Substrate Patterning for Organic Electronic Devices at Fraunhofer IPMS

Christian Rahnfeld, André Philipp, Moritz Hasselgruber, Olaf R. Hild, Christian May

Fraunhofer Institute for Photonic Microsystems COMEDD - Center for Organic Materials and Electronic Devices Dresden

October 19-21, Dresden

CENTER FOR ORGANIC MATERIALS AND ELECTRONIC DEVICES DRESDEN

COMEDD as trademark of Fraunhofer IPMS

Opened in 2008 investments of about 30 M€ (EU, Sachsen, FhG)

Mission

Customer and Application Specific Research, Development and Pilot fabrication on novel device concepts and manufacturing methods in the field of organic electronics (small molecule)

Infrastructure

Clean room 900 m², Labs 100 m²

Fabrication lines

- Pilot line Gen2 (370 x 470 mm²)
- Pilot line OLED-on-CMOS (200x200 mm²)
- Roll-to-Roll line (300 mm foils)

Applications

COMEDD

Outline

- Introduction to Organic Light Emitting Diodes
- Substrate Patterning Steps
 - Printing of Etch Paste
 - Printing of Metallization Layer
 - Printing of Passivation Layer
- Requirements & Challenges for Screen Printing
- Comparison of OLED Parameters
- Summary

Benefits of OLEDs

Opaque white 5 x 10 cm² OLED

- Area light source
- Low surface heating
- Low energy consumption
- Transparent stack possible

Transparent red 5 x 10 cm² OLED

- Bottom-emitting and top-emitting
- Environmentally friendly
- Total thickness < 2mm</p>
- Broad perspective (wide viewing angle)

Layers of an OLED

Screen Printing – Introduction

The principle of screen printing

Standard and alternative production process for metallisation layer (same for passivation and anode layer)

- Reduce costs, flexible in layout
- IPMS reference: lithography-based substrates

Gen2 Pilot Fabrication Line for OLED Lighting and OPV

- Modular & fully automated cluster system
 - Tact time down to 3 min
 - Suppliers: Sunic System (Korea) and Aixtron (Germany)
- Rigid substrate size 370 x 470 mm² (Gen2)
- Plasma pretreatment
- Organic film deposition (up to 12 layers)
 - Organic Vapour Phase Deposit. OVPD
 - Vacuum Thermal Evaporation VTE
- Metal film deposition (e.g. Al, Ag)
- Direct connection to encapsulation system

IPMS

Screen Printer at COMEDD

Automatic screen printer

- Print process in clean room class 100
- 0.7 mm glass substrate (470 x 370 mm²)
- Tact time <3 min
- Connected to handling system

Process Flow Substrate Manufacturing

Anode Patterning – Printing of Etch Paste

Potential separation of anode

- ITO etch paste with phosphoric acid
- Activation > 120 °C

Features:

- Etch rate depending on applied temperature
- Min. Line & Space of 150 µm

Challenge:

Process flow for ITO patterning at IPMS

Anode Patterning – Laser Ablation

- 355 nm picosec. laser
- Line & Space down to 12 μm / 10 μm
- Speed: up to 1.5 m/s

Printing of Metallization Layer

Application: contacts and grid

- Silver filled polymer metal paste
- Annealing > 100 °C

Features:

- Line & Space of 150 µm feasible thickness: ~10-20 µm
- Contact resistivity to ITO very low: R_k = 0.027 Ωmm²
- Sheet resistance very low $R_s = 0.022 \ \Omega/\Box$ (@ 10 µm thickness)

Printing of Passivation Layer

- Polymer passivation paste
- Thickness: ~10-20 µm
- Annealing > 100 °C

Challenge:

No open areas and pinholes

Requirements & Challenges for Screen Printing

- Combination of thin and thick film processes, especially critical particle size of the metallization, organic layer stack only a few 100 nm thick
- Screen printing of small structures, pastes must not clog printing screen
- Printing pastes must not leave any residue on the 'active' ITO areas
- Low annealing temperature of the printing pastes → polymer based pastes (high temperature can change ITO → potential of short-circuits)
 - High standards for all printing components needed: Pastes: long pot life, low annealing temperature Screens: no holes in emulsion, high reproduction accuracy Squeegee: high resistance to chemicals

Patterning Comparison – OLED Parameters

Driving voltage U [V] @ 1000 cd/m ²		
min	typ.	max
2.55	2.62	2.68
2.39	2.60	2.74
Reverse current density J [mA/cm ²] @ -5V		
min	typ.	max
0.002	0.05	0.87
0.004	0.03	0.88
	tage U [V] @ min 2.55 2.39 nt density J [min 0.002 0.004	tage U [V] @ 1000 cd/m² min typ. 2.55 2.62 2.39 2.60 nt density J [mA/cm²] @ - min typ. 0.002 0.05 0.004 0.03

Parameters for PIN orange OLED at IPMS

- Driving voltage \rightarrow Indicates quality of metallisation layer
- Reverse current density \rightarrow Indicates quality of passivation layer

Summary

- Litho-free process in Gen2 size-based on screen printing established at COMEDD
- No difference in the OLED parameters compared to litho-substrates could be shown
- Process is more flexible concerning the layout
- Low-cost process

OLED tests on a Gen2 substrate

Acknowledgement

This work was partly supported by the German Federal Ministry of Education and Research within the project So-Light (FKZ: 13N10527).

Thanks to all involved colleagues at Fraunhofer IPMS.

COMEDD We shape the light.