LAUTSPRECHER IN MEMS-TECHNOLOGIE: KLEINSTLAUTSPRECHER FÜR MOBILE ANWENDUNGEN

Tobias Fritsch | Fraunhofer Institut für Digitale Medientechnologie IDMT

tobias.fritsch@idmt.fraunhofer.de

Messung von Schwingung an MEMS Lautsprechern durch den Silizium Deckelwafer hindurch

Polytec Anwenderkonferenz 01.12.2020

Fraunhofer-Institut für Digitale MedientechnologieGruppe ElektroakustikLeitung: Dr. Daniel Beer

- Signalverarbeitung für Lautsprecher
 - Klangoptimierung & Verzerrungsreduktion
 - Schutz vor thermischer und mechanischer Überlastung
- Simulation
 - Modelle f
 ür modellbasierte & adaptive Signalverarbeitung
- Messungen
 - Parameter f
 ür Simulation bestimmen
 - Modelle verifizieren
- Aufbau von Prototypen (Signalprozessor + Verstärkerelektronik)

MEMS LAUTSPRECHER-EXKURS

Mikro-Elektro-Mechanische-Systeme

MEMS Lautsprecher

MEMS Fertigung – Ein Prozess aus der Halbleiterindustrie

- MEMS -> Mikro Elektro Mechanisches System
 - Kombination von mechanischen Bauteilen und Ansteuerelektronik auf Siliziumscheibe (Wafer)
 - Fertigungsprozess aus der Halbleiterindustrie
 - Struktur wird aus Siliziumwafer herausgeätzt
- Für große Produktionsvolumina geeignet
- Preisvorteil gegenüber herkömmlichen Lautsprechern

MEMS Lautsprecher MEMS Fertigung – Ein Prozess aus der Halbleiterindustrie

- Platzsparende Integration durch Kombination von:
 - Aktorik
 - Sensorik
 - Ansteuerelektronik
- Automatisiere Verarbeitung bis auf die Platine
 - z.B. Reflow Lötverfahren möglich

MEMS Lautsprecher Ansätze aus der Literatur (Auswahl)

Piezoelektrisch Lee et al. (1994)^[2]

- Erster uns bekannter MEMS Lautsprecher
- Konzipiert als Mikrofon und Lautsprecher

Elektrodynamisch Haradine et al. (1997)[3]

Bewegter Magnet, fixierte
 Spule

Elektrostatisch Neumann & Gabriel (2002)[4]

 Membran aus Polyamid mit eingeschlossener
 Serpentinstruktur

MEMS Lautsprecher Aktuelle Ansätze (Auswahl)

- Erster kommerzieller MEMS-Lautsprecher
- Aktuell am Markt erhältlich
- MEMS Antrieb mit Folienmembran (Hybrid)

Fraunhofer ISIT [6] Piezoelektrisch

- µm Schlitze trennen Aktoren
 - Mechanisch frei
 - Akustisch eine Membran

Arioso Systems [7] Fraunhofer IPMS Elektrostatisch

- NED
- In-Plane-Bewegung
- Später mehr dazu

xMEMS [8] Piezoelektrisch

- Plant Markteintritt
- Wenig bekannt

SIGNALVERARBEITUNG FÜR LAUTSPRECHER

Modellbasierte Klangsteuerung und Verzerrungsreduktion

Warum ist Signalverarbeitung für MEMS Lautsprecher wichtig?

Signalverarbeitung für Lautsprecher

Modellbasierte Klangverbesserung und Verzerrungsreduktion

- In-Ohr Kopfhörerdemonstrator mit 4x4mm MEMS Lautsprecher
- Starke Resonanzüberhöhung bei ~9 kHz laut Messung
- Für Musikgenuss ungeeignet
- Filter notwendig
 - Kein akustischer Filter mit nötiger Güte
 - Digitaler Filter
- Bei Änderung der Resonanzfrequenz
 - Filter wird nutzlos
- Adaptive Signalverarbeitung notwendig!

Gemessen in einem High-Res Ohrsimulator nach IEC60318-4

Signalverarbeitung für Lautsprecher

Modellbasierte Klangverbesserung und Verzerrungsreduktion

- IDMT: modellbasierter und adaptiver Ansatz
- Filterparameter: Berechnung aus Model
- Nachregelung des Modelles
- Überwachung des Lautsprechers mit Sensor
 - z.B. Strom & Spannung
- Stabilität gegen äußere Einflüsse

Signalverarbeitung für Lautsprecher

Modellbasierte Klangverbesserung und Verzerrungsreduktion

- Modellbasierte Signalverarbeitung
- Resonanzfrequenz wird unterdrückt
- Erfolgreiche Anpassung an Zielfunktion

Gemessen in einem High-Res Ohrsimulator nach IEC60318-4

DSP

MODELLIERUNG VON LAUTSPRECHERN

Grundlage für modellbasierte Signalverarbeitung

- Sehr gute Modelle notwendig (Berücksichtigen äußere Einflüsse)
- Simulation mit Konzentrierter Elemente Methode (Lumped Elements Method -> LEM)
- Simulation mittels Finiter Elemente Methode (FEM)
- Ziel: Einfache Modelle, die auf günstigen Signalprozessoren implementierbar sind

Modellierung von Lautsprechern Der "klassische Weg" – Das einfache Konzentrierte-Elemente-Modell

Beispiel: Elektrodynamischer Lautsprecher in geschlossenem Gehäuse

elektrisch

mechanisch

Um Kleinsignalparameter zu bestimmen zwei Messungen notwendig.

- Impedanzmessung + zweite Impedanzmessung mit veränderter akustischer oder mechanischer Last
- Oder Impedanzmessung + Messung der Auslenkung / Geschwindigkeit der Membran

Modellierung von Lautsprechern

Der "klassische Weg" – Wie kann man die Parameter bestimmen

- Die Methode mit der veränderten Last kompliziert und fehleranfällig
 - Gewicht muss genau bekannt sein
 - Gewicht darf nicht zu asymmetrischer Belastung führen
 - Volumen muss vollständig dicht sein
- Geschwindigkeits- oder Auslenkungsmessungen an der Membran mit Hilfe von Lasern einfach und genau
 - State of the art

MODELLIERUNG VON LAUTSPRECHERN

Der "moderne Weg" – Finite-Elemente Simulation (FEM)

- Komplexe Sachverhalte multiphysikalisch abbildbar
- Extraktion von Werten aus FEM zur Verwendung in LEM möglich
- Materialparameter und Geometrien müssen bekannt sein
 - Oft unbekannt
 - > Vielzahl an Messungen notwendig

Modellierung von Lautsprechern Partialschwingungen

- Verifikation der Simulationsergebnisse mit Vibrometer-Messung
 - Betriebsschwingformen von Membran geben Hinweise ob Materialparameter korrekt gewählt wurden.
- Ziel: Überanpassung der Modelle durch manuelles anpassen von Materialparametern vermeiden.
 - Überanpassung: Modell bildet eine Situation treffend ab. Änderungen äußerer Parameter werden nicht korrekt abgebildet.

Herkömmlicher Kleinlautsprecher bei 5,156kHz

Modellierung von Lautsprechern Verifikation der Simulation

Gemessene Membrangeschwindigkeit

Simulation der Membranauslenkung mit Hilfe der FEM

Modellierung von Lautsprechern Ergebnisse

- Simulation MEMS Lautsprecher
- Verifikation durch Vibrometrie
- Einbau in Gehäuse
 - Realer Lautsprecher in 3D-Druck Gehäuse
 - FEM Modell in FEM Modell von Gehäuse
 - -> Ergebnisse vergleichbar!
- Modell Generalisiert !
 - Jetzt möglich: Untersuchung nicht messbarer Größen
- Hier: Einfluss der thermoakustischen Dämpfung im Gehäuse und in den Schlitzen des Wandlers

Gemessen in einem High-Res Ohrsimulator nach IEC60318-4

*TA Thermoakustik = Dämpfung aufgrund von innerer Reibung und Wärmeaustausch [11]

[11]

NANOSCOPIC ELECTROSTATIC DRIVE - NED IPMS/ARIOSO

MEMS Lautsprecher mit lateraler Auslenkung unter einem Siliziumdeckel

IPMS/Arioso Nanoscopic Electrostatic Drive | kurz NED Funktionsweise

- Aufgebaut aus 3 Siliziumschichten (Wafer)
 - Träger, Aktiv und Deckel
- Träger und Deckel: Luft Ein- und Auslass Öffnungen
- In aktiver Schicht: Biegebalken mit elektrostatischem Antrieb
- Bewegung der Balken: Pumpen von Luft durch die Öffnungen in Träger und Deckel
 - Schallerzeugung

IPMS/Arioso Nanoscopic Electrostatic Drive | kurz NED Funktionsweise

- Aufgebaut aus 3 Siliziumschichten (Wafer)
 - Träger, Aktiv und Deckel
- Träger und Deckel: Luft Ein- und Auslass Öffnungen
- In aktiver Schicht: Biegebalken mit elektrostatischem Antrieb
- Bewegung der Balken: Pumpen von Luft durch die Öffnungen in Träger und Deckel
 - Schallerzeugung

IPMS/Arioso Nanoscopic Electrostatic Drive | kurz NED Abmessungen

[7]

[7]

IPMS/Arioso Nanoscopic Electrostatic Drive | kurz NED Abmessungen

nach[7]

IPMS / Arioso Nanoscopic Electrostatic Drive | kurz NED Das "unlösbare" Problem mg **|**Z| $|\mathsf{Z}|$ Z V

Problem: Bei diesem Lautsprecher keines der bekannten Verfahren anwendbar!

Grund: Deckel versperrt Zugang zu Aktoren -> Entfernen des Decks ändert akustische Last auf unbekannte Art und Weise

MESSUNGEN MIT DEM NEUEN POLYTEC MSA-650 "IRIS"

Das Unsichtbare messbar machen

Neuartiges Laservibrometer erlaubt Schwingungsmessung durch Siliziumdeckel hindurch.

Messungen mit dem neuen Polytec MSA-650 "IRIS" Beschreibung

- Kurzkohärente Lichtquelle
 - Lässt nur Interferenzen an der Messfläche zu
 - verhindert Reflektionen am darüber liegenden Silizium
- IR Laservibrometer f
 ür out-of-Plane-Bewegung
- IR Stroboskop-Kamera f
 ür in-Plane-Bewegung

Messungen mit dem neuen Polytec MSA-650 "IRIS" In- Plane-Bewegung

Messaufbau f
ür Messung der In-Plane-Bewegung mit IR Stroboskop-Kamera

Messungen mit dem neuen Polytec MSA-650 "IRIS" In- Plane Bewegung - Messeinstellungen

- Balkenstrukturen durch den Deckel klar erkennbar
- Festlegen der interessanten Messbereiche in grafischer Oberfläche der Software

Messungen mit dem neuen Polytec MSA-650 "IRIS" In- Plane Bewegung - Video

Messungen mit dem neuen Polytec MSA-650 "IRIS" In-Plane Bewegung – Ergebnisse der breitbandigen Anregung

- Auswertung der Auslenkung bei breitbandiger Anregung am zuvor festgelegten Messpunkt "A"
- 0 dB Referenz willkürlich gewählt
- Werte im Nanometerbereich

Phasenmessung

Mess

Messungen mit dem neuen Polytec MSA-650 "IRIS" Out-of-Plane-Bewegung

- Messaufbau f
 ür Messung der out-of-Plane-Bewegung mit IR Laservibrometer
- MEMS Lautsprecher auf Seite gekippt
- Fokussierter Laser auf 75 µm dicken Balken gerichtet
- Schnittkante des Lautsprechers sehr Rau
 - Schlechte Bedingungen
- Sinusförmige Anregung mit dem Laservibrometer nachweisbar

DSP

Mess

Zusammenfassung

- Hohes Potenzial f
 ür MEMS Lautsprecher
- MEMS Lautsprecher erfolgreich ohne Signalverarbeitung?
 - Ausreizen bis ans Limit
 - Hohe Anforderungen an Klang
- MEMS Lohnt sich erst bei großen Stückzahlen
 - Universelle Mechanik mit spezialisierter Elektronik?
- Mit MSA-650 f
 ür Zukunft mit MEMS Lautsprechern ger
 üstet!

Literaturverzeichnis

- [1] Beer, Daniel; Rusconi, Andrea; Stoppel, Fabian; Ehrig, Lutz (2020): MEMS-Lautsprecher Ein Paradigmenwechsel. In: Deutsche Gesellschaft für Akustik e.V. (DEGA) (Hg.): Akustik Journal. Unter Mitarbeit von Prof. Dr.-Ing. Detlef Krahé (01/20).
- [2] Lee, Seung S.; Ried, R. P.; White, R. M. (1996): Piezoelectric cantilever microphone and microspeaker. In: J. Microelectromech. Syst. 5 (4), S. 238–242. DOI: 10.1109/84.546403.
- [3] Harradine, M. A.; Birch, T. S.; Stevens, J. C.; Shearwood, C. (1997): A micro-machined loudspeaker for the hearing impaired. In: Kensall D. Wise (Hg.): Transducers 97. Digest of technical papers. International Solid State Sensors and Actuators Conference (Transducers '97). Chicago, IL, USA, 16-19 June 1997. S. 429–432.
- [4] Neumann, J. J.; Gabriel, K. J. (2001): CMOS-MEMS membrane for audio-frequency acoustic actuation. In: Technical digest / MEMS 2001, the 14th IEEE International Conference on Micro Electro Mechanical Systems. Interlaken, Switzerland, January 21 - 25, 2001.
- [5] © USound GmbH https://www.usound.com/
- [6] Fritsch, Tobias; Beer, Daniel; Küller, Jan; Fischer, Georg; Zhykhar, Albert; Fiedler, Matthias (2021): MEMS Acoustical Actuators: Principles, Challenges and Perspectives. In: Lena Zentner und Steffen Strehle (Hg.): MICROACTUATORS, MICROSENSORS AND MICROMECHANISMS. Mamm 2020, Bd. 96. [S.I.]: SPRINGER NATURE (Mechanisms and Machine Science), S. 125–136
- [7] Kaiser, Bert; Langa, Sergiu; Ehrig, Lutz; Stolz, Michael; Schenk, Hermann; Conrad, Holger et al. (2019): Concept and proof for an all-silicon MEMS micro speaker utilizing air chambers. In: *Microsystems & nanoengineering* 5, S. 43. DOI: 10.1038/s41378-019-0095-9.

Literaturverzeichnis

- [8] © xMEMS <u>https://xmems.com</u> (28.10.2020)
- [9] <u>https://www.comsol.com/release/5.4/acoustics-module</u> (28.10.2020)
- [10] Stoppel, Fabian; Männchen, Andreas; Niekiel, Florian; Beer, Daniel; Giese, Thorsten; Wagner, Bernhard (2018): New integrated full-range MEMS speaker for in-ear applications. In: IEEE Staff (Hg.): 2018 IEEE Micro Electro Mechanical Systems (MEMS). 2018 IEEE Micro Electro Mechanical Systems (MEMS). Belfast, 1/21/2018 - 1/25/2018. Piscataway: IEEE, S. 1068–1071.
- [11] Küller, Jan, IDMT, Vortrag zum Herbsttreffen des Fachausschuss Elektroakustik der DEGA am 30.09.2020
- [12] <u>https://audioxpress.com/news/micro-loudspeaker-innovator-arioso-systems-gmbh-ready-to-enter-the-market</u> (02.11.2020)
- [13] <u>https://www.polytec.com/de/vibrometrie/produkte/mikroskopbasierte-vibrometer/msa-iris-messdienstleistung/</u>
- [14] <u>https://upload.wikimedia.org/wikipedia/commons/3/34/Impossible_staircase.svg</u> (03.11.2020)
- [15] <u>https://cdn1.vogel.de/unsafe/fit-in/1000x0/images.vogel.de/vogelonline/bdb/1736100/1736108/original.jpg</u> (03.11.2020)

