is giving networks prior knowledge of objects. Therefore

these networks do not have to learn object size, and aspect ratio from scratch, thus

allowing training to be better.

2.2.5 Region Proposal

Region proposal consists of several techniques, its purpose is to give prediction

on locations that have high chance of containing valid objects. Region proposal does

not output class or bounding box predictions. Some examples are Selective Search

12



Chapter 2. Background

Figure 2.5: Example of a 4x5 to 2x2 RoI pooling

[30], SPPnet [31], and Region Proposal Network (RPN) [25]. In those example,

RPN – which is introduced in the Faster-RCNN paper – is the fastest and simplest

to use [25]. Unlike SPPnet – which has to be trained and used separately from a

detector network – RPN can be trained together with the whole detector network.

RPN is a fully convolutional neural network. Aside from regions, it also gives out

two scores: object, and not-object. For a region, if the object score is higher, it is

passed to the detector for classes and bounding boxes prediction. However, if the

not-object score is higher, that region is discarded.

2.2.6 Region of Interest Pooling

Region of Interest (RoI) pooling is used in conjunction with region proposal.

The purpose of RoI pooling is to make all proposed regions have the same size.

This is done by dividing each region into a grid of desired size. After that, max

pooling is performed on each cell of the grid.

2.2.7 Discussion

Techniques mentioned in this section have been used extensively in recent CNN.

The first three techniques are compatible with any applications that makes use of

CNN. Anchor box is limited only to bounding box predictor. However it has been

proven to be effective, and leads to good results [25, 29]. Region proposal, and
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RoI pooling are useful for detector networks that focus on accuracy. Nevertheless,

networks with region proposal are often slower than other detectors [5, 25, 32].

Region proposal, and RoI pooling are often used together.

Regarding the small network for precision testing – which is mentioned at the

start of this section – only the first two techniques (max-pooling with 2-stride

convolution, and kernel-doubling design) are used to build it. Details on the

reasoning can be found in section 5.2.

2.3 Object Detection Networks

This section introduces some successful object detection networks, which can

be used for evaluating a normalization method’s competency in complex, real

application. Since this thesis focuses on detection speed, only bounding box

detectors – which is the simplest, and fastest type – are considered. Thus, object

mask detectors are not included in this work. These bounding box detection

networks are: Faster R-CNN, Single Shot MultiBox Detector (SSD), and You Only

Look Once (YOLO) version 3.

2.3.1 Faster R-CNN

Faster R-CNN [25] is a two-stages object detection network. These two stages

are region proposal, and detection.

• Region proposal: this stage suggests areas in input feature-maps, where

objects are likely to be located.

• Detection: this stage processes proposed regions to produce classes, and

bounding boxes prediction.

The general architecture of Faster R-CNN is shown in figure 2.6. Input images are

first fed into a CNN for features extraction. After that, produced feature-maps are

given to the RPN [25]. RoI pooling is then performed on feature-maps based on

proposed regions from the RPN. Finally, all resized regions are fed to the detector

part of the network. Classes and bounding boxes are predicted separately by

different sections of the detector part.
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Figure 2.6: Faster R-CNN overall architecture [3].

Regarding further work, Faster R-CNN has been extended to detect masks

instead of just bounding boxes [26]. Faster R-CNN was also used as baseline for

discovering the problem of foreground-background imbalance in object detections

[33].

Two-stages detectors, such as Faster R-CNN, focus on accuracy. While faster

than other two-stages detector networks – such as R-CNN, Fast R-CNN[32] – the

region proposal stage is known to be costly [4, 5, 34]. Therefore, these networks are

usually slower than single-stage detectors. Single Shot MultiBox Detector (section

2.3.2), and You Only Look Once 2.3.3 are two examples of single-stage detectors.

2.3.2 Single Shot MultiBox Detector

Single Shot MultiBox Detector [4] is a single-stage object detection network.

Unlike Faster R-CNN, SSD does not depend on region proposal. Input data is

processed by the network only once. Furthermore, classes, and bounding boxes are

predicted together. An overview of SSD can be found in figure 2.7. Input images

are first given to VGG16 [21] for features extraction. Resulting feature-maps are

then given to a series of convolutional layers. To detect objects with different sizes,

predictions are made using individual output of each convolutional layer in the

series. Early layers are responsible for detecting small objects. Meanwhile, later

layers handle the detection of large objects.

SSD has been used as base for several other detectors. Deconvolutional Single

Shot Detector (DSSD) [35] is one of those networks, which was built by combining

SSD, and Residual-101 [24]. SSD has also been used for object pose prediction [36].

15



Chapter 2. Background

Figure 2.7: Single Shot MultiBox Detector overall architecture [4].

2.3.3 You Only Look Once

You Only Look Once version 3 [5] is a Fully Convolutional Network (FCN)

for object detection. Similar to SSD, YOLO v3 is also a single-stage detection

network. YOLO works by dividing input images into square cells, and utilizing

multiple anchor boxes per cell to localize, and classify objects. Anchor boxes’ size,

and aspect ratio are picked using K-mean clustering. Due to its large amount of

layers, YOLO is susceptible to covariate shift, and exploding/disappearing gradients

problems. Batch Normalization is used to deal with this issue.

A YOLO [5] network has 2 parts: Darknet-53, and Yolo-heads. Darknet-53 is the

backbone, which handles features extraction. This part consists of 52 convolutional

layers. Regarding the 53rd layer, it is a fully-connected layer that exists only
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Type Filters Size Stride
Input
Convolutional 32 3x3 1
Convolutional 64 3x3 2

1x
Convolutional 32 1x1 1
Convolutional 64 3x3 1
Residual
Convolutional 128 3x3 2

2x
Convolutional 64 1x1 1
Convolutional 128 3x3 1
Residual
Convolutional 256 3x3 2

8x
Convolutional 128 1x1 1
Convolutional 256 3x3 1
Residual
Convolutional 512 3x3 2

8x
Convolutional 256 1x1 1
Convolutional 512 3x3 1
Residual
Convolutional 1024 3x3 2

4x
Convolutional 512 1x1 1
Convolutional 1024 3x3 1
Residual
Output

Table 2.1: Darknet 53 structure [5]

during pre-training. It is not a part of the final YOLO architecture. Darknet-53

is built using several techniques: pooling with 2-stride convolutional layers [22],

kernel number doubling after pooling [21], residual/shortcut connections [24], and

dimensionality reduction with 1x1 convolution [37]. It contains 5 large convolutional

sections. Each is a sequence of several similar concatenated residual blocks. A

block consists of two convolutional layers and a residual connection. The first layer

halves the amount of kernels from its input using 1x1 convolution. Its job is to

lower the number of operations the network has to perform, without sacrificing

performance significantly. The second layer is a normal 3x3 convolutional layer with

the same amount of kernels as the block’s input. The residual connection performs

element-wise addition between the second layer’s output and the block’s input to
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produce the block’s output. In front of each sections is a 2-stride convolutional

layer. It performs pooling, and doubling the amount of feature-maps.

Yolo-heads is the second part of the network. This part is for fine-tuning,

and localizing detected objects within images. Its design focuses on allowing the

network to detect objects of different scales. There are three heads: 13x13, 26x26,

and 52x52. Each head’s name denotes its output size, given the default input size

of 416x416. Head 13x13 is a series of 7 convolutional layers. It takes the output of

Darknet-53’s last section as input. Head 26x26, and 52x52 are similarly constructed.

However, 26x26’s input comes from the fifth convolutional layer of 13x13, and the

output of Darknet-53’s second to last section. For 52x52, input comes from the

fifth convolutional layer of 26x26, and the backbone’s third to last section.

There are further projects based on YOLO. ROLO [38] is an object tracking

system, which is built by combining YOLO with Long Short-Term Memory network.

Another object tracking system is named MV-YOLO [39], which uses YOLO’s

detection and motion vector from input stream. YOLO is also used as a baseline

for the ”EuroCity Persons” [40] dataset.

2.3.4 Discussion

As stated in the introduction, this thesis focuses on network inference speed

rather than accuracy. In order to push the speed limit, it would be better to work

with the fastest network, which still has respectable classification performance.

With a GeForce GTX TITAN X graphic card, inference time for R-CNN, SSD, and

YOLO v3 are 85 ms, 61 ms, and 22 ms respectively [5]. It is clear that YOLO v3

is the fastest network of the three. As a result, YOLO v3 is chosen as the base for

testing in this thesis.

2.4 Optimizers

Architecture alone is not enough to bring a neural network into operational

state. Training procedure, and hyperparameters have major effects on a network’s

performance. In order to be tested properly, a network should be trained with

different configurations. One of the most important choices for training is optimizer.
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This section focuses on introducing some optimizers, which are used for testing in

this work.

Optimizers are cores of the back-propagation process, which trains neural

networks. The basic idea behind optimizer is calculating gradients of weight

matrices and then update weights to make loss value as small as possible. There

are several different optimizers. The only significant difference between them is

how they calculate update values for weights after gradients are found. Some of

those optimizers are Gradient Descend (GD), Stochastic Gradient Descend (SGD),

SGD with momentum [41], RMSProp [42], AdaDelta [43], and Adam[44].

• Gradient Descend: It is the base of all other optimizers. However, GD is

not always suitable for neural network applications. GD needs to process

the entire dataset to produces one update. If the dataset is large, training

will take a large amount of time. Furthermore, GD assumes that the dataset

never change.

• Stochastic Gradient Descend: SGD is a trade-off between accuracy and

speed. Instead of calculating gradients from the entire dataset, SGD does it

with a single sample, or a small batch of samples. Although gradients are less

accurate, SGD is much faster and can handle ever-changing dataset. Update

is controlled by a hyperparameter: learning rate η. Recommended value for

η is in from 0.1 to 1 [45].

• Stochastic Gradient Descend with momentum: SGD with momentum

extends SGD by taking the last update value into consideration. The idea is

analogue to momentum in physics. The more weight matrices change in one

direction, the larger the next update in that direction will be. Furthermore,

sudden changes in direction would be slowed down. This momentum is

controlled by a hyperparameter: momentum γ. Recommended value for γ is

either 1.0 [46] or 0.9 [47].

• RMSProp: It is another extension of SGD. Instead of just looking at

gradients from the last iteration, it considers all past gradients. This is

done by keeping a moving average v of squared gradients. New average is

a weighted sum of current average and the newest gradient squared. The
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weight in this sum is controlled by a hyperparameter called decay rate ρ.

Recommended value for ρ is 0.9 [42]. Update values are calculated using

gradients, moving average v, and learning rate η.

• AdaDelta: AdaDelta is similar to RMSProp. It also maintains a moving

average of past squared gradients. However, it is different in its method of cal-

culating update value. AdaDelta does not depend on learning rate η. Instead,

updates are calculated with gradients, updates from last iteration, moving

average v, and a smoothing value ε. ρ = 0.95, ε = 10−8 are recommended

values for these hyperparameters [43].

• Adam: Adam is built upon both RMSProp, and AdaDelta. This optimizer

calculates two moving averages: one for squared gradients, and another for

gradients. They are controlled by hyperparameter β1, and β2, respectively.

Moving averages, learning rate η, and smoothing value ε are used to calculate

updates. Empirical evidences show that η = 0.001, β1 = 0.9, β2 = 0.999, and

ε = 10−8 are recommended values [44].

There are also other existing optimizers, such as: AdaMax, Nadam, AMSGrad.

However, this thesis will only focus on those aforementioned ones, because they are

often used, and have been shown to give good results [48]. Regarding difference in

performance, optimizers with adaptive learning rate usually function better [49].

For example, Adam, AdaDelta, and RMSProp give faster convergence, and allow

deep networks to be trained successfully [43, 44, 48].
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Related Work

This chapter briefly introduces some related works, and their shortcomings in

investigating SELU’s usage in convolutional neural network.

3.1 SELU-applied projects

SELU has already been employed for several machine learning projects. Linked

neuron paper [18] shown that reliable training on deep CNN, such as AllCNN and

ResNet, can be achieved with SELU and special neuron configurations. Integration

of SELU in CNN has also produced good result on point cloud segmentation [7],

radio/microwave time series classification [8, 9], Omics data classification [10].

Regarding FNN, some deep networks get better result with SELU [50, 51]. SELU

has also been applied to reinforcement learning [52, 53], auto-encoders [54, 55].

There is also project that used SELU together with residual connection. However,

the result was not positive [17]. On another note, several works [9, 18] have tried to

use SELU together with BN. The difference in accuracy is, however, only marginal.

This means that SELU’s performance is not further improved by combining it with

BN, and vice versa.

3.2 Limitations of previous works

The SELU paper only focuses on Feed-forward Neural Network. The paper

does not explore the effects of SELU applied into deep CNN. Furthermore, the

original SELU network was evaluated using a medical drug dataset, whose nature
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can be different from that of an image dataset. From the SELU paper alone, the

effects of SELU on a CNN cannot be clearly determined. Later, SELU’s authors

did perform some testing with CNN, which is available on their Github repository1.

However, these networks have only two convolutional layers. Consequently, SELU’s

effects on much deeper CNN are not clearly demonstrated.

Linked neuron paper [18] did several tests between RELU, SELU, Swish [56],

and their customized activation functions. However, batch normalization is used

together with SELU in most of these tests. This complicates the test, and makes it

difficult to correctly evaluate SELU. There are tests without BN, but these are only

between SELU and customized versions of activation functions. The comparison

between RELU+BN and pure SELU is not clearly mentioned in this paper.

Most SELU-applied projects in section 2.1.2 work on different type of networks

or non-image data, thus their results may not remain the same for an image

processing deep CNN. Furthermore, some projects either make no comparison

between SELU and BN [7, 10], or only use it once before the last fully-connected

layer [8].

1https://github.com/bioinf-jku/SNNs
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Approach

This chapter gives readers a general overview of approaches, which are used

to explore SELU’s performance, and characteristics. The two main focuses are

SELU’s inference speed, and SELU’s reaction to configuration changes.

4.1 Inference Speed

For the first task, SELU’s main advantage over BN – namely calculation speed

– is tested. In this context, calculation speed is defined as how much time a

network takes to calculate outputs from inputs. This is done by performing training

and inference on two almost identical networks. Training configurations are also

identical. The only difference between these two networks is the normalization

method – either SELU or BN. Although these tests are not concrete enough to

draw any final conclusion on whether SELU’s normalization effect is working

properly or not. For example, accuracy, and loss are not carefully controlled, thus

these data are not trustworthy. These speed tests would still provide credible and

tangible statistics on how fast SELU-based networks are in comparison to BN-based

networks during inference. Information on calculation speed is reliable, because the

amount of computation is still the same, even if SELU is not functioning correctly.

4.2 Parameters’ Effects on SELU

The second task is finding out different variables’ effects on SELU’s functional

correctness. This task consists of two parts. The first part is a series of tests on a
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Multi Layer Perceptron. The second part is made up of similar tests, but they are

performed on a CNN. For MLP tests, a control network is first built using nearly

identical configurations from SELU’s author [2]. For each test network, only one

configuration is deviated from the control network. This ensures the link between a

specific change in configuration, and a specific change in network behavior is most

likely legit, and not coincidental. Hidden layers’ outputs distributions from these

modified networks are compared to that of the control. Tests on CNN follow the

same procedure.
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Network Architecture

The purpose of this chapter is providing information on network architectures,

which are used for the two tasks mentioned in chapter 4. More specifically, this

chapter gives detailed information on ”Normalization Unit”, ”Generic CNN”,

”Control MLP”, and ”YOLO”.

5.1 Normalization unit

A normalization unit is responsible for normalizing hidden activations within a

network. Although it is not a complete architecture, it is an important building

block for all architectures in this chapter. Normalization units are placed before

all hidden layers. There are two types of normalization unit: BN with RELU

(BN+RELU), and SELU. BN+RELU consists of Batch Normalization, and leaky

RELU – a variant of RELU – with α = 0.1. This alpha value of 0.1 was chosen

based on YOLO v3’s configurations, which has been empirically proven to function

well [5]. As a side note, α = 0.01 – which is recommended in the original leaky

RELU paper [57] – could also be a good value. Meanwhile, SELU’s parameters is

configured for Gaussian distribution of zero mean and unit variance (α ≈ 1.6733

and λ ≈ 1.0507). Each network will have only one type of normalization unit.

5.2 Generic Convolutional Neural Network

The generic CNN architecture is trained with the MNIST dataset [58] – an

often used image dataset. This architecture is used for both task 1 and 2. In task 1,
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Type Filters Size Stride
Input

5x
Convolutional 32 3x3 1
Normalization
Convolutional 32 3x3 2
Normalization

5x
Convolutional 64 3x3 1
Normalization
Convolutional 64 3x3 2
Normalization

5x
Convolutional 128 3x3 1
Normalization
Convolutional 128 3x3 2
Normalization
Dense 256
Normalization
Dense 10
Output

Table 5.1: Generic CNN architecture

SELU-based variants and BN-based variants are used to compare calculation speed.

In task 2, only SELU-based variants are used to investigate variables’ impact on

SELU. This architecture is used to make sure that changes in its behavior are most

likely due to changes of specifically chosen variables during tests. A larger, more

complex network would likely introduce unaccountable disturbances to test results.

Details on generic CNN’s structure is introduced below.

The generic base network consists of 18 consecutive convolutional layers and 2

final fully-connected layers. An overview of its structure can be seen in table 5.1.

Except for the last fully-connected layer, each layer is followed by a normalization

unit (see section 5.1). Regarding the choice of network depth, in the SELU paper

[2], the author performed tests on 3 different depth: 8, 16, 32. In order to reduce

the amount of time needed for each test, while still leaving the network deep enough

for SELU’s effects to be observable, depth of 20 layers is chosen. The convolutional

section is divided into 3 smaller convolution blocks. Each block has 5 identical

convolutional layers, and a final convolution layer with stride of 2. This last layer

can replace explicit convolution and max-pooling combination without loss in
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Type Size
Input

20x
Dense 784
Normalization
Dense 10
Output

Table 5.2: Control MLP architecture

accuracy [22]. It is being favored in recent deep CNNs, therefore it is included in

the generic architecture [4, 5, 23, 24].

Kernel size is always 3x3, which is chosen for its ubiquitousness in CNN. Number

of kernels is doubled after each pooling, starting at 32 – this choice is based on

YOLO v3 network. The kernel-doubling design, which is proposed in VGG-16 [21],

allows networks to learn deeper features without losing information. This design

is used in the generic network because it is being used to build many networks,

especially those with VGG-16 as backbone [4, 5, 25, 26]. A fully-connected layer

with 256 neurons comes after the convolutional section. Finally, the last fully-

connected (detection) layer has 10 neurons, which is the same as the number of

classes. Outputs of the detection layer are not normalized.

5.3 Control Multi Layer Perceptron

The Control MLP is a Multi Layer Perceptron/dense network, which is built

using similar configurations from the SELU paper [2]. Like the generic CNN, it

is also trained with the MNIST dataset. This architecture is only used for task

2. Therefore, it only has the SELU-based version, and no BN-based version. This

architecture serves two purposes. First, it acts as a benchmark for verifying other

SELU-based networks’ functional correctness. Second, it is used to figure out which

variables affect SELU’s functionality the most. Because this architecture is close to

the original SNN, causes of any deviation in SELU’s behavior can be determined

easier. The Control MLP’s structure can be found in table 5.2.

5.4 You Only Look Once

The last network architecture is based on YOLO v3, which is summarized in

section 2.3.3. For testing, BN is replaced with SELU. Variances of this architecture,
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with either SELU or BN, are trained with the COCO dataset [59]. Because of its

complexity, and highly customized nature, this architecture is not suitable for both

main tasks. However, it is still included to demonstrate SELU’s performance in a

complex, high-performing network.
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Experiment Setup

This chapter presents information on the setup and hyperparameter setting of

all experiments. This thesis consists of three large experiments – each contains

several smaller tests.

• Experiment 1: Correspond with task 1 (section 4.1). This experiment focuses

on comparing inference speed.

• Experiment 2: Correspond with task 2 (section 4.2). This experiment focuses

on the relationship between SELU’s behavior and hyperparameters.

• Experiment 3: This experiment demonstrates SELU’s performance when it

is näively applied into a complex convolutional network.

Regarding software and hardware setup, all networks and scripts are imple-

mented in python 3. Machine learning aspects are handled with Tensorflow [60].

Experiments using Graphics Processing Unit (GPU) are performed on a cluster

with a GeForce GTX TITAN X graphic card. CPU-only experiments are ran on

an Intel i7-6700 Central Processing Unit (CPU) with 8GB RAM.

6.1 Experiment 1

First experiment includes a series of näive timing, and performance tests. These

tests show results of applying SELU or BN to a generic architecture and training

them with generic settings. In these tests, the generic network’s variances are

29



Chapter 6. Experiment Setup

trained on different hardware settings, optimizers, and random seeds. Batch size

is, however, fixed at 5. There are two variances of the generic network: SELU-

Based, and BN-Based. Each of them is trained on GPU, or only CPU. This

is done to show normalization choice’s impact on network in different hardware

settings. Furthermore, 4 different optimizers are tested. This is performed to

observe reactions of normalization methods to different optimizers. Each training

setting is repeated 5 times with 5 different random seeds. In total, there are 40 runs

for each variance. During training, for every 100 iterations, the network is evaluated

on the MNIST test set (10000 samples). Duration of each evaluation, and network’s

accuracy are logged. Duration of an evaluation is logged instead of each detection

because of hardware reasons. With the aforementioned hardware, each detection is

calculated very quickly, thus collected timing data is vulnerable to errors. Finally,

Tensorflow’s summary functionalities are used to record distributions of several

hidden layers’ outputs.

6.2 Experiment 2

Second experiment goes into SELU-Based network’s reactions to different

training settings. Instead of looking at the end performance of the network, these

tests look at hidden layers’ outputs to determine whether SELU is working as

intended. The control of these tests is the Control MLP (table 5.2), which is built

and trained using similar configurations from the SELU paper. Each hidden layer

has 784 neurons, which is the number of pixels in each MNIST sample. Input

dataset is preprocessed to have zero mean and unit variance. Optimizer is SGD with

momentum. The original SELU network is trained with SGD, however preliminary

tests show that momentum helps stabilizing the network without sabotaging SELU.

Without momentum, some configurations diverge, and cannot be trained. The

control is trained with batch size of 100 for 2 epochs. The first test subject is the

same MLP network, however its training configuration is modified. The second

test subject is the SELU-Based generic network, which is described in section 5.2.

For each test, a change is made to one of the following settings: data preprocessing,

batch size, or optimizer. Two methods of data preprocessing are used. The first

(original) method consists of two steps: normalization and standardization. First,

normalization means rescaling the dataset to [0, 1] range. Second, standardization
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means transforming data so that the dataset has zero mean, unit variance. The

second method is performing only normalization. This method is tested, because

it is more suitable for large convolutional networks. These networks usually work

with large image datasets, for which calculation of global mean and variance

are resource intensive. Furthermore, these datasets are regularly-updated, thus

calculated global values become obsolete quickly. Batch size of 5, 16, and 32 are

used in comparison to the original 100. This test is done to see how important

batch size is to SELU. Finally, optimizers’ effects on SELU are examined. These

optimizers are SGD-Momentum [41], RMSProp [42], AdaDelta [43], and Adam

[44]. With the recommendation from Fu [61], SGD-Momentum’s learning rate and

momentum are set to 0.001 and 0.9, respectively. RMSProp, AdaDelta, and Adam

optimizer are set up using recommended parameters from their respective authors.

These tests are done to see whether more complex optimizers are compatible with

SELU. Hidden layers’ output distributions from each test are compared to that of

the control. All networks are trained for 2 epochs.

6.3 Experiment 3

Third experiment is about testing SELU in a real, complex, high-performing

network. For benchmarking, a BN-based YOLO v3 network is trained from scratch

with only two labels. Pre-trained weight is not used to for training. Because SELU

requires special initialization – and it is unsure whether SELU can be trained using

pre-trained weight – this ensures the fairness of the experiment. Only two labels are

used, so that training and testing cycles are shorter. The test subject is a SELU-

based YOLO v3 network. Training configurations for the two YOLO variances are

decided from the result of experiment 2. Two configuration conditions are drawn

after experiment 2, namely: use large batch size, and use only SGD-Momentum.

Details are presented in section 7.2. With those conditions, for this experiment,

two batch sizes are chosen – 8 and 32. Regarding batch size 32, this is an often

used large batch size in image processing. Larger batch sizes are not used due to

hardware limitations – Out of memory error. Batch size 8 is another often used

size, which is included for comparison’s sake. As for optimizer, AdaDelta and

SGD-Momentum are chosen. AdaDelta is used to observe the differences, which

optimizer can make to large and complex network. In total there are 4 different
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training configurations for each YOLO’s variant. All networks are trained for 1000

epoches. A checkpoint is saved every 20 epoches.
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Results

This chapter presents the results of several experiments, which are done to

evaluate SELU. Here is a quick summary of the following sections:

• Experiment 1: During inference, SELU is 1.55 to 2.83 times faster than BN,

especially on weaker hardware. SELU also requires less physical memory.

However, SELU does not function with all optimizers.

• Experiment 2: SELU retains its normalization property when it is applied

into a CNN. However, this normalization effect needs more layers to function

properly in comparison to SELU in MLP. SELU’s normalization effect slows

down when input data is ill-formed, or when input batch size is not optimal.

Furthermore, SELU’s normalization fails completely with complex optimizers,

namely: RMSProp, AdaDelta, Adam.

• Experiment 3: SELU-based YOLO, even when configured properly, is not

yet trainable. Batch Normalization in combination with complex optimizers

is still better than SELU at training complex network.

7.1 Experiment 1

The first criteria is inference speed. A quick summary is shown in figure 7.1.

This criteria is evaluated by measuring the amount of time a network required

to process 10000 samples at batch size of 5. Without a GPU, BN-Based network
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Figure 7.1: Average duration for each full dataset evaluation

requires on average 54.69 second. SELU-Based network needs 19.34 second on

average. In this case, SELU-Based network is 2.83 times faster. With a GPU,

BN-Based and SELU-Based takes 11.25 second, and 7.27 second respectively. The

speed ratio is 1.55. It can be seen that the additional computations from BN has

significant negative effect on networks’ inference speed. SELU, which is only an

activation function, is always faster than BN. Regarding the difference in speed

ratio between two hardware setups, this might be due to better parallel computing

capability, and larger physical memory offered by GPU. In summary, SELU is

much faster than BN, especially in case of weaker, non-specialized hardware.

Regarding convergence, in comparison to BN-Based networks, SELU-Based

networks require around 2 times more steps to reach its top test accuracy.

The last criteria is accuracy and reliability. Accuracy chart is shown in figure 7.2.

Batch normalization outperforms SELU in this case. BN-based networks are able to
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Figure 7.2: Accuracy during training with different optimizers

reliably reach 99% test accuracy with all 4 different optimizers: SGD-Momentum,

RMSProp, AdaDelta, and Adam. For SELU-Based networks, only SGD-Momentum,

and AdaDelta yield reliable 99% test accuracy. Networks trained with RMSProp

can diverge during training. In case they do not diverge, the maximum accuracy is

only 96%. Adam diverges, and fails in all runs. This indicates that SELU might

not work with most complex optimizers. In case of AdaDelta, while networks are

properly trained, it is unclear whether SELU is functioning correctly inside these

networks.

7.2 Experiment 2

This experiment looks into SELU’s functional correctness regarding changes

in network’s hyperparameters. To verify each network’s functional correctness,

shape of histogram, mean, and variance at the end of training are examined and

compared to a reference. This reference, which is shown in figure 7.3, is created

using SELU’s original configurations. For comparison, activation distribution after

batch normalization is also shown in figure 7.4. Next paragraph is a description of

these figures.
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Figure 7.3: SELU reference Figure 7.4: BN distribution

These histograms are automatically generated by Tensorflow [60]. They are

histograms of all data at each layer’s output while calculating a mini-batch – not

a single image/sample. The x-axis represents data value. The y-axis shows the

number of data points in each bin. Each plot does not consist of only one histogram

but several overlapped curves, which are drawn every 100 training steps. The

fuzzier the figure, the more output distribution shifted during training. There is

an option to show these histograms in 3D – thus curves are separated, and sorted

in temporal order – however, these figures does not render well on printed paper.

For better visibility, 2D overlapped histograms are used. Mean and variance values

in each figure are taken from the last histogram at the end of training.

As a side note, it is clear that SELU’s reference variance is not 1. However,

that is expected and discussed below.

The first series of tests are done on the Control MLP architecture (section

5.3). Default setting is batch size 100, SGD-Momentum optimizer, and data

normalization + standardization preprocessing. Activation distributions of this

reference configuration is always shown in the first row in figure 7.5, 7.6, and 7.7.

These figures only show distributions of the first (1), middle (10), and last (20)

layer. However they are good representatives for the whole network, as layers’

behavior across the network is fairly consistence. With these visualizations, it

can be confirmed that given the correct configuration, SELU functions exactly

as its authors claimed. Histograms’ shapes are consistent across all layers, and

they change less the deeper the layer. Mean values stay around 0 for most of the

time. Except for the first layer – which has unexpectedly good variance value –

the deeper the network, the closer layers’ variance values move to 1. Therefore
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Figure 7.5: MLP: Activation distributions with different preprocessing techniques

the reference curve in figure 7.3 does not need to have variance of 1. From this

point on, it is fairly safe to conclude that SELU is functioning correctly if any

SELU-based network exhibits similar behaviors to the reference.

For the first test in the MLP series, data preprocessing method is changed from

normalization and standardization to only normalization. As shown in figure 7.5,

distributions of earlier layers are not well formed. However, the network quickly

recovers, and becomes similar to the reference in deeper layers. Mean, and variance

also move closer to their desired values. In this case, SELU is able to function

properly and adjust network’s activations if the network is deep enough.

The second MLP test is done by changing the batch size. From figure 7.6, it is

shown that at smaller batch size, early layers’ distributions are not stable. This

also causes a lot of distribution shift during training. The lower the batch size the

more layers SELU needs to adjust the output activation. For example, the network

with batch size of 5 only starts to behave better at around layer 20. To sum up,

SELU still functions with small batch size, however it is recommended to train

SELU-based network with large batch size.

The third MLP test is done by changing training optimizers. These are SGD-

Momentum, RMSProp, AdaDelta, and Adam. Looking at hidden layers’ activations

(figure 7.7), only SGD-Momentum-trained SELU network is working as intended.

RMSProp, and Adam’s internal activations’ exploded in scale. AdaDelta’s activa-

tions also increased, but not in the magnitude of the other two. This could be a

reason why AdaDelta functions better than RMSProp, and Adam in experiment 1
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Figure 7.6: MLP - Activation distributions with different batch sizes

(section 7.1). According to this test, SELU does not seem to work with complex

optimizers.

The second series of tests are done on the generic CNN architecture (section

5.2). Default setting is batch size 100, SGD-Momentum optimizer, and data

normalization + standardization preprocessing. Figure 7.8 shows the comparison

between the CNN’s reference and the MLP’s reference – which is the main one. It

is important to note that CNN’s figures in this report show histograms from layer

1, layer 6, and layer 17 (last convolutional layer). From experiments, it is seen

that these layers represent the entire network’s behavior well. Regarding the CNN

reference, it is clear that SELU struggles inside convolutional networks. Although,

variance values fluctuate around 1, especially in early layers, SELU still functions

properly in this case. Mean values hover around 0. Variance values start to stabilize
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Figure 7.7: MLP - Activation distributions with different optimizers

around layer 15. Deep hidden layers’ activations converge to the shape and values

in the MLP reference. An example of this is layer 17’s activation. In summary,

the CNN reference network does contain correctly working SELU components –

although not as good as the FNN reference network. Therefore, it is safe to use

this network as benchmark for all other SELU-based CNN tests.

First, data preprocessing methods are compared (figure 7.9) – namely normal-

ization with standardization, and only normalization. Hidden activations show

that normalization-only method requires more layers for SELU to converge to the

desirable distribution. This test result is similar to MLP. Additionally, raw data

is fed to the network in one case. As a result, earlier layers’ activations are not

desirable. However, they move closer to the correct distribution as the network

gets deeper. This further indicates that deep SELU-Based networks are capable of
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Figure 7.8: Activation distributions of reference settings on MLP and CNN

Figure 7.9: CNN - Activation distributions with different preprocessing techniques

handling ill-formated input data.

The second test (figure 7.10) is about changing batch size. This test leads to

similar conclusion as the MLP’s batch size test. Higher batch sizes produce better

activation distributions. In this case, a batch size of 16 is enough for SELU to

function properly in a 20-layers-network.

The third test (figure 7.11) is done by changing training optimizers, namely:

SGD-Momentum, RMSProp, AdaDelta, and Adam. The result is similar to that of

the MLP test. RMSProp and Adam’s hidden activations still explode. However,

in this case, scalar values’ magnitude is smaller than in the MLP optimizer test.
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Figure 7.10: CNN - Activation distributions with different batch sizes

AdaDelta is able to hold a relatively controlled mean, variance. However it still is

not able to reach an adequate state. The conclusion for this test is that SELU still

only functions with SGD-Momentum in CNN.

In summary, these tests confirm that, under correct configurations, SELU still

retains its self-normalizing capability in convolutional networks. However, SELU

exhibits several problems, which exist for both MLP and CNN. SELU only functions

as intended with either SGD or SGD-Momentum optimizer. This is a big downside,

because it has been shown that other complex optimizers usually allow faster, more

robust training, and simpler hyperparameters choice [48, 43, 44]. Empirical results

from section 7.3 further confirm this. Additionally, these tests show another one

of SELU’s weaknesses – Earlier layers do not output well normalized activations.

This weakness can be partly mitigated by using larger batch size, and better input
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Figure 7.11: CNN - Activation distributions with different optimizers

preprocessing, which are sometimes difficult to fulfill.

7.3 Experiment 3

Table 7.1 shows conclusions of all parameter combinations. For SGD-momentum,

no network is trained successfully. BN-based YOLO with batch size 32’s failure

is caused by hardware limitation. Thus, at this moment, no verdict can be given

to this parameter combination. However, this clearly shows that BN has higher

hardware requirements in comparison to SELU. Additionally SGD with momentum

is not capable of training a complex, highly customized network without careful

hyperparameters choices. AdaDelta was able to keep SELU-based networks from

diverging. However, without proper normalization, these networks are only able to

converge at local minimums. At these local minimums, network’s performance is
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SGD - Momentum AdaDelta
Batch 8 Batch 32 Batch 8 Batch 32

SELU Diverged Diverged Local minimum Local minimum
BN Diverged Out of Memory Trained Out of Memory

Table 7.1: Experiment 3 result

mediocre in comparison to a successfully trained network. Nonetheless, this has

proven AdaDelta’s advantages over SGD-momentum. In conclusion, a complex

optimizer with batch normalization is still the most reliable combination for training

complex deep neural network. The AdaDelta-trained BN-based network performs

relatively well in comparison the original YOLO v3 network. Unless SELU is able

to properly work with these complex optimizers, training SELU-based complex

networks will still be difficult.
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Conclusions

This chapter presents contributions, and learned lessons. Furthermore, possible

future works are also discussed.

8.1 Contributions

This project presents three main contributions, and one byproduct.

• Contribution 1: Providing empirical proofs of SELU’s computational ad-

vantages over BN. Speed test experiments show that, during inference, SELU-

based networks are between 1.5 and 2.8 times faster than BN-based network.

Furthermore, SELU-based networks require less physical memory.

• Contribution 2: Finding hyperparameter conditions for SELU. From ex-

periments, three conditions are found for SELU to function properly. SELU

requires large batch size, and well-conditioned data. Those two are soft

conditions, meaning they can be relaxed if the network is deep. The last

condition is that the optimizer must be SGD (with or without momentum).

This is a strong condition. SELU is currently unable to function properly

with any other complex optimizers, namely: RMSProp, AdaDelta, Adam.

• Contribution 3: Showing empirical proofs of SELU functioning correctly

within CNNs. With several experiments – by comparing mean, variance value,

and histogram shape – it can be concluded that SELU is still able to function
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properly in a convolutional neural network. However, a SELU-based CNN

must be deeper than a SELU-based MLP for SELU’s normalizing effect to

fully manifest. All conditions from contribution 2 also applied to SELU in a

CNN.

• Byproduct: Creating a complete YOLO v3 network with Tensorflow. For

the purpose of testing SELU’s capability in a complex, high-performing object

detection network, YOLO v3 is recreated from scratch in Python 3 with

Tensorflow – the original network is built in C.

8.2 Lessons learned

Several lessons are learned by doing this project:

• Timing tests should be set up carefully, and not be done in a shared cluster.

• Loss and accuracy are not always indicators of whether a technique is func-

tioning correctly.

• New techniques should be tested with simple networks and datasets first.

• New techniques should be tested with multiple optimizers.

• For each test, only one hyperparameter should deviate from reference setting.

• AdaDelta seems to be the most robust optimizer.

• A neural network layer should not contain bias if it is followed by batch

normalization.

• Tensorflow’s graphs are only suitable for quick debugging, not deep analysis.

• External image processing library (i.e. Pillow) should be used instead of

Tensorflow’s built-in library for more accurate results.

• Codes should be tested immediately after they are written.
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8.3 Future work

In its current state, SELU is not suitable for usage in complex image processing

problems. The main reason is SELU’s incompatibility with complex optimizers.

To deal with this, the first step is finding out the cause of this incompatibility.

The next step would be creating SELU-compatible version of those optimizers.

Vice versa, SELU could also be modified to support more complex optimizers. To

further improve SELU, it is promising to look into relaxing SELU’s batch size and

data preprocessing requirements. Another potential topic would be finding out

about other hyperparameters, or network structures’ effects on SELU.
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