The Need for unified Testbed Management across
multiple Teams and Stakeholders in a large scale
Telecom Integration Context

Nikolay Tcholtchev, Steven Ulrich Faruk Catd| Wojciech Konitzel, Ramon Barakat Andreas Hoffmanhand Ina
Schieferdecker
YFraunhofer Institute for Open Communication SystéRG@KUS)
Kaiserin-Augusta Alee 31, 10598, Berlin, Germany
{firstname, lastname}@fokus.fraunhofer.de

Abstract — The quality assurance of large scale integrative
systems often requires complex testbed environmentand
simulations that allow to test the overall functiomlity and
enables various experiments towards systematicallyerifying
the realization of the identified user and systemequirements.
Thereby, an integration setup and resulting activites lead to
another level of quality assurance, whereby the iegrator
deals with the quality examination of the single amponents
and their integrative interplay according to a setof overall
system and user requirements. In such context, isioften the
case that the testing activity is conducted by vaous partners
(e.g. single companies and legal entities) with c@hementing
know how required for specific sub-tasks - e.g. PKlIchip cards,
special network protocols, firewall, security archiectures, and
penetration testing. This leads to the emergence & large
number of proprietary testbeds focusing on specificaspects
resulting in the lack of a unified testbed configuation,
versioning and technological foundations (e.g. opating
system, network stack implementations, hypervisorechnology
...). In this paper, we present our experiences dregd from a
large scale industrial project with 600-700 requirenents
relating to a critical eHealth infrastructure within a telecom
provider context. Thereby, various sub-contractors hd to be
unified in their approach to testbed management irorder to
achieve reproducible and traceable (with respect tasystem
requirements) test results based on a test architeoe
accommodating various quality assurance activities(unit
testing, development tests, component testing, imeation
testing, security testing ...). We gradually analyze¢he project
situation with respect to testbed management and gue on the
need for unified testbed management across multipléeeams
and stakeholders in a large scale telecom integrath setup.
Subsequently, we propose possible solutions and chtt a
series of experiments highlighting the advantages f othe
proposed approach and belonging solution.

Keywords — docker, container, virtualization, eHealttelecom,
networking, component testing, black box testing, stgyn
integration

. INTRODUCTION

Traditionally, testing is either deeply embedded the
development processes (e.g. unit testing, modstanty or
takes place on a higher level of component matse(eg.
integration testing, certification tests, intercgdality testing
...). This is especially valid for ICT products whiare
developed in the scope of a single company or legtty.
However, telecom operators normally do not devetop

single product from scratch. Mostly, they have eonpile a
complex distributed environment based on productd a
components they acquire from multiple supplierspital
examples are given by large scale telecom and niter
networks, where various suppliers provide routenstches,
multi-media gateways, mobile core network composient
(e.g. GGSN, MSC, HLR ...), CDN (Content Distribution
Network) servers/brokers etc.

In general, the level of matureness is quite haghpfoducts

of telecom suppliers. Hence, the testing which radiym
takes place on network operators’ site, is mostlgted to
the interoperability of the selected components .g. e
OSPF/RIP/ISIS interoperability between routers from
different vendors (e.g. between Cisco and Huaveijl to
special features/extensions of the products, which
especially developed for the intended integratddtiem the
network provider works on.

Nevertheless, it might happen that the telecomgnater
decides to develop a component on its own, as magpto
be the case in a large scale project for an addaekkealth
infrastructure. Given the fact that telecoms arentadly
integrators, they rarely possess large and higkpeeenced
development and quality assurance teams. Hencayardl
know-how has to be acquired on the free market,sub-
contractors need to be appointed. This naturaliyldeto a
significant number of players and stakeholders, hwit
complicated legal situations, in the scope of ahlyig
complicated technological landscape — the eHealhted
product in question encompassed around 600-700
requirements of various complexity spanning ovee th
different layers of the TCP/IP (and ISO/OSI) steenkd
strongly depending on aspects such as securityagy
confidentiality, PKI, secure NTP and DNS (i.e. DNEE3,
VPN-Tunnels (i.e. IPsec) and various applicatiogeta
proxies (e.g. HTTPS, OCSP ...).

Due to the above descriptions and consideratidnsagily
comes to a situation where multiple test teamseagaged
across different stages of the testing process.stdges are
given by:

- Development tests — i.e. unit and module testing

Model-in-the-loop and hardware-in-the-loop The rest of this paper is organized as follows:tiSac2
testing by switching between simulations - on thepresents a number of related technologies and appes.
interfaces of the SUT (System Under Test) - andSection 3 describes the project context relating tlarge
real hardware (on the interfaces of the SUT)scale eHealth infrastructure developed in an imtigr
thereby detecting implementation errors on earlymanner by a large telecom service provider. Sectlon

stages

on top of the development test

Security testing — i.e. penetration and certifimati
testing for national agencies

Component test of the integrator involving multiple
teams with various capabilities

provides a detailed analysis of the initial probderagarding

Product test - quality assurance/acceptance testingstbed management, which is the base for thewoilp

section 5 where a concrete solution approach ipqsed
and analyzed in terms of how it addresses the ifiksht
initial problems. Section 6 presents a number aghenical
results showing how our solution improved the tedtb
stability and the test execution process as a witaally, a

Integration and interoperability testing across thesummary is presented and a set of conclusionsravend
overall infrastructure

The topic handled in this paper is fairly unusuizieg that
integrators normally do not develop components daitip

the distributed solutions thereby strongly relying the
quality assurance of the suppliers/ivendors. Thereébg
integrator normally focusses on end-2-end integratests
based on the real hardware and does not really need
simulation based testbeds and playgrounds. For giaga
the end-2-end user acceptance tests various tyfes o
software is on the market, including HP-Quality @er2],

Jira [4] and Testrail [3]. Thereby, special tegtiand
demonstration labs are established showing the ativer
capability of distributed system, with the variob& test
fields across the world being typical examples Bl
Furthermore, the living labs established in Europea
research projects can be seen of typical exampies f
integrator testbeds for end-2-end user scenarios.

eWith respect to testbeds, standardization and fication
bodies tend to provide unified testbeds which arden
accessible to vendors in order to test their prisdudthout
allowing the configuration chaos experienced in phagject
in question. Typical such efforts are given by tifRv6
eady Logo program and its belonging testbeds J8J09

Thereby, the teams are embedded in the above medtio RELATED WORK

highly complex legal and technological circumstaned.e.
technical information flows slowly and has to pasdgtiple
management levels whilst the technological chaksng
require the instant and efficient know-how and tecal
exchange across the teams. In particular, oneuseigsue
emerged during the multi-stake holder test approdud
synchronization of the test environment (i.e. testxd
artefacts/images) across multiple stake holdersvhich is
also the scope of the current discussion.

The test environment for the eHealth infrastructime
guestion consisted of several virtual machines whiere
initially setup and distributed across the testtealhereby,
each test work place was equipped with the fulb$eirtual
machines and each tester was utilizing the fullede¢Ms
within each team. In addition, the developers wesiag the
virtual machines, in order to advance the firmwar
development. Hence, immediately after the initiaMV
design phase, a large number of testbeds was hditgd
without any means for proper synchronization. Témtkied
VMs were based on different traditional hypervis@sch
as Virtual Box, KVM or VMware. Hence, changes which

were made to the images needed to be clearl) 4) ;
communicated across the testing teams, i.ehange log s__/vell ETSI [1.2]’ and gematik [jt3] with their befpng
had to be taken care of and communicated among tr}"émf'ed test suites and test environments. Ther_etbyz,
involved test stages and teams. However, giverdingplex bestbgds a[)e |e|th_er manage_d in the fo\r/mt th;alhmas
legal setup of the project, the communication tdrne ase O{]G eé)\l;llg/llngjjsup\e”r\\/lllsors, el'glglr ua XOX][D:EZC}(’)
difficult and error prone. Hence, a wap efficiently gﬁrﬁir%o}e the IEinJ'x cor\?{girr?er[te]([:hn]ol(())r ?2 fEltﬁ‘(])
manage, synchronize and distribute the testbed imag paramount ’importance for this paper —g{vith docker
across teams and work stations was required [21]22][23][24] and LXC [23] as most prominent
representatives of the container type of virtudiora
Moreover, testbed management is often conducted by
tutilizing special middleware for steering the testb
components such as OpenShift [25], Kubernetes [23],
OpenStack [26] and OpenNebula [27]. Thereby, coiscep
from the area of network management and Softwafan&gk
Networking (SDN) [28] (e.g. OpenFlow [29]) can bery
helpful to efficiently manage the virtual machinesd
testbed components.

The above described situation has led to the etiaiuaf
different possibilities for enabling testbed mamaget,
such as SVN, GitLab, Docker, DockerCompose, Vagran
Ansible, as well as traditional bash scripting astl/sshpass
based solutions. The current paper describes {heriexces
that were gained in such a multi-stakeholder tgstatup
with respect to theJnified Testbed Management across
Multiple Teams and Stakeholders in a large scale
Telecom Integration Setup In addition, some very positive
side effects are in the scope, such as testbedityt@ind To give an example for playgrounds and development
improved root cause analysis for failed test casesnvironments, which are available as testing sesvic
accelerated test execution, efficient exchange @t t Fraunhofer FOKUS provides different environments fo
environments and improved tickets/issue analysisl anend-2-end integration and interoperability tessogh as the
failed-test-case resolution. Interoperability Lab [31], IPv6 Testing and Network

Simulation Lab [30] as well as diverse 5G [5] andd¥line-
2-Machine playgrounds and testing environments.

With regards to test strategy, different guidelinase
available, for instance in the form of IETF RFC8][®r as

test concepts and processes such as IEEE 829 [3

Furthermore, [32] provides some key design pattBrntest
approaches and test automation, which were alrapgdijed
in the current context [1].

. PROJECTCONTEXT

The project context of our considerations is gilmnan
eHealth service to be implemented on a large dzalene
of the main network and service providers in Gernmnan
Thereby, components originating from various vesdwred
to be integrated and later on to operate seamlegishyn
hospitals, doctors’ premises and emergency sitagtidhe
components include front end applications (web, itaaind
desktop), access routers, firewalls, unified
management solutions, various types of VPN boxesnm
IPSec layer 3 boxes), a large variety of trustetivarking

gateways and secure communication interface torreadte
networks.

In [1], we have already analyzed some of the drakbaf

e initially undertaken testing approach withiistproject.

he identified issues violated some basic test matimn
patterns [32] such as COMPLEX ENVIRONMENT,
INEFFICIENT FAILURE ANALYSIS, HIGH ROI
EXPECTATIONS and NO INFO ON CHANGES. These
issues were gradually fixed in the course of thejgut
duration, whereby the current paper describes itapor
aspects relating to the issues of COMPLEX
ENVIRONMENT and INEFFICIENT FAILURE
ANALYSIS, provided that the complexity and diveysibf
the testbed implementation has led to unmanageable
situation hindering the failure analysis procesd amning
into a serious obstacle for the overall systenifeztion.

threadt js important to emphasize that for a long tirhe &ibstract

testbed from Figure 1 with its belonging implemdéotas
was used for various phases of the testing preeesg. unit

services such as DNSSEC, NTP, QoS (mainly DiffServ)testing, module and components testing, securitgfpation

HTTP-Proxies, configuration repositories as welkasurity
related services for distributing cryptographic eng& and
validating certificates (e.g. OCSP). Furthermorifecent

testing, load- and performance testing, as welfoasthe
testing of different components - thereby integrgtreal
components with simulations — without having ansttied

chip cards and belonging readers were also testell amanagement approach across multiple involved teams,

integrated, or required to be simulated, in ordeevaluate
neighboring components and complex integrative 2edd
scenarios.

L%cal Aria St |
etwor ,—‘E/i
Paiphenl | _] | e — B — L]
aipmen | Application Layer Service 1 |
. Access Routers - I
: ; f‘lx ,J— |
@— = Application Layer Service N |
@_ 3 Network Layer Service 1 I
Access Routers -
¥ o2 g‘ P |
SysleTr:;Jnder : %. z § g >§ _|
@ =) e
Test Machine 885 ®
: g)i E- o Network Layer Service N I
Access Routers 82 é - I
@ 3 ~
< _‘Jj_ i
Local non-) o - —r—-
Virtual Machine central Security Management Service I
1 simulatng a Components o
Warking Station E E _E J
Infrastructure Management |
Virtual Machine
2 simulating a |
Working Station xternal I
Networks
3 I
' |
Virtual Machine | Control/Management
Nsmulatinga |=— — — = = —_— — — —_— —_——_— e — o — —— — -

Warking Station

partners and stakeholders. This has led to a fratingeof
the testbed versions whereby even within one team,
number of different testbed configurations werewating
and were utilized in the course of test executidhe
resulting problems are systematically analyzed lme t
coming section.

IV. PROBLEM ANALYSIS

Table 1 sums up all the key risks and issues thate w
observed without following the path of a unifiedstteed
management. Instead of a unified testbed management
based our activities on a set of hypervisor baseuial
machines that were distributed across the test and
development teams and updated occasionally in aage
communication has taken place. Indeed a numbseraus
issues were encountered that range from non-cotnlgara
test results, false positives and lead to an exhem
inefficient handling and correction of defects gimdblems
in the belonging SUTs. More details as well asahserved
frequency of the issues are given in Table 1.

Table 1: Risks, Analysis and belonging Frequency

FIGURE 1: SKETCH OF THE TESTBED SPECIFICATION AS
DESCRIBED IN [1]

Issue/Risk Analysis/Description Frequency
(rare/often/

very often)

Figure 1 illustrates a sketch of the testbed theg vequired
in the course of the project execution. One caarbjesee
the local area network segment embedding aspects asi
frontend user interfaces to be operated within halspand
doctors’ premises. Furthermore, the access netwd
component denoted as an SUT stands out as integral
module between the Internet/telecom network and t
backend data center architecture providing variotishe
above mentioned services and functionalities ad wasl

We very often encountered
situations were changes
were conducted on the
tesbed virtual machines
from within one of the
involved test and
development teams.
Correspondingly these
changes were not
communicated to the other

very often
No_info_on_ch
anges

Drk
ti
he

teams which led to a

divergence of the used
testbed versions across the
various teams and
stakeholders.

Proprietary_tes
tbed_configurat
ions

The missing communication
between the (often)
competing teams has
implied a large number of
proprietary configurations
which were extremely
difficult to synchronize
across the difficult teams
and have led to a chaotic
situation w.r.t. aspects such
as test result reproducibility
etc.

very often

Instabilities_in_
testbed_handli
hg

testbed versions - even
within the same team® -
have led to many
instabilities and differences
in the way the testbed
components were handled
within the test scripts.
Some test scripts could only
be executed on particular
work stations and their
results and execution flows
were very different due to
the testbed configuration
chaos.

Inefficient_
synchronization
_on_specificati

on_updates

The overall system
specification has been
occasionally changing
(around two times per
year) which required
adaptations in the testbed
environment. Provided the
separation of the teams
and the lack of a unified
process, the adaptations
were conducted in different
ways, which has finally led
to large proprietary
deviations that could be
traced back to conflicting
interpretation of the
specification changes.

rare

Incompatible_c
ryptographic_m
aterial

Another aspect of
incompatibility having its
origins within the testbed
problems relates to the
incompatible cryptographic
material (certificates,
Certificate Revocation Lists,
DNSSEC keys ...) across the
different testbed versions.
These cryptographic
artefacts were diverging in
various details such as the
utilized cypher-suites, the
certificate chains etc. In
many cases this has led to
incompatible diverging test
results in different
environments.

rare

Non_comparabl
e_test_results

The proprietary and
deviating testbed variations
have led to test results
which were not comparable
across the various teams
and stakeholders. This
resulted in costly and time
consuming discussions
paired with corresponding
debugging sessions.

often

In_efficient_ha
ndling_of defec
ts

All issues/risks described
hitherto have led to a
highly inefficient handling
of failures and belonging
tickets/defects. The failed
test results in one team
were very often not
reproducible within the
environment of the other
teams, leading to costly and
time consuming discussions
and controversies regarding
the interpretation of the
specifications and the test
results.

very often

False_positives

All the described
differences have
sometimes led to false
positive test results in cases
when a PASSED result got
wrongly accepted in the
overall discussion among
the teams. In such
situations, the responsible
test team has wrongly
configured its proprietary
testbed based on a
misunderstanding of the
technology or the
specification.

rare

The differences in the

often

The solution emerging from the above identifiedksids
based on the utilization of container technologstead of
traditional hypervisor technology for the sake ektbed
management. Thereby, the widely accepted dockdairemn
solution was used, in order to setup an initiakigr of the

V. PROPOSEDSOLUTION

required complex testbed environment.

Docker uses a so-called Linux base image thatt&bkshed
as the basic operating system configuration fordbeker
containers running on top. The specific configunasi for

! We even observed that different tester or testraation workstations
within the same team were experiencing severerdiffee with regard to

their testbed configurations.

each docker image (be it the NTP, DNS, VPN-gateway,

OCSP responder ...) are put in place in the form difea
system structure with belonging configuration filés.g.

belonging observed Results

Table 2: Identified Risks, their Mitigation and

Jetclipsec.conf) allowing to load each container with its own _Issue/Risk Mitigation Result
specifics without burdening the host with regard to Based on the docker images
managing a whole virtual node (for each of thebiedt | No info on ch | and the established exchange solved
components) with all its overhead for restart apdcgic anges infrastructure (gitlab, docker-
configurations. Furthermore, the overall set ofldwenodes registries ...), changes to the
was glued together into an integrated testbed bynieans belonging network and
of a yaml-configuration file that allowed to de&eithe configurational setup were
network interfaces (on link and network level, MAC and easily communicated
IP addresses) and to connect them correspondingint be';weel? ;thteam members
overall test environment for the various phasetesting as ?: Stta ‘ib°d €. —
well as for the various components of the integtatealth) ¢ testbed conhigurations
solution as an SUT. Proprietary_tes | Were continuously
tbed_configurat nyr;chromzed scro(sjs t:e solved
. . g . ifferent teams based on the
The overall collaboration process relating to thafied lons docker-files and the
testbed management across multiple teams is dliestrin centralized repositories
Figure 2. Within this context, the Linux base imagstored accessible from within the
in a centralized storage (e.g. FTP, WebDAV or NBES) various sites.
can be correspondingly adopted by all involved e — Testbed adaptations made
an activity, which s_hould not be _conS|dered veggtrently, | Inefficient_sync | upon changes to the system
since the base image con.talns fundamental o_peramngmnizaﬁon on | specifications were easily
systems configurations meaning that most of thecipe e communicated and
. . . . s specification solved
lightweight configurations are expected within ttlecker | — dates synchronized across the
images. The docker images with their belonging figt upaates involved teams.
configurations and file system structure are madagi¢hin
an eco-system of local docker-registries and arakred The difference in test Tesults
docker-registry on top, which enables the synclzation across the various test and
across multiple stakeholders and multiple teamse ThNon-comparabl development teams was
docker-registries largely resemble the well-knowitlag e_test_results solved with respect to the solved
structure and mechanisms, including familiar comasan testbed configuration
and processes such @merge, push, pull etc. Furthermore, divergence given the
the docker-compose tool is used to compile a local binary established exchange and
version of the overall set of containers, which dam synchronization
efficiently executed on the local host where theaexion infrastructure and the utilized
for a predefined set of test cases takes place. docker artefacts for testbed
Local docker-registry management.
—— The time for handling and
@ I:l * = ’W In_efficient_ha | processing of tickets/defects
¢ ‘) Centralized ndling_of_defec by the development teams solved
‘ docker-registry ts was largely accelerated given
O O Base image ‘ - the increased reproducibility
@3 storage(\‘—""‘ of results across the various
« ‘ .- teams and stakeholders.
! The instabilities in the test
@ P " Instabilities_in_ sFripts, emergir}g from the
’:] » "——""W testbed_handli | divergent proprietary testbed solved
E ‘) ng configurations across various
Tocal docker-registry wor,kSt,atlons' were
intrinsically removed based
th d solution.
FIGURE 2: OVERALL VIEW OF THE PROPOSED AND ?E € Propose ;’.0” on._ |
IMPLEMENTED SOLUTION FOR UNIFIED TESTBED e cryptographic materia
MANAGEMENT Incompatible_c | was unified within one
ryptographic_m centralized testbed instz.mce solved
The risks identified in the previous section witheit aterial thatk dwas Collfr?orat'f’e'y
belonging mitigation and observed results are deg@ién worked on across the various
. . . teams and partners.
Table 2 thereby rounding up the picture regardihg t —
. . i . The probability for a false
impact of our identified solution. - It based h
False_positives | Positive result based on the solved

divergent testbed configs and
a misunderstanding of the

technology or specification
aspects was largely reduced
provided the collaborative
distributed approach based
on gitlab pull, push and
merge commands. Thereby,
regular test and reviews of
testbed changes were applied
until proposed changes were
approved and established
across the involved teams as
a basis for further testing.

VI. EXPERIMENTAL RESULTS

The current section focuses on the computationa\Jmmer
performance of our proposed solution in the coun$e Linux

increasing the robustness of the test executiongsand
correspondingly improving the failure analysis witspect

to the SUT in question. At this point of the prasdion, it
should be remarked that the parameters of thedmosthich
the presented measurements were conducted ardy brie
summarized in Table 3.

Table 3: Parameters of the Host utilized for the
Measurements

Modell ThinkPad T470 Signature Edition

Intel (R) Core (TM)
i5-7200U CPU@2.50GHz
2.71 GHz

Processor

RAM 24,0GB

(23,9 GB usable)

System type 64 Bit Operating System

X64-based Processor

'y
o

]

/

w
@

w
o

N
«

N
o

=—\/irtualBox

Time ins
-
w

Docker

=
o

w

7
/
//

o

5VMs 10VMs 15VMs

Number of VMs/Containers

20VMs

FIGURE 3: TIME COMPARISSION FOR THE CASE OF RESTARG
THE TESTBED WITH A VARYING NUMBER OF INVOLVED
COMPONENTS

In order to improve the stability in the courserefiression
testing for one of the access network componentsa as
device under test, the rest of the unified testbad to be
regularly restarted, such that a defined
configuration is reset and the following test résuan be

interpreted in a clear and solid way. Indeed, thezbrestart
was required after each single test case execwtioich has
drastically improved the test execution process itg
stability and has led to better quality of the faesg defect
tickets as well as improved collaborative failunealgsis
between the development and the product testimg.tea

As discussed, the initial proprietary testbed sofutwas
based on hypervisor technology and was spanning ave
large number of virtual machines which took a Idinge to
restart and setup a belonging defined network asthéd
configuration state. Furthermore, due to the fhet every
time the overall hypervisor system had to be réestar
which led to intense interactions with the undewyhost,
there were a number of instabilities on virtual dveare
level, especially when it comes to the assignmemd a
ation (eth0, ethl ...) of network interfaceshimitthe
testbed nodes. These instabilities have a#juled to
problems on network management level such as wrong
subnet numbering and IP address assignment.

7000

6000

yd
v

5000

4000

~

3000 ==VirtualBox

e
e

Docker

2000

Memory usage in MByte

1000

0

5VMs 10 VMs 15 VMs 20 VMs

Number of VMs/Containers

FIGURE 4: MEMORY UTILIZATION IN THE COURSE OF
RESTARTING THE TESTBED WITH VARIOUS NUMBERS OF
INVOLVED COMPONENTS

Generally, it can be summarized that the unifaetker
based testbed was much more stable than the panprie
VirtualBox solution, which was initially utilized ral
proprietarily modified by each involved party (prmd test,
security test, load- and performance-test). Funtioee, it
could be clearly observed that the container basdation
was much faster in terms of restarting time forfedént
numbers of nodes from the testbed as depictedgaré&i3.
Thereby, the time measurements with respect totithe
required for testbed restart is clearly in favor thfe
container based unified framework, which has led to
increased test execution effectiveness and easharggjing
of test cases and the SUT, in case of failed sestand test
steps.

In addition to the above aspects, Figure 4 and rEigu
outline the memory consumption on the machine hgdtie
testbed as well as the CPU utilization on the measthine.
Both figures clearly underline the increased effectess
and low overhead of the unified testbed approactedan
container technology and a common base image. This

networkincreased effectiveness turned out to be a focak pathin

the project drastically improving the quality ofetlailure

findings and enabling the goal oriented and effitie involved testbed components within the test casegion
collaboration between the test and developmentgeam process. These numerical measurements clearly shatv
the unified testbed management solution improves th
overall test approach by a large magnitude thesehaiing up

048 N the (testbed configuration) sharing, the efficientye speed
0,4 . .
' /I\ and reducing the overall computational overheatheftest
035 / 1\ process.
R 03
i 0,25 / \
g 0,2 / \ == \/irtualBox
2 015 / \ bocker REFERENCES
01 / \ [1] N. Tcholtchev, M. A. Schneider and I. Schieferdecke
0,05 "Systematic Analysis of Practical Issues in Test
0 Automation for Communication Based Systems", 2016
SVMs 10VMs 1SVMs o 20VMs IEEE Ninth International Conference on Software
Number of VMs/Containers Testing, Verificaton and Validation Workshops
(ICSTW), Chicago, IL, 2016, pp. 250-256
FIGURE 5: CPU UTILIZATION IN THE COURSE OF RESTARNG ~ [2] HP Quality Center: https://www.microfocus.com/en-
THE TESTBED WITH VARIOUS NUMBERS OF INVOLVED us/products/quality-center-quality-
COMPONENTS management/overview, as of date 29.04.2019
[3] TestRail: https://www.gurock.com/testrail, as oftela
VII. CONCLUSIONS ANDFUTURE WORK 29.04.2019

The current paper presented on our experiencesdetta the [4] Jira: https://www.atlassian.com/softwareljira, aslate
need for a unified testbed management in a largde sc 29.04.2019
integration project executed by a telecom servimviger [5] 5G ~ Playground of Fraunhofer ~ FOKUS:

within the eHealth domain. Thereby, a signiﬁcau[nh)er of https://www.fokus.fraunhofer.de/go/en/fokus_tesﬂded
independent parties and stakeholders were invoked 5g_playground, as of date 29.04.2019

adopted a hypervisor based solution for their opacic [6] 5G Berlin: https://www.5g-berlin.org/, as of date
needs, e.g. in the scope of load- and performaestng, 29.04.2019

integration testing, penetration testing, secudtyits etc. [7] F.Kaltenberger, R.Knopp, N.Nikaein, D.Nussbaum,
Hence, the described situation led to a chaos, emtifierent L.Gauthier, C.Bonnet, "OpenAirinterface:Open-seurc
distributed testbed changes were not even annouaned Software Radio Solution for 5G", European
project level and reported defects and failed tases were Conference on Networks and Communications

extremely hard to handle, given the lack of unified (EUCNC), Paris, France, July 2015.

information regarding the testbed configurationairnighly [8] TAHI-TestSuite:

complex network and services environment, involviag https://www.ipv6ready.org.cn/home/views/defaultéres
number of intertwined network and software stacks.(urce/logo/phase2-core/index.htm, as of date 29004.2
DNSSEC, NTP, OCSP, HTTP proxies, IPSec ...). [9] IPv6 Forum: http://www.ipv6forum.com/, as of date
In order to remediate the above issues, we had to 29.04.2016

collaboratively work out a solution that would etmibhe [10]J. Ruiz, A. Vallejo and J. Abella, "IPv6 conformanc

continuous sharing of testbed configuration amoiffgrént and interoperability testing”, 10th IEEE Symposiom
teams. Hence, given the conducted project analygs Computers and Communications (ISCC'05), Murcia,
implemented a solution based on container techyolog. Spain, 2005, pp. 83-88. doi: 10.1109/ISCC.2005.87
docker, instead of the legacy hypervisor approach usingi1]vallejo, J. Ruiz, J. Abella, A. Zaballos and J. $&lga,
VirtualBox or similar hypervisor settings. This appch "State of the Art of IPv6 Conformance and
included thga involvement of various tools ar_ld _frameks Interoperability Testing”, in IEEE Communications
such as gitlab, - docker-compose, docker-regisiries, as Magazine, vol. 45, no. 10, pp. 140-146, October7200
opposed to other potential approaches based/brandssh- doi: 10.1109/MCOM.2007.4342835

scripts including tools such asagrant and Ansible. The [12]ETSI
proposed solution enables the instant sharing ahgbs to
the testbed configuration management and the taa@spy ; ; i
when it comefs_lto tracin% anbd Iiden_tifyin%tffle roause r:pr a h - ﬁtetgqsa"}/lll‘(achportal ge?ngziliihe/ as of dateln;ga(smgztrucéure.
test case failure an elongin efects within the ' : I ;
development teams. Hence, thig egnables the resolagi [141Peng Li, T'Selectin_g and using virtuqlization saus:
typical mistakes conducted within the initial prtjesetup our experiences with VMware and VirtualBox", Jodrna
such as COMPLEX ENVIRONMENT and INEFFICIENT of Computing Sciences in Colleges archive, Volurge 2
FAILURE ANALYSIS, as discussed in previous Issue 3, January 2010, Pages 11-17

(European Telecommunications Standards
Institute): http://www.etsi.org/, as of date 2921119

publications. [15]VirtualBox: https://www.virtualbox.org/, as of date
.- . 29.04.2019

The efficiency of the proposed solution was further g amy: hitps://www.gemu.org/, as of date 29.04.2019

underlined by a series of experiments relatindheodtability [17] Linux ' ' K\)M' e httpS‘//W Iiﬁux-

of the test execution procedure. Thereby, we medstire
speed as well as the computational overhead withén
underlying host, relating to the restart of a vasimumber of

kvm.org/page/Main_Page, as of date 29.04.2019

[18]Vmware: https://www.vmware.com/, as of date
29.04.2019

[19]Carl A. Waldspurger, "Memory resource management
in VMware ESX server', ACM SIGOPS Operating
Systems Review - OSDI '02: Proceedings of the 5th
Symposium on Operating Systems Design and
Implementation, Volume 36 Issue Sl, Winter 2002 I,
Pages 181-194

[20]Xen Project: https://xenproject.org/, as of date
29.04.2019

[21]docker: https://www.docker.com/, as of date 29.04

[22]Carl Boettiger, "An introduction to Docker for
reproducible research”, ACM SIGOPS Operating
Systems Review - Special Issue on Repeatability and
Sharing of Experimental Artifacts, Volume 49 Isslje
January 2015, Pages 71-79

[23]1D. Bernstein, "Containers and Cloud: From LXC to
Docker to Kubernetes," in IEEE Cloud Computing,.vol
1, no. 3, pp. 81-84, Sept. 2014. doi:
10.1109/MCC.2014.5

[24]C. Anderson, "Docker [Software engineering]," ifElE
Software, vol. 32, no. 3, pp. 102-c3, May-June 2015
doi: 10.1109/MS.2015.62

[25]OpenShift: https://www.openshift.com/, as of date
29.04.2019

[26]OpenStack: https://www.openstack.org/, as of date
29.04.2019

[27]1OpenNebula: https://opennebula.org/, as of date
29.04.2019

[28]Kamal Benzekki, Abdeslam El Fergougui, Abdelbaki
Elbelrhiti Elalaoui, "Software-defined networking
(SDN): A survey". Security and Communication
Networks, 2016, 9 (18): 5803-5833.
doi:10.1002/sec.1737.

[29]Masayoshi Kobayashi, Srini Seetharaman, Guru
Parulkar, Guido Appenzeller, Joseph Little, Johan v
Reijendam, Paul Weissmann, Nick McKeown,
"Maturing of OpenFlow and Software-defined
Networking through deployments”, Computer
Networks, Volume 61, 2014, Pages 151-175, ISSN
1389-1286, https://doi.org/10.1016/j.bjp.2013.10.01

[30] Fraunhofer FOKUS IPv6 Test and Network Simulation
Lab: https://www.fokus.fraunhofer.de/go/en_ipv6lab,
of date 29.04.2019

[31]Fraunhofer FOKUS Conformance and Interoperability
Lab:
https://www.fokus.fraunhofer.de/go/en_conformanae_|
b, as of date 29.04.2019

[32] Test Automation Patterns:
https://testautomationpatterns.org/wiki/index.phpiiv
_Page, as of date 29.04.2019

[33] Standard for Software Test Documentation. Technical
report, IEEE 829, 2008.

[34]RFC 2544: Benchmarking Methodology for Network
Interconnect Devices,
https://tools.ietf.org/html/rfc2544, as of date@22019

