PERFORMANCE EVALUATION IN MULTI-MW PV PLANTS

Presentation at the OTTI seminar "Monitoring of PV-Systems", June 2011 Version: Proceedings

Anselm Kröger-Vodde

Fraunhofer Institute for Solar Energy Systems ISE

Seminar "Monitoring of PV-Systems" Munich, 7th June 2011 www.ise.fraunhofer.de

© Fraunhofer ISE

Agenda

- Monitoring concepts for Multi-MW PV Plants
- Quality aspects
- Methodology for the PR evaluation
- Cross-checking yield prognoses
- Aspects of independent monitoring
- Exemplary field experience

Fraunhofer

Monitoring Concepts for Multi-MW PV Plants

General considerations

■Hardware concepts

Software concepts (surveillance and evaluations)

© Fraunhofer ISE

Fraunhofer

Monitoring Concepts – General Considerations

Key measured variables are identical to those of small PV plants,

BUT a higher yield is under risk -> available budget ought to be more appropriate for Risk Control

Particular characteristics of Multi-MW PV Plants

- Extent of the plant
- High power ratings
- MV grid connection
- Regular maintenance available

Monitoring Concepts – Hardware

- More accurate and sophisticated measurement equipment
- Additional, redundant equipment
- Additional measurements
 - irradiation with pyranometers
 - grid voltage
 - power limitation or reactive power request by utility
- Extent of the plant requires
 - additional meteorological sensors
 - appropriate communication technology

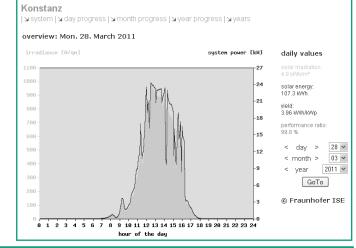
© Fraunhofer ISE

Monitoring Concepts – Hardware

- Increased effort for
 - dispersed energy metering at distributed inverters
 - DC current measurement at central inverters
- Breaking the system into many sub-systems for cross-monitoring
- May be considered:
 - Maintenance tracking
 - Maintenance support (cleaning, mowing)

Monitoring Concepts – Software

- Comparison of sub-systems (cross-monitoring)
- Expert based Operation Data Analysis System (ODAS)
 - Module failures
 - Inverter failures
 - Inefficient inverter operation
 - Shading effects
 - Snow coverage
 - Limitations induced by the grid


© Fraunhofer ISE

ISE

💹 Fraunhofer

Monitoring Concepts – Software

- Tool for alert configuration and alert management
- Tool for incident management (supporting maintenance of PV plant and Monitoring System)
- Web portal for
 - Yield overview
 - Overview over potential revenue losses
 - Maintenance requirements

Quality Aspects

- General criteria and comments
- Irradiation measurement
 - Pyranometer
 - Si sensor
- Energy metering
- Temperature measurements

© Fraunhofer ISE

Quality Aspects

- Quality is crucial to ensure
 - Reliability
 - data availability
 - data accessibility
 - Accuracy of measurements
 - Calibration and inspection on-site?
 - Maintenance intervals?
- Measurement interval (shorter 15 minutes)
- Uninterruptible Power Supply (UPS)
- Data security / backup
- Controlled automatic restart after blackouts?
- Watch-dog functionality?

Quality Aspects

© Fraunhofer ISE

Quality Aspects – Irradiation Measurement

- Pyranometer
 - Minimum two pyranometers in module plane
 - At least one of which has
 - Secondary Standard
 - daily uncertainty < 2%
 - Additional horizontal pyranometer may serve as validation of meteorological resource according to yield prognosis!

ISE

Quality Aspects – Irradiation Measurement

- Crystalline Si reference cell
 - Temperature compensation/correction
 - Stability of sensitivity
 - Uncertainty < 5%</p>
 - Recommended:
 - Characterisation in certified laboratory (to reduce uncertainty)
 - Replacement after 2 years (stability check)
 - Cleaning weekly (or as required)
 - Attention! Annual totals can differ up to 5% compared to the pyranometer

© Fraunhofer ISE

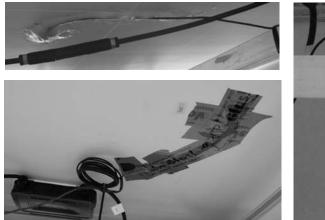
Quality Aspects – Energy Metering

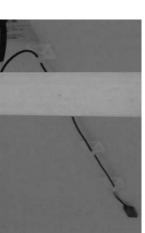
- Ensure operability at high currents over hours
- Direct measurement vs. transformers
- Uncertainty max. 1%
- Approved for PV inverter applications?
- High impulse rates (resolution) if applicable
- Reactive energy metering?

Quality Aspects – Temperature Measurements

PT100

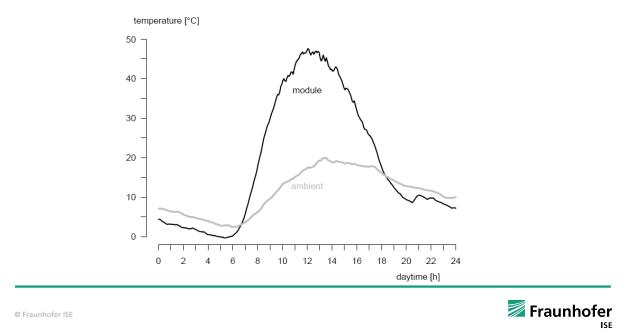
white


- Temperature measurements (2-wire, 3-wire, 4-wire)
- Ambient temperaturePositioning
 - Passive ventilation vs.
 - Active ventilation
 - No ventilation


© Fraunhofer ISE

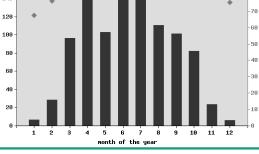
Mounting of sensors for module backside temperature

Ensure thermally good, long-term contact!



Quality Aspects – Temperature Measurements

Exemplary measurements for ambient and module backside temperature

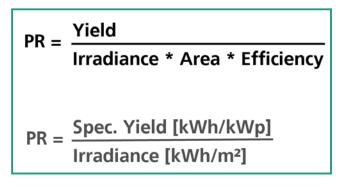

Methodology for the PR Evaluation

- Prerequisites and expectations
- Data validity check
- Calculating the Performance Ratio
- Considerations for comparison campaigns

Methodology for Evaluating the Performance Ratio

Prerequisite uield [kHh/kHp] performance ratio [%] Data availability >99% Data comprising at least a year Data reliability and quality as listed in previous slides Results will include Maintenance interruptions Failures (also unidentified) Interruptions or limitations deriving from the grid 💹 Fraunhofer © Fraunhofer ISE ISE Methodology for evaluating the Performance Ratio Data validity check Values within permissible range? Values reasonable? e.g. temperature difference not too high e.g. irradiation corresponds yield [kWh/kWp] erformance ratio [%] to power output 186 160 etc. 140 Derived values are valid only

if all source values are OK



Fraunhofer

Methodology for evaluating the Performance Ratio

- Normalisation of energy output onto module power
 - Nameplate module power
 - Actual module power for scientific purposes only

Calculating the Performance Ratio

© Fraunhofer ISE

Fraunhofer

Methodology for evaluating the PR - Comparisons

Are there any differences in

- module power?
- dimensioning / system design? (PV array-wiring-inverter-transformer)
- metering on LV or MV side?
- shading situation?
- Module orientation?

It is largely considered by aligned irradiation sensors, but azimuth orientation slightly influences

spectrum of irradiation

Performance Ratio[%]: 2011-03-23

 average operating temperature of PV generator

Methodology for evaluating the PR – Advanced Comparisons

Impact of differences in ambient temperature and module ventilation can be reduced by normalising the PR onto a weighted module temperature

Determining the weighted module temperature

$$T_{\text{mod}, weighted} = \frac{\sum T_{\text{mod}, i} \bullet G_i}{\sum_{year} G_i}$$

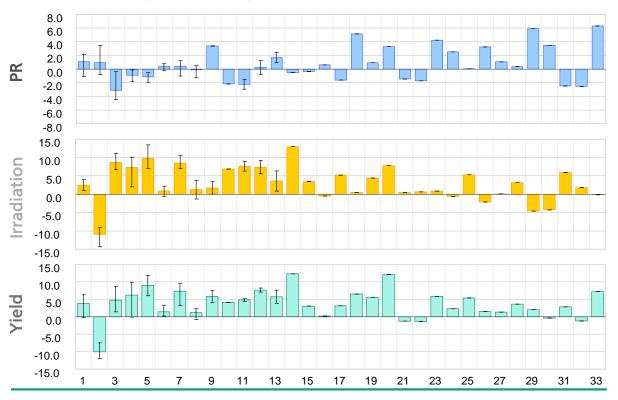
 $T_{\text{mod},i}$ = Module temperature in interval i G_i = Irradiation in interval i

Normalisation of the PR must consider the temperature coefficient, if various module technologies are part of the comparison

```
© Fraunhofer ISE
```

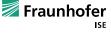
Cross-checking Yield Prognoses

- General remarks
- Examples



🗾 Fraunhofer

Cross-checking Yield Prognoses – General Remarks


- Investor and other parties will compare
 - Yield prognosis
 - Actual yield according to monitoring
- Is irradiation resource as expected?
- Component specific monitoring evaluations may validate the yield assessment study
- Yield prognosis may be tuned to operational behaviour
- Important note: Distinguish between PR_{Pyr} and PR_{Si} !
- Differences between system design in prognosis and actual design?

© Fraunhofer ISE

Cross-checking Yield Prognoses – Examples

© Fraunhofer ISE

🗾 Fraunhofer

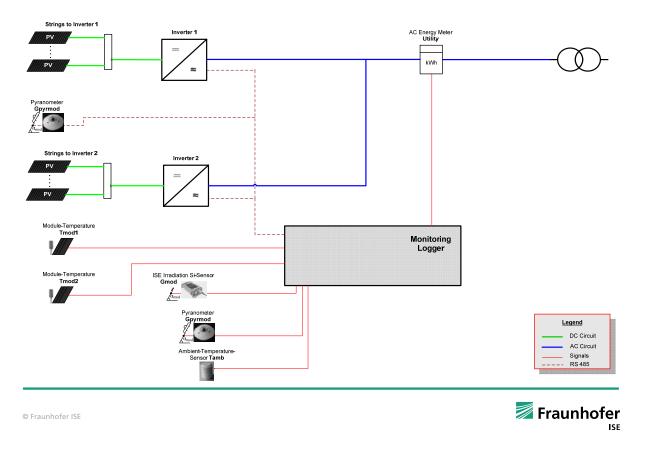
ISE

Aspects of Independent Monitoring

- Monitoring approaches
 - Inverter based Monitoring
 - Manufacturer independent Monitoring
- Considerations

© Fraunhofer ISE

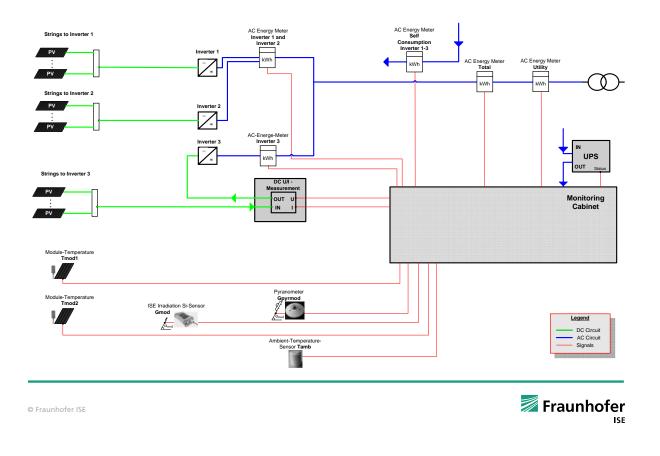
Fraunhofer


Monitoring Approaches – Inverter based

- Inverter based Monitoring
 - Additional effort minimised
 - Usage of integrated measurement equipment (operation control)
 - Single communication bus
 - Accuracy limited (mainly designed for operation control!)
 - Measurement problems affect operation and monitoring
 - No redundant data access
 - Limited options for extensions (e.g. by additional sensors)

Inverter based Monitoring

Monitoring Approaches - Manufacturer independent

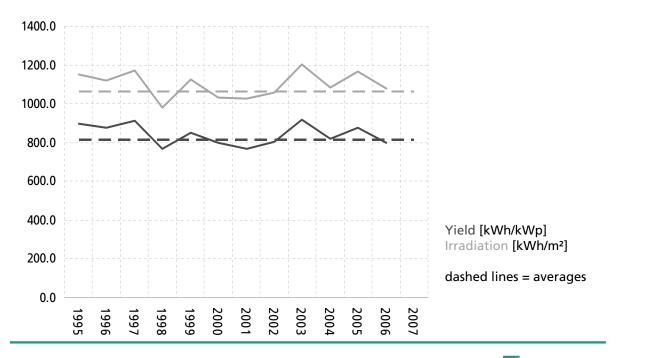

Manufacturer independent Monitoring

- Additional effort
 - Through external energy meters and DC measurements
 - Through extra wiring or limited accessibility of DC bars
 - Redundant measurements and infrastructure (e.g. communication)
 - Access to inverter based measurements maybe limited
- Accuracy appropriate for purpose
- Measurement is independent of
 - component manufacturer
 - component operation errors
- Design might be plant specific (unlimited options)

Manufacturer independent Monitoring

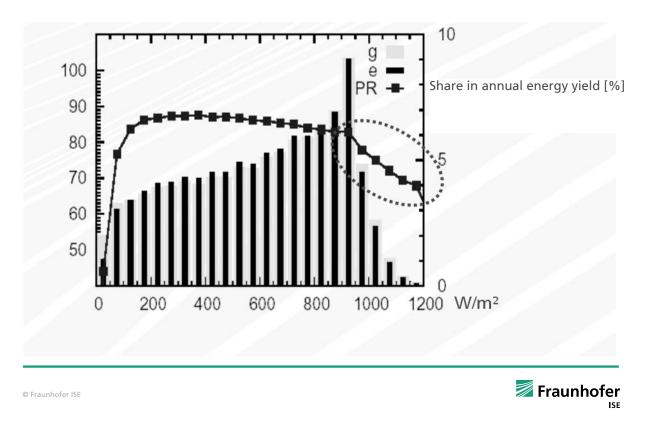
Monitoring Approaches - Considerations

- Requirements
 - Independent of project developer?
 - Independent of O&M company?
 - Bankability issue?
 - Reporting to investors?
- Boundary conditions
 - Budget

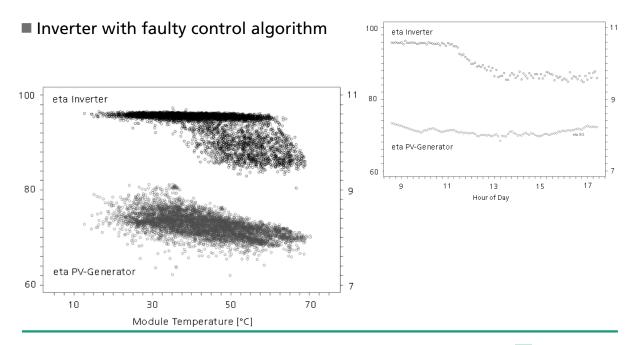

Exemplary Field Experience

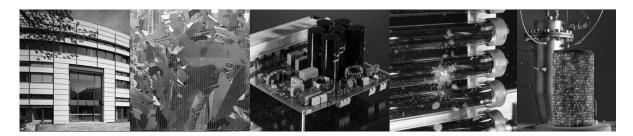
- Long-term Monitoring
- Inverter power limitation
- Erroneous inverter control

C	Frau	nhofer	ISE


Fraunhofer

Examples – Long-term Monitoring




Examples – Erroneous Inverter Control

© Fraunhofer ISE

Thank you for your attention!

Fraunhofer Institute for Solar Energy Systems ISE

Anselm Kröger-Vodde

www.ise.fraunhofer.de pvmonitoring@ise.fraunhofer.de

© Fraunhofer ISE

Fraunhofer