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Vorwort

Die vorliegende Diplomarbeit beschäftigt sich mit dem Einsatz von Trusted Compu-
ting Technologien im Kontext von Ticket Systemen. Sie enstand in Zusammenarbeit mit
dem Fraunhofer Institut für Sichere Informationstechnologie (SIT) in Darmstadt und
der Goethe-Universität Frankfurt am Main. Ich stelle ein Konzept für die Integration von
TPM basierten Tickets in das bestehende System Kerberos auf und zeige die Realisier-
barkeit des Konzepts an Hand einer Beispielimplementierung.

Zu Beginn erfolgte eine umfassende Einarbeitung in das Thema Trusted Computing, ins-
besondere auch eine Betrachtung der Funktionen des TPMs. Das TPM, das inzwischen
in einer Vielzahl von Rechnern vorhanden ist und auch im mobilen Sektor mehr und
mehr an Bedeutung gewinnt, stellt meiner Meinung nach eine gute Grundlage dar, um
die Sicherheit bestehender Anwendungsszenarien zu erhöhen.

Als Ziel für das Konzept wählte ich das Kerberos Protokoll. Es findet vielfältige Anwen-
dung und bietet über die vorhandene Infrastruktur viele Anknüpfungspunkte. Durch die
weite Verbreitung von Kerberos, insbesondere auch die Nutzung für die Verwaltung von
Geräte- und Ressourcenidentitäten, ist das entwickelte Trusted Kerberos ein vielverspre-
chender Ansatz für weitere Forschung und Entwicklung.

Zum Thema Trusted Computing, und vor allem zu konkreten Anwendungen, gibt es
noch nicht sehr viel Literatur. Die Spezifikationen der Trusted Computing Group wa-
ren vor allem für die technische Recherche sehr hilfreich, darüber hinaus bilden die Bü-
cher „Trusted Computing Systeme“ von Thomas Müller und „A Practical Guide to Trus-
ted Computing“ von David Challener eine gute Einstiegslektüre in das Thema Trusted
Computing.

Im Anschluss stand der Entwurf und die Implementierung einer Demonstrations- und
Entwicklungsumgebung. Gemeinsam mit Andreas Brett entstand die Plattform Ethem-
ba. Ethemba stellt ein virtualisiertes System bereit, das mit einem emulierten TPM aus-
gestattet ist. Diese Architektur erlaubt es, auch ohne einen vorhandenen TPM-Chip, An-
wendungen zu entwickeln und zu testen. Neben der Bereitstellung einer TPM Testumge-
bung wurde auch ein Software-Framework zu Ethemba entwickelt.

Es stellte sich heraus, dass es kaum Ergebnisse gibt, auf die man aufbauen konnte. So
zeigte sich, dass das Paket TPM/j, das wir für die erste Implementierung nutzten, nicht
die benötigte Funktionalität bereitstellt. Die Wahl des jTSS als neue Basis zeigte sich als
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sehr sinnvoll, da damit sowohl die Konformität zur Spezifikation gewahrt bleibt als auch
eine Portabilität auf z.B. den Trousers TSS möglich ist.

Bei der Erarbeitung des Konzepts konnte ich auf die Diplomarbeit „Trusted Infrastructu-
res for Identities“ von Barbara Fichtinger und insbesondere auch auf die wissenschaftli-
chen Arbeiten von Nicolai Kuntze und Dr. Andreas U. Schmidt zurückgreifen.

Da sich Englisch als Sprache für wissenschaftliche Literatur in der Informatik durchge-
setzt hat, wurde die Diplomarbeit bewusst in englischer Sprache verfasst, um sie einem
breiten Leserspektrum zugänglich zu machen.

Ein großer Dank gilt Nicolai Kuntze und Dr. Andreas U. Schmidt für ihr durchgängi-
ges Engagement und die fachliche Unterstützung bei der Durchführung der Diplomar-
beit. Sie hatten für alle Ideen und Konzepte ein offenes Ohr und durch ihre Anregungen
und Fragen entstanden viele neue Ansatzpunkte. Darüber hinaus gaben sie mir wert-
volle Einblicke in die Forschungstätigkeit. Insbesondere die Koordination des Gedan-
kenaustauschs der Diplomanden erzeugte große Synergieeffekte. Daher gilt mein Dank
auch Jennifer Richter, Gökhan Bal und vor allem Andreas Brett. Des Weiteren gilt mein
Dank Prof. Krömker von der Goethe-Universität in Frankfurt für die Betreuung mei-
ner Diplomarbeit. Dank gilt dabei natürlich auch allen Korrekturlesern der Diplomar-
beit.

Vor allem gilt aber ein besonderer Dank meinen Eltern, Ingrid und Gerhard, sowie mei-
nem Bruder Christian und meiner Freundin Gesine, für die Unterstützung während des
Studiums und insbesondere auch in der Zeit der Diplomarbeit.



Zusammenfassung

Die zunehmende Verbreitung von Internet-basierten Dienstleistungen führt zu einem
Wandel der Geschäftsbeziehungen zwischen Anbietern und Kunden. Diese Beziehun-
gen werden nicht mehr über physikalisch greifbare Identitäten hergestellt sondern di-
gital abgebildet. Für die Erzeugung und Verwaltung der digitalen Identitäten wird in
steigendem Maße auf Identity Management Systeme (IDM) zurückgegriffen. IDM be-
schränkt sich dabei nicht nur auf die Identitäten von Personen sondern wird in vielen
Anwendungsszenarien insbesondere z.B. in der Machine-to-Machine Kommunikation
auf Geräte und Ressourcen übertragen.

Einhergehend mit dem mannigfaltigen Einsatz von Identity Management Systemen zeigt
sich ein gesteigertes Bedürfnis nach Sicherheit. Darüber hinaus ist es maßgeblich für
den erfolgreichen Einsatz von IDM, dass der Schutz der Privatsphäre des Individuums
gewährleistet ist.

Trusted Computing ist eine der Schlüsseltechnologien, die es erlaubt, Vertrauensbezie-
hungen zwischen mehreren Parteien aufzubauen. Durch den Einsatz von Konzepten
und Ansätzen des Trusted Computing können die Kernpunkte Sicherheit und Privat-
sphäre sinnvoll unterstützt werden. Insbesondere der Einsatz des von der Trusted Com-
puting Group spezifizierten Trusted Platform Moduls (TPM) steht hierbei im Vorder-
grund. Die Kombination von Identity Management und Trusted Computing ist vielver-
sprechend im Hinblick auf die Erschließung neuer Anwendungsfelder.

Die meisten bestehenden Identity Management Ansätze basieren auf dem Konzept soft-
warebasierter Zugangstokens, sogenannter Tickets, um die Verwaltung der Identitäten
zu ermöglichen. Die vorliegende Diplomarbeit soll ein Konzept aufzeigen, das es einem
Individuum, d.h. Benutzer oder Gerät, erlaubt, eine Dienstleistung mit einer selbst ge-
wählten Identität in Anspruch zu nehmen.

Der Zugang zum angebotenen Dienst soll unter der Verwendung von Pseudonymen er-
möglicht werden. Das Individuum hat die Möglichkeit ein Ticket von einem Identity
Provider zu erhalten. Dieses Ticket enthält eine Aussage über die Identität sowie die mit
dieser Identität assoziierten Attribute. Durch den Einsatz von Trusted Computing ist es
dem Identity Provider möglich, die Systemintegrität zu überprüfen und zu bewerten. Bei
erfolgreicher Validierung des Systems wird das Ticket ausgestellt. Das Ticket kann dann
wiederum bei dem Anbieter des Dienstes eingelöst werden, um Zugriff zu dem Dienst
zu erhalten.
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Dabei ist es von wesentlicher Bedeutung, das das Ticket fest an das TPM, und damit
an die Hardware des Systems, gebunden ist. Diese Verbindung erhöht die Sicherheit
maßgeblich, da die Verwendung des Tickets mit einem anderen, nicht validierten Sys-
tem unmöglich ist. Damit ist ein entscheidender Beitrag geleistet um all jene Angrif-
fe abzuwehren, die darauf basieren, dass Kopien von Tickets angefertigt werden kön-
nen.

Diese Diplomarbeit stellt zwei mögliche Anwendungsfälle vor, die aufzeigen, wie durch
den Einsatz von Trusted Computing Technologie die Sicherheit in Identity Management
Szenarien erhöht werden kann. Abgeleitet von diesen Beispielfällen wird gezeigt, welche
Bedingungen und Aufgaben ein Trusted Ticket System erfüllen muss.

Das Konzept der Trusted Tickets wird in eine Kerberos Netzwerk Authentifizierung ein-
gebettet. Eine Anpassung der Ansätze der AIK Zertifizierung mit Hilfe einer Trusted Third
Party, der Privacy CA, erlaubt es, vertrauenswürdige Aussagen über digitale Identitäten
zu treffen. Durch die Verwendung der Ideen zur Systemvalidierung und zur Attestierung
eines Systemzustands kann die Ausgabe der Tickets an den vertrauenswürdigen Zustand
gekoppelt werden. Dabei kann auf das vorhandene Konzept der Remote Attestierung
aufgebaut werden.

Um die Entwicklung einer Proof-of-Concept Implementierung zu ermöglichen, wurde
eine komplette TPM-Demonstrationsumgebung aufgesetzt und konfiguriert. Basierend
auf dem TPM Emulator, kombiniert mit der Virtualisierungssoftware QEMU, TPM Trei-
bern und existierender Software wurde das Ethemba Framework entwickelt.

Ethemba ermöglicht den einfachen Zugriff auf TPM Funktionen, ist in Java geschrieben
und basiert auf jTSS. Neben Hilfsprogrammen enthält Ethemba Beispielanwendungen
zur AIK Zertifizierung und zur Remote Attestation als Client-Server Infrastruktur. Da-
mit bietet Ethemba einen Ausgangspunkt für weiterführende Entwicklungs- und For-
schungsarbeit im Bereich Trusted Computing.

Die Referenzimplementierung des Trusted Kerberos Konzepts, inklusive der notwen-
digen Client und Server Anwendungen, zeigt, dass es möglich ist, ein Trusted Ticket
System aufzubauen und in eine bestehende IDM Lösung zu integrieren. Es ist damit
gezeigt, dass sich durch den Einsatz von Trusted Computing die Sicherheit bestehen-
der Systeme erhöhen lässt und gleichzeitig der Schutz der Privatsphäre gewährleistet
bleibt.



Abstract

Driven by the shift from physical to digital identities and the expansion of network based
services, the deployment of identity management solutions is increasing. To support the
creation, management and possible destruction of digital identities, various solutions
exist and are widely promoted and used. The escalating need for identity management
raises privacy and security concerns.

Trusted Computing, as a key technology to establish trust between entities, introduces
concepts and architectures that can be used to address these concerns. By combining
trusted computing technology with existing IDM solutions, new use cases can be sup-
ported. Especially the utilization of the Trusted Platform Module (TPM) as specified by
the Trusted Computing Group plays a key role in the realization concept.

Most existing identity management solutions include the use of software based asser-
tions, so called tickets, to manage identities. The goal of this thesis is to develop a con-
cept that allows an individual, either a user or a device, to access a service from a service
provider with a chosen identity. The concept shall allow for pseudonymous access to
the service provider. The individual therefore retrieves a ticket from an identity provider,
making an assertion of the identity. The identity provider verifies the integrity of the sys-
tem, and based on this assessment issues the ticket. This ticket can then be presented to
a service provider to access the service. The service provider establishes a direct trust re-
lationship with the identity provider, relying on the assertions that the identity provider
makes. Thus, a chain of trust is generated, allowing the service provider to indirectly
lay trust in the individual. It is essential for the tickets to be bound to the TPM, and
thus the hardware of the system. This increases the security of conventional systems by
inhibiting attacks involving copies of issued tickets.

The thesis presents two use cases to show how trusted computing can be used to in-
crease the security in IDM scenarios. Derived from these use cases, it is shown which
requirements must be met and how trusted tickets can be used to represent digital iden-
tities.

The idea of trusted tickets gets integrated into a trusted Kerberos environment. By adapt-
ing the notions of AIK certification with a trusted third party, the Privacy CA, it is shown
how identity statements can be established. Incorporating the concept of system attes-
tation, essentially the network based remote attestation, the presented implementation
is able to assess the system state and issue the tickets based on this assessment. The
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mechanisms needed to provide measurements and reporting are provided by trusted
computing technology.

To enable the development and testing of an implementation, a complete demo envi-
ronment was set up. Based on concepts of virtualisation, a software TPM emulator and
existing TPM drivers and software stacks, the framework ethemba was developed. The
ethemba framework provides high level access to TPM functions, based on jTSS in Java.
Besides helping applications, the two main concepts of AIK certification and remote at-
testation were implemented as demonstrators. The ethemba framework provides itself
an entry point for a wide variety of further applications.

The reference implementation of a trusted Kerberos protocol, including the necessary
client and server applications shows that it is possible to build a trusted ticket system,
based on trusted computing technology, increasing privacy and security of existing IDM
solutions.
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Chapter 1

Introduction

The increasing significance of identity management solutions reflects the shift from phys-
ical to digital identities in service oriented environments. The use of sophisticated iden-
tity management systems enables the establishment of identifier domains in which in-
dividuals can access services using a certain identifier and the corresponding creden-
tials.

1.1 Problem Description

With the growing use of identity management systems, new problems arise and have to
be addressed appropriately. The main worries can be summarized under privacy and
security related aspects. To cope with privacy concerns, the use of multiple, partial,
pseudonymous identities plays an important role. Without IDM solutions, the user is re-
quired to maintain the pseudonymous identities and keep track of their usage. With an
established identifier domain, the user is not required to create an account, and thus a
new pseudonym, for every service of which he makes use. The identity related informa-
tion is stored centrally by an identity provider who issues assertions about the individ-
uals identity. These assertions are conventionally embodied in software tickets, which
can then be redeemed at a service provider in the domain.

The concept of trust plays an important role in the establishment of the identifier do-
mains. While the service provider is no longer required to maintain a local user manage-
ment, trust has to be established indirectly. For the establishment of trusted identifier
domains several concepts exist.
With the realization of ideas from the Trusted Computing Group, mainly based on the
use of the Trusted Platform Module, the thesis shall show how a trusted ticket system
can be established as a building block for IDM.

1.2 Motivation and Goals

Targeting the integration of trusted computing ideas into existing IDM solutions, this
thesis examines how trusted tickets can be incorporated into an IDM solution. While the
core task is to establish an architectural design and appropriate data structures to build

3
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tickets that can be used as authentication credentials, the solution shall include an op-
tion to verify and attest system integrity. Relying on the TCG’s attestation identity keys,
the tickets shall provide means to build pseudonymous identifiers that are tightly bound
to a single platform. As a consequence, this concept should increase security, as the
credentials cannot be copied and used on another platform. The binding of credential
tokens to a system’s hardware and state enables many use cases.

With the integration into an existing IDM system, such as Kerberos, the concept shall
show how trusted tickets can widely be applied. By building upon previous work and
research from Nicolai Kuntze and Dr. Andreas U. Schmidt, the solution shall push for-
ward the usage of trusted computing technology in business use. They showed a general
concept to establish transitive trust in mobile scenarios as well as the use of trusted com-
puting for user authentication. The previously published thesis from Barbara Fichtinger,
“Trusted Infrastructures for Identities” serves as a base for the establishment of trust be-
tween multiple identifier domains.

The decision to build upon trusted computing is based on a variety of reasons. First, with
the increasing deployment of the Trusted Platform Module by hardware manufacturers,
and the growing acceptance amongst software vendors and users, the trusted comput-
ing architecture is already deployed. As of today many laptops are equipped with a TPM,
the concepts can be applied to existing infrastructures with minimal costs. Furthermore,
as the TCG works on concepts for mobile devices to integrate the TPM functionality in
the form of a Mobile Trusted Module, new and different business cases can be enabled
using this technology.

The thesis provides a general overview of trusted computing concepts, as well as the ar-
chitecture and capacities of the TPM. A short introduction to IDM is given and shows
possible threats on existing solutions. Kerberos, chosen for the development of a real-
ization concept, is presented in detail. The developed concept is integrated into the Ker-
beros protocol, and a proof of concept implementation is given.

1.3 Outline

Chapter two provides an introduction to the concepts of trusted computing technolo-
gies. In addition to a detailed description of the Trusted Platform Module and its com-
ponents, the main ideas of AIK certification and system measurement and reporting are
discussed. Furthermore, existing software solutions are presented. The main concepts
were implemented as a framework in java during the course of this thesis. The ethemba
framework has a separate documentation, giving a technical description of the func-
tionality. The chapter concludes with a discussion of security threats and attacks on the
TPM.

Identity Management is presented in chapter three. Apart from the discussion of phys-
ical vs. digital identity, trust and privacy in the context of IDM are considered. The
following discussion of threats on IDM systems nourishes the need for an increase in
security.
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The fourth chapter presents two use cases, which make use of the synergistic combina-
tion of IDM and TC ideas. These use cases shall provide an overview of the potential
applicability of trusted ticket systems.

Derived from the use cases, chapter five discusses the requirements for the establish-
ment of a trusted ticket system. It is shown how trusted tickets can be generated and
how they are bound to the platform.

The concept for an integration into the Kerberos protocol is presented in chapter six. Be-
ginning with a description of the Kerberos protocol and possible security risks, the real-
ization concept of a Trusted Kerberos protocol is detailed. All three steps in the protocol
are described and conceptual details of the implementation are shown. The technical
description of the proof of concept implementation is given separately in the Trusted
Kerberos documentation in the annex.

Chapter seven analyses the concept, based on the previously discussed requirements
and threats. Mainly the topics of privacy and security are covered.

The conclusion given in the last chapter will summarize the main parts of the thesis and
provide an overview of possible tasks for future research.





Chapter 2

Trusted Computing

This chapter gives an introduction to the development and fundamental features of
Trusted Computing. The Trusted Platform Module is presented in detail and its com-
ponents are analyzed. Moreover, a brief description of software enabling trusted com-
puting technology is presented. The chapter finishes with a presentation of existing soft-
ware and a discussion of known security issues.

2.1 Introduction to Trusted Computing

As computer systems play nowadays a more and more important role in private and
business environments, the aspects of security and privacy are to be covered more thor-
oughly. With the growing presence of computer systems in ubiquitous environments
such as mobile phones, machine-to-machine communication and sensor networks the
need for an increase in security arises. On the other hand, the systems considered are
getting more and more complex. The enormous increase in system complexity inhibits
a formal verification of the whole system during the development. As a consequence,
other means have to be established to encounter the risks and dangers to which every
single system gets exposed.

In a networked scenario, where multiple instances communicate, it is important to de-
termine whether a communications partner can be trusted. This is the point where
Trusted Computing comes into play. First published by the US Department of Defense
in the context of Trusted Computer System Evaluation Criteria (TCSEC), also known as
Orange Book [52] a standard for the assessment and certification of computer systems
has been released.

2.1.1 Trusted Computing Platform

In order to establish the concepts from Trusted Computing, some changes to the hard-
ware have to be carried out to obtain a Trusted Computing Platform (TCP). It can be
achieved by adding hardware components, such as add-ons to the mainboard or by ex-
tending the capabilities of chipset and CPU. The Trusted Computing Group (TCG) shows
a possible solution in their specifications of the Trusted Platform Module (TPM).

7



8 2 Trusted Computing

2.1.2 Trusted Computing System

A Trusted Computing System essentially consists of the TCP combined with a Trusted Op-
erating System (TOS). The TOS, while not being explicitly specified, is way more complex
than the TCP. It has to include functions and concepts to transfer trust into the operat-
ing system and application level. A TOS can be built around a Trusted Kernel and trusted
drivers and applications. The ethemba framework [40] shows some progress in the con-
cepts of a TOS.

2.2 The TPM

As an implementation of a TCP, the TCG specifies the Trusted Platform Module (TPM)
[64]. The TPM is a passive hardware component providing several cryptographic func-
tions, a sealed storage and registers to store measurements of the system state.

In detail, the following capabilities are provided:

• key generation for asymmetric and symmetric cryptography
• signing and encrypting
• calculation of hash values
• key management and storage
• random number generator
• storage for system state measurements
• capabilities to sign and report system measurements
• operations to take control of the TPM, (de)activate the TPM

As the TPM is firmly bound to the system’s hardware, it provides a stronger binding than
other security tokens (e.g. smart cards) and thus allows for a direct identification of the
whole system. As every TPM has a unique identifier it is possible to identify the platform
via the TPM, whereas a smart card could be used on different systems thus allowing only
for personal identification of a user.

The TPM is specified as a passive element, so that it cannot influence by itself the boot
process or the operation of the system. The TPM has to be activated by the owner of
the platform, but it is possible to bind certain information to the TPM (e.g. keys for
an encrypted harddrive) so that applications or even the operating system will not start
unless the TPM is in a predefined state.
Currently TPMs are manufactured by various hardware vendors such as Atmel, Infineon,
Broadcom, Winbond and STMicro.
Several vendors provide software solutions that are based on or make use of the TPM,
mainly laptop, server and standalone PC manufacturers such as Lenovo, Acer, Asus, Dell,
HP, Sony, Toshiba and Fujitsu Siemens Computers.
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Figure 2.1: Components of the TPM

2.3 Components of the TPM

The components of the TPM can be divided into four logical units. There is an I/O unit
responsible for the communication over the LPC bus, the encoding and decoding of
messages as well as the routing of the messages to the inner components of the TPM
[65, 64].
The core is divided in three main groups, the cryptographic subunits and two storage
areas of which one is volatile and the other persistent. The figure 2.1 shows the units
and their contents.

2.3.1 Cryptographic engines

Each TPM provides internal functions for cryptographic functions that are performed
inside the TPM:

Symmetric Cryptography Engine The TPM can provide symmetric encryption for in-
ternal TPM use but is not supposed to expose those functions to general users of the
TPM. The symmetric engine is used to encrypt authentication information, transport
sessions and for the encryption of data stored outside of the TPM. The TCG specifies
only a Vernam one-time pad using 160bit as mandatory implementation. AES can be
implemented by the manufacturers.

HMAC engine The HMAC (keyed-hash message authentication code) is used to gener-
ate a MAC and is used to check the integrity of messages when the TPM communicates
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with the host system. A MAC is based on a cryptographic hash function and a secret. The
HMAC engine serves two distinct purposes. First, it ensures the integrity of messages
sent to the TPM to make sure that no modifications have been made to the command
during transit. Secondly, it is required to ensure that the sender of the command is au-
thorized. The session key of the current OIAP/OSAP session is compared to the key the
sender used.

SHA1 engine The SHA1 (secure hash algorithm) implements a cryptographic hash func-
tion that is primarily used by the TPM. It is considered a trusted implementation of the
hash algorithm. The functionality is exposed to the outside to support measuring dur-
ing the boot phase of the system and to allow hash calculations for systems with limited
resources. As the TPM is not considered a cryptographic co-processor, there is no mini-
mum throughput requirement for the SHA1 engine in the TPM specification.
The SHA1 engine is mainly used by the HMAC engine to generate MACs and in the pro-
cess of measuring system states using the PCRs. During the execution of a hash calcu-
lation, no other commands are accepted by the TPM. The output of SHA1 is 160 bits
long.

Random Number Generator (RNG) The TCG specification requires every TPM to pro-
vide a RNG. The RNG is the source of randomness for TPM operations, such as nonce
and key generation, and randomness in signatures. The RNG is based on a state-machine
that mixes unpredictable data and post-processes the data using a one-way function
such as SHA1. The goal is to provide a good source of randomness without the require-
ment for an external source of hardware entropy. The RNG can be seen as three entities,
namely: (1) an entropy source and collector, (2) a state register, holding the state of the
RNG and (3) a mixing function to add entropy to the RNG.
The state-machine has a non-volatile initial state with unpredictable random data dur-
ing manufacturing and can accept further data or entropy at any time. The TPM uses
system properties such as thermal noise, keyboard strokes or mouse movements to pro-
vide entropy for the RNG.
Using the TPM_GetRandom command, 32 random bytes are returned to the caller. They
can then be used as salt for software based random number generators, as they are nor-
mally much faster than the TPM’s RNG.

RSA engine The RSA engine implements the RSA algorithm in the TPM for encryp-
tion/decryption and digital signatures. The TPM provides support for 512, 1024, 2048
bit keys, where 2048 bits are the recommended key size. The provided functions can
be used internally and externally. Using the TPM_Sign command, arbitrary data can be
signed by the TPM.
The asymmetric de-/encryption of the TPM together with the Storage Root Key provide
the means to establish a key hierarchy. The RSA engine also generates secure RSA key
pairs using the RNG. The generated keys are then stored and protected in the key hier-
archy. Before a generated key can be used by the TPM, it has to be loaded into the TPM
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using the LoadKey command. Using this indirection prevents that the private part of the
key leaves the TPM.

2.3.2 Persistent TPM storage

The persistent TPM storage allows to store credentials that are not to be changed unless
the TPM is reset and a new owner is set.

Endorsement Key (EK) The endorsement key (EK) is a 2048bit RSA key pair. It is brought
into the TPM by the manufacturer into the non-volatile storage. The TPM can generate
the EK internally using the TPM_CreateEndorsementKey. Once an EK is generated, fu-
ture calls to this command will fail.
To assert that the EK has been generated by the authorized manufacturer, the EK certifi-
cate is generated. It contains information on the TPM model and manufacturer as well
as the public portion of the EK.
The two parts of the EK, public PUBEK and private PRIVEK are unique and allow for
identification of the platform. The PRIVEK may never leave the TPM, and the PUBEK
can be read by the TPM_ReadPubEk command. Due to its nature, both key parts have
to be considered sensitive in the context of privacy and security. The TPM_ReadPubEk
command therefore requires owner authentication.
To deal with privacy concerns, the EK cannot be used to sign arbitrary data. For this pur-
pose, an indirection is used by the introduction of AIKs that can be used for the genera-
tion of signatures. The EK is only used to decrypt the owner password in the TPM and it is
used to sign and decrypt messages during the AIK creation process.

Storage Root Key (SRK) The storage root key (SRK) is a 2048bit RSA key building the
root of trust for storage. It is generated inside the TPM during the TakeOwnerShip of
the TPM and stored in the protected TPM storage. The SRK is required to be held in the
internal storage and similar to the EK, the SRK may not be stored outside the TPM. Figure
2.2 gives an overview of the key storage hierarchy. The SRK is used to protect the key
hierarchy of externally stored keys and data by encrypting them.

Owner secret The owner authorization secret is the 160bit hash value of the owner
password, which is set during the TakeOwnerShip process. It is stored securely inside the
TPM and encrypted using the PUBEK. It is thus bound to the TPM which can decrypt the
secret when a command requires the owner authentication. The user is then asked to en-
ter the owner password and the TPM can internally compare it to the stored value. Upon
successful authentication, the command will be executed by the TPM.

2.3.3 Volatile TPM storage

The volatile TPM storage provides an area to store information which is discarded when
the system reboots.
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Key slots The TPM provides key slots which are used to load keys for cryptographic
operations such as signing and encryption tasks. If a key that is stored in the key hi-
erarchy (see section 2.3.5) is to be used by an operation it is first loaded into the TPM.
As all keys are encrypted with their parent keys in the key hierarchy, all required keys are
loaded subsequently. They are then used to decrypt the desired key inside the TPM. This
concept ensures that the private part of the keys is protected by the key hierarchy and
will not leave the TPM in plaintext. If a key is no longer used, it must be unloaded from
the TPM to free up space in the key slots.

Platform Con�guration Registers (PCRs) The Platform Configuration Registers (PCRs)
are 160bit storage registers for the integrity protection of system configuration measure-
ments. According to the specification [64] each TPM must provide at least 24 PCRs,
shielded inside the TPM. They are used to store SHA1 hash values of measured data
during system startup and runtime. In order to protect the integrity, it is impossible to
overwrite an existing PCR value. The specified usage of the PCRs is shown in table 2.1.
Each PCR is designed to hold an unlimited number of measurements, which is achieved
by the extend operation. All updates are hashed to the PCR using the equation 2.1.

PCRi new = SHA1(PCRi old || SHA1(data or file to be measured)) (2.1)

The extend function has two main properties: (1) ordering, so extend operations are not
commutative and (2) it is a one-way function. Thus it is impossible to calculate the input
of an extend operation from a given PCRi new value. To track the order of the extend

PCR index PCR value
0 CRTM, BIOS
1 Host platform configuration
2 Option ROM code
3 Option ROM configuration and data
4 IPL Code (usually MBR)
5 IPL configuration and data
6 state transition and wake events
7 host platform manufacturer control
8-15 to be used by the static operating system
16 debug
17-23 localities and dynamic operating system

Table 2.1: Usage of PCRs [58]

operations, a Stored Measurement Log (SML) is kept by the system. Whenever a program
or file is measured by the TPM and extended to the PCR, its hash value and the path
to the file is written to the SML. The SML can then be used to verify which programs
where started and the order in which they were called. The SML is used in the remote
attestation process as described in section 2.7.2.
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2.3.4 Command and Object Authorization

Every communication with the TPM has to be authorized. Therefore, a secure communi-
cation channel has to be established. The user has to provide a password to authenticate
and authorize. Every object (such as keys and commands) can be protected by a pass-
word, e.g. the owner secret.
There are two protocols to access the TPM:

OIAP The Object Independent Authorization Protocol allows to establish a communi-
cations channel that does not depend on the TPM object that will be accessed. It can
be used to prove knowledge of multiple authorization secrets associated with different
TPM objects. Once the channel is established, it can be used until it is terminated by
either the user or the TPM.

OSAP The Object Single Authorization Protocol is used to establish a communication
context to a single TPM object. Multiple commands can be given, but only one single
object inside the TPM can be targeted.

2.3.5 Keys

All keys are held in the in the TPM key hierarchy and protected by the Root of Trust for
Storage (RTS). A small amount of keys can be loaded into the TPM key slots and then be
used for signing and decrypting operations. All inactive keys are stored to an external
storage device. When they are stored externally, the keys are encrypted in a key hierar-
chy.

The SRK encrypts the first level of the hierarchy. Additional storage keys can be used to
establish new levels in the key hierarchy. Each key at level n is encrypted using the parent
key at level n-1. In order to access a key, the private part of the corresponding parent is
loaded into the TPM and decrypted inside it. This process has to be done recursively
until the SRK is reached. Finally, the key is then loaded into one of the TPM’s RSA key
slots. Thus the SRK provides the root of trust for storage for the keys. The private part of
any key will never leave the TPM and is thus never revealed to another entity.
The Key Cache Manager is responsible for the management of the key slots and builds
an interface to the external storage.

There are two main key attributes defined by the TCG, migratable or non-migratable. A
non-migratable key cannot be transferred from one TPM to another. This attribute is set
during key creation and cannot be altered. A typical example of a non-migratable key is
an AIK. They cannot be moved to another TPM.

The EK and SRK keys are embedded in the TPM and cannot be removed from the TPM.
However, a new SRK is created during the TakeOwnerShip process. When a new SRK is
created, all data encrypted with the old SRK will be rendered inaccessible.
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Figure 2.2: Architecture of the TPM key hierarchy [65, p. 17]

In [65] 7 distinct key types are specified, each of them defining different restrictions on
the usage of the keys.

Signing Keys can be migratable or non-migratable and are general purpose asymmet-
ric keys used to sign application data and messages.

Storage Keys are another type of asymmetric general purpose keys, used to encrypt
data or other keys that are stored outside the TPM.

Endorsement Key is the unique identifier of the platform. It is non-migratable and
used to decrypt the owner authorization data and decrypt messages during AIK creation.
It cannot be used for encryption or the signing of arbitrary data.

Binding Keys can be used to encrypt data on one platform to be decrypted on an-
other.

Legacy Keys are created outside the TPM and can be imported to be used for signing
and encryption. Legacy Keys are always migratable

Attestation Identity Keys (AIK) are non-migratable 2048bit RSA keys that are dedi-
cated to sign data that originates from the TPM and can not be used to sign user sup-
plied data. AIKs are used in the attestation process to sign PCR register values in the
TPM quote. They provide a possibility to authenticate the TPM without revealing the EK
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and thus the real identity of the platform. An arbitrary number of AIKs can be generated.
As key generation has to take place inside the TPM and takes quiet a long time, the TPM
generates up to eight AIKs when it is idle.

2.3.6 Certi�cates and TPM Credentials

There are five different credentials defined by the TCG. They are expected to be in the
form of ASN.1 certificates:

• EK credential
• Conformance credential
• Platform credential
• Validation credential
• AIK credential

The relationships and details of the TPM credentials can be seen in figure 2.3 on page
16.

EK credential Issued by the vendor or manufacturer who generates the EK. The EK cer-
tificate is used to claim that the EK was properly created and that it is embedded inside a
valid TPM. It is to be noted that the PUBEK is privacy sensitive as it allows to identify the
TPM and thus the whole platform. As the PUBEK is included in the EK credential, the
credential is to be considered privacy sensitive, too. It is used during the request of an
AIK certificate and presented to the Privacy CA (PCA). In section 2.6 a detailed descrip-
tion of the AIK certification process is given.

Conformance Credential After evaluating the TPM or the platform containing the TPM,
either by the vendor or a third party, the conformance credential states that the TPM
implementation is compliant to TCG guidelines.

Platform Credential Issued by the platform manufacturer, this certificate identifies the
platform’s manufacturer, describing platform properties. Thus the Platform Credential
can be considered privacy-sensitive as it refers to a single platform configuration.

Validation Credential Third party components such as processors, video adapters, mem-
ory controllers, etc. can be provided with reference measurements from a clean-room
environment. These reference measurements can then be compared to the actual run-
time measurements of the components so changes to the components can be detected.
The vendor signed reference measurements are the Validation Credentials.

Attestation Identity Credential The Attestation Identity Credential is used to attest the
private part of an AIK. When a new AIK is created in the TPM using the TPM_MakeIden-
tity command, a request for certification is sent to a PCA as trusted third party.
The request includes the public part of the AIK, the EK and the platform credential and
it is signed using the PRIVEK. After checking the given credentials, the PCA issues a cer-
tificate for the AIK, stating that this AIK is held in a shielded location inside a compliant
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Figure 2.3: TPM credentials and their relationships. [65, p.14]

TPM. As the PCA is the only entity that gains both pieces of information, the public AIK
and the EK credential, the PCA is able to link the platform’s real identity to the AIK.
The TPM can create an arbitrary number of AIKs, thus it is possible to register an unlim-
ited number of pseudonymous identities, represented by certified AIKs. These pseudony-
mous identities can only be resolved to real identities by the PCA, and not by any other
external party.

2.4 Data Binding

The Tspi_Data_Bind operation [67, p.363] is used to encrypt data using the public por-
tion of a TPM stored key. The encrypted data can later be decrypted with the TPM using
the Tspi_Data_Unbind operation.
As the private part of the key used for encryption is not released by the TPM, it is guaran-
teed that the data can only be decrypted on the platform hosting the TPM. Data binding
can be used to encrypt data without a TPM, e.g. by external applications, to encrypt mes-
sages in a way such that only the targeted client platform can decrypt it (see server.Ex-
ternalDataBinding in ethemba [40]).
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2.5 Data Sealing

The Tspi_Data_Seal operation [67, p. 299] can be used to encrypt data such that it can
only be decrypted using the unseal operation (Tspi_Data_Unseal) of the TPM. The data
is encrypted using the public portion of a TPM stored, non-migratable key.

In addition to the data encryption, the sealing of data allows to include a statement
about a PCR configuration the platform must be in to decrypt the data. Thus it is as-
sured that the data will be revealed only if the platform is in a predefined state.
The seal operation can be used to protect authentication keys. For example, if a file is en-
crypted using key k, sealing this key k to a set of PCR values ensures that this file can only
be read when the system is in the desired, trusted configuration.

2.6 AIK Certi�cate Provisioning

If the client wants to certify an AIK using a PCA as trusted third party, the client first cre-
ates a new AIK using the TPM_ActivateIdentity command. The TPM then generates a
IdentityRequest, including the public AIK and the EK certificate. The contents are en-
crypted using the PCA’s public key. The PCA server’s public key can be provided by a PKI.
This ensures that only the trusted PCA can decrypt the request contents.

Figure 2.4: Flow of the AIK Certification Protocol [40, p. 13f]
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In order to ensure that the AIK is stored in a real TPM, the PCA generates a random nonce
and encrypts the nonce with a symmetric session key. The symmetric session key is en-
crypted using the EKPUB, provided in the EK certificate. Only the TPM, that is in pos-
session of the EKPRIV is able to decrypt the session key (using the TPM_ActivateIdentity
command) and thus the nonce. Then, the nonce is sent back to the PCA.

Omitting this step enables several attacks on the certification process as stated by Gür-
gens and Rudolph in [26]. There would be no reliable connection between the infor-
mation about the EK of the TPM platform and the given AIK. As a consequence, an at-
tacker who gets hold of the EK and the credentials would be able to request certificates
for keys generated outside a TPM. This could lead to either a DoS attack on the PCA or,
given the PCA has established quota policies for certification, to an invalidation of the
TPM.

Upon receipt of the nonce, the PCA

1. checks the nonce
2. verifies the EK and platform credential
3. generates the AIK certificate cert(AIK,PCA)
4. generates a symmetric key K
5. encrypts the cert(AIK,PCA) with K
6. encrypts K using the EKPUB

The client can then decrypt K using the TPM_ActivateIdentity command, which is in
turn used to decrypt the cert(AIK,PCA). The process as described by Gürgens and Rudolph
[26] and implemented in ethemba is shown in figure 2.4. A more technical description of
the implemented protocol can be found in the ethemba documentation [40].

2.7 Integrity Measurement and Reporting

The process of integrity measurement and reporting is an integral part of the TPM speci-
fications as it allows to prove a platforms integrity to a third party. This enables the estab-
lishment of a trust relationship between the challenger and the attesting platform.

2.7.1 Measuring the System State

One of the most important concepts of a Trusted Computing System is the generation of
a chain of trust. The chain of trust must be without gaps and extend from system boot up
to the current system state. All executed instructions and programs must be included.
Therefore every component is required to measure and report the following component
before executing it. The measurement of the direct successor prevents unmonitored ex-
ecution of code between the measurement and the actual execution.

This can be achieved by the generation of integrity measurements using the TPM. As de-
scribed in [57, 29, 44, 48] hash values are calculated using the extend operation (see sec-
tion 2.3.3) and stored securely in the PCRs. These measurements alone do not provide
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the means to assess a system state. In addition to the measurements, a Stored Measure-
ment Log (SML) is generated. Every measurement gets logged to the SML. The SML to-
gether with the measurements allows for a later verification of the chain of trust.

Figure 2.5: Chain of Trust as described by [65]

As a base for the iterative generation of measurements, it is essential to implement a
hardware root of trust, the Core Root of Trust for Measurement (CRTM). Normally im-
plemented as an extension to the system BIOS, the CRTM contains the first instructions
after system start and is able to measure the components that are involved in the system
boot. The CRTM can initiate the chain of trust from the BIOS to the MBR.

Figure 2.6: Concept of Trusted Grub [58]

The establishment of transitive trust relationships allows to extend the trust boundary.
The chain of trust can be divided in two parts, a static and a dynamic chain of trust. The
static part is specified by the TCG and is platform and OS independent. As soon as the
OS is loaded, it is the responsibility of the OS to continue the chain of trust in a dynamic
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way. Several concepts for the extension of the chain of trust exist, such as AEGIS, Copilot,
Trusted Grub, IBM IMA [1, 53, 54, 29].

Trusted Grub can be used as gateway between the MBR and the OS. As an enhanced
version of GRUB, Trusted Grub allows to measure the stages of the bootloader as well as
the initial ramdisk of the OS to be loaded. Thus, Trusted Grub is used to close the gap
between the static root of trust and the operating system [44].

Developed by IBM Research, the Integrated Measurement Architecture (IMA) [57] allows
to extend the measurements to the runtime of the OS. IMA measures every executable
instruction upon first load and is implemented as a Linux Security Module in the kernel.
Thus, every executed file is measured only once. The SHA1 hash value of the file or pro-
gram is calculated and stored inside PCR 10, using the extend operation from equation
2.1, to provide an integrity protection of the SML. Due to the nature of the extend opera-
tion, the measurements are ordered, i.e. alterations in the load sequence will result in a
different PCR value. Additionally, the measurements are written in plain text to the SML,
an example is shown in listing 2.1.

10 9797edf8d0eed36b1cf92547816051c8af4e45ee boot_aggregate
10 ea8239dfed9dd11bd538f9c3234e0d7b71672fff /bin/sh
10 ebb4f3db0b83c1e717e3d05f702e4608a9c2ea08 /lib/ld-linux.so.2
10 671aba5cb6df951463e57c963e8c327fc6cfb5ab /lib/libcrypt.so.1
10 445babe91e586090cb7f9782b44ba115ceec6b7f /lib/libm.so.6
10 411ab19e995e06b1d7378e1daea9926ccba1ea20 /lib/libc.so.6
10 68b297cd8fe07a3e54e6ce9d2e66afa799e472a3 /sbin/depmod
10 407285ba377ea035f2ff6d61c47ead8befa7cd5f /sbin/modprobe
10 b3f9dc0a1cc001f88d43609c7dea156d280deca8 /sbin/udevd

Listing 2.1: Example of first lines of a SML generated by IMA

As the IMA module measures every executable only once when it gets first loaded, IMA
does not provide a realtime measurement of the system state. The SML makes only the
statement that a certain application with the specified hash value has been executed but
it does not provide any runtime information.

2.7.2 Reporting and Attestation

Validation and attestation of the system state plays an integral role in TC concepts. It
allows to prove a platform’s integrity to a third party and thus enables the establishment
of trust between the two parties. The often cited statement that the Trusted Computing
Platform ensures system integrity must be considered incomplete. The TCP provides
means to measure and report system integrity measurements. In order to make a state-
ment about the system state it is essential to assess the generated measurements. This
has to be accomplished by an additional entity that is able to compare the given mea-
surements to reference values.
The TCG has defined the two attestation mechanisms of remote attestation and direct
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anonymous attestation of which a detailed analysis is given in [7, 48, 57, 56],[47, page
55ff].

Remote Attestation with PCA

In the Remote Attestation protocol, the user can attest platform integrity to a verifier.
The system state will be reported by a message containing a signed statement of PCR
values and the SML. The external verifier will then have to compare the provided data to
predefined configuration measurements.
The user has to generate a certified AIK (see section 2.6) that will be used to sign the PCR
values describing the system state. This AIK with the certificate provides the proof that
the integrity measurements were calculated by a TPM.
Firt, the verifier creates a random nonce and sends it as a challenge to the user. The
nonce is used as a replay protection and provides a statement of freshness for the signed
PCR values. Using the TPM_Quote command, the PCR values and the nonce are signed
with the AIK.

The signed structure is then sent together with the SML to the verifier who is able to
check (1) the freshness of the statement, (2) the integrity of the reported measurements
and (3) the trustworthiness of the executed programs as listed in the SML. By verifying
the AIK certificate and the signature on the PCR values, the verifier can be sure that the
measurements were calculated by a certified TPM and have not been altered.

Figure 2.7: Protocol of the Remote Attestation Protocol [40, p. 17f]

In order validate the platform’s integrity, two steps are necessary: First, all entries in the
submitted SML are compared subsequently to reference values for the given programs
or files. Therefore the verifier has to keep and maintain a database of reference mea-
surements. If an entry from the SML cannot be found in the reference database or if the
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reported value in the SML differs from the reference value, the platform must be consid-
ered compromised. This will be the case if a program has been changed, e.g. by a virus,
or if a malicious software has been loaded.

As a second step, a virtual PCR (vPCR) is initialized with zeroes and then extended (using
equation 2.1) for all entries in the SML. By comparing the calculated vPCR to the signed
value reported by the platform it can be verified that the programs listed in the SML have
indeed been executed.
The protocol has been implemented in the ethemba framework [40]. In the documenta-
tion of ethemba, a detailed technical description of Remote Attestation is given.

Relay attack on Remote Attestation Stumpf et. al. [62] show a possible relay attack on
the remote attestation protocol. The attacker needs to be in control of a malicious and
an honest client. He can then forward all attestation queries from the malicious to the
honest client reporting a trustworthy state. The response from the honest client is then
forwarded to the challenging verifier. This attack is based on the properties of the AIKs
used to sign the reported values. To respect privacy, the AIK is not directly linked to the
EK and thus does not contain enough information to uniquely identify a single system.
It is proposed to create a shared session key that will be used for the encryption of the
following communication.

Time-Of-Check vs. Time-Of-Use attack As the current architecture only provides
loadtime guarantees the attestation is prone for other attacks. Every program is mea-
sured at load time and it is assumed that the code won’t change once loaded into mem-
ory. If an attacker successfully exploits this time gap he might be able to introduce run
time vulnerabilities. This could be achieved in many ways, e.g. by using a malformed
input to a program leading to a buffer overflow and thus to further code execution that
is not measured. This problem is more thoroughly discussed by Bratus, Sparks et. al. in
[4]. They propose to modify the MMU to “seal” memory objects, so that the TPM can
become aware of changes in memory.

Direct Anonymous Attestation

Introduced in the TPM specification version 1.2, Direct Anonymous Attestation (DAA)
aims to increase the level of privacy [7], [20, page 30f].

DAA is a cryptographic protocol, relying on group signatures, that prevents identifica-
tion of the signer but provides the possibility to detect rogue TPMs.
Three entities are involved in the protocol: the TPM platform, the DAA issuer and the
DAA verifier. If the platform wants to perform an attestation, first the DAA issuer has to
sign a new key pair generated by the TPM. This can be done by the TPM manufacturer or
the distributor. The DAA issuer checks the platform’s EK credentials before signing the
DAA key.
During attestation, a new AIK is generated and signed with the DAA key. This AIK is used
to sign the PCR values needed for attestation. Using a zero-knowledge proof, the DAA
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verifier checks that the platform possesses the DAA key without the need to reveal the
key to the DAA verifier.
The idea is to increase privacy by letting the DAA issuer gain knowledge about the plat-
form identity and the DAA key, whereas the DAA verifier only knows the AIK. Thus, even
if DAA issuer and verifier work together, it is impossible to link two transactions if two
AIKs are used.

Flaws in Privacy Protection in DAA Leung et. al [41] discuss a possible privacy flaw
in the DAA protocol. The DAA issuer can include covert identity information into the
DAA key certificate. Thus, colluding DAA issuers and verifiers could be able to link to
one another and identify the platform.

2.8 Selection of existing Software

The following section gives a brief description of existing software packages that have
been assessed and used during the course of the diploma thesis. It shall provide a brief
overview of available software and reflects thoughts and experiences gained in the prac-
tical work. A more in depth discussion and technical description is given in a report from
BSI [59].

2.8.1 Trusted Software Stack (TSS)

As the TPM provides only a small amount of storage and computational power, inter-
faces and capabilities of the TPM are quiet unhandy. Therefore the TCG defined the TSS
[67] to provide high level access to TPM functions. The TSS consists of multiple layers
that are shown in figure 2.8.

2.8.2 Trousers

Trousers is a open source TSS written in C/C++. It is available at http://trousers.
sourceforge.net/ and provides the TpmTools, a software collection implementing
some basic TPM commands. It is noted here for reference but has only been used to test
the functionality of the TPM emulator during the course of this thesis.

2.8.3 TPM/j

TPM/j has been developed at MIT and provides an object oriented API in Java for TPM
access. It is available at http://projects.csail.mit.edu/tc/tpmj/. Although
TPM/j provides an easy to access interface to the TPM in Java, it does not claim to be
a complete implementation of the TCG TSS. The development seems to be suspended,
and the latest release is from April 2007. It was first used as a base for the ethemba frame-
work. The use of TPM/j can not be encouraged due to the lack of some fundamental
TPM functions such as TPM_CertifyKey.

http://trousers.sourceforge.net/
http://trousers.sourceforge.net/
http://projects.csail.mit.edu/tc/tpmj/
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Figure 2.8: The Trusted Software Stack [67]
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2.8.4 jTSS

Developed in the course of the EU OpenTC project at IAIK Graz, the jTSS aims to im-
plement a complete and compliant TCG TSS in Java language. It is under steady de-
velopment and builds the base for the ethemba framework. It is available at http:
//trustedjava.sourceforge.net/, recently version 0.4 has been released. A wrap-
per for the previously mentioned Trousers TSS is available allowing for coexistence of
C/C++ and Java based TPM software.

2.8.5 jTpm Tools

Stemming from the jTSS project, jTpm Tools aims to provide a set of command line tools
to access the TPM. Some parts of the jTpm Tools were integrated and reworked for the
development of ethemba [40].

2.9 Security Aspects

In addition to the previously mentioned attacks on the DAA and Remote Attestation pro-
tocols, the increasing use of TPM technology leads to the exploration of further attacks
against the TPM.

2.9.1 TPM Reset Attack

Kursawe et. al present a ’Reset Attack’ [39], a method to reset PCR values. This attack
leads to default PCR values, which can be exploited by an attacker to produce arbitrary
PCR values. As the PCRs are intended to provide integrity protection for the SML, these
values can be constructed such that a remote attestation might succeed even if the SML
has been tampered.

Evan Sparks provides evidence for this attack [61] and shows a video of the attack on his
website [19]. Connected to the system over the Low Pin Count Bus (LPC) the TPM can
be reset by connecting the LRESET pin of the LPC bus to ground. This attack requires
hardware access to the TPM and the TCG does not claim to provide protection against
hardware attacks. As some TPM application scenarios assume that the TPM operates in
a hostile, uncontrolled environment, one must be aware of this possible attack.
The physical access to the LPC, which is a key requirement for this attack, will become
more and more difficult with the increasing integration of the TPM in other components
such as chipsets (e.g. Broadcom integrates a TPM in an ethernet controller [8]).

Bernhard Kauer [32] advises to use a dynamic root of trust for measurement (DRTM).
The DRTM removes the BIOS and boot loader from the chain of trust. By making use of
modern processor technologies, the CPU executes a small secure loader which is mea-
sured into a reset PCR 17. The TPM can distinguish between a reset and a DRTM since
a reset would initialize PCR 17 with ’1’. Thus, the hash of the secure loader can only
be put into PCR 17 by the atomical CPU operation. He implemented the Open Secure

http://trustedjava.sourceforge.net/
http://trustedjava.sourceforge.net/
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Loader (OSLO) to show how this concept is supported by processors from AMD and In-
tel.

2.9.2 Cross Certi�cation Vulnerability

If a user calls the TPM_CertifyKey command to obtain a certificate for a key k using AI Ks

as a signing key, the attacker intercepts the command and replaces the key handle and
HMAC parameters for k with those for a key ka he owns. Thus the TPM generates a
certificate for the attacker’s key ka using the legitimate user’s signing key AI Ks . Sigrid
Gürgens et. al discuss this attack in more detail [27].

2.9.3 MITM Replay Attack on TPM Authorization Sessions

Danilo Bruschi [10] shows how a MITM attack can be mounted on authorization ses-
sions. The attacker intercepts an authorized OIAP command session and stores the au-
thorized commands. Then a reset message is sent to the user, telling him that the session
ended. By replaying the captured packages when the user reconnects the attacker might
overwrite TPM protected resources. As the attacker does not get hold of any authoriza-
tion secrets, he is not able to execute arbitrary commands.

2.9.4 Platform Reset Attack

Also known as cold boot attack, this side channel attack relies on the fact that data stored
in volatile memory remains readable for a small amount of time after the system power
has been removed. The attacker needs physical access to the platform. He then powers
off the platform and immediately powers it on again. The attacker loads a small system
using a CD or USB boot media to immediately dump the memory contents. The memory
dump might reveal encryption keys or other secrets, depending on the system state at
the time of shutdown.

2.9.5 O�ine Dictionary Attack on Authorization Data

Another attack is presented by Liqun Chen and Mark Ryan [11]. They present how an
offline dictionary attack can be driven by targeting the user chosen passwords which
can be weak. Once broken, the passwords allow an attacker to unbind data or migrate
keys.This attack requires the attacker to observe the TPM data flow, e.g. it is not possible
to gain access to data on a stolen, switched-off laptop. If strong authentication pass-
words are used for TPM keys, this attack is rendered improbable.

2.9.6 Timing Attack

Evan Sparks [61] also discusses a possible Boneh-Brumley timing attack [9] on the TPM.
Boneh and Brumley measured the time cryptographic operations take and were able to
extract private keys from an OpenSSL based web server. Sparks used high resolution
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timing samples of TPM operations. By analysing the required time for TPM_Seal opera-
tions he claims that it would be possible to ’guess’ a private key bit by bit. He states that
the attack requires about 2100 timing samples and thus needs an overall time of about
40 days to complete. No practical evidence of this attack is given.





Chapter 3

Identity Management

3.1 Introduction to Identity Management

With the increasing relevance of the internet, the use of network oriented services en-
ables new business models. Relationships between business owners and customers are
shifting from physical to software based relationships. By using electronical means, cus-
tomers can access a wide variety of services.

In both business models, physical and digital, the customer has an identity. A real life
identity consists of all attributes that belong to that individual person, e.g. name, ad-
dress, date of birth, health status and so on. This identity is split into multiple, partial
identities containing only a subset of the attributes. The different partial identities are
distributed among different consumers of the identity data.

Every individual has multiple partial identities in real life. For example a partial iden-
tity presented towards a bank will contain the name, address, account number and bal-
ance. The partial identity of the same individual towards the health insurance might
include information about the medical state as well as the name and address. This
separation of data by assigning subsets of attributes to the identities shown to other
parties allows to provide every partner with the information needed to provide the ser-
vice. On the other hand it allows for the selection of the attributes to disclose to another
party.

In general Identity Management (IDM) deals with the aspects of creation, usage, man-
agement and possible destruction of digital identities [69]. In the context of IDM, digital
identities remain not limited to persons but are extended to resources, machines and
services. As these identities play an important role in emerging business processes it is
necessary to provide an infrastructure which supports the management of digital iden-
tities throughout their whole lifecycle. With IDM it is possible to establish trust domains
inside which all participants can trust each other. By providing an appropriate creden-
tial, e.g. sufficient identity attributes, an individual can enter the trust domain. As an
example consider an online-shop which requires users to register with a real name and
address to enter the trust domain of customers.

29
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3.2 Identity, physical vs. digital

In traditional scenarios trust is based on the fact that the participants know each other,
e.g. because they belong to the same company. As the customer-business relation shifts
from physical to electronic means it is necessary to develop and establish new ways of
trust relationships between enterprises and their customers.

The usage of internet based services increases the number of identities, represented by,
e.g. different accounts for mail, online-shops, auctions and so on. This enables the user
to select which information to provide to create such partial identities and depending
on each situation the appropriate identity can be used to reveal only the necessary in-
formation to the service provider. To keep track of all partial and distributed identity
related information, the importance of IDM grows.

In general, IDM covers several aspects:

• Trust is linked to a set of identity credentials, allowing an individual to be part of
a trust domain.

• Anonymity and pseudonymity play an important role in IDM. The level of identity
needed for a relationship in a trusted domain has to be considered.

• Authentication is needed to prove that a claimed identity really does belongs to
the agent. Examples are passwords, biometric devices or smart cards.

• Authorization describes the process of either granting or denying access to a cer-
tain service or resource.

• Integrity ensures that a message cannot be changed once it has been sent.

• Non-repudiation has to be ensured, this means the evidence for the existence of
a certain message is given.

Several use cases of IDM can be imagined and are currently being widely promoted. In
most web based services, the user needs to sign in for an account in order to access
the service. This implies the need for an account management on behalf of the service
provider. In an IDM scenario, the provider only has to take care of the authorization and
has to establish a trust relationship to an identity provider. The client retrieves a ticket
incorporating his identity from the identity provider. He then uses the obtained ticket
and presents it to the service provider without the need of an additional registration.
This lowers entry barriers for users who want to access the service.

3.2.1 Identity Claims

In general, the following steps are performed when an individual (the user) wants to
access a service (provided by the server):
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1. First, the user chooses the partial identity he wants to use to access the service.
This association of the digital credentials and the individual is the identification
phase. The user claims to be in possession of several attributes connected to the
identity. This claim is targeted towards the Identity Provider (idP) as a third party
authority.

2. In the second phase, the authentication phase, the individual provides a proof
of possession of this identity by submitting data to the idP. The idP then issues
an assertion to back up the user’s claim, authorizing the user to make use of the
claimed identity.

3. The authorized identity claim is then presented to the service provider (SP). Thus,
the SP is not required to rely on the user’s claim alone, but can rely on a third party
assertion from the idP. The SP can rely on this assertion because he can expect that
the idP has verified that the claimed identity is owned by the user.

As the SP trusts the idP’s verification process for claimed identities, a chain of trust is
formed. This shows that the user is trusted indirectly by the SP based on the user’s rela-
tionship with the idP.

For the idP to make assertions on claims about user’s identities to service providers,
the SPs have to establish a trust relationship with the idP. The identity provider medi-
ates trust between the individual and the service provider. In this centralized concept,
service providers obtain user information from the identity provider. This reduces the
amount of trust relationships that have to be established.

Trust relationships can be established by the exchange of attributes during the authen-
tication process, e.g. a username and a password. To authorize an individual to en-
ter the trust domain a token is issued to the individual after successful authentication.
The tokens used for authentication and authorization are called credentials. In exist-
ing IDM solutions such as Kerberos, these credentials are embodied in software tick-
ets.

3.2.2 Trust

As mentioned beforehand, the establishment of trust in digital identities plays a fun-
damental role in IDM. Trust, the “assured reliance on the character, ability, strength, or
truth of someone or something”, as defined by Merriam-Webster [30] is always based on
the assessment of evidence and the sum of experiences of prior interactions.
Trust can be laid in individual persons and things such as computers, to behave in a par-
ticular way without the ability to enforce or monitor this behaviour beforehand.
This definition of trust introduces the willingness to take risks, especially when the other
party does not behave as expected, or as stated by McKnight et. al in [45]:

“...the extent to which one party is willing to depend on the other party
in a given situation with a feeling of relative security, even though negative
consequences are possible”
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In digital environments trust can be established by providing attributes that are related
to an individual’s identity. Depending on the use case a predefined set of attributes, e.g.
name, age, gender, etc. is required to enter the target trust domain.

As an example, consider an online shop who asks users to enter address and bank ac-
count data. The business owner has to trust that the buyer will pay and therefore re-
quires the user to provide data to make him accountable. On the other hand this exam-
ple shows the concept of mutual trust. The user “trusts” the online shop provider to pro-
tect his data. Although he can not monitor further usage of data he supplied, he relies on
assertions made by the online shop, often published as privacy policies.

This example shows that under given circumstances trust can be mutual, but by itself,
trust is not symmetric. Given the fact that A trusts B does not provide that B has to trust A.
Another property of trust is its transitivity. If A establishes trust in B and B trusts C, A may
trust C. This is a key property for the establishment of trust chains.

All participating entities that trust each other form a domain of trust. By transmitting
authentication data an agent can enter the domain of trust of a principal. As a second
factor to authentication, an attestation of the system can be provided. This attestation
should provide a statement on the system’s integrity in terms of unmodified software or
hardware. Within this combined authentication and attestation, the agent’s trustworthi-
ness can be confirmed, thus making a statement about the agent’s identity and its state.
A more in depth trust model for identity management scenarios is given in [15].

3.2.3 Privacy

Anonymity and pseudonymity play an important role in the context of digital identity
management. While in anonymous service access no information about the user’s iden-
tity is unfolded, pseudonymous access allows the use of services without revealing the
real identity. Pseudonymous access still allows to perform accounting processes by the
service providers as well as the establishment of local user profiles that are not necessar-
ily related to the user’s real identity.

To establish a trust relationship the individual has to disclose a certain amount of iden-
tity attributes. As every communication requires another level of individual informa-
tion, this should be supported by IDM systems. In general, the user has to supply a lot
of personal information to the identity provider. The identity provider can then reveal
the data to the service providers. Worries about privacy concerns are to be considered
in this context.

Privacy laws and regulations are established to protect user’s data, such as the European
Data Protection Directive for the EU. If an IDM system used by a company fails to protect
privacy, the company will face legal liability, a damaged reputation and a loss of trust.
In this context the security of communication and transactions has to be considered in
depth, as the picking of unique properties, such as an uncommon name, geographic
information or health status information can lead to the linking of a digital identity to
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identifiable personal data.
Privacy policies have to be established to control the usage and spread of identity re-
lated information and inform the user about it. They represent a mutual agreement on
how the information is stored, distributed and deleted between the user and the identity
provider.

3.3 Threats

With the shift from physical present identities to digital identities, attacks have changed,
too. Criminal’s targets have moved from money to information about the user’s digi-
tal identities. Capturing this information can allow an attacker to impersonate some-
one else. This attack is called identity theft and is often the first step to commit further
crimes under the name of someone else. Thus the security of IDM systems is of special
concern.

3.3.1 Stealing of Authentication Data

For the security of IDM solutions it is essential to provide protection of the authentica-
tion data. If an attacker is able to get hold of the authentication data, identity theft can
easily be committed and often even without the user’s notice. Several attack forms exist
which aim at stealing the authentication data.

Phishing attacks

One of the most prominent forms is the phishing attack. To authenticate the user, the
identity provider uses a login form, prompting the user for his credentials. An attacker
can rebuild the original login form of an identity provider and direct the user to this
forged page. Believing that he logs into his identity provider, the user enters his authen-
tication data, e.g. password and username. The page is prepared in such a way that the
login information is directly forwarded to the attacker who can then exploit the authen-
tication data. Phishing attacks are widely used by criminals to gain access to the authen-
tication data of online services such as eBanking, online shopping, mail accounts that
are then abused to send spam mails, etc..

With the use of centralized IDM solutions, an attacker can shift focus to one single point
of attack, instead of targeting multiple services. This increases the need to protect IDM
solutions with reliable security measurements that help to prevent phishing attacks.

Several options can be considered to counteract on the stealing of authentication data.
As they focus on the protection of the authentication data they can be used in most IDM
solutions but are not limited to this use. Some of the solutions include the use of two-
factor authentication with additional security tokens. The authentication data is divided
in a thing the user knows (e.g. the password or a PIN code) and something the user has
(e.g. USB security token, smart card, fingerprint).
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Another option to prevent this attack is the mutual authentication. Before the user pro-
vides his authentication data, he challenges the identity provider to prove its identity. As-
suming that an attacker is not in possession of the secret needed to answer the challenge
correctly, the user will not provide his authentication data to an attacker.

3.3.2 MITM Attack on the Authentication Process

While being effective against phishing attacks or similar ways that aim to get the authen-
tication data, the methods mentioned above might not hold for a Man-In-The-Middle
(MITM) attack. The attacker performs an active eavesdropping. He captures all network
traffic between the user and the server the user authenticates to and relays it between
them.

To mitigate MITM attacks a secure channel between the participating parties has to be
established. This can be achieved by public key infrastructures or strong mutual authen-
tication mechanisms. Ensuring end to end data integrity can play an important role in
the prevention of MITM attacks that rely on the attacker’s ability to change the inter-
cepted data before relying it.

3.3.3 Compromised Machine

As IDM is not solely related to the management of real person’s identities but can be
leveraged to manage identities of devices, the danger of compromised hardware comes
into play (e.g. the use case in section 4.1).

When IDM is used to manage devices such as set-top boxes, mobile equipment or sen-
sors, an attacker who exploits design flaws and compromises the device can bypass re-
strictions, modify sensitive data or gain access to services without paying for them. A
possible scenario is the change of a firmware in set-top boxes for digital television to ac-
cess copyrighted material. An attacker could change the firmware of the device, allowing
him to retrieve media at no cost without a valid subscription or recording it to external
devices.

Ideally an IDM system should be able to detect such misbehaving devices and disal-
low the access to the network by denying the identity assertion necessary to access the
service. Therefore the identity provider must be equipped with means to verify a sys-
tem’s internal state in a way such that a reliable statement on the trustworthiness can be
made.

3.3.4 Building Identity Pro�les

In addition, the spread of different, somehow loosely linked partial information leads to
certain risks. As users tend to use same login information when registering with differ-
ent services, gathering and linking pieces of information contained in different identities
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can lead to a complete profile of an individual. This poses huge privacy concerns and po-
tentially enables further attacks such as identity theft where an attacker obtains enough
key pieces of personal information to impersonate someone else [42].





Chapter 4

Use Cases for a Trusted IDM

In this chapter I am going to present two use cases using IDM that can be enhanced
using TC technology. Wherever suitable I will give references to the chapters describ-
ing (partial) implementations and to chapters deriving requirements from these use
cases.

4.1 Automatic, Distributed Provisioning of Software to Networked Devices

This use case presents a way to provision a new software (e.g. a firmware-update) to a
predefined set of standalone devices running the same configuration (e.g. set-top boxes)
over a network. In such an environment there are always clusters of devices that are
located very closely. Communication between the devices in a cluster can be considered
cheap, whereas communication between a single device and a centralized server must
be considered expensive.

The goal is to allow for a secure, trustworthy but still inexpensive way to distribute soft-
ware through the networked devices. In every cluster, a designated device will provide
the software locally. The concept is shown in general in figure 4.1. As shown, there can be
sub-clusters, allowing for a finer grade of locality based distribution.

4.1.1 Environment

The operator O of the set-top boxes wants to deploy a new software to all devices. There-
fore, the operator establishes at least one initial, trusted software distributor, referred to
as S0. A second trusted instance is needed to provide the IDM functionality, referred to
as Identity Provider idP0. The idP0 and S0 are usually managed and provided by the op-
erator. Thus they are considered trusted in this environment. The idP0 and S0 can be
operated by other parties. They must then establish a trust relationship with the opera-
tor via external legal contracts.

The operator generates a Reference Integrity Measurement (RIM) for the new software,
this is the SHA1 hash of all new software components. The RIM is then transferred in a
secure manner to the idP0. The idP0 has a database of the old measurement value (RIM’)
and the new RIM. Every device can report its current state, the so called Target Integrity

37



38 4 Use Cases for a Trusted IDM

Figure 4.1: Sample Architecture for Use Case 1, ’Automatic, Distributed Provisioning of
Software to Networked Devices’

Measurement (TIM). The idP0 is thus able to verify a system’s integrity by comparing the
TIM to either the RIM’ or the RIM, depending on whether the update has already been
applied or not.

In order to reduce the load on the single source of the new software (S0), we want the
set-top boxes to become trusted devices and enable them to provision software to the
other devices in the local cluster. They will then be referred to as software providers
Si .

Assuming that there are different hardware configurations for the networked devices, we
will allow the more powerful devices in a cluster to take the idP0 function locally. They
will then be referred to as idPi . This allows for further load balancing and distribution of
computational effort and bandwidth usage.

Devices in sub-clusters can retrieve the update from their parent cluster, allowing for
shorter ways of communication. This establishes a hierarchy of clusters. If no suitable
device for software distribution can be found in a cluster, all devices in this cluster will
have to access the service provider and identity provider at the parent cluster. A hierar-
chy of trusted devices can be built using this concept, allowing for a distributed provi-
sioning of the new software.

4.1.2 Requirements

To establish this hierarchy, certain requirements must be met:

• the update will only be deployed to trustworthy devices (the TIM before the update
must match the RIM’)

• after the update, the device’s TIM must equal the RIM
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• only devices, where the TIM equals the RIM, can become local software distribu-
tors Si

• only devices, where the TIM equals the RIM, can become local identity providers
idPi

In order to establish the trust relationship, we will use concepts of an IDM system. Each
set-top box has a unique identity (e.g. serial number, geographical information, etc.).
This identity is registered at the operator O. This unique identity is provided to the de-
vice by a ticket t1 from O. The ticket t1 must be cryptographically bound to the hardware
of the device.

4.1.3 Application

In the following, the process for a single set-top box is presented. Note that only the
idP0 and the S0 are considered as servers. They can be replaced by the local idPi and Si

respectively.

Each set-top box can individually claim its identity at the idP0, by requesting a ticket
certifying the trustworthiness of the device. The set-top box provides t1 from O stating,
that the device is registered at the operator and has been manufactured and deployed in
a trustworthy process.

After validation of the given ticket t1, the idP0 will request the TIM from the device. The
device creates a signed report of the current TIM (see section 2.7.2, page 20). Given
the signed TIM, the idP0 will verify that TIM equals RIM’ and then issue a ticket t2 that
is bound to the device. The validity period of ticket t2 has to be short. Otherwise it
would be possible to change the software on the device during the verification at the
idP0.

The ticket t2 certifies that:

• the device is manufactured by a trustworthy manufacturer
• the device is in trusted state of RIM’

The device can then in turn use the ticket t2 to obtain the software update from S0.

After installing the update, the device can contact idP0 again. This time idP0 verifies
that the update has been deployed successfully onto the device, that means TIM equals
RIM. Then a ticket t3 can be issued to the device. It is mandatory that the idP0 sends a
notification message about the successful update to O. This enables the operator O to
track the distribution of the update among the network.

The ticket t3 certifies that:

• the device is manufactured by a trustworthy manufacturer
• the device is running in trusted state of RIM, thus the update has been applied

successfully
• the device can become a local software provider Si
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• the device can become a local identity provider idPi

Ticket t3 can be presented either at O to obtain a global legitimation or individually to
the other devices in the cluster. The first option is preferable, because O can then send
an authorized message to all devices in the cluster to use the new Si or idPi . Otherwise
all devices would a-priori be required to be able to verify tickets.

4.1.4 Open Topics

Note that the last two points imply further requirements towards the software update.
For the device to become a software provider Si , the update must include the update
package and the means to distribute it. Especially a function to verify incoming tickets
is required. In order to become a local identity provider idP0 additional requirements
must be met. The software update must include (1) a means to verify measurements
(TIMs) from other devices, (2) a function to issue tickets that are accepted at any ser-
vice provider and (3) a database and management interface for further updates of RIM
values.

4.1.5 Summary

This use case allows for localized, distributed provisioning of software updates to a pre-
defined network of devices.
The devices can vary in the hardware but they are required to run in the same software
configuration. Extending this use case and allowing different (or even custom) software
configurations would require much larger databases for different RIMs. The transport of
these databases to the local clusters would require more bandwidth and powerful device
nodes to take the function of an idPi .

4.2 Mobile Service Access

This use case considers the scenario of a user accessing a video portal using his mobile
device (e.g. mobile phone, UMTS device). The service provider must be able to charge
the user for the given service. The user’s privacy towards the service provider and the op-
erator is to be protected. Furthermore, the use case shall allow for service access without
prior registration of the user at the service provider.

4.2.1 Environment

The following roles are present in this scenario:

• the mobile device M , used to access the service
• the user U using M
• the mobile network operator O
• the service provider S running the video portal
• an independent identity provider idP providing U with credentials to access S
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The following points will be considered:

1. S must be able to charge U for the service
2. only O knows the real identity of U , e.g. by the contract of the mobile device
3. idP has to establish a trust relationship with O. This can be done via legal contracts

between the two business partners providing the services
4. S wants to be assured that no illegal software is running on the device, e.g. a video

download software
5. S has to establish a trust relationship with idP
6. the privacy of U must be preserved
7. S is not required to hold a local user database
8. thus U is not required to register at S

4.2.2 Application

The application will run as follows: As a prerequisite, we assume that O has integrated a
certificate certdev in the device, certifying that the device is operated by O. U decides
which pseudonymous identity to use for the service access. For every pseudonym a
ticket ti d must be retrieved from O using certdev . This ticket states that this pseudony-
mous identity is registered at O and thus can be resolved to a real identity at O. The ticket
ti d must be cryptographically bound to the platform to ensure that the pseudonym can
not be copied or misused by another device.

1. the user visits the page of S
2. S redirects the user to idP
3. idP challenges U to attest integrity and trustworthiness of M
4. a measurement of the running software is signed as well as the initial service re-

quest
5. the response is encrypted using a key provided through ti d

6. the encrypted response together with the ti d is sent to idP
7. if M ’s system state matches the requested state, idP issues a ticket ts for the service

request
8. U can access the service using the given ticket ts .
9. When the service is provided, S can issue a charging request. This request is sent

to idP, because S is not able to gain any further information than the pseudonym
used for service access.

10. As idP is only able to resolve the correct operator O for this identity, the charging
request is forwarded to O.

11. Finally O can resolve the pseudonymous identity to real customer data and thus
charge U .

4.2.3 Discussion

In particular, the following points have to be considered :



42 4 Use Cases for a Trusted IDM

The tickets ti d and ts are cryptographically bound to the device, so pseudonyms can-
not be copied to another device or stolen. Locally they can be protected by a password
supplied by the user.

The service provider only has to maintain a contract with idP, agreeing about who is al-
lowed to access the service and to agree on the charging process. Thus, service providers
don’t need to maintain a local user database. In addition, to enable further business
cases, the user U is not required to (1) register explicitly at every service provider he
wants to access and (2) U is not required to provide full identity information to S. Point
(1) allows for quicker access by lowering the initial registration barrier, whereas (2) deals
with the problem of untrustworthy service providers and information spread. Both can
lead to privacy issues such as identity theft and profile linking.

To further enhance privacy, the idP can remove the actual service request when the
charging request gets forwarded. Thus, O will gain no detailed information about the
type of service U requested.

To counteract on rogue service providers, it has to be ensured that they can issue this
charging request if and only if the service is provided. This has to be done externally by
legal contracts between the idP and S and can be supported by the concepts of digital
money and zero-knowledge proofs.
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Requirements for a Trusted IDM

In the following chapter I am going to outline the required aspects of a trusted ticket
system. Most of the requirements can be derived from the previously described use
cases. In addition, I will show the similarities between IDM systems and the concepts
in Trusted Computing.

5.1 IDM and TC

Most IDM systems rely on tickets to establish trust between multiple parties. Tickets
can be of various forms, such as certificates, tokens, cookies, etc. Previous work showed
that tickets can be implemented using TC technology. The next section will outline this
process in detail. The concept of Identity Federation can also be supported by TC tech-
nology. Usage of a client-centric solution is possible, as shown in the implementations.
A key issue is the attestation of a client’s trustworthiness together with user authentica-
tion and authorization.

5.2 Trusted Tickets

Derived from the use cases, the Trusted Tickets must meet several requirements. First
they must be bound to the TPM platform. This enhances the overall security of ticket
based systems. Secondly, every receiving party must be able to validate a Trusted Ticket.
Furthermore the tickets must protect the integrity of the contained data. This can be
achieved by digital signatures. To establish a ticket-based IDM it is inevitable to include
identity information in the ticket.

As detailed in previous work from Nicolai Kuntze and Dr. Andreas U. Schmidt [35, 38],
Trusted Tickets can be based on TPM generated AIKs. As AIKs can be used as identifiers
they form the building block of Trusted Tickets. Using the process described in section
2.6 an AIK with the appropriate certificate cert(AIK,PCA) for a new identity can be re-
trieved. This AIK cannot be used to sign arbitrary data and thus a new key is generated
inside the TPM. Once generated, the new key is stored in the TPM storage and it is en-
sured that its private part will never leave the TPM.
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Using the TPM_CertifyKey command, the newly generated key is certified using the pre-
viously acquired AIK. The new key is therefore called Certified Signing Key (CSK) and its
certificate is cert(CSK,AIK). Using the CSK it is possible to sign arbitrary data, such as a
service request R, yielding the signature sig(R,CSK), see figure 5.1.

Figure 5.1: Creation of a Certified Signing Key

A Trusted Ticket now consists of four parts: (1) the cert(AIK,PCA), (2) the cert(CSK,AIK),
(3) sig(R,CSK) and (4) the request R.

This ticket can only be generated with the TPM in possession of the AIK. The cert(AIK,PCA)
ensures that this AIK is indeed generated and held in a TPM. The cert (CSK,AIK) extends
the trust chain to the CSK and guarantees that the CSK is bound to the TPM. With the
signature on sig(R,CSK) on the request, the proof of possession of the private part of
the CSK is given. Furthermore, the CSK signature on R ensures that the data integrity is
preserved.

To verify a given Trusted Ticket, a verifier can resolve the credential chain by: (1) vali-
dating the CSK signature on R, (2) verifying the AIK signature on CSK, (3) checking and
validating the cert(AIK,PCA). The verifier has to establish a trust relationship with the
PCA to provide a trust anchor for this credential chain. This credential chain could be
extended with a root certificate from a root CA, certifying that the questioned PCA is in-
deed allowed to issue AIK certificates. In this case, the verifier could establish the trust
relationship with the root CA which in turn enables him to verify tickets based on AIKs
issued by all PCAs that are certified by this root CA.

5.3 Privacy and Security

One main topic in classic IDM environments is the conservation of privacy. As the tick-
ets build the base for IDM solutions, the communication associated with retrieval, is-
suance and redeeming of the tickets as well as the tickets themselves shall not reveal
more information than needed to any party involved. Furthermore, the protocol should
be built to deal with an attacker collecting data on the communication channel. This
can be supported by the use of cryptographic keys, provided by the TPM and bound to
it.
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To increase the security of existing IDM solutions, the ticket system shall provide an ele-
vated protection against attacks mentioned in sections 3.3 and 6.1.1.

Combining the attestation of a platform with the authentication should be considered as
a means to further improve the security. Thus tickets will not only be bound to a specific
platform. They will only be issued to platforms that are considered trustworthy, e.g. are
in a predefined system state, where only specified applications are running. This adds
an additional benefit to TPM based trusted tickets.





Chapter 6

Trusted Kerberos

6.1 The Kerberos Protocol

The Kerberos network authentication [50, 51] provides an infrastructure for single-sign-
on of managed identities within a predefined realm. The identities are represented by
tickets that hold information about the identity. The information is protected using
cryptography, allowing a client to prove its identity to a server over an unprotected net-
work.

At the core of the Kerberos protocol is a trusted third party, the Key Distribution Center
(KDC). The KDC, logically separable into the Authentication Server and the Ticket Grant-
ing Server, keeps a database of shared secrets between all participating parties. Once an
entity registers with the KDC, the knowledge of the shared secret is used to prove the
identity. To protect the communication between the networked entities, one time ses-
sion keys are used.

The following roles can be identified in a typical Kerberos environment:

The User who has registered one or multiple identities within the Kerberos realm. The
user can access services from service providers that are registered in the realm using one
of the identities.

The Authentication Server (AS) is the central instance to provide IDM functionality.
The AS issues Ticket Granting Tickets (TGT) to users upon successful authentication.
Connected to a user database such as an LDAP connected Active Directory, information
for every registered identity can be stored. The issued TGT has a long validity period, al-
lowing the user to run multiple service ticket requests using one TGT.

The Ticket Granting Server (TGS) allows users to request Service Tickets (ST) for a
specific service. The user has to present a valid TGT to the TGS. After verification of the
TGT the TGS decides whether access to the requested service or resource can be granted.
This decision can be based on policies or access control lists.
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Service Provider accepts the ST and offers the desired service.

Each ticket contains two parts: one part is encrypted for the next target server and thus
cannot be decrypted by the client. This part contains identity information and a session
key that will be used by the next communication step. The session key is encrypted for
the client in the second part of the ticket. If the client decrypts this part, he obtains the
session key to request the next ticket.

The following four major steps can be identified, of which the protocol flow is shown in
figure 6.1:

TGT retrieval The user connects to the AS and requests a TGT for his claimed identity.
The AS looks up the key for this client (keyclient) and for the TGS (keyTGS) in its database
and generates the TGT. The TGT contains the identity and a session key (keyclient,TGS)
that will be used in the subsequent communication with the TGS. The user can decrypt
this session key using his shared secret key keyclient.

Figure 6.1: The standard Kerberos protocol: message diagram

ST retrieval To request access to a service, the user sends the TGT together with the
service request message to the TGS. The TGS decrypts the TGT contents using keyTGS and
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thus obtains the session key keyclient,TGS which is in turn used to encrypt a new session
key, keyclient,SP. The key keyclient,SP is encrypted using keySP for the service provider inside
the ST. The user can decrypt the new session key keyclient,SP from the TGS response using
his key keyclient,TGS.

Accessing the service The user encrypts its identity and request using keyclient,SP and
sends it together with the obtained ST to the SP. The SP can decrypt keyclient,SP from
the ST and thus verify that the request comes from the user being in possession of the
identity. The session key can further be used to encrypt the response from SP to the
user.

6.1.1 Possible Attacks on the Kerberos Protocol

The general threats mentioned in section 3.3 can be exploited in the Kerberos protocol
by several forms of attacks. As presented, different attacks exist that aim to steal the
authentication data and thus allow an attacker to impersonate the legitimate user. This
allows the attacker to access all services with the user’s privileges and may allow him to
mount further attacks with the stolen identity.

In addition the following two attacks can be mounted against Kerberos:

Dictionary Attack Explicitly stated in RFC 4120 [51, chapter 1.6], Kerberos does not
solve password guessing attacks:

“Password guessing” attacks are not solved by Kerberos. If a user chooses
a poor password, it is possible for an attacker to successfully mount an of-
fline dictionary attack by repeatedly attempting to decrypt, with successive
entries from a dictionary, messages obtained which are encrypted under a
key derived from the user’s password.

When the user chooses a poor password, an attacker can mount an offline dictionary
attack trying to decrypt messages that were encrypted using the client’s key. In order for
an offline attack to be successful there has to be some plaintext to verify that the guessed
password was correct. Kerberos messages contain preauthentication data, which is in
most implementations an encrypted timestamp. Thus there is a structured plaintext
that can be used to verify a password attempt. This makes password guessing attacks
feasible on captured Kerberos messages.

Replay Attack Another attack that can be mounted against Kerberos is a replay attack
[23]. As all tickets are electronic messages sent over an unsecured network, an attacker
can capture the network traffic and copy tickets for later use. He replays them at a later
time to impersonate someone else. The attack requires access to the network in order
to succeed as the attacker listens and sends messages actively. The attacker cannot use
captured TGTs (as they are encrypted using the user’s secret key) but he can intercept STs
and replay them later. Several options are available in the Kerberos protocol to mitigate
this attack. Inclusion of the client’s address and timestamping are the most prominent
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methods to cope with this kind of attack.
This attack relies heavily on the fact that the tickets are not tightly bound to the plat-
form.

6.2 Trusted Kerberos Protocol

6.2.1 Goal

The main goal of the Trusted Kerberos protocol is to show how Trusted Computing can
be used to enhance a Kerberos authentication system. As mentioned before, privacy
and security are the main targets of the concept. Security can be enhanced by providing
means to bind the tickets closely to the hardware via the TPM. Privacy will be protected
throughout the protocol by separation of duties between the AS and the TGS and by
encrypting privacy sensitive communication.

The base of an identity in this context is an AIK generated inside the TPM. The concept
of trusted tickets as described in section 5.2 is used to create TPM bound Kerberos tick-
ets.

6.2.2 The Trusted Kerberos Protocol

Figure 6.2 provides a general overview of a typical service access using the Trusted Ker-
beros Protocol.

Figure 6.2: Trusted Kerberos: protocol message overview

The following steps are performed:

1. retrieve TGT

• either load it from the local ticket cache, or
• initiate a TGT request (see section 6.2.3 and figure 6.3) to obtain a TGT from

the AS, then store the TGT in the local cache for further use.
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2. retrieve ST from TGS (see section 6.2.4 and figure 6.4)

• the user has to authenticate for the use of the claimed identity by providing
the correct AIK and SRK password.

• he creates a trusted ticket (TCT), containing the claimed identity and the
service request both signed with the CSK.

• the measured system state is signed by the TPM using the AIK.
• the data is encrypted using the session key from the TGT and sent to the TGS

together with the TGT.
• the TGS checks the system integrity by validating the reported measurements

and verifies the credential chain in the TCT including the signed request.
• upon success, the TGS encrypts the ST for the client using the CSK public key

and sends the ST to the client.

3. access the service

• using the CSK in the TPM, the client can decrypt the session key from the ST
and build the authenticator for the service request.

• the authenticator together with the ST is sent to the service provider.
• the service is provided to the client.

6.2.3 The TGT Request

The client initiates the connection to the AS requesting a TGT. In the current implemen-
tation the AS sends its public key as answer to the client. Normally this key is provided
by a PKI, that is not present in this proof of concept. As the public key reveals no security
critical information it can be implemented this way.

The client then issues the necessary commands to create an AIK for the claimed identity
and sends the AIK’S public part together with the EK credentials to the AS. The message
is encrypted using the AS public key. This ensures that only the AS is able to decrypt
the message and thus link the claimed identity (represented by the AIK) to the real plat-
form’s identity (represented by the EK). Given that the AS public key is cryptographically
strong, the identity information is sufficiently protected from eavesdroppers on the net-
work.

The AS then generates a random, unpredictable nonce. As in the AIK certification pro-
cess, described in section 2.6 on page 17, the AS uses this nonce to ensure that the AIK is
indeed generated by a TPM and securely stored inside it. This message is encrypted us-
ing the PUBEK, and thus does not reveal any privacy sensitive information to an attacker
on the network.

After decrypting the nonce using the TPM_ActivateIdentity command, the client is able
to answer the challenge and sends the nonce back to the AS. The answer could be en-
crypted using the AS key. This would increase the computational effort on the client side,
but it would not add to the overall security. The nonce is unique for each request and
thus cannot be used again if intercepted by an attacker. If an attacker mounts a replay
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Figure 6.3: Trusted Kerberos: the TGT request

attack using the nonce, he will not gain any further information because the messages
in the subsequent steps are encrypted for the legitimate client.

The AS first verifies that the returned nonce matches the challenge. Then, the EK creden-
tial is verified. This step could be done upon the first receipt of the certification request.
As the verification of the EK certificate takes time, doing it at this stage prevents a possi-
ble DoS attack using a large number of fake certificates without a TPM.

The AS has to verify the signature on the identity request and after successful verifica-
tion, the claimed identity is looked up in the identity database. This database could be
implemented as a Microsoft Active Directory or similar directory services. The AS has to
clarify that (1) the identity exists, (2) is not in possession by another platform and (3) is
not revoked or invalidated. If the user is allowed to claim the identity in question, the AS
stores the association of the EK to the claimed identity in the database. This allows the
AS to resolve the claimed identity to the real platform if needed.

Two strong one time secrets are generated, a session key S1 and the client secret P . The
identity information together with S1 and the AIK certificate cert(AIK,AS) is stored and
encrypted in the TGT. The session key S1 is encrypted using P separately. To ensure
that only the requesting client is able to decrypt P and thus S1, P is encrypted using the
platform’s PUBEK.

The client can then store the retrieved TGT for later usage. In the proof of concept im-
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plementation, the session key in the TGT is decrypted in-place. This exposes all stored
TGTs in the cache to a local attacker. Storing the still encrypted TGT and the encrypted
P together is possible and would circumvent this danger.

During TGT request communication between the client and the AS, the client’s real iden-
tity information is protected as it is encrypted using the AS public key. The response
from the AS is encrypted using the public EK of the TPM and the private key of the TGS.
Only the client and the TGS will be able to decrypt the given information.

6.2.4 The ST Request

If the client wants to access a service using the previously retrieved TGT, the TGS chal-
lenges him with a newly generated nonce. This nonce is then to be included in the
quote of the PCRs. The quote is signed using the AIK for the claimed identity. For
the implementation only PCR 10 was used, the concept can easily be extended to use
multiple PCRs as well. Similar to the process described in sections 2.7.1 and 2.7.2, the
signed quote and the SML are used to attest the system state to the challenging TGS.
The nonce provides a statement about the freshness of the quote and a replay protec-
tion.

The client creates a trusted ticket (TCT) according to the process described in section
5.2. The TCT includes the signed service request and the claimed identity.
This ticket is generated each time a ST is requested. Thus, a new CSK is generated which
is used to sign the service request and the claimed identity. The credential chain em-
bodied in the TCT provides a proof of possession of the identity. Only the user who is
in possession of the TPM which generated the certified AIK can generate this credential
chain. Using the session key S1 from the TGT, the TCT together with the signed quote
and the SML are encrypted and sent to the TGS. It is crucial to encrypt the SML and
the TCT to preserve the client’s privacy. An eavesdropper will not gain any information
about the internal system state when he captures this message. There’s no need to en-
crypt the TCT for security reasons, as it can only be generated using the CSK which is
bound to the TPM.

The TGS can decrypt the session key S1 from the TGT using his secret key. In turn, S1 is
used to decrypt the quote, the SML and the TCT. Using the AIK certificate cert(AIK,AS)
from the TGT, the TGS has to verify if the AIK matches the AIK in the TCT. This step is im-
portant as the cert(AIK,AS) builds the root of trust for the credential chain incorporated
inside the TCT.

It assures the TGS that the identity is registered at the AS. As an optional step, the TGS
can investigate if the claimed identity is still valid. As TGTs commonly have a validity of
several hours, it might be necessary to revoke an identity. In this case, the TGS will not
issue a ST to the client.

The TGS then has to verify the credential chain from the TCT. This credential chain has
its root of trust in the cert(AIK,AS). As the TGS trusts the AS, the credential chain allows
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Figure 6.4: Trusted Kerberos: the ST request
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to extend this trust up to the service request. Only if the signature on the identity and
request has been generated by a CSK, certified with the appropriate certified AIK, can
trust be laid into the identity of the requesting client.

Using the techniques described in section 2.7.2, the TGS validates the quote and the
SML. This step enables the TGS to verify the system integrity of the requesting platform
which allows to deny the issuance of STs to non trustworthy systems.

Then the TGS issues a certificate for this request and identity, cert(AIK,TGS). Again, two
strong one time secrets are generated, a session key S2 and K . K is used to encrypt the
session key S2 for the client and is in turn encrypted using a data binding to the CSK (see
[40, server.ExternalDataBinding (ethemba)] and section 2.4). Therefore the CSK public
part from the TCT is used by the TGS. The secret key for the service provider (keySP)
encrypts the cert(AIK,TGS), the TCT and S2 for the service provider.
The client can then decrypt K using the TPM_DataUnbind operation and thus reveal S2

(see section 2.4).

When the client uses the TGT to request a ST from the TGS, the communication is en-
crypted with the session key from the TGT. Only the TGS can decrypt the TGT, revealing
the session key, and thus allowing the TGS to decrypt the data provided by the client.
The response is cryptographically bound to the TPM by encrypting the session key with
a one-time key bound to the CSK from the TPM. Only the user in possession of the TPM
and the credentials for the key usage in the TPM can decrypt the ST and thus use it to
access the service.

6.2.5 The Service Request

At this stage in the protocol, the client has retrieved a valid ST, with an included certifi-
cate from the TGS to attest the system’s integrity. To prove possession of the CSK to the
SP, the client has to decrypt the session key S2 from the ST. This key S2 from the ST is then
used by the client to encrypt the identifier and the service request. The encrypted data is
then sent as an authenticator together with the ST to the service provider.

The SP decrypts the session key S2 from the ST using keySP and can thus reveal the iden-
tifier and the request from the authenticator. If the identifiers in ST and authenticator
match, the SP continues to verify the credentials included in the ST.

The SP is not required to check the system integrity again and relies on the cert(AIK,TGS)
issued by the TGS. There has to be a trust relationship founded by external contracts be-
tween the TGS and the SP for this condition to hold.
Then the SP verifies the credential chain from the TCT. Finally, if the signed request
in the TCT matches the decrypted request from the authenticator, the service is pro-
vided.
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Figure 6.5: Trusted Kerberos: the service request



Chapter 7

Analysis

The following chapter shall provide a discussion of the Trusted Kerberos concept and
implementation. Despite a general discussion, the two main topics security and privacy
are discussed in depth.

7.1 System Integrity Measurement

During the ST retrieval, the TGS verifies the SML from the client. Therefore every submit-
ted hash value is checked against a database of known and trusted hash values.

Every version of a program or library has a unique hash code. If multiple trustworthy
versions of a program, an operating system or even completely different operating sys-
tems are used, the database must provide hash values for a large amount of different
files.
Despite the effort to manage, store and provide the infrastructure for such a database
system, several requirements must be met. A process for the certification of programs
and libraries has to be established. It can be imagined that a central instance tests and
certifies them and as a consequence adds the correct hash value to a database. This Soft-
ware Certifier (SC) can then provide the hash values to subscribers. A participating TGS
associates with the SC and updates his local database on a regular basis with the hash
values.
As new security holes get discovered, the SC will remove previously trusted applications
from the database and add the hash of the new version into the database. The SC then
propagates the update to the subscribers. As the SC decides upon which software is
considered trusted new problems arise. The SC can effectively restrict software usage
and therefore take influence on market conditions by preferring or discriminating one
or multiple software vendors.
The effort to maintain this process with changing applications and operating systems
makes it impracticable to be implemented for a general, wide spread architecture (e.g.
the client PC market). But in somehow restricted environments, where both factors, the
used hardware and the software, can be controlled and are limited, this concept can be
implemented.
The previously mentioned use in mobile phone environments or in embedded devices
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such as in the described use cases seems to be practicable. If an operator deploys a set of
devices that run without user interaction and operate on a machine to machine basis, he
can use the implemented techniques to manage the device identities.

7.2 Enhancing security

In order to enhance the security it is ensured that all issued tickets can only be used by
the legitimate user of the TPM. They are tightly bound to the user’s hardware. A dupli-
cate of the ticket cannot be created. In addition to that, there is no client secret shared
between the Kerberos authentication server and the client.

For every TGT request a new and cryptographically strong one time password is gen-
erated by the server. We can assume that the server has enough hardware resources to
generate appropriate passwords. As the passwords in the standard protocol are chosen
by the user, this is one weak spot allowing eavesdroppers on the network to collect TGTs
and try to decrypt them offline using brute-force and dictionary attacks. The chance of
finding weak passwords if there is a large amount of clients in a Kerberos realm makes
this attack feasible.

The impact of such an attack can become quite heavy. As the TGT represents the user’s
identity in the Kerberos realm, the attacker will gain access to all services the legitimate
user has. By using one-time passwords that are cryptographically strong and can only
be decrypted using the target TPM, the offline attack on captured tickets will become
impracticable.

As a second point adding to the security on the server side there is integrity validation
of the user’s system included. When the user wants to acquire a Service Ticket (ST) to
access a service, he is challenged by the TGS to attest system conformity. As a result, only
clients in a certified system state will be able to access the service.

It has to be considered that this attestation does not provide a real-time attestation of
the system state. The signed quote only represents the system state at a discrete point in
time. All programs and processes started after the sending of quote and SML to the ver-
ifier are not included but still measured. Thus it is imaginable that an attacker launches
a malicious program just after sending the quote. The TGS will attest the system’s trust-
worthiness although it is not in a trusted state when accessing the service later on.
As stated in section 2.7.2 this protocol is heavily prone to TOCTOU attacks. Due to the
network transport, the time between check (signature of the PCRs) and time of use (veri-
fication of data and use of issued ST) is prolonged. It is impracticable to freeze the client
system hence stopping all user input during the whole process. So this concept might
preferably be adopted by systems with no (or at least minimum) user interaction, such
as embedded devices or mobile phones.
Another concept is the use of virtual appliances targeted for a single service. The client
can measure and then start a virtual subsystem which can be measured completely. The
integrity measurement of the whole subsystem is then reported to the TGS to obtain
a ST. As only a virtual subsystem is affected by the attestation process it is more likely
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to monitor and prevent possible modifications between measurement and use of the
ST.

A further common threat to Kerberos systems are direct attacks on the database contain-
ing the user passwords. If an attacker is able to steal the passwords by compromising the
system hosting the database, he can covertly use the passwords to impersonate the iden-
tities of the legitimate users within the realm. This threat is mitigated by the use of one
time passwords. As the AS generates a new client password for each TGT request, a di-
rect attack on the user database will not reveal any client passwords.
It is to be noted that an attacker might indeed alter the user database and add or re-
move users. This attack has to be prevented by further means and is out of scope of this
thesis.

If an attacker gets unauthorized access to the server key database, he can decrypt all
messages targeted towards either AS, TGS or SP. This attack has major impact on the
whole infrastructure as it allows to impersonate every server in the protocol. Thus ex-
isting solutions to secure the database have to be applied thoroughly by administrators.
Furthermore, all attacks targeting the hardware and operations of any of the servers are
not discussed in this thesis but have to be considered in practical use.

In the current implementation, the session keys from TGTs and STs are decrypted in
place, thus exposing them to attackers when stored in the local cache. In general it is
advisable and possible to store both, the encrypted TGT (resp. ST) and the information
on which TPM keys must be used to decrypt it, in the ticket cache. Thus, the session
key will only be revealed when needed. During the ST retrieval process the secret K
needed to decrypt the session key S2 is encrypted for the targeted platform using the
TPM_DataBind operation. This mechanism ensures that the ST is bound to the platform
containing the TPM.

Another idea would be to use a Data_Sealing operation for this binding. The key K is
then not only bound to the platform but to predefined PCR values, too. Actually, the
PCR values could be the ones included in the quote. According to the specification of
the Data_Sealing operation, the client will then only be able to decrypt the key K if the
system’s PCR values still match the values from the time the quote was retrieved. The
previously discussed problem of software that gets started between the measurement
and the use of the ST would thus be addressed. Only if the system’s configuration, rep-
resented by the PCR values, does not change, the client can decrypt the session key S2.
Although this might add a little security, using the TPM_DataSeal operation also adds
new problems. If a program or library is loaded with delay and thus is not included in
the quote, the PCR values will change and the client wouldn’t be able to decrypt the key
K . This is very likely to happen, e.g. if the process used to send the measurement modi-
fies the PCR values while sending the SML.

In the current implementation the SP returns the result of the service unencrypted to
the client. This exposes no security risk, if the service is executed locally at the SP. An
example would be a print server with a quota per user. The user redeems his ST for
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the print of a document. The SP (print server) prints the pages and reduces the quota
accordingly. In this case, only a notifier about successful execution is returned and thus
encryption of the notifier message is not necessary.

Other applications can be imagined, where the SP has to communicate with the client
(e.g. file download, video streaming, etc.). In this case, the communication can be en-
crypted using the either the CSK or a newly TPM generated key. Using the session key S2

the two communication partners can decide on a new communication key. The use of
the session key is discouraged as it is already known to the TGS. If the service is provided
unencrypted to the client, an attacker could be able to capture the response from the SP
and thus gain access to the service without prior authentication.

7.3 Enhancing privacy

The second goal, the protection of the client’s privacy, is achieved by separation of duties
between the TGS and the AS. In the present concept, a user has to register with one AS,
revealing his complete identity to the AS. Then, the user can register multiple partial
identities, referred to as claimed identities. The user claims to be in possession of the
identity and the AS can certify this by providing a certificate cert(AIK,AS). The certificate
cert(AIK,AS) is stored inside the TGT and encrypted with the TGS key. Thus only the
targeted TGS will be able to decrypt the certificate. An eavesdropper will not be able to
get any information about the claimed identity.

The AS will be the only instance being able to map the claimed identities to the real
identity. By the means of legal contracts and AS’ privacy policy, the user can ensure that
the AS will not reveal its real identity. Service providers only get the needed information
to provide the service to the user. The SP relies on the cert(AIK,TGS) issued by the TGS
to attest the client’s platform integrity. The trust relation between SP and TGS has to be
established by external contracts.

To further enhance the privacy, no communication shall reveal information to other par-
ties than the current communications partner. An eavesdropper on the network should
not be able to get any valuable data from the network streams when listening to any of
the ticket retrieval or redemption processes.
During initial TGT request, the communication between the client and the AS is en-
crypted using the AS public key, protecting the client’s real identity information. The
response from the AS is encrypted using the public EK of the TPM and the private key of
the TGS. Only the client and the TGS will be able to decrypt the identity related informa-
tion.
When the client uses a TGT to request a ST from the TGS, the communication is en-
crypted using the session key from the TGT. The TGT can only be decrypted by the TGS,
revealing the session key, allowing only the TGS to examine the data provided by the
client. The response is cryptographically bound to the TPM by encrypting the session
key with a one-time key bound to the CSK from the TPM. Only the user in possession of
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the TPM and the credentials for the CSK can decrypt the ST. No privacy sensitive infor-
mation is disclosed.
The request to the service provider reveals no information concerning the user’s identity
to a third party as it is in turn encrypted with the session key from the ST. Only the tar-
geted service provider will be able to decrypt the given partial identity.

Due to the separation of duties between AS, TGS and SP, the service provider will not gain
information about the real identity of the user. As he is associated to a TGS that issued
the ST, the service provider can contact the TGS operator in the case of misbehaving
users. The TGS can then forward the message to the corresponding AS for this identity.
As the AS has a mapping of the claimed, partial identities and the real identities, the user
can be made liable.

In addition, the service provider is not required to keep a database of existing users. The
user authentication and attestation is handled by the AS and the TGS. This concept en-
ables the establishment of trust domains with multi-service single-sign-on experience
for users wanting to access multiple services. Service providers can still build a local
user database based on the pseudonymous identities, e.g. to provide distinguished ser-
vices to select customers.

The design also allows to charge users for accessing a service. In accordance with the
description in use case 2 (p. 40), the SP issues a charging request when the client re-
deems the ST. This request is sent to the TGS which removes the statement about which
service was used and forwards the charging request to the AS. This step is important
to maintain the user’s privacy. Otherwise the AS would be able to link the real identity
to the actual services that were used. As the AS is able to link the claimed identity to
the real one, the AS can charge the user for the service. A rogue or compromised TGS
would be able to send forged charging requests, charging the user to his own benefit.
Using a zero-knowledge proof between the SP and the AS could assure that a ticket has
indeed been redeemed at the SP without allowing to link the real identity and the service
request.





Chapter 8

Conclusions

This chapter summarizes the results and findings of the thesis and presents an outlook
providing aspects for further research.

8.1 Results

As a result of this thesis, a concept for the integration of Trusted Computing technologies
into an existing ticket system, namely Kerberos, has been successfully developed. The
establishment of an infrastructure for Trusted Tickets enables the establishment of trust
in IDM systems which are based on the usage of tickets.

The presented approach provides increased security to existing solutions whilst enhanc-
ing their privacy. The concept is strengthened by the association of the tickets to the TPM
and the assessment of the system’s integrity.
Additionally, this thesis adds an academic view to the establishment of trust. Enhancing
trust in network based services while maintaining privacy remains an important task.
The lack of trust is a key inhibitor to the growth of network service architecture, includ-
ing e-commerce scenarios. Bringing the notion of trust into an existing ticket system
allows to build trusted identities, and thus trusted IDM solutions.

With the adaption of ideas from AIK certification with a PCA and the verification mech-
anism of remote attestation, the concept aligns with the TCG specifications. The issued
certificates are valid X.509 certificates that can be integrated into existing certificate in-
frastructures. This allows for an easy adaption of the presented concept into established
environments. The given reference implementation rebuilds all major parts of a Trusted
Kerberos environment, including PCA and attestation functionality.
Although a complete integration on protocol level was left out, the concept can be fur-
ther integrated into the Kerberos protocols and data structures. The generated tickets
are not compliant to Kerberos ASN.1 formatted tickets. Investigation shows that an ap-
propriate field in the ASN.1 tickets for the inclusion of the needed information exists and
can be used for this purpose.

Further, with the establishment of the ethemba framework, a base for future research
and development in the field of Trusted Computing applications has been built with
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success. The implemented network protocols and data structures facilitate the usage
and adaption of TCG concepts. It enables the rapid development of TPM based demon-
strators and an experimentation environment by providing high-level functions for TPM
access. Furthermore, with the developed network protocols and entities for AIK certifi-
cation and remote attestation, the ethemba framework an eleveated infrastructure to
build upon. The ethemba software implementation is complemented with a QEMU vir-
tual machine which has access to a software TPM emulator. Inside the virtual machine,
all TPM functions can be accessed and the necessary modifications to provide system
integrity measurements are applied. As this framework is built upon a software TPM
emulator, it can be used for research and development without the need for a TPM in
hardware. While the ethemba framework gives a reference implementation of a PCA
and the remote attestation process, both mechanisms have to be studied in more depth,
providing a field for further development.

The benefits of Trusted Computing are shown by presenting two use cases in chap-
ter 4. Generally, more and more applications involving Trusted Computing technology
emerge. Nearly all modern operating systems provide support for the TPM, but there are
still some topics that have to be covered by future research. It is a key feature of trusted
computing to enable system integrity measurements and their validation by third par-
ties. Future use cases and applications for which software or hardware integrity are key
requirements can build upon trusted computing concepts.

8.2 Outlook

Dealing with the establishment of a base technology, which brings Trusted Computing
into IDM, this thesis provides multiple entry points to further research.

As the reference implementation is not fully compliant to the Kerberos message format,
one topic will be the integration of the data structures into the ASN.1 specifications. This
can possibly be done by exploiting the authentication_data field in the Kerberos mes-
sages. According to the Kerberos specification this field can be used to transport addi-
tional authentication data. In this case, additional modifications have to be applied to all
participating entities, to fully evaluate the new message field correctly.

The integration into other IDM systems remains for further research. With the wide-
spread use of software based tickets in information technology, the applications of trust-
ed tickets remain not limited to IDM. An integration into the concepts for Trusted Wa-
termarks in peer-to-peer networks, which are discussed by Andreas Brett in [5, 6], seems
to be promising. In a peer-to-peer network in which content is to be distributed, trusted
tickets could be used in analogy to physical tickets which allow the access to specific
content, e.g. video or music. This concept would require every partner in the network
with the possibility to verify the trusted tickets. To provide scalability it could be imag-
ined that, similar to the presented use case, the peer-to-peer partners are able to issue
tickets themselves. Additional use cases that require elevated security and validation of
system integrity can be developed.
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In the present concept, the client authenticates to the AS, TGS and the SP. By introducing
mutual authentication, an elevated level of privacy and security can be achieved. One
idea involves the authentication of the SP to the client. This enables to client to assess
the trustworthiness of the SP and allows him to sort out rogue SPs. Another idea would
be to let the TGS mediate the trust between the SP and the client in such a way that the
TGS verifies the integrity of the SP before issuing the ticket. Trust models and protocols
have to be established to enable a trusted mutual authentication.

As discussed in chapter 7, the establishment of an infrastructure to provide certified
measurement values of trusted programs remains to be clarified. This infrastructure
must establish policies to define which software to consider trustworthy and the mea-
surement values always have to be integrity protected. These policies should answer the
question of how such measurements should take place and which entity should provide
them. This enables new business models for the certification of software, as such an
entity can charge software vendors for the certification of their products. If a software is
not certified, it will not be considered trustworthy and as a consequence can not be used
on systems that require attestation. This shows that the entity which issues the certified
measurements has to be impartial towards the different software distributors. The pro-
tection and maintenance of a database for reference integrity measurements will be a
main target for future research as it is a key enabler for trusted applications that involve
system validation.

The ethemba framework provides a rather pragmatical approach by letting the adminis-
trator of the database import a measurement file. It can be imagined that this reference
measurement is provided by a clean-room assessment of the device. While being feasi-
ble for embedded systems, concepts have to be developed for the assessment of complex
systems that react to user interactions.
Although ethemba tries to introduce a complete trusted system, the implementation of
trusted boot is still missing. Currently, there is no BIOS code for QEMU available, which
integrates TPM drivers such that the TPM can be accessed at boot time and be used to
measure the BIOS. The chain of trust is thus lacking an integral part, namely the CRTM
in the system’s BIOS. Options to include TPM drivers in the Bochs BIOS used by QEMU,
or the integration into open BIOS concepts such as coreboot [12] have to be explored by
additional research.

Furthermore a formal verification of the protocols used in the ethemba framework and
the Trusted Kerberos concept is not given in the present thesis and can be done by the
use of tools such as SHVT from Fraunhofer-Institute for Secure Information Technology
[22]. This includes the development of strategies to secure the local ticket cache, where
solutions involving the TPM might come up.

As the tickets are bound to the TPM, a backup strategy or at least a migration con-
cept must be developed to securely transfer the tickets in case of a system or TPM fail-
ure. TCG provides concepts for the migration of TPM keys and data. The applica-
bility and integration of these concepts is to be discussed. The concept of a backup
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and migration service presented by Gökhan Bal in [25] might be exploited for this pur-
pose.

The analysis of open topics shows that Trusted Computing and its applications remain
an interesting field of activity for future research. With the rise of ubiquitous com-
puting and the “internet of things”, new methods have to be implemented to estab-
lish trust between networked devices and entities. Trusted applications, paired with
reliable integrity validation, can become fundamental parts of forthcoming develop-
ments.
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Glossary

AES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the Advanced Encryption Standard is a symmetric
block cipher. It has been selected by the US Gov-
ernment as a replacement to DES.

Asymmetric Cryptography . . . . . . . also known as Public key cryptography, called asym-
metric due to the asymmetry in keys and en-/decoding
operations.

Authentication . . . . . . . . . . . . . . . . . . . . describes the process in which a claimed identity is
verified.

Authorization . . . . . . . . . . . . . . . . . . . . . describes the process to determine if a client is al-
lowed to use a service or access a specific resource.

Brute-Force Attack . . . . . . . . . . . . . . . similar to a dictionary attack, a Brute-Force attack
aims to guess passwords using (random) generated
passwords. Brute-Force attacks require even more
tries than dictionary attacks. Using longer passwords
and increasing the number of possible different char-
acters in a password requires an attacker to spend
more time on guessing.

CA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . an entity who signs certificates and thus binds pub-
lic keys to a statement about the key holder is called
a certification authority. Normally a CA is consid-
ered to issue X.509 certificates.

Ciphertext . . . . . . . . . . . . . . . . . . . . . . . . output of a cryptographic encryption function.

DDoS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a special form of DoS is the Distributed Denial of
Service which is driven by coordinating a large amount
of systems to issue a DoS against a single target.

DES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . data encryption standard, a symmetric bloick cipher.
It is outdated by AES, as its key length of 56 bits is to
be considered unsafe.

Dictionary Attack . . . . . . . . . . . . . . . . . a dictionary attack aims at guessing passwords by
using a dictionary or a wordlist. The attack relies on
the fact that most passwords are chosen to be words
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that appear in natural language. A large amount of
passwords must be tried in subsequent tries.

Digital signature . . . . . . . . . . . . . . . . . . in digital signature schemes, a person A is able to
sign a message m such that only A is able to pro-
duce this special signature but anyone else is able
to verify the signature. An example of a signature
scheme is the RSA signature.

DoS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Denial of Service (DoS) is an attack which aims at
rendering a host and some or even all of its services
unavailable. A DoS attack can be driven by flooding
a service with a large amount of data or malformed
requests.

DRM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DRM refers to techniques allowing for access con-
trol to limit the use of digital media. The goal is to
technically protect media from unauthorized use.

Hash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a hash function is a mathematical function to con-
vert a large amount of input data to a small datum.
The return values are referred to as hash values, hash
sums or hashes. Cryptographic hash functions are
assumed to have two main properties: being irre-
versible (it is infeasible to find an input that maps
to the given hash value) and collision-resistant (it
is infeasible to find two messages that map to the
same hash value).

HMAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a keyed-Hash message authentication code is a MAC
calculated using a cryptographic hash function to-
gether with a secret key. It can be used to verify data
integrity and data authenticity. If SHA-1 is used in
the calculation of HMAC, the resulting MAC algo-
rithm will be called HMAC-SHA-1.

jTSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . an open-source TSS written in java, published in the
course of the EU OpenTC initiative by IAIK Graz
(http://trustedjava.sourceforge.net/)

Kerberos . . . . . . . . . . . . . . . . . . . . . . . . . . The name given to the Project Athena’s authentica-
tion service, the protocol used by that service, or
the code used to implement the authentication ser-
vice. The name is adopted from the three-headed
dog that guards Hades [51].

LDAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the lightweight directory access protocol is an appli-
cation protocol to query and access directory ser-
vices such as Microsoft Active Directory.

http://trustedjava.sourceforge.net/
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MAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a message authentication code refers to a short piece
of information used to authenticate a message. They
are usually built based on a secret key using fast sym-
metric ciphers.

MITM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a Man-In-The-Middle (MITM) attack is an active eaves-
dropping attack on a network. The attacker relays
messages between two parties, making them both
believe to be communicating with each other di-
rectly. For the attack to work, all network traffic must
be captured and the attacker must be able to inject
messages into the network. If the attacker achieves
to impersonate the communication endpoints for
both parties, he is able to control the entire conver-
sation.

PCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a platform configuration register, part of the TPM
that stores system measurements.

PKI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Public key infrastructure, an environment which is
necessary to provide public key cryptography and
enable trust in large environments. The main ob-
jective of a PKI is to learn and verify certificates for
other parties.

Plaintext . . . . . . . . . . . . . . . . . . . . . . . . . . the message that gets encrypted or the output of the
decryption of a ciphertext.

PRNG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a pseudorandom number generator generates sequen-
ces of numbers that approximate properties of real
random numbers. The generated numbers cannot
be considered true random, but are computation-
ally indistinguishable from true random numbers.
Often a PRNG is used to amplify a small number of
random bits to a larger sequence.

Public Key . . . . . . . . . . . . . . . . . . . . . . . . . Public key cryptography systems generate a keypair,
which consists of a public and a private part. It is in-
feasible to compute the private key if only the pub-
lic key is given. Thus, the public key can be pub-
lished and then be used to encrypt data for the per-
son holding the private key or verify signatures. As
no shared secret is needed prior to communication,
public key cryptography enables many useful sce-
narios.

RNG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a random number generator generates random bits
that are unpredictable by others.
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RSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . is a public key cryptography algorithm for signing
and encryption. It is widely used in electronic com-
merce and communication and believed to be se-
cure using sufficient long keys. It was first described
by Ron Rivest, Adi Shamir and Leonard Adleman in
1977.

SHA-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . also written SHA1 is the widely accepted choice of
cryptographic hash algorithm. It has been designed
by the NSA and published by NIST. Its name stands
for secure hash algorithm.

Symmetric Key Cryptography . . . . Symmetric key cryptography requires both parties to
share a secret. It is more limited than public key
cryptography but it is still used due to its higher per-
formance.

TCG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Trusted Computing Group, the successor of the
TCPA is a consortium of industry leading businesses
and research institutes to implement Trusted Com-
puting. The main goal was the development and
specification of the TPM.

TOCTOU . . . . . . . . . . . . . . . . . . . . . . . . . . If throughout the duration between when a system
measures and tests a certain condition and when it
acts on the result of the test, the condition might
change, the time-of-check / time-of-use vulnerabil-
ity occurs. This can actually happen during the re-
mote attestation, when the client’s system configu-
ration changes during the time the certifier verifies
the given measurements.

TPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the Trusted Platform Module is at the heart of the
TCG specifications. It is a separate, passive chip that
provides a secure storage and cryptographical func-
tions such as hash calculations and key generation.
It has several registers, the PCRs to store platform
configuration information.

Trousers . . . . . . . . . . . . . . . . . . . . . . . . . . . an open-source TSS written in C++
(http://trousers.sourceforge.net/)

TSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . As defined by the TCG, a TCG software stack is spec-
ified to use the TPM. Several implementations exist,
most famous are trousers (a TSS written in C++) and
jTSS (written in Java).

X.509 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X.509 is a standard for a PKI to handle public key
certificates.

http://trousers.sourceforge.net/
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Appendix A

Implementation of a Demo Environment

A demo environment was designed to develop and test the ideas to form a trusted ticket
system based on Kerberos. Its design principles are based on the requirements to pro-
vide a platform for current and future work in the field of trusted computing. Several
components are required and have been evaluated and properly configured to form a
stable platform for development and demonstration.

A.1 Introduction to the Demo Environment

The demo environment consists of multiple components. To not be dependant on a
hardware TPM, the TPM software emulator was used. This allows for easy debugging
of TPM output and allows for convenient management of the TPM (reset, save state,
etc.).

In order to be able to assess a trusted boot process, the emulated TPM is connected to
a virtualized system. The TPM emulator runs on the host system and its functions are
provided to the virtualized (guest) system. Therefore a patch was customized to work
with the current QEMU source code. The guest system consists of a standard debian
linux installation. In order to access the TPM inside the guest, the kernel has to be com-
piled with TPM driver support. Using the IMA kernel patch, the guest system was able
to measure loaded programs at load time (see section 2.7.1).
The virtualization enables to assess the whole system from the boot process and allows
to run multiple instances each with an own TPM. The following sections provide an
overview of used software and how to set up the demo environment from scratch.

A.2 Requirements

Following hardware and software is required:

• a host system running any flavour of linux and decent hardware to provide enough
resources for virtualization

• development tools and compilers (gcc v.3) to compile the software
• qemu v0.9.1 source [55]
• patch to enable the TPM in QEMU [49]
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• TPM emulator v0.5.1 [18]
• linux kernel version 2.6.24-3 (available from http://www.kernel.org/)
• IBM IMA patch for the linux kernel [29]
• jTSS distribution and its required libraries (available fromhttp://trustedjava.

sourceforge.net/, see also section 2.8)
• jTPM for the parameter parsing functions of ethemba [17]
• ethemba software framework to run, test and develop applications [40]

A.3 Setup of the Demo Environment

A.3.1 Setup of the TPM Emulator

The TPM emulator enables to access and review the internal operations in the TPM,
which made it a very powerful tool for analysis, testing and debugging.

The emulator consists of three parts: an implementation of the TPM Device Driver Li-
brary (TDDL), a kernel module (tpmd_dev) and the TPM emulator daemon. As specified
by the TCG, TDDL provides a convenient way to access the TPM from applications. By
substituting this library, applications that use the TDDL are forced to use the TPM emu-
lator instead of a hardware TPM.
For those applications and libraries that access the TPM directly, the kernel module
tpmd_dev simulates a hardware TPM by forwarding all messages directly to the TPM
emulator daemon, which is the main component of the emulator. The tpmd listens on
a Unix socket and waits for incoming commands. At current, most of the commands
specified by the TCG are supported by the emulator.
The installation of the TPM emulator is quite straightforward, compiling from source
version 0.5.1. To prevent that QEMU gets disconnected from the emulator before the
guest OS is up, as long as no TPM commands are issued during the boot process, the
value of TPM_COMMAND_TIMEOUT in tpmd.c is changed to a higher value (3000, de-
fault: 30).

A.3.2 Setup of QEMU

To establish the connection between the TPM emulator and QEMU to gain a virtual-
ized client environment a patch from the QEMU mailing lists [14] was modified to work
with the current QEMU source version 0.9.1 [49, 55]. The patch allows QEMU to con-
nect to the Unix socket created by tpmd via command line option,and registers a new
I/O port inside QEMU and forwards all commands to the socket and thus to the TPM
emulator.

A.3.3 Setup of Virtual Machine Client

The virtual machine was set up by installing a minimal debian distribution with the aim
of a small footprint in storage and memory usage. To communicate with the TPM the

http://www.kernel.org/
http://trustedjava.sourceforge.net/
http://trustedjava.sourceforge.net/
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kernel (version 2.6.24-3) was recompiled, adding the IMA patch from IBM [29]. To con-
figure TPM support in the kernel the options CONFIG_TCG_TPM=y and CONFIG_TCG_AT-
MEL=y have to be set. In addition the IMA patch [29] was applied with the kernel config-
uration parameters CONFIG_IMA_MEASURE = y, CONFIG_IMA_TEST_MODE = y and
CONFIG_IMA_MEASURE_PCR_IDX = 10).
There are several ways to access the virtualized system, such as VNC and SSH. The sys-
tem can be customized to meet further requirements (graphical user interface, etc.).

A.3.4 Setup of Virtual Machine Server

To present the concepts of a PCA and remote attestation, a second virtual system is
needed to provide the server side functionality. Essentially this was achieved by copying
the client system and running it without TPM support.

A.3.5 Setup of Virtual Machine Network

To enable network communication between the virtual machines, a system based on a
bootable ISO image, acts as router in the virtual network. This allows the virtual ma-
chines to communicate with each other and the outside world. It is configured accord-
ing to the QEMU manual for virtual networks. By adding and configuring a DHCP and
a DNS server in the router system, client and server VMs can easily be integrated in the
network.

A.4 Starting the demo environment

A.4.1 Starting the TPM emulator

The location and the socket the emulator listens on are specified via command line
paramters.

tpmd -s ~ale/tpm\_emu/tpmd\_storage -u ~ale/tpm\_emu/tpmd\_socket\:0 \$\@

Listing A.1: Start Script for the TPM Emulator

By using the ’-f’ paramter, the emulator is run in foreground mode. Adding the ’-d’ pa-
rameter enters debug mode for verbose output.

The emulator can be reset by using the additional parameters ’deactivate’ and ’clear’.
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A.4.2 Starting the client VM

The login credentials for the QEMU-VM are:

Username/Password: root / tpm

#
# QEMU Run File for the ClientTPM VM
#

#!/bin/bash
DISKFILE=/vm/ale/client_20081130.dsk

MAC=52:54:00:12:34:10
VNC_DISPLAY=10
MEM=512
TPMSOCKET=/home/ale/tpm_emu/tpmd_socket\:0
NAME=client1
#TPMSOCKET=/var/run/tpm/tpmd_socket\:0

#should not be changed, opens the socket for the VLAN,
#so that the VM can connect to the virtual network
LOCALSOCKET=1234

#if we get a parameter we load a different ImageFile
if [ $# -eq 1 ]; then

DISKFILE=$1
fi

qemu \
-tpm $TPMSOCKET \
-hda $DISKFILE \
-name $NAME \
-m $MEM \
-vnc :$VNC_DISPLAY -monitor stdio \
-k de \
-usbdevice tablet \
-net nic,vlan=2,macaddr=$MAC -net socket,vlan=2,connect=localhost:$LOCALSOCKET

Listing A.2: Start script for the client VM

A.4.3 Starting the server VM

#
# QEMU Run File for the Server VM
#

#!/bin/bash
DISKFILE=/vm/ale/server_20081130.dsk
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MAC=52:54:00:12:34:11
VNC_DISPLAY=11
MEM=512
NAME=server

#should not be changed, opens the socket for the VLAN,
#so that the VM can connect to the virtual network
LOCALSOCKET=1234

#if we get a parameter we load a different ImageFile
if [ $# -eq 1 ]; then

DISKFILE=$1
fi

qemu \
-hda $DISKFILE \
-m $MEM \
-name $NAME \
-vnc :$VNC_DISPLAY -monitor stdio \
-k de \
-net nic,vlan=2,macaddr=$MAC -net socket,vlan=2,connect=localhost:$LOCALSOCKET

Listing A.3: Start script for the server VM

A.4.4 Starting the router VM

#
# QEMU Run File for the Router VM
#

#!/bin/bash
PATH=$PATH:/usr/local/bin
CDFILE=/vm/router/plop.iso
DISKFILE=/vm/router/plop.img

VNC_DISPLAY=0
MEM=80

#should not be changed, opens the socket for the VLAN,
#so that the other VMs can connect
LOCALSOCKET=1234

/usr/local/bin/qemu \
-hda $DISKFILE \
-cdrom $CDFILE \
-boot d \
-m $MEM \
-vnc :$VNC_DISPLAY -monitor stdio \
-k de \
-net nic,vlan=1 -net user,vlan=1 -net nic,vlan=2,macaddr=52:54:00:12:34:57 \
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-net socket,vlan=2,listen=localhost:$LOCALSOCKET &

Listing A.4: Start script for the router VM

A.5 Ethemba Live Virtual-Machine

Another option to run the Ethemba demonstration framework is the Ethemba Live VM,
included on the DVD. The Ethemba Live Virtual-Machine can be run in Sun Virtual-
box [63] as a virtual machine and includes the QEMU guest VM and the TPM emula-
tor.

To run the Ethemba Live VM, set up a new virtual machine with the included ethemba
disk-image as first hard drive. The login credentials are (username / password): root /
root.

Inside the virtual machine, the TPM emulator can be started with the script from section
A.4.1. The script can be found in the /root/ethemba/ folder.

To start the QEMU guest VM, use the provided start_client.sh start script in the /root/ethem-
ba/ folder. For the QEMU guest VM use the username root, password tpm.
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Implemented Software Solutions

B.1 Ethemba

The implemented framework ethemba mainly contains applications for TPM mainte-
nance on the one hand and client- and server-applications that implement AIK-Certification
and Remote-Attestation on the other hand [40].

It is meant to facilitate the development and usage of TPM driven applications. Ethemba
is based on jTSS for TPM functions and is written in Java.

For further implementation details and a technical description, the ethemba documen-
tation is provided.

B.2 Trusted Kerberos Implementation

Details and a more technical description of the Trusted Kerberos implementation are
provided in the appended documentation of Trusted Kerberos.
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Appendix C

DVD Contents

C.1 Thesis

The diploma thesis can be found in the DVD root folder.

C.2 Ethemba Live VM and Demo Implementation

The Ethemba Live VM disk image is located in the /vm folder; login: root , password:
root.

The folder also contains the setup files for Sun VirtualBox (Linux and Windows) [63].

The Ethemba Live VM already contains the QEMU guest VM with the username root and
password tpm.

The demonstration implementation files are already included inside the VM. They are
located in the /root/Tethemba/jkrb_ethemba/ folder of both the host and the guest ma-
chine.

To run the programs, the ethemba.sh shell script can be used to set all required options,
such as the classpath. See the included video for detailed instructions.

C.3 Trusted Kerberos

The /Tkerberos folder contains the demonstration video of the Trusted Kerberos im-
plementation.

The source code can be found in the/Tkerberos/src subfolder.

The /Tkerberos/doc subfolder contains the technical description of Trusted Ker-
beros.

C.4 Ethemba

The /ethemba folder contains the source code of ethemba. The ethemba documenta-
tion can be found in the /ethemba/doc subfolder.
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C.5 Bibliography

If electronically available, the used bibliography items can be found in the/bib folder.

C.6 Software

The used software is provided in the /software folder.
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