

The Need for unified Testbed Management across
multiple Teams and Stakeholders in a large scale

Telecom Integration Context
Nikolay Tcholtchev1, Steven Ulrich1, Faruk Catal1, Wojciech Konitzer1, Ramon Barakat1, Andreas Hoffmann1 and Ina

Schieferdecker1
1Fraunhofer Institute for Open Communication Systems (FOKUS)

 Kaiserin-Augusta Alee 31, 10598, Berlin, Germany
{firstname, lastname}@fokus.fraunhofer.de

Abstract — The quality assurance of large scale integrative
systems often requires complex testbed environments and
simulations that allow to test the overall functionality and
enables various experiments towards systematically verifying
the realization of the identified user and system requirements.
Thereby, an integration setup and resulting activities lead to
another level of quality assurance, whereby the integrator
deals with the quality examination of the single components
and their integrative interplay according to a set of overall
system and user requirements. In such context, it is often the
case that the testing activity is conducted by various partners
(e.g. single companies and legal entities) with complementing
know how required for specific sub-tasks - e.g. PKI, chip cards,
special network protocols, firewall, security architectures, and
penetration testing. This leads to the emergence of a large
number of proprietary testbeds focusing on specific aspects
resulting in the lack of a unified testbed configuration,
versioning and technological foundations (e.g. operating
system, network stack implementations, hypervisor technology
…). In this paper, we present our experiences drafted from a
large scale industrial project with 600-700 requirements
relating to a critical eHealth infrastructure withi n a telecom
provider context. Thereby, various sub-contractors had to be
unified in their approach to testbed management in order to
achieve reproducible and traceable (with respect to system
requirements) test results based on a test architecture
accommodating various quality assurance activities (unit
testing, development tests, component testing, integration
testing, security testing …). We gradually analyze the project
situation with respect to testbed management and argue on the
need for unified testbed management across multiple teams
and stakeholders in a large scale telecom integration setup.
Subsequently, we propose possible solutions and conduct a
series of experiments highlighting the advantages of the
proposed approach and belonging solution.

Keywords — docker, container, virtualization, eHealth, telecom,
networking, component testing, black box testing, system
integration

I. INTRODUCTION

Traditionally, testing is either deeply embedded in the
development processes (e.g. unit testing, module testing) or
takes place on a higher level of component matureness (e.g.
integration testing, certification tests, interoperability testing
…). This is especially valid for ICT products which are
developed in the scope of a single company or legal entity.
However, telecom operators normally do not develop a

single product from scratch. Mostly, they have to compile a
complex distributed environment based on products and
components they acquire from multiple suppliers. Typical
examples are given by large scale telecom and Internet
networks, where various suppliers provide routers, switches,
multi-media gateways, mobile core network components
(e.g. GGSN, MSC, HLR …), CDN (Content Distribution
Network) servers/brokers etc.

In general, the level of matureness is quite high for products
of telecom suppliers. Hence, the testing which normally
takes place on network operators’ site, is mostly related to
the interoperability of the selected components - e.g.
OSPF/RIP/ISIS interoperability between routers from
different vendors (e.g. between Cisco and Huawei), and to
special features/extensions of the products, which are
especially developed for the intended integrated solution the
network provider works on.

Nevertheless, it might happen that the telecom integrator
decides to develop a component on its own, as happened to
be the case in a large scale project for an advanced eHealth
infrastructure. Given the fact that telecoms are normally
integrators, they rarely possess large and highly experienced
development and quality assurance teams. Hence, relevant
know-how has to be acquired on the free market, i.e. sub-
contractors need to be appointed. This naturally leads to a
significant number of players and stakeholders, with
complicated legal situations, in the scope of a highly
complicated technological landscape – the eHealth related
product in question encompassed around 600-700
requirements of various complexity spanning over the
different layers of the TCP/IP (and ISO/OSI) stack and
strongly depending on aspects such as security, privacy,
confidentiality, PKI, secure NTP and DNS (i.e. DNSSEC),
VPN-Tunnels (i.e. IPsec) and various application layer
proxies (e.g. HTTPS, OCSP …).

Due to the above descriptions and considerations, it easily
comes to a situation where multiple test teams are engaged
across different stages of the testing process. The stages are
given by:

- Development tests – i.e. unit and module testing

- Model-in-the-loop and hardware-in-the-loop
testing by switching between simulations - on the
interfaces of the SUT (System Under Test) - and
real hardware (on the interfaces of the SUT)
thereby detecting implementation errors on early
stages

- Product test - quality assurance/acceptance testing
on top of the development test

- Security testing – i.e. penetration and certification
testing for national agencies

- Component test of the integrator involving multiple
teams with various capabilities

- Integration and interoperability testing across the
overall infrastructure

Thereby, the teams are embedded in the above mentioned
highly complex legal and technological circumstances – i.e.
technical information flows slowly and has to pass multiple
management levels whilst the technological challenges
require the instant and efficient know-how and technical
exchange across the teams. In particular, one serious issue
emerged during the multi-stake holder test approach: the
synchronization of the test environment (i.e. testbed
artefacts/images) across multiple stake holders, which is
also the scope of the current discussion.

The test environment for the eHealth infrastructure in
question consisted of several virtual machines which were
initially setup and distributed across the test teams. Thereby,
each test work place was equipped with the full set of virtual
machines and each tester was utilizing the full set of VMs
within each team. In addition, the developers were using the
virtual machines, in order to advance the firmware
development. Hence, immediately after the initial VM
design phase, a large number of testbeds was distributed
without any means for proper synchronization. The testbed
VMs were based on different traditional hypervisors, such
as Virtual Box, KVM or VMware. Hence, changes which
were made to the images needed to be clearly
communicated across the testing teams, i.e. a change log
had to be taken care of and communicated among the
involved test stages and teams. However, given the complex
legal setup of the project, the communication turned
difficult and error prone. Hence, a way to efficiently
manage, synchronize and distribute the testbed images
across teams and work stations was required.

The above described situation has led to the evaluation of
different possibilities for enabling testbed management,
such as SVN, GitLab, Docker, DockerCompose, Vagrant,
Ansible, as well as traditional bash scripting and ssh/sshpass
based solutions. The current paper describes the experiences
that were gained in such a multi-stakeholder testing setup
with respect to the Unified Testbed Management across
Multiple Teams and Stakeholders in a large scale
Telecom Integration Setup. In addition, some very positive
side effects are in the scope, such as testbed stability and
improved root cause analysis for failed test cases,
accelerated test execution, efficient exchange of test
environments and improved tickets/issue analysis and
failed-test-case resolution.

The rest of this paper is organized as follows: Section 2
presents a number of related technologies and approaches.
Section 3 describes the project context relating to a large
scale eHealth infrastructure developed in an integrative
manner by a large telecom service provider. Section 4
provides a detailed analysis of the initial problems regarding
testbed management, which is the base for the following
section 5 where a concrete solution approach is proposed
and analyzed in terms of how it addresses the identified
initial problems. Section 6 presents a number of numerical
results showing how our solution improved the testbed
stability and the test execution process as a whole. Finally, a
summary is presented and a set of conclusions are drawn.

II. RELATED WORK

The topic handled in this paper is fairly unusual given that
integrators normally do not develop components but setup
the distributed solutions thereby strongly relying on the
quality assurance of the suppliers/vendors. Thereby, the
integrator normally focusses on end-2-end integration tests
based on the real hardware and does not really need
simulation based testbeds and playgrounds. For managing
the end-2-end user acceptance tests various types of
software is on the market, including HP-Quality Center [2],
Jira [4] and Testrail [3]. Thereby, special testing and
demonstration labs are established showing the overall
capability of distributed system, with the various 5G test
fields across the world being typical examples [5][6][7].
Furthermore, the living labs established in European
research projects can be seen of typical examples for
integrator testbeds for end-2-end user scenarios.

With respect to testbeds, standardization and certification
bodies tend to provide unified testbeds which are made
accessible to vendors in order to test their products without
allowing the configuration chaos experienced in the project
in question. Typical such efforts are given by the IPv6
Ready Logo program and its belonging testbeds [8][9][10]
as well ETSI [12], and gematik [13] with their belonging
unified test suites and test environments. Thereby, the
testbeds are either managed in the form virtual machines
based on belonging supervisors, e.g. VirtualBox [14][15],
Qemu [16], KVM [17], VMware [18][19] or Xen [20].
Furthermore, the Linux container technology is also of
paramount importance for this paper - with docker
[21][22][23][24] and LXC [23] as most prominent
representatives of the container type of virtualization.
Moreover, testbed management is often conducted by
utilizing special middleware for steering the testbed
components such as OpenShift [25], Kubernetes [23],
OpenStack [26] and OpenNebula [27]. Thereby, concepts
from the area of network management and Software Defined
Networking (SDN) [28] (e.g. OpenFlow [29]) can be very
helpful to efficiently manage the virtual machines and
testbed components.

To give an example for playgrounds and development
environments, which are available as testing services:
Fraunhofer FOKUS provides different environments for
end-2-end integration and interoperability testing such as the
Interoperability Lab [31], IPv6 Testing and Network

Simulation Lab [30] as well as diverse 5G [5] and Machine-
2-Machine playgrounds and testing environments.

With regards to test strategy, different guidelines are
available, for instance in the form of IETF RFCs [33] or as
test concepts and processes such as IEEE 829 [33].
Furthermore, [32] provides some key design patterns for test
approaches and test automation, which were already applied
in the current context [1].

III. PROJECT CONTEXT

The project context of our considerations is given by an
eHealth service to be implemented on a large scale by one
of the main network and service providers in Germany.
Thereby, components originating from various vendors need
to be integrated and later on to operate seamlessly within
hospitals, doctors’ premises and emergency situations. The
components include front end applications (web, mobile and
desktop), access routers, firewalls, unified thread
management solutions, various types of VPN boxes (mainly
IPSec layer 3 boxes), a large variety of trusted networking
services such as DNSSEC, NTP, QoS (mainly DiffServ),
HTTP-Proxies, configuration repositories as well as security
related services for distributing cryptographic material and
validating certificates (e.g. OCSP). Furthermore, different
chip cards and belonging readers were also tested and
integrated, or required to be simulated, in order to evaluate
neighboring components and complex integrative end-2-end
scenarios.

FIGURE 1: SKETCH OF THE TESTBED SPECIFICATION AS
DESCRIBED IN [1]

Figure 1 illustrates a sketch of the testbed that was required
in the course of the project execution. One can clearly see
the local area network segment embedding aspects such as
frontend user interfaces to be operated within hospitals and
doctors’ premises. Furthermore, the access network
component denoted as an SUT stands out as integrative
module between the Internet/telecom network and the
backend data center architecture providing various of the
above mentioned services and functionalities as well as

gateways and secure communication interface to external
networks.

In [1], we have already analyzed some of the drawbacks of
the initially undertaken testing approach within this project.
The identified issues violated some basic test automation
patterns [32] such as COMPLEX ENVIRONMENT,
INEFFICIENT FAILURE ANALYSIS, HIGH ROI
EXPECTATIONS and NO INFO ON CHANGES. These
issues were gradually fixed in the course of the project
duration, whereby the current paper describes important
aspects relating to the issues of COMPLEX
ENVIRONMENT and INEFFICIENT FAILURE
ANALYSIS, provided that the complexity and diversity of
the testbed implementation has led to unmanageable
situation hindering the failure analysis process and turning
into a serious obstacle for the overall system certification.

It is important to emphasize that for a long time the abstract
testbed from Figure 1 with its belonging implementations
was used for various phases of the testing process – e.g. unit
testing, module and components testing, security/penetration
testing, load- and performance testing, as well as for the
testing of different components - thereby integrating real
components with simulations – without having any testbed
management approach across multiple involved teams,
partners and stakeholders. This has led to a fragmenting of
the testbed versions whereby even within one team, a
number of different testbed configurations were circulating
and were utilized in the course of test execution. The
resulting problems are systematically analyzed in the
coming section.

IV. PROBLEM ANALYSIS

Table 1 sums up all the key risks and issues that were
observed without following the path of a unified testbed
management. Instead of a unified testbed management, we
based our activities on a set of hypervisor based virtual
machines that were distributed across the test and
development teams and updated occasionally in case any
communication has taken place. Indeed a number of serious
issues were encountered that range from non-comparable
test results, false positives and lead to an extremely
inefficient handling and correction of defects and problems
in the belonging SUTs. More details as well as the observed
frequency of the issues are given in Table 1.

Table 1: Risks, Analysis and belonging Frequency

Issue/Risk Analysis/Description Frequency

(rare/often/

very often)

No_info_on_ch

anges

We very often encountered

situations were changes

were conducted on the

tesbed virtual machines

from within one of the

involved test and

development teams.

Correspondingly these

changes were not

communicated to the other

teams which led to a

very often

divergence of the used

testbed versions across the

various teams and

stakeholders.

Proprietary_tes

tbed_configurat

ions

The missing communication

between the (often)

competing teams has

implied a large number of

proprietary configurations

which were extremely

difficult to synchronize

across the difficult teams

and have led to a chaotic

situation w.r.t. aspects such

as test result reproducibility

etc.

very often

Inefficient_

synchronization

_on_specificati

on_updates

The overall system

specification has been

occasionally changing

(around two times per

year) which required

adaptations in the testbed

environment. Provided the

separation of the teams

and the lack of a unified

process, the adaptations

were conducted in different

ways, which has finally led

to large proprietary

deviations that could be

traced back to conflicting

interpretation of the

specification changes.

rare

Non_comparabl

e_test_results

The proprietary and

deviating testbed variations

have led to test results

which were not comparable

across the various teams

and stakeholders. This

resulted in costly and time

consuming discussions

paired with corresponding

debugging sessions.

often

In_efficient_ha

ndling_of_defec

ts

All issues/risks described

hitherto have led to a

highly inefficient handling

of failures and belonging

tickets/defects. The failed

test results in one team

were very often not

reproducible within the

environment of the other

teams, leading to costly and

time consuming discussions

and controversies regarding

the interpretation of the

specifications and the test

results.

very often

 The differences in the often

Instabilities_in_

testbed_handli

ng

testbed versions - even

within the same team
1

 -

have led to many

instabilities and differences

in the way the testbed

components were handled

within the test scripts.

Some test scripts could only

be executed on particular

work stations and their

results and execution flows

were very different due to

the testbed configuration

chaos.

Incompatible_c

ryptographic_m

aterial

Another aspect of

incompatibility having its

origins within the testbed

problems relates to the

incompatible cryptographic

material (certificates,

Certificate Revocation Lists,

DNSSEC keys …) across the

different testbed versions.

These cryptographic

artefacts were diverging in

various details such as the

utilized cypher-suites, the

certificate chains etc. In

many cases this has led to

incompatible diverging test

results in different

environments.

rare

False_positives

All the described

differences have

sometimes led to false

positive test results in cases

when a PASSED result got

wrongly accepted in the

overall discussion among

the teams. In such

situations, the responsible

test team has wrongly

configured its proprietary

testbed based on a

misunderstanding of the

technology or the

specification.

rare

V. PROPOSED SOLUTION

The solution emerging from the above identified risks is
based on the utilization of container technology instead of
traditional hypervisor technology for the sake of testbed
management. Thereby, the widely accepted docker container
solution was used, in order to setup an initial version of the
required complex testbed environment.

Docker uses a so-called Linux base image that is established
as the basic operating system configuration for the docker
containers running on top. The specific configurations for

1 We even observed that different tester or test automation workstations
within the same team were experiencing severe difference with regard to
their testbed configurations.

each docker image (be it the NTP, DNS, VPN-gateway,
OCSP responder …) are put in place in the form of a file
system structure with belonging configuration files (e.g.
/etc/ipsec.conf) allowing to load each container with its own
specifics without burdening the host with regard to
managing a whole virtual node (for each of the testbed
components) with all its overhead for restart and specific
configurations. Furthermore, the overall set of docker-nodes
was glued together into an integrated testbed by the means
of a yaml-configuration file that allowed to describe the
network interfaces (on link and network level, i.e. MAC and
IP addresses) and to connect them correspondingly to an
overall test environment for the various phases of testing as
well as for the various components of the integrated eHealth
solution as an SUT.

The overall collaboration process relating to the unified
testbed management across multiple teams is illustrated in
Figure 2. Within this context, the Linux base image is stored
in a centralized storage (e.g. FTP, WebDAV or NFS) and
can be correspondingly adopted by all involved partners –
an activity, which should not be considered very frequently,
since the base image contains fundamental operating
systems configurations meaning that most of the specific
lightweight configurations are expected within the docker
images. The docker images with their belonging text file
configurations and file system structure are managed within
an eco-system of local docker-registries and a centralized
docker-registry on top, which enables the synchronization
across multiple stakeholders and multiple teams. The
docker-registries largely resemble the well-known gitlab
structure and mechanisms, including familiar commands
and processes such as merge, push, pull etc. Furthermore,
the docker-compose tool is used to compile a local binary
version of the overall set of containers, which can be
efficiently executed on the local host where the execution
for a predefined set of test cases takes place.

FIGURE 2: OVERALL VIEW OF THE PROPOSED AND
IMPLEMENTED SOLUTION FOR UNIFIED TESTBED

MANAGEMENT

The risks identified in the previous section with their
belonging mitigation and observed results are depicted in
Table 2 thereby rounding up the picture regarding the
impact of our identified solution.

Table 2: Identified Risks, their Mitigation and

belonging observed Results

Issue/Risk Mitigation Result

No_info_on_ch

anges

Based on the docker images

and the established exchange

infrastructure (gitlab, docker-

registries …), changes to the

belonging network and

configurational setup were

easily communicated

between the team members

and stakeholders.

solved

Proprietary_tes

tbed_configurat

ions

The testbed configurations

were continuously

synchronized across the

different teams based on the

docker-files and the

centralized repositories

accessible from within the

various sites.

solved

Inefficient_sync

hronization_on

specification

updates

Testbed adaptations made

upon changes to the system

specifications were easily

communicated and

synchronized across the

involved teams.

solved

Non_comparabl

e_test_results

The difference in test results

across the various test and

development teams was

solved with respect to the

testbed configuration

divergence, given the

established exchange and

synchronization

infrastructure and the utilized

docker artefacts for testbed

management.

solved

In_efficient_ha

ndling_of_defec

ts

The time for handling and

processing of tickets/defects

by the development teams

was largely accelerated given

the increased reproducibility

of results across the various

teams and stakeholders.

solved

Instabilities_in_

testbed_handli

ng

The instabilities in the test

scripts, emerging from the

divergent proprietary testbed

configurations across various

workstations, were

intrinsically removed based

on the proposed solution.

solved

Incompatible_c

ryptographic_m

aterial

The cryptographic material

was unified within one

centralized testbed instance

that was collaboratively

worked on across the various

teams and partners.

solved

False_positives

The probability for a false

positive result based on the

divergent testbed configs and

a misunderstanding of the

solved

technology or specification

aspects was largely reduced

provided the collaborative

distributed approach based

on gitlab pull, push and

merge commands. Thereby,

regular test and reviews of

testbed changes were applied

until proposed changes were

approved and established

across the involved teams as

a basis for further testing.

VI. EXPERIMENTAL RESULTS

The current section focuses on the computational
performance of our proposed solution in the course of
increasing the robustness of the test execution process and
correspondingly improving the failure analysis with respect
to the SUT in question. At this point of the presentation, it
should be remarked that the parameters of the host on which
the presented measurements were conducted are briefly
summarized in Table 3.

Table 3: Parameters of the Host utilized for the

Measurements

Modell ThinkPad T470 Signature Edition

Processor Intel (R) Core (TM)

i5-7200U CPU@2.50GHz

2.71 GHz

RAM 24,0 GB

(23,9 GB usable)

System type 64 Bit Operating System

X64-based Processor

FIGURE 3: TIME COMPARISSION FOR THE CASE OF RESTARTING
THE TESTBED WITH A VARYING NUMBER OF INVOLVED

COMPONENTS

In order to improve the stability in the course of regression
testing for one of the access network components as a
device under test, the rest of the unified testbed had to be
regularly restarted, such that a defined network
configuration is reset and the following test results can be

interpreted in a clear and solid way. Indeed, a testbed restart
was required after each single test case execution, which has
drastically improved the test execution process in its
stability and has led to better quality of the resulting defect
tickets as well as improved collaborative failure analysis
between the development and the product testing team.

As discussed, the initial proprietary testbed solution was
based on hypervisor technology and was spanning over a
large number of virtual machines which took a long time to
restart and setup a belonging defined network and testbed
configuration state. Furthermore, due to the fact that every
time the overall hypervisor system had to be restarted,
which led to intense interactions with the underlying host,
there were a number of instabilities on virtual hardware
level, especially when it comes to the assignment and
numeration (eth0, eth1 …) of network interfaces within the
Linux testbed nodes. These instabilities have naturally led to
problems on network management level such as wrong
subnet numbering and IP address assignment.

FIGURE 4: MEMORY UTILIZATION IN THE COURSE OF
RESTARTING THE TESTBED WITH VARIOUS NUMBERS OF

INVOLVED COMPONENTS

Generally, it can be summarized that the unified docker
based testbed was much more stable than the proprietary
VirtualBox solution, which was initially utilized and
proprietarily modified by each involved party (product test,
security test, load- and performance-test). Furthermore, it
could be clearly observed that the container based solution
was much faster in terms of restarting time for different
numbers of nodes from the testbed as depicted in Figure 3.
Thereby, the time measurements with respect to the time
required for testbed restart is clearly in favor of the
container based unified framework, which has led to
increased test execution effectiveness and easier debugging
of test cases and the SUT, in case of failed test cases and test
steps.

In addition to the above aspects, Figure 4 and Figure 5
outline the memory consumption on the machine hosting the
testbed as well as the CPU utilization on the host machine.
Both figures clearly underline the increased effectiveness
and low overhead of the unified testbed approach based on
container technology and a common base image. This
increased effectiveness turned out to be a focal point within
the project drastically improving the quality of the failure

findings and enabling the goal oriented and efficient
collaboration between the test and development teams.

FIGURE 5: CPU UTILIZATION IN THE COURSE OF RESTARTING
THE TESTBED WITH VARIOUS NUMBERS OF INVOLVED

COMPONENTS

VII. CONCLUSIONS AND FUTURE WORK

The current paper presented on our experiences related to the
need for a unified testbed management in a large scale
integration project executed by a telecom service provider
within the eHealth domain. Thereby, a significant number of
independent parties and stakeholders were involved and
adopted a hypervisor based solution for their own specific
needs, e.g. in the scope of load- and performance testing,
integration testing, penetration testing, security audits etc.
Hence, the described situation led to a chaos, where different
distributed testbed changes were not even announced on
project level and reported defects and failed test cases were
extremely hard to handle, given the lack of unified
information regarding the testbed configuration in a highly
complex network and services environment, involving a
number of intertwined network and software stacks (e.g.
DNSSEC, NTP, OCSP, HTTP proxies, IPSec …).

In order to remediate the above issues, we had to
collaboratively work out a solution that would enable the
continuous sharing of testbed configuration among different
teams. Hence, given the conducted project analysis we
implemented a solution based on container technology, i.e.
docker, instead of the legacy hypervisor approach using
VirtualBox or similar hypervisor settings. This approach
included the involvement of various tools and frameworks
such as gitlab, docker-compose, docker-registries, as
opposed to other potential approaches based on SVN and ssh-
scripts including tools such as vagrant and Ansible. The
proposed solution enables the instant sharing of changes to
the testbed configuration management and the transparency
when it comes to tracing and identifying the root cause for a
test case failure and belonging defects within the
development teams. Hence, this enables the resolution of
typical mistakes conducted within the initial project setup
such as COMPLEX ENVIRONMENT and INEFFICIENT
FAILURE ANALYSIS, as discussed in previous
publications.

The efficiency of the proposed solution was further
underlined by a series of experiments relating to the stability
of the test execution procedure. Thereby, we measured the
speed as well as the computational overhead within the
underlying host, relating to the restart of a various number of

involved testbed components within the test case execution
process. These numerical measurements clearly show that
the unified testbed management solution improves the
overall test approach by a large magnitude thereby scaling up
the (testbed configuration) sharing, the efficiency, the speed
and reducing the overall computational overhead of the test
process.

REFERENCES

[1] N. Tcholtchev, M. A. Schneider and I. Schieferdecker,
"Systematic Analysis of Practical Issues in Test
Automation for Communication Based Systems", 2016
IEEE Ninth International Conference on Software
Testing, Verification and Validation Workshops
(ICSTW), Chicago, IL, 2016, pp. 250-256

[2] HP Quality Center: https://www.microfocus.com/en-
us/products/quality-center-quality-
management/overview, as of date 29.04.2019

[3] TestRail: https://www.gurock.com/testrail, as of date
29.04.2019

[4] Jira: https://www.atlassian.com/software/jira, as of date
29.04.2019

[5] 5G Playground of Fraunhofer FOKUS:
https://www.fokus.fraunhofer.de/go/en/fokus_testbeds/
5g_playground, as of date 29.04.2019

[6] 5G Berlin: https://www.5g-berlin.org/, as of date
29.04.2019

[7] F.Kaltenberger, R.Knopp, N.Nikaein, D.Nussbaum,
L.Gauthier, C.Bonnet, "OpenAirInterface:Open-source
Software Radio Solution for 5G", European
Conference on Networks and Communications
(EUCNC), Paris, France, July 2015.

[8] TAHI-TestSuite:
https://www.ipv6ready.org.cn/home/views/default/reso
urce/logo/phase2-core/index.htm, as of date 29.04.2019

[9] IPv6 Forum: http://www.ipv6forum.com/, as of date
29.04.2016

[10] J. Ruiz, A. Vallejo and J. Abella, "IPv6 conformance
and interoperability testing", 10th IEEE Symposium on
Computers and Communications (ISCC'05), Murcia,
Spain, 2005, pp. 83-88. doi: 10.1109/ISCC.2005.87

[11] Vallejo, J. Ruiz, J. Abella, A. Zaballos and J. M. Selga,
"State of the Art of IPv6 Conformance and
Interoperability Testing", in IEEE Communications
Magazine, vol. 45, no. 10, pp. 140-146, October 2007.
doi: 10.1109/MCOM.2007.4342835

[12] ETSI (European Telecommunications Standards
Institute): http://www.etsi.org/, as of date 29.04.2019

[13] gematik eHealth infrastructure:
https://fachportal.gematik.de/, as of date 29.04.2019

[14] Peng Li, "Selecting and using virtualization solutions:
our experiences with VMware and VirtualBox", Journal
of Computing Sciences in Colleges archive, Volume 25
Issue 3, January 2010, Pages 11-17

[15] VirtualBox: https://www.virtualbox.org/, as of date
29.04.2019

[16] Qemu: https://www.qemu.org/, as of date 29.04.2019
[17] Linux KVM: https://www.linux-

kvm.org/page/Main_Page, as of date 29.04.2019

[18] Vmware: https://www.vmware.com/, as of date
29.04.2019

[19] Carl A. Waldspurger, "Memory resource management
in VMware ESX server", ACM SIGOPS Operating
Systems Review - OSDI '02: Proceedings of the 5th
Symposium on Operating Systems Design and
Implementation, Volume 36 Issue SI, Winter 2002 I,
Pages 181-194

[20] Xen Project: https://xenproject.org/, as of date
29.04.2019

[21] docker: https://www.docker.com/, as of date 29.04
[22] Carl Boettiger, "An introduction to Docker for

reproducible research", ACM SIGOPS Operating
Systems Review - Special Issue on Repeatability and
Sharing of Experimental Artifacts, Volume 49 Issue 1,
January 2015, Pages 71-79

[23] D. Bernstein, "Containers and Cloud: From LXC to
Docker to Kubernetes," in IEEE Cloud Computing, vol.
1, no. 3, pp. 81-84, Sept. 2014. doi:
10.1109/MCC.2014.5

[24] C. Anderson, "Docker [Software engineering]," in IEEE
Software, vol. 32, no. 3, pp. 102-c3, May-June 2015.
doi: 10.1109/MS.2015.62

[25] OpenShift: https://www.openshift.com/, as of date
29.04.2019

[26] OpenStack: https://www.openstack.org/, as of date
29.04.2019

[27] OpenNebula: https://opennebula.org/, as of date
29.04.2019

[28] Kamal Benzekki, Abdeslam El Fergougui, Abdelbaki
Elbelrhiti Elalaoui, "Software-defined networking
(SDN): A survey". Security and Communication
Networks, 2016, 9 (18): 5803–5833.
doi:10.1002/sec.1737.

[29] Masayoshi Kobayashi, Srini Seetharaman, Guru
Parulkar, Guido Appenzeller, Joseph Little, Johan van
Reijendam, Paul Weissmann, Nick McKeown,
"Maturing of OpenFlow and Software-defined
Networking through deployments", Computer
Networks, Volume 61, 2014, Pages 151-175, ISSN
1389-1286, https://doi.org/10.1016/j.bjp.2013.10.011.

[30] Fraunhofer FOKUS IPv6 Test and Network Simulation
Lab: https://www.fokus.fraunhofer.de/go/en_ipv6lab, as
of date 29.04.2019

[31] Fraunhofer FOKUS Conformance and Interoperability
Lab:
https://www.fokus.fraunhofer.de/go/en_conformance_la
b, as of date 29.04.2019

[32] Test Automation Patterns:
https://testautomationpatterns.org/wiki/index.php/Main
_Page, as of date 29.04.2019

[33] Standard for Software Test Documentation. Technical
report, IEEE 829, 2008.

[34] RFC 2544: Benchmarking Methodology for Network
Interconnect Devices,
https://tools.ietf.org/html/rfc2544, as of date 29.04.2019

