CHIL

Functional Requirements &
CHIL Cooperative Information System Software Design

Deliverable D2.1 (Part 2: Cooperative Information System Software Design)
of the Project CHIL (Computers in the Human Interaction Loop)
IP 506909

14-July-2004

© CHIL

Fraunhofer-Institut fir Informations- und Datenverarbeitung 1ITB

IBM Czech Republic

Kungl Tekniska Hogskolan (KTH)

Laboratoire GRAVIR-UMR5527, INRIA

Research and Education Society in Information Technologies (RESIT)

Universitat Karlsruhe (TH) - Institute IPD (UKA/IPD)
All rights reserved.

CHIL

Cooperative Information System Software Design

Project CHIL — IP506909 — Computers in the Human Interaction Loop
Title Cooperative Information System Software Design
Workpackage WP2

Classification Final

Dissemination level PU: Public

Version 1.0

Date 14-July-2004

Number of pages 114

Document ID

CHIL-WP2-CooperativelnformationSystemSoftwareDesign-V1.0-
2004-07-14-PU

Partners

Fraunhofer [ITB
IBM

INRIA

KTH

RESIT/AIT
UKA/IPD

Authors

Axel Burkle (Fraunhofer IITB)
James Crowley (INRIA)

Jan Curin (IBM)

Jens Edlund (KTH)

Pascal Fleury (IBM)

Honza Kleindienst (IBM)

Jirgen Mol3graber (Fraunhofer 1ITB)
Wilmuth Mduller (Fraunhofer 1ITB)
Michael Okon (Fraunhofer IITB)
Alexander Paar (UKA/IPD)

Uwe Pfirrmann (Fraunhofer IITB)
Jurgen Reuter (UKA/IPD)

John Soldatos (RESIT/AIT)
Gabor Szeder (UKA/IPD)

Martin Thomas (Fraunhofer I1ITB)

Contributors

Augustin Lux (INRIA)

Lazaros Polymenakos (RESIT/AIT)
Manfred Schenk (Fraunhofer IITB)
Gerhard Sutschet (Fraunhofer 1ITB)
Kostas Stamatis (RESIT/AIT)

Final editing James Crowley (INRIA)
Michael Okon (Fraunhofer 1ITB)
Synopsis This document describes the software architecture and design of
the CHIL system in all intended CHIL scenarios.
Key words Architecture/Software Design
Project CHIL - IP506909 — Computers in the Human Interaction Loop
Version: 1.0 14-July-2004 Page 2/114

© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

Revision history:

Version | Date Changes Editor
1.0 2004-07-14 | Creation of document Michael Okon
Version: 1.0 14-July-2004 Page 3/114

© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

Table of contents

O T =Y - Vo = SO 8
R 10 To [0 [i [o] o PP 10
2 General Design PrINCIPIESeeiiiiiiiiiieeee ettt 14
20 R = V1.0 {0 PSS 14
2.2 Configuration and DEPENUENCIES..........uuuiiiiiiiiiiiiieee e 14
2.3 Interoperability and EXteNSIDIlity............oovveuiiiiiiiii e 15
2.4 LeVvels Of POrtabilityueieieiiiiiieeeee e 17
P T B 11V [T = @ | (o] (oo V2RSSR 18
2.6 Levels of COMMITMENTcooiiiiiieee et e e e e e e e e e e e e e eeeeeeeeeennnas 18
2.7 DESIGN RUIES.... .ot e e e e e e ettt e e e e e e e aaeeaees 19
2.8 DESIgN PIINCIPIES ..o a e e e e e e 23
2.9 Security CONSIAEratiONScovviiiiiiiiiiiii e e e e e e e e e a s e e e e e e e e e aaeeeeeeeeeraanna 25
2.10 Documentation GUIAEINES.......ccoiiii i e e e 25
2.11 EXxternal DOCUMENTALIONuuuiiiiiiiiiiiiiiiiiaeee e e e e e e e e e e e e e e eeeeaaaaeeeeaaaaaaaans 25
P20 S R AN o I To Tor U =T o =4[o SR 26
2.11.2 Programmer’s ManUALouuuiiuuiiiiiiiiie e eeee e s s e e e e e e e e e e e e eeeeenannns 26
2.11.3 Programmer’s tULOMIaluuueeiiiiiiiiiiiieeee e 26
2.12 Internal DOCUMENTALIONuuiiiiiiiiiiiieiieiie e e e e e r e e e e e e e e e e e e e e e e s aaaans 26
2.12. 1 ChangELOG ..o a e e 26
P20 G T = T T R I = Vo (T PSRRI 27
P2 S Y 1S3 o) o @0 | (o] S 27
2.15 Software Engineering for a cognitive CHIL software environment........................ 27
3 SYSIEM AICNITECIUIE ... e e e e e e e e e 29
1 J0 A Vo (=] 0) {1 [od ([O 29
3.2 Hardware (SENSOIS, UEVICES)uuuiirieiiiiiiiiiaeeeeeae e e e et e e e e e e e e e e e e e aaaeaaaaaaans 29
3.3 Software (low-level drivers, perceptual interfaces, SErvices)ccccccevvvvvvvvvvvnnnnnns 30
3.4 SW-Architecture (MiddIEWAre)...........oooi i 31
3.4.1 CHIL agent based global architecture (high level) ..., 31
3.4.2 CHIL Layer MOAEL ...t 33
3.4.2. 1 USEI fTONE-€NA .ottt 33
Version: 1.0 14-July-2004 Page 4/114

© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

3.4.2.2 Service acCess and CONLIOL......uuuuuuiiiiiiiiiieeee e 34
I B S T Yo L SR 35
3.4.2.4 Situation MOAEIIINGuuiiiiiiii e 35
3.4.2.5 Perceptual COMPONENTS......ccoiiiiiiiiiiiii e 37
3.4.2.6 Logical SENSOIS/ACIUALONSuuuerieiiiieeeeeeeeeeiee e et e e e e e e e e e e e e eeeeeannnes 38
0 A 0 11 (0] V1Y [T = To £ = WP 38
3.4.2.8 Low-level distributed data transfer ... 39
3.4.2.9 CHIL ULIILIES....ciieiiiiiiiiee et e e e e e e e e e e e ennns 39
3 0 K O I © 1 1 (] (o o U SEPPRPPTNt 40
3.4.3 Functional components MapPiNgccccuuuurriiiiiiiie e 42
3.44 USE CASESuieiiiiiie e e ettt e ettt e e e et et e et e e e e e e e e e e e e e et e e na e e et e n e e e neene 43
4 Mapping the Requirements to the Architecture Framework Layers Modtl............ 44
4.1 Requirements for the “Low-Level Distributed Data Transfer (LDT)"-Layer 47
4.2 Requirements for the “Metadata (MD)"-LayYerccoeviiiiiiiiiiiiiiiiiiiiiiieee 48
4.3 Requirements for the “Control (C)"-LaYercccovviiiiiiiiiiiiiiiie e eeee e 49
4.4 Requirements for the “Logical Sensors/Actuators (LSA)’-Layer........cccccccvveeeennnnn. 50
4.5 Requirements for the “Perceptual Components (PC)"-Layer.........ccccceeveeeeeeeeeeenn.. 51
4.6 Requirements for the “Situation Modelling (SM)"-Layerccccoviiiiiiiinnnnnnnnn, 52
4.7 Requirements for the “ServiCes (S)"-LaYeruuuuruiiiiiiiiieeeeeeeeeeeeeeee e 53
4.8 Requirements for the “Service Access and Control (SAC)"-Layerccccccvveeeeen. 54
4.9 Requirements for the “User Front-End (UFE)™-Layerccccceveeiiiiieeeeeeeeeeeeeeee, 55
4.10 Requirements for the “CHIL Utility (U)"-LaYErccoeeriiiiiiiiiiiiiiiiiiiieieeeeeeeee e 56
I [1 = g = ot D =T T | o 57
SR R O YT T R PUPRPUUPRSRR 57
5.2 Sequence Diagrams for USE CaSESccceeiiiiiiiiiiiiiiiiiies e 59
5.2.1 Use case NotificationADOUtATENTIONLOSS...........uuiiiiiiiiiiiiiiiiieeeeeeee e 59
5.2.2 Use case BrowseContextinformation...............ooooiiiiiiiiiiiiiiiiieeeeee e 60
6 Detailed SWAAICNITECIUIEvviiiiiiiie et e e et e e e e e e e e e 61
6.1 UPPEI LAYEIS ... ittt ettt e ettt e e e e e ernaas 61
6.1.1 Use case NotificationADOUtATENTIONLOSS..........uuuiiiiiiiiiiiiiiiieeeeeeeee e 62
6.1.2 Use case BrowseContextinformation...............oooiiiiiiiiiiiiiiiiiieeee e 64
6.1.3 Use case UserldentifiCation............oouvieeiiiiiiiiiiiiiee e 66
6.1.4 USEI FIONT ENG ...ttt e e e e e e e e e e e e e s 69
Version: 1.0 14-July-2004 Page 5/114

© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

6.1.5 Service Access and CONtrol LAYETcoevvvvuuviiiiiiiiee et 71
6.1.5.1 CHILAGENIMANAGETcci i ettt e e e e e 72
6.1.5.2 ONtOIOGYACCESSAGENLcoiiiieeeeeeee ettt e et e e e e e e e e e e e aeeaaaanns 72
6.1.5.3 ServiceAgents (MemoryJogAgent, ProfileHandlerAgent,
InformationRetrievalAgent, AttentionCockpitAgent, ConnectorAgent) 72

6.2 SEBIVICES LAY ...ttt ittt ettt e et e e e e e e e e e 72

6.2.1 User Profile SpPecificationoooiiiiiiiicice e 76

6.2.2 ProfileHandler SErVICEcooo oo 77

6.2.3 InformationRetrieVal SEIVICEccoviiiiiiiiiii e 77

6.2.4 Devicelntegration SEIVICEcccccuiiiiiiiiiiie et 77

6.2.5 UsSerldentifiCation SEIVICEuuuuiiiiiiiiiiiiiiieeee e a e 78

6.3 Situation MOAEIING LAYETuuiiiiiiiiiiiiiee et 79

6.3.1 Overview of layer arChiteCtUre...........cceiiiiiiie e 80

6.3.2 Eventing and Pollingoooooii e 83

6.3.3 EXEENSIDIILY ... e e e 84

6.3.4 HISTOIY TraCKING ...eeveiiiiiiiieeee et 84

6.3.5 Start-UP OF SYSTEIM...eiiiiiiiii i a e e e 85

6.4 Perceptual COmMPONENTS LAYETccoiiiiiiiiiiiieie ettt 85

6.4.1 ClasS AFCIITECIUIEeeeieeiiiie ittt e e 85

6.4.2 Proposed Perceptual COMPONENTS........cooiiiiiiiiiiiiiiiie e 87

6.4.3 Perceptual Component APISiiiiii e e e 88

6.5 Logical Sensors and ACTUALOIS LAYETcoooiiiiiiiiiiiiiiiiiiiie et 88
6.5.1 (oo o= | IR T=T 0 [STo] £ PSP 88
6.5.2 LOGICAI ACTUBLOIS ...ttt e e e e e e e e as 90

6.6 Control/Metadata |AYEr...........ccooiiiiiiieicee e e e e e e 90

6.6.1 Data and Control Abstraction: Interface to LDTL and LSALcc..ue...e. 90

6.6.2 Resource Limitation ASPECLSuuuuiiiiiiiiieeeeeeeeee et s e e e e e e e e e e e eeaeeaaannes 92

6.6.3 Exception Event Abstraction: Impact of Hardware Device Failures............... 92

6.7 Low-Level Distributed Data Transfer layer..........cccceeeeieiiiiieiieiicceee e 92

6.7.1 NIST Smart FIOW SYSIEM ...cooiiiiiiiiiii e 93
6.7.1.1 NSFS COMPONENLSuiiiiiiiiii ittt e e e e e e eaa e eees 93
6.7.1.2 C++ interface to the Smart FIow library ..o 94
6.7.1.3 MESSAQING.....cciiiieieeiitiitiiiiie e e e e e e e e e e e e e e e et e e et a e e e e e e e aaaeeara i —————————————— 94
6.7.1.4 Synchronized Flow between Clents...........cccoeiiiiiiiiiiiiiiieeeee e 97

Version: 1.0 14-July-2004 Page 6/114

© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

6.7.2 NIST Data Flow System Version 2

.. 97
6.7.2.1 NDFS-II COMPONENTS ...ttt 97
6.7.2.2 Host and ApPlICAtION SEIVEIS........uuuiiiiie e e e e e e e e e eeanaanns 98
A T O 1= o | T USSP 100
6.7.2.4 Data FIOWS.. ...ttt e e e e e 102
B.7.2.5 SECUITY ..ottt e et e e e e e e e e e e e e e n e e 103

6.8 CHIL ULIlIIES ... iieeiiie ettt ettt e s e e e e e et e e e e e e s annbn e aaeeeeennnees 103
6.8.1 GIODAI TIMING. .t e e e e e eeeas 103

SRS I @ T 1) (o] [0 | V2SS 104

T OPEN ISSUES ...ttt e et e e e et e ettt e e e et b e e e e e e e e e e e et e e e e nnnnnnnaaa 106

T. 1 GENEIAI ISSUBS .ottt e e e e e e e e e e e e s bbbttt ettt e e e e e aaaeeeeeas 106

7.2 SPECIAIISSUES ...t e e e e e e e e e e e e e e e 108

S T Y 0 01 TP 110

S 0 R = (=T = o = PSSR 110

8.2 AN ISttt a e e e e 112

8.3 FIQUIE LIST .. 113

Version: 1.0 14-July-2004 Page 7/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

O Preface

The project CHIL — “Computers in the Human Interaction Loopgrisntegrated Project (IP
506909) funded by the European Union under its 6th Framework Program. Thé steojed
on January 3, 2004 and has a planned duration of three years.

The CHIL team is a consortium of internationally renowned rekdlabs in Europe and the
US, who collaborate to bring friendlier and more helpful computing s=vio society.
Rather than requiring user attention to operate machines, CHicesattempt to understand
human activities and interactions to provide helpful services inipliaitd unobtrusively.
The CHIL consortium is coordinated jointly by the Fraunhofer Insfituinformations- und
Datenverarbeitung (lITB) and the Interactive Systems Labk) (8 the University of
Karlsruhe.

Considerable human attention is expended in operating and attending to e¢eymgudehu-
mans are forced to spend precious time on fighting technologteéhets, rather than on hu-
man interaction and communication. CHIL aims to radically chahgemMay we use com-
puters. Rather than expecting a human to attend to technology, Cidihpéd to develop
computer assistants that attend to human activities, interactiothsnt@ntions. Instead of
reacting only to explicit user requests, such assistants welgqbirovide services by observ-
ing the implicit human request or need, much like a personal butkeidw To achieve this
goal, machines must understand the human context and activities thetyemust adapt to
and learn from the humans’ interests, activities, goals and aspgathis requires machines
to better perceive and understand all the human communication sigriatiing speech, fa-
cial expressions, attention, emotion, gestures, and many more.

Based on the perception and understanding of human activities andceotéadt, a new type
of context aware and proactive services can be developed. Withiinsthiaree years of the
CHIL project, four instantiations of such CHIL services will be implemented:

* The Connector: This service attempts to connect people at thénbedby the best
media, whenever it is most opportune to connect them. In lieu ohteatieams of
voice messages and playing phone tag, the Connector tracks and knowvastiss’
activities, preoccupations and their relative social relationshiggsraediates a proper
connection at the right time between them.

» The Memory Jog: This is a personal assistant that helps itarhuser remember and
retrieve needed facts about the world and people around him/her.@wyizng peo-
ple, spaces and activities around its master, the Memory Jo@tr@ve names and
affiliations of other members in a group. It provides past recorgseofous encoun-
ters and interactions, and retrieves information relevant to the meeting.

» Socially supportive workspaces: This service supports human gathdrin§ers
meeting assistants that track and summarize human interaictitgtdures, meetings
and office interactions, and provide automatic minutes and createdaiolsecords
of past events.

* The Attention Cockpit: This agent tracks the attention of an audemterovides
feedback to a lecturer or speaker.

Version: 1.0 14-July-2004 Page 8/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

CHIL represents a vision of the future - a new approach te mguportive and less burden-
some computing and communication services. The research consortiudesnt5 leading
research laboratories from 9 countries representing todayesddt#tte art in multimodal and
perceptual user interface technologies in European Union and the U&arhesets out to
study the technical, social and ethical questions that will etlisleext generation of com-
puting in a responsible manner.

The CHIL results will be disseminated and made available tml@ @@mmunity of interested
parties. Several major deliverables, including this document, wipldi=ed in the public do-
main to promote an active exchange of ideas.

For further information on CHIL refer to the project web sitbtgi://chil.server.de

This document deals with the second part of deliverable D2.XCdbeerative Information
System Software Desighthe CHIL system.

Version: 1.0 14-July-2004 Page 9/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

1 Introduction

The ultimate goal of the CHIL project is to develop and integrateeptual technologies and
multi-modal interfaces for services or providing assistance to mattavities in indoor envi-
ronments (e.g., in the scope of lectures, meetings, officeenpagions) without disruption.
Technology components contributed and developed by several CHIL ggitndre scope of
WP4, WP5 and WP6) provide the foundation of these services. The CHIlctpregrires
design, implementation and experimentation with useful servicestagf paP3 and WP7 as
well as the development of new technologies (WP4, WP5 and WP6)ziRgdhie goal of the
project demands that perceptual interfaces are integratediscrto the design, purpose and
objective of the targeted services.

Rather than focus on an ad-hoc implementation of particular serthee€HIL project will
proceed by specify a structured method for interfacing with sgnsaegrating technology
components, processing sensorial input and ultimately composing nonagbtsasvices as
collections of basic service capabilities. Characteristanmgtes of such basic service capa-
bilities include:

* Identification of people (i.e. users) and artefacts.

* Recognition of user actions and activities, as well as situations.

» Understanding and anticipation of user needs during task performance.
* Information presentation to users.

» Logging of activities, essential facts and deliberations for future use.

Achieving structured integration and composition of sensors, technologgooemts and
service elements requires the specification of a set of stigtprinciples enabling the over-
all CHIL system to be comprised by these individual components$ciditaire atomicity, while
being compatible with the overall system. These structuring ptescconstitute tharchitec-
ture. This architecture will guide the integration of components by providiaigfinition of
the interfaces between sensor processing, technology and sergidedrcomponents. The
CHIL architecture will comprise a rich set of middlewarevees establishing a continuous,

ment, configuration and operation of the CHIL services.

The design principles as well as the above set of middlewasieeseand the associated soft-
ware infrastructure are referred to as @iL architecturé. The main objective of WP2 is
to design and implement a prototype version of the CHIL architedtutbe scope of large
projects an architecture facilitates development, integration, detgygghile minimizing re-
engineering and dependencies on specific technologies and pktfohe vast majority of
ubiquitous and pervasive computing projects dealing with sophisticatettes based on
multiple sensors and perceptual components (e.g., [2], [3]), rely onascicitectures. The
need for establishing an architecture is particularly conmgefor the CHIL project. This is

! Following paragraphs of this document elaboratethenproperties of the CHIL architecture, as welltae
requirements from this architecture

Version: 1.0 14-July-2004 Page 10/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

' H I L Cooperative Information System Software Design

due to the scale of the project, the anticipated sophisticatiosamplexity of the services,
the number of partners and demonstration sites, as well as thgtglioé technology compo-
nents contributed to and developed within the project. The CHIL acthit is therefore ex-
pected to facilitate integration and implementation of the service prototypes.

The CHIL partners have performed a thorough review of existictgtactures for ubiquitous,
pervasive and context aware computing (e.g., [4], [5], [6], [7], B].[B]. [9]) and have con-
cluded that none of these architectures meets the needs andmeqtsréor the CHIL pro-
ject. The sophistication of the CHIL prototypes, as well as thaaand scale of the project
impose a wide range of challenges not addressed by any ofetkisiag architectures. In
most cases, these architectures integrate a significanélyes number of technological com-
ponents than CHIL (e.g., focus solely on vision technologies such agq.(Qb]), while tar-
geting less sophisticated services (e.g., [11]).

It can be noted that that several partners of the CHIL comsotiave developed their own
architectures in the scope of other projects (e.g., [10]) and thuskpgaence with the chal-
lenges entailed in architecture design and implementation. Everhttioei@€HIL architecture

is not based on any existing project, CHIL will include use of software comsoteveloped

in previous projects, provided that these components comply with the olgeatidaequire-

ments of the CHIL architecture. Such reuse of existing compondhtsccelerate the boot-
strap implementation of the CHIL system, while at the same &llowing other CHIL WPs

to evolve without tight dependencies to the ultimate output of WP2.

The purpose of this document is to specify the software desigimeo€HIL architecture,
while complying with requests described Fanctional Requirements[1]. Starting from a
high level description of the CHIL system and an identificatiorthef functional require-
ments, this document provides a specification for the basic object@di model that will be
used to drive these requirements to implementation detail. Howesiaig the first official
deliverable of WP2, it also illustrates the concept of the Cattihitecture and explains the
rationale behind a developing a new architecture and middlewalteef@HIL project. More-
over, it exemplifies the functionality and utilities of the CHitchitecture. This document is
strongly connected to the document mentioned above, which provides a througtisaofal
the functional requirements of CHIL. This functional requirements dentiraccompanies
the software design document, since it establishes and illustr&tdsll range of require-
ments addressed by the current software design. It is no acthdente present deliverable
references the functional requirements document multiple times.

Following this introductory section, section 2 elaborates on generaligles adopted for
producing the software design. These principles address requirefoemstsftware design,
organization and maintenance, along with technical guidelines faalgciproducing the
software design. The software organization and maintenancelgi@otaes on the processes
guiding configuration of the software, production of portable softwagyation of docu-
mentation, bug tracking, conduction of revisions, security implicationsalsot privileged
access to software by various groups committed to designingpgewgind maintaining the
CHIL software. On the other hand, technical guidelines include bastiqes, blueprints and
software design rules taken into account in the scope of the CHIL softwéage.des

Following the general guidelines driving the software design, sectjmmes&nts the overall
picture of the CHIL system, and establishes the CHIL ardhbiteas a distributed system.
The main types of both hardware entities (e.g., sensors, contraMirigstations) and soft-
ware entities (e.g., perceptual components) are described. Thidl ev@w of the CHIL ser-

Version: 1.0 14-July-2004 Page 11/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

vice system and its components is followed by an analysis obdffisvare’ layers constitut-
ing the CHIL architecture. This analysis is referred tchas@HIL Architecture Framework’
and provides a classification of the software components of the @idHitecture according
to their functionality and role in the overall CHIL system. Imtigalar the following layers
are specified: Low-Level Distributed Data Transfer (DPMetadata (MD), Control (C),
Logical Sensors/Actuators (LSA), Perceptual Components (RtptiBn Modelling (SM),

Services (S), Service Access and Control (SAC), User Front-End (UFE), GHitlz (W).

The notion of layering in the specified component hierarchies imfiia@scomponents of a
certain layer make use of services exposed by components fallmger layers of the hier-
archy. Layering allows for a functional separation of the nbaiitding blocks of the CHIL
architecture, as is also illustrated in the scope of sampleases that address indicative uses
of the system. Apart from a functional separation, the CHIlhigcture framework offers
possibilities for modularising the software design towards digirig, managing and auditing
the software design efforts.

Following the description of the CHIL Architectural Frameworkct®n 4 maps the func-
tional requirements of the CHIL architecture to one or more ofayer. This ensures that
software designers entailed in certain layers design,itakeaccount the full set of require-
ments associated with the particular layer. This sectgm @lovides an initial prioritisation /
classification of the various requirements according to thgoitance to the overall CHIL
system and its goals.

Section 5 addresses the design of the user interface for erslaishe CHIL system. Al-
though CHIL is primarily concerned with the design and developmeatti@nsparent sens-
ing infrastructure, as well as services, there is necsaaneed for users to activate, config-
ure and interact with CHIL Services. Therefore, a portion of thi @kthitecture addresses
the interaction of the CHIL spaces and services (as described in sectioh 63evi.

Section 0 constitutes the heart of this deliverable. Based onrtltuse established in the
scope of the CHIL architecture framework, this section providesdftware design as a set
of layers and their interfaces. This section also providesraegaanularity software design,
providing UML diagrams illustrating the main class level entities.

While this document provides a comprehensive software design outliningprdesoftware
objects of the CHIL architecture, the design is neither exhvaustr final. This is intention-
ally done to avoid unnecessary reverse engineering cyclesotlidtiave a hindering impact
on the implementation of the CHIL architecture. The current leveétHil is mainly imposed
by dependencies and interactions of the CHIL architecture to tgblenical groups of the
project. A detailed specification of the composition of servicenetgs into CHIL services
depends on the specification of the CHIL services, while a detplecification of the inter-
facing and integration of perceptual components, demands a maturptaesof the tech-
nologies to be used. Because the service design and technology compootetyping is in
progress it is not realistic to provide a detailed design divaoé entities down to the attrib-
ute and operation granularity. Thus, in the scope of this deliverableaseftiesign is pro-
vided at a coarser granularity (i.e. Class / Entity levebweler, a basic set of methods and
attributes are specified as well.

Version: 1.0 14-July-2004 Page 12/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

This will remain aiving document that will be extended as appropriate to address the whole
range of technology components and services to be used within the,pasjeell as (addi-
tional) requirements imposed in the scope of their operation and intedration.

2 See therefore also the chapter at@pén Issues

Version: 1.0 14-July-2004 Page 13/114

© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

2 General Design Principles

CHIL is a research project. As such, it is not the objectivee®faHIL work plan to deliver a
ready-to-market commercial product. At first glance, it would apfieat a relaxed approach
to software engineering principles might be appropriate for tHi @roject. However, one
of the main challenges of CHIL is to integrate a hetereges collection of software and
hardware contributions provided by research groups scattered alEok@pe into a single
system. Such an effort requires somewhat more rigid rules footentooperation than it
would be necessary for a small local group of researchersuldse guidelines, and sugges-
tions developed in this document are primarily introduced to ease atiopelbetween par-
ticipating research groups, thus facilitating the integrationl sémitted contributions into a
sound CHIL software environment.

2.1 Keywords

For use in working documents, we define capitalized key words toaitedrequirement lev-
els, following the definitions in RFC 2119 (sekp://www.ietf.org/rfc/rfc2119.t3t The key
words are: "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHAL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONA".

2.2 Configuration and Dependencies

For each published component, tools, packages, libraries, and required runtiroeneents,
on which components depend, MUST be provided for both design time andeatihe-
scribed below. This policy is to enable CHIL partners to reproducbiypile and run the
software. Each description MUST at least contain the following items.

Design time configuration (“The software is known to build under...”):
» Platform (operating system; i.e. kernel version, distribution vendor)
* Programming language (i.e. version, dialect)
» Compiler, interpreter (i.e. build options)
» Dependencies (packages, libraries)

Runtime configuration (“The software is known to run under...”):
» Operating system (i.e. localization adaptations, little-endian / big-erstiaas)
* Runtime environment (e.g. Java Runtime Environment)
» Dependencies (packages, libraries, required back office software)

Template forms will be published to contain this information. Eachribomibn to the CHIL
software environment, whether it is binary executables or softe@rece code, MUST be
labelled with such informative tags.

To be able to tell if include headers, libraries, binaries, att.be considered to be part of a
typical CHIL operating system installation, all CHIL parsi&HOULD announce which op-
erating systems they use. If a CHIL partner ("user pdjtsacceeds in compiling and/or run-
ning a software on a different platform or in a different environrtieant has been developed
by another CHIL partner ("developer partner"), the user partn€ gD inform the devel-
oper partner that the user partner's environment MAY be added toisthef |plat-

Version: 1.0 14-July-2004 Page 14/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

' H I L Cooperative Information System Software Design

forms/environments that the software "is known to run under". When gadeer fails to

compile or run the developer partner's software, the user pat@UID contact the devel-
oper partner to solve the problem. Often, a different environment causksssues and it
may turn out that, for example, updating a specific library fixilthe problem. In this case,
the developer partner SHOULD document the user partner's softmarenenent and re-
quired changes. This policy may also help to more efficiemdigk issues with particular
versions of headers, libraries, binaries, etc. during compilation dmeinTemplate forms
will be published to facilitate standardized configuration communication.

Portability of source code such that program code can be cahapildifferent architectures
without any modifications SHOULD be pursued whenever possible.ffssiceptions are
the usage of operating system- and hardware specific functiorialithose cases, platform
dependent code SHOULD be encapsulated in separate files suethératargeting a new
platform only platform dependent files need to be changed.

For Unix/Linux specific software tools likeonfigure , make, and make install
SHOULD be used. A configure script or any other utility whicbvptes equivalent function-
ality MUST be included with every package. Thus, the presene#i dependencies can be
detected. This allows some sort of compile-time configuratioh@fsbftware. In case de-
pendencies are missing, the script SHOULD give useful errssages (e.g. “You need the
gtk2 development libraries to build this software.” instead of “Erfeogbar.h not found.
Aborting.”). Makefiles SHOULD have the following conventional targeds , install
uninstall , clean , distclean (see the GNUnake manual for the purpose of these targets
and further conventions.

Developers (sekevels of CommitmenMAY decide to use commercial software (i.e. inte-
grated development environments, CASE tools) for building contributiorset@€HIL soft-
ware environment. However, it MUST be feasible to build the Cstttware environment
from source code without purchasing any commercial softwarepekweproprietary hard-
ware drivers and commercial operating system core librddegelopers SHOULD use de-
velopment environments and modelling tools, which are available for etyaifi operating
systems and which are able to build software for multiple tangé&forms. Data formats (e.g.
source code, project files, MDA data, etc.) SHOULD be used wlaclitate data inter-
change between development- and modelling tools.

Developers of contributions to the CHIL software environment SHOLdYide the tools

necessary to build their components along with the components' sourceBotluesource

code and build tools MUST be provided in order to have software cldsagisource code
compatible (sekevels of Portability.

2.3 Interoperability and Extensibility

Interoperability and extensibility of the CHIL software enviromtneill be heavily affected
by data type systems that are used. Therefore, contributdrs @HIL software environment
MUST agree on compatible type systems when data is torbenanicated beyond address
spaces. Primitive data types that may eventually be exchangeédebetlifferent platforms
(operating systems, processor architectures) MUST conforimettypes defined in section
7.18 of the ISO Standard "Programming Languages - C", ISO/IEC 9899(4%94. "ISO-
C99") or they MUST comply with the XML type system as ddssai by XML Schema.
These agreements are particularly important because buiknidastdt C data types such as
short ,int ,long andlong are platform dependent. For example, the dataitypemay

Version: 1.0 14-July-2004 Page 15/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

represent a 16-bit integer type on one platform and a 32-bit intguemoty a different plat-
form. State-of-the-art ANSI-C-compilers typically support 899 data types by providing
proper header files (e.g. on UNIX platforms, the directieclude <inttypes.h>

should suffice).

Defined data types include (among others):
int8 t ,intl6 t ,int32_t ,int64 t ,uint8 t ,uintl6 t ,uint32_t ,uint64 t

POSIX Standard section 2.5 defines primitive system data typearthaompatible with the
C99 data types and therefore MAY be used alternatively to 88etypes. Under Unix, these
types can by typically included wittinclude <sys/types.h>

Under Microsoft Windows operating systems, the following definitions mdicetf

typedef signed char int8;
typedef unsigned char uint8;
typedef signed short int16;
typedef unsigned short uint16;
#ifdef _WIN32

typedef long int32;

#else

typedef signed int int32;
#endif

typedef unsigned int uint32;

Byte order of primitive data types MUST be considered whehanging data between big-
endian architectures (such as PowerPC, PA-RISC or SPARCG6Ajtteerdndian architec-
tures (such as x86, Itanium or Alpha).

When writing and reading files that may be processed on diffarenitectures, all readers of
and writers of the file MUST agree on the byte order. CHifivgare developers SHOULD
either lay down the byte order in a fixed way as part of tte fila format, or provide a field
in the file format that allows specifying the byte orderdach file individually. In order to
keep the implementation of file readers and writers simple fitsie approach is recom-
mended. For example, although the .wav audio data file format afiothslittle endian and
big endian encoding, it is recommended that CHIL partners agreengneither little endian
or big endian encoding for .wav files, but not both.

When transferring data through a network connection (e.g. Etheptetptader MUST follow
TCP/IP network byte order unless the sender and receiver dypdigiee on a data format
that implicitly lays down byte order. Typical TCP/IP implertagions provide functions or
macros such aston , htons , htonl , ntohs , ntohl to convert between host byte order and
network byte order.

3 Extensions for “int 64” and “uint64” are required.

Version: 1.0 14-July-2004 Page 16/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

2.4 Levels of Portability

Over the lifetime of the CHIL project, all architecture feamork layers are likely to be popu-
lated with a large number of software components. Users may aedebset of the available
components from a CHIL software repository and set up a CHIammient that comprise
those components. A software component may be categorized into oneaésises of port-

ability depending on its platform requirements.

Binary compatibility is recommended when compilation of softw@mponents on target
platforms is inappropriate. Examples are CHIL services runningjient devices that users
take into the smart room. Such services (e.g. GUI tasks) maxdéonple be coded in a port-
able abstract machine code (e.g. Java or MSIL bytecode).

Alternatively to binary compatibility a set of pre-compiled vatsafor a set of different plat-
forms may be provided such that a client may download and run the poafgevariants of a
CHIL service on the fly.

Table 2-1: Portability Levels

Level of portability Requirements
Platform independent Script programs (e.g. Python, Tcl/tk) and managed
(binary compatible) code (e.g. Java, .NET-languages) can be run on seyeral

platforms without any modifications. Platform depend-
ent native code MUST NOT be called by software of
this category.

Platform independent Unmanaged code may have been build for a number of
(binary available for platform) | platforms. Thus, it may be available in the CHIL soff
ware repository. Platform dependent libraries MUST
NOT be called by software of this category.

Platform independent Software that is source code compatible SHOULD be
(source code compatible) build for all CHIL platforms and SHOULD be made
available in the CHIL software repository.

Platform independent with sim-| This kind of software can be ported to all CHIL plat-
ple source code modifications | forms with only simple source code modifications.

Platform independent with sig- | This kind of software requires significant source code
nificant source code modifica- | modifications to be available to all CHIL platforms.
tions

Platform dependent This kind of software depends on one patrticular plat-
form.
Version: 1.0 14-July-2004 Page 17/114

© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

2.5 Device Ontology

Devices will be classified into a special ontology. Among other critdnigctassification will
be based on the class of target machine. Three target machine classggested:

» Core machines — These machines present the basic static fert@HlIL infrastruc-
ture and are crucial to a working CHIL environment. Software on th@sguters is
supposed to be installed only once by knowledgeable technical persdrate par-
ticularly familiar with setting up CHIL sensor networks andhwionstituting a sound
CHIL software environment (i..ecommitters seeLevels of CommitmentCore ma-
chines SHOULD NOT impose any portability requirements on thevaodtthey run
(seeLevels of Portability.

» Tentative workstations — These machines are temporarily par€efiL environment.
However, they are not removed or replaced during an ongoing CHiit a.g. meet-
ing). In most cases, workstations will outlast several CHIletings. Software on
these computers is supposed to be installed and removed on demand dgaow
able technical personnel who are familiar with installing ICBibftware components
(i.e. assembling administratoyseelevels of CommitmentSoftware running on these
machines SHOULD be at least source code compatibldésexts of Portability.

* Mobile-/personal devices — This device class comprises mobile ane¥sonal de-
vices such as PDAs, cell phones, laptops. These devices may iayhdanaor leave a
CHIL software environment without prior notification. Software runningleese ma-
chines MUST be platform independent with binaries available foplatforms (see
Levels of Portability.

2.6 Levels of Commitment

The CHIL software environment is likely to continuously evolve oveetim order to ensure
consistency and backward compatibility among all components both uskrdeselopers
contributing to WP2 are supposed to comply with certain rules depeodititeir levels of
commitment. Similarly to the open source projectipse (http://www.eclipse.org/a com-
mitment hierarchy is suggested as follows:

* End users — These are users who employ the CHIL software envirgranepposed
to those who develop or support it. End Users may or may not know angtioog
the CHIL software environment, how it works, or what to do if anglgoes wrong.
End Users do not usually have administrative responsibilities otgged. End Users
are certain to have a different set of assumptions than the degeldpercreated the
CHIL software environment.

« Configuring users — Users who customize their experience of tlie £oftware envi-
ronment by configuring an available set of previously installed conmpen&HIL
smart rooms are obliged to permit unauthorized changes only ifghkimg configu-
ration still constitutes a sound CHIL software environment. Configudsers do not
need to be granted security credentials in order to apply changes.

* Assembling administrators — Administrators who set up and custom@HIL soft-
ware environment, either by configuring installed functionality, yrallding or re-
moving components. Configuration changes made by assembling adrorssimay
have a global impact on a CHIL smart room and may require tettkmowledge to
preserve a valid state of the CHIL software environment.

Version: 1.0 14-July-2004 Page 18/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

* Extenders — Programmers who make changes not envisioned by timalodbilL
software environment. In order to support extenders, CHIL softwareoanwent
components SHOULD provide a rich set of places to "plug in" newtifumality and
an extensive help system that makes it easy to figure out quicldyto utilize these
extension points. Extenders MAY NOT provide extension points andrifelpnation
for their components. As a consequence, they SHOULD NOT distritbese tompo-
nents beyond the scope of their institution.

* Publishers — Once one has written something useful, other CHi& s want it. In
order to put someone in the position to incorporate published components documenta-
tion and reference material MUST be published along with the afteomponent it-
self. Software components are classified according to thedtsleof portability and
published to the CHIL software repository.

* Enablers — Once a contribution to the CHIL software environmertders published,
the next step is to enable others to extend it in ways one doewesdd ("functional-
ity-to-be-plugged-in"). This is accomplished through "places-to-plughctionality”.
Enablers MUST publish those extension points.

« Committers — For special purposes such as demos or productive enviter@idL
software environments may need to be set up that comply withirceequirements
such as compatibility and portability. Committers incorporatevwashy CHIL soft-
ware components into global releases of the CHIL software environment.

Committer:
Enabler

Publisher

Extender:

Figure 2-1: Commitment Levels

2.7 Design Rules

Software developers SHOULD share a consistent set of rotesohtributing to the CHIL
software environment. For each rule, the roles of CHIL contribitasgiven to specify to

Version: 1.0 14-July-2004 Page 19/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

whom the rule applies. Each CHIL contributor SHOULD obey all rtas pertain to his or
her respective role. The first rule of the CHIL software environment islasv#ol

Table 2-2: “Contribution”-Rule

End-Users| Configurers Assemble Extenders | Publishers | Enablers | Committers

Everything is a contribution.

The CHIL software environment will not be a monolithic systenwilk rather comprise a
number of loosely coupled components that will be put together and configyreaddey on
particular scenarios. With growing acceptance and maturityeofCHHIL software environ-
ment there will be a lot of contributions. However, components thah@reequired for a
particular scenario MUST NOT hamper the performance and theiexpe of the overall
CHIL software environment. This leads to the second rule:

Table 2-3: “Lazy Installation”-Rule

End-Users| Configurer{ Assembler.| Extenders | Publishers | Enablers | Committers

Contributions to the CHIL software environment SHOULD be installed amtédtup only when 3
particular scenario explicitly requires them.

Software components, which do not provide any functionality to a partecgmario, MUST

NOT be required for mandatory components to run. Moreover, the presenommdrents

that are not operational in the course of a particular sceMt®T NOT have an impact on
the CHIL software environment as required by the following rule.

Table 2-4: “No Function No Impact”-Rule

End-Users| Configurers Assemblers Extend¢ Publishers | Enablers | Committers

Components that do not provide any functionality in course of a particularisceh#BT NOT
have an impact on other components or on the overall CHIL software envitonme

During the evolution of the CHIL software environment, several sekeaf components may
become available. Moreover, components that may be added layesubsume functionality
that has previously been provided by a number of distinct components.eRistiag soft-
ware may rely on particular configurations, both major and minoasete of components
MUST NOT be replaced (sé&evision Contrgl

Table 2-5: “Sharing”-Rule

End-Users| Configurer{ Assembler.| Extenders | Publishers | Enablers | Committers

Add, don't replace. Once having been published, both major and minor releases of canpgnent
MUST NOT be replaced by obsolete nor by subsequent versions.

Version: 1.0 14-July-2004 Page 20/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

In order to facilitate component interoperation contributions to thd Gbiftware environ-
ment MUST conform to expected interfaces. In particular, a compdheg&T declare ex-
plicitly where it can be extended.

Table 2-6: “Conformance”-Rule

End-Users| Configurers Assemblers Extenders Publisi Enablers | Committers

Contributions MUST conform to expected interfaces.

Table 2-7: “Explicit Extension”-Rule

End-Users| Configurers Assemblers Extenders Publisft Enablers | Committers

Components MUST declare explicitly where they can be extended.

In order to inspire developers with confidence in extending other canpmrthe following
three rules SHOULD be obeyed when components expose their prograrmteaface for
others to use.

Table 2-8: “Explicit API"-Rule

End-Users| Configurers Assemblers Extenders Publish Enablers | Committers

The API SHOULD be separated from internals.

Table 2-9: “Stability”-Rule

End-Users| Configurers Assemblers Extenders Publisf Enablers | Committers

Once others have been invited to extend one's component, one MUST NOT change the fules.

Table 2-10: “Defensive API"-Rule

End-Users| Configurers Assemblers Extenders Publisi Enablers | Committers

Those parts of the API in which one does not have confidence MUST NOT lighpdbl

Once a contribution to the CHIL software environment has been edsttid/or run in the
context of a particular CHIL smart room configuration, the abfiag administrator who
conducted the installation SHOULD report both the success and lilre fafi the installation
procedure to the responsible developers of the respective contribtitimsvill help to track
installation and configuration issues.

Table 2-11: “Run It And Report It"-Rule

End-Users| Configurer{ Assembler | Extenders Publishers Enablers Committers

Once a contribution to the CHIL software environment has been instatiéor aun in the context
of particular CHIL smart room configuration, both the success and theefailtine installation
procedure SHOULD be reported to the responsible developers of thetirespentributions.

Version: 1.0 14-July-2004 Page 21/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

An important rule to improve the serviceability and usability of ¢buations to the CHIL
software environment is to take full responsibility for them androvide means such as log
files and error dialogs to make it particularly easyusers and developers to identify one's
component as the source of a problem.

Table 2-12: “Responsibility”-Rule

End-Users| Configurers Assemble Extenders | Publishers | Enablers | Committers

One MUST clearly identify one's contributions to the CHIL software enunent as the source aof
problems.

The next three rules apply to the etiquette concerning the ionitat others to make use of
extension points.

Table 2-13: “Invitation”-Rule

End-Users| Configurers Assemblers Extend¢ Publishers | Enablers | Committers

Whenever possible, one SHOULD make minimize the effort requireckiiers to extend one's
published contributions to the CHIL software environment.

Table 2-14: “Fair Play”-Rule

End-Users| Configurers Assemble Extenders | Publishers | Enablers | Committers

All developers who contribute to the CHIL software environment MUST adhene &amme rules.

Table 2-15: “Diversity”-Rule

End-Users| Configurers Assemblers Extenders Publisi Enablers | Committers

Extension points MUST accept multiple extensions.

Once a component has been incorporated into the CHIL softwaremment control may be
passed to external code. In order to avoid malicious behaviour (i.e. caused lyhtiezaep-

tions) potentially dangerous code MUST be wrapped by approprjatatch statements. In
especially, when providing extension-points developers are responsietéat their com-
ponents against misbehaviour on the part of extenders

Table 2-16: “Good Fences”-Rule

End-Users| Configurers Assemble Extenders | Publishers | Enablers | Committers

When control is passed outside a component, potentially dangerous code MUST lesl\aicipp
quately.

Version: 1.0 14-July-2004 Page 22/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

Table 2-17: “Safe Software Environment’-Rule

End-Users| Configurers Assemble Extenders | Publishers | Enablers | Committers

As the provider of extension points such as APIs for components developers irii&at their
contributions against misbehaviour on the part of extenders.

2.8 Design Principles

This section provides suggestions on the principles to be applied todewd®ping the
CHIL software environment. These design principles arenm-ith the objectives of the
CHIL architecture. In particular, they boost an architecturaniyjmdacilitating: (a) standard,
structured integration of components, (b) bridging between servicewassand technology
components. Note that the ultimate design SHOULD take into acdues# principles, while
it is quite difficult to use all of them with no deviation.

Table 2-18: Design Principle 1

End-Users| Configurers Assemble Extenders | Publishers | Enablers | Committers

Adhere to distributed computing standards (e.g. W3C standards compliant WigbeSSer

The CHIL architecture addresses the integration of numerousodistli components. In the
scope of the resulting distributed system, the use of distributed computing dsafedgr Web

Services) facilitates the specification of integration mechamighrough levering existing
transport schemes as well as service-oriented aspectsef®ige segistration and discovery).
Basing the implementation on distributed standards will alsatédeilthe extensibility, evolu-
tion and longevity of the architecture.

Table 2-19: Design Principle 2

End-Users| Configurers Assemble Extenders | Publishers | Enablers | Committers

Do not exclude particular platforms, operating systems, and sensor vendors.

Develop the architecture independently of particular platforms, tipgrsystems and sensor
vendors towards assuring its generality and increasing the scope of tine syste

Table 2-20: Design Principle 3

End-Users| Configurers Assemble Extenders | Publishers | Enablers | Committers

Adopt object-oriented approaches.

Modelling basic entities of the system as objects and adoptingt @jented approaches to
software design and implementation is expected to provide opportuoitiesusability, en-
capsulation and polymorphism of architecture components.

Version: 1.0 14-July-2004 Page 23/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

Table 2-21: Design Principle 4

End-Users| Configurers Assemble Extenders | Publishers | Enablers | Committers

Reuse existing middleware and software components.

Existing components and platforms fulfilling the architecture requiren8@ULD be re-

used. Such components SHOULD be incorporated into the overall design of the arehitectur
This will accelerate the design and subsequent implementation of the auchit@ccharac-
teristic platform that can be taken into account in the design and reused in the shepe of t
implementation is the “NIST Smart Flow System” middleware
(www.nist.gov/smartspace/toolChest/ngfs/

Table 2-22: Design Principle 5

End-Users| Configurers Assemble Extenders | Publishers | Enablers | Committers

Define interfaces (APIs) between components. Develop component wrappedsdn these APIs|

APIs will facilitate the integration of heterogeneous componastspecified in the scope of
the CHIL architecture. Given a set of APIs, the whole rangeoofponents engaged in the
CHIL systems (e.g., service constructs entities, percepiteafaces) SHOULD be wrapped
to conform to the APIs.

Table 2-23: Design Principle 6

End-Users| Configurers Assemble Extenders | Publishers | Enablers | Committers

Separate configuration from application logic.

Configuration parameters MUST NOT be hard coded within applicatioa (oges) driving
the integration of components. Management of configuration logic MUSAllbe&ed inde-
pendently of the architecture, towards configuring CHIL systestances corresponding to
different physical (smart) rooms, technology components, etc.

Table 2-24: Design Principle 7

End-Users| Configurers Assemble Extenders | Publishers | Enablers | Committers

Programming patterns and best practices used in the scope of simviéggiye/ ubiquitous compult
ing architectures SHOULD be exploited.

The use of programming patterns (e.g. MVC) pattern will lacate the design process. At
the same time best practices applied in similar projgcigide a sound basis for designing
particular aspects of the CHIL architecture.

Version: 1.0 14-July-2004 Page 24/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

Table 2-25: Design Principle 8

End-Users| Configurers Assemble Extenders | Publishers | Enablers | Committers

The produced design SHOULD be incremental and scalable.

Given the scale of the CHIL architecture in terms of the nurab&schnology components,
complexity of services, and sensors an incremental and scalaide datering for the grad-
ual addition of new components and features SHOULD be produced. ThiallexV for
augmented early prototypes based on additional technology components amiihgctmor
evolving service requirements.

2.9 Security Considerations

No critical changes to the CHIL software environment MAYntede byend usersaandcon-
figuring users(seelLevels of CommitmentSignificant changes to the CHIL software envi-
ronment MUST be authorized based on sufficient security creterSiecurity will be user-
and role-based. In especially, configurable components that prowtdssygritical configura-
tion- and/or extension points MUST support the CHIL security system.

Security mechanisms do not necessarily need to be fully impledh&art¢he prototype ver-
sion of the CHIL software. Still, care MUST be taken fordlesign easily allowing for later
adding elaborated security mechanisms. Taking into account atrueasientary security
considerations may help to fulfil this requirement and is therefore strosxgynmended.

2.10 Documentation Guidelines

Contributions to the CHIL software environment are assumed to be bundiefiware pack-
ages. A software package is a collection of files thatémsed as a single package (e.g. as a
.tgz or .rpm file). Software packages SHOULD be accompanitdimformation about how
to build, deploy, install, and operate published components. The collectionusheliois will
comprise formal, semi-formal and informal unstructured mateBaternal documentation is
mainly targeted for CHIL partners as well as end-usersgusie CHIL software. Internal
documentation helps a CHIL partner enhancing its internal softderelopment process.
External documentation typically includes application independent infanmaguch as a
NEWS files, INSTALL notes, or README notes, an FAQ, as wslbaplication dependent
documents such as APl documentation, manuals or tutorials. Internal efdeation typi-
cally includes a Changelog file and application specific docusnidwatt specify or describe
the software in parts or as a whole, typically in a functional manner.

2.11 External Documentation

External documentation of a software package MUST include a Ni&/®at for each re-
lease summarizes the changes relative to the previous reléaseecommended to create a
single NEWS file that is updated for each release by addmgasection for each new re-
lease.

INSTALL notes MUST contain all prerequisites (other softwarekpges) that are needed to
build or run the software package. Hardware/software configurafipltadforms”) that the
software is known to run under SHOULD be collected in this documBtatform specific
iIssues SHOULD be collected in the INSTALL notes.

Version: 1.0 14-July-2004 Page 25/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

The README file SHOULD contain general information about thdveafe package (e.qg.
purpose and scope of the software, contact and origin informationufilestitnd/or main
author(s)), download link, links to mailing list, etc.) as well asagal instructions such as
pointing to the INSTALL or NEWS file.

Application dependent external documentation MAY contain e.g. API docutioenta pro-
grammer’s manual or tutorial, and/or a user’'s manual or tutorial or quickreéere

2.11.1 APl Documentation

API documentation is required in particular when a CHIL parises another partner’s soft-
ware package. Most cross-partner use of APIs is expextecctur along the borders of the
CHIL architecture layers.

Integrated documentation systems should be used where applicable, doglgges or java-
doc for automatic generation of API documentation. API documentatiaraliypconsists of
a collection of classes and method signatures with a shortmafopreferably functional de-
scription of their semantics, including the purpose of each paraaredereturn value (if ap-
plicable) as well as side effects, if any. In object-orig@némguages, a UML class diagram
may be a good choice to give an overview over the classes of an API.

2.11.2 Programmer’s manual

A programmer’s manual (or programming reference) adds to tleeAd@r documentation in
so far as it describes the semantics of functions or methodsrandrtail and focuses on the
underlying interface design concepts rather than on just listingagses and methods or
functions. For that purpose, the manual may have reordered or agduits contents in
order to fit the design concepts in a proper manner.

2.11.3 Programmer’s tutorial

A tutorial serves as an introductory document. It does not needctunig@ete in the sense of
containing all classes and methods or functions. Rather, it SHCOtIB on the essential
functionality that most programmes be omitted or just mentioned. Ufibref details and a
complete reference, the tutorial should refer to the programmeahual or API documenta-
tion.

2.12 Internal Documentation

Internal documentation consists of a ChangelLog file for intgredkcking changes during
development. Depending on the kind of software, there are various mode¢séoibing the

architectural and semantics of software. Each CHIL partmayld decide which model fits
best to its software. Examples include but are not limited td. Widdels, data flow dia-
grams, entity relationship models, pseudo code, decision tables, rutkiaskels, finite

automata / state machines, petri nets, etc.

2.12.1 ChangelLog

It is assumed that each partner uses a revision control afiguration management tool
for software development, and that such tools are provided eithbelpattner or hosted by
IPD/UKA, each check-in to the software repository SHOULD &@mpanied with a proper
ChangelLog entry describing informally which changes where apfaiedhat files. Typi-

Version: 1.0 14-July-2004 Page 26/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

cally, the check-in date and author's name are automattcatliyed by the revision control or
configuration management system.

There MUST be a Changelog file for each software packageh Eelease of a software
package (be it minor or major, stable or unstable) MUST bengganied with a proper
Changelog entry in the package’s ChangeLog file that des@ibedevant changes relative
to the preceding release. An entry in the ChangelLog file stsnsi date, author and an in-
formal summary of what has been changed on what files. Ap 8”RIOULD be put into the
software package ChangeLog file for each check-in, especially isesl@gcur infrequently.

2.13 Bug Tracking

Good bug reports are considered to be valuable contributions to the develabraey soft-
ware project. But just like writing good software, good problem reports invoiwe svork.

2.14 Revision Control

A configuration management system SHOULD be used. The usa@ulnfersion(see
http://subversion.tigris.ory/is recommended, as it offers a number of novel features com-
pared to its predecessor CVS ($etp://www.cvshome.ord/ Developers MUST write de-
scriptive and detailed log messages to each commit. A singleicdiUST NOT contain
more than one set of changes. Each new feature or bugfix MigSbmmitted separately
(i.e. one commit MUST fix exactly one bug or add exactly oufe). Access to local re-
positories MAY be provided to other CHIL developers beyond the scope ofoovreinstitu-
tion (i.e. one MAY consider to allow at least read-only access)y Bnd frequent releases
are likely to be a critical part of the CHIL development mode&intGbutors to the CHIL
software environment are encouraged to frequently releasen®is their software compo-
nents. Releases MUST be versioned similar to the versioninglmaisl of the Linux kernel.
Each version has three numbers X.Y.Z, where X is the major versmber, Y is the minor
version number and Z denotes the patch level. Major version humbe®S Mdtdrt at zero.
They MUST only be incremented as a result of a significantgeh&or example, changes
such that software written for one version no longer operate dgrreith the subsequent
version). Differences between two different patch levels MUSEmall (e.g. bugfixes and
minor features).

2.15 Software Engineering for a cognitive CHIL sofivare environment

The layering of the CHIL software environment and its explicit supfmr ontological
knowledge bases is likely to have an impact both on how softwatédhutions to the CHIL
cognitive middleware will be developed and on how application developémake use of
the novel features of this architecture framework. Softwareridsaand ordinary software
toolkits will probably not provide sufficient support for CHIL extersjepublishers, and
committers (sekevels of CommitmentThis is why development tools and methods will be
devised to explicitly facilitate the evolution of the CHIL sedtre environment and the crea-
tion of higher-level applications. For each layer of the CHiftvgare environment the most
significant software development challenges will be scrwgthizn especially, the following
issues need to be taken into account:

Version: 1.0 14-July-2004 Page 27/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

» Ontology engineering: Knowledge acquisition tasks will account ggmificant part
of the efforts to devise the CHIL software environment. Despédact that there are
mature tools both for knowledge acquisition and software developmenighaostly
no strong link between software source code and the extensional antioirae
knowledge the software is working on. The CHIL software toolkit shosggsaboth
application developers and contributors to the CHIL software environmeetining
Ontologies and software components.

« Event correlation: Since the CHIL software environment wilhgpally follow an
event driven approach, event correlation will primarily definedwtrol flow of ap-
plications. Software development tools should provide code generapaibiliizes
that let the programmer specify the events to which his (orclelg will react. Tool
support for event handling may automatically generate a framewanresing ap-
propriate event handlers. Application specific program code witidneplemented by
an event correlation engine that delegates occurring events to apereweat han-
dlers.

* Real-time constraints: The quality of the user experiencedftware written in the
CHIL software environment will be significantly influenced by howell real-time
constraints are respected. In particular, constraints defined feredif layers may be
related. The CHIL software toolkit should assist developers itingrcode that com-
plies with real-time constraints taking into account the kyearchitecture of the
CHIL software environment.

» Situation-/scenario awareness: Software contributions to the Géftlvare environ-
ment may operate differently depending on the current situation arparticular sce-
nario. Assistance for location and scenario awareness programhualgl e a pri-
mary goal of the CHIL software toolkit.

» CHIL software repository: There will likely be a significanimber of extenders, pub-
lishers, and committers (see Secti@vels of Commitmenivho will contribute to the
CHIL software environment. Therefore, conventional configuration gemant ap-
proaches may prove to be unsatisfactorily when it comes to bksgna working
CHIL software environment comprising contributions from a numbedistfibuted
sites. The CHIL software toolkit should assist users in managing compaigslies.

* Code generation: In general, all contributors to the CHIL softeaveonment should
share the same coding conventions (see Selttteroperability and Extensibilidy In
order to make it particularly easy to follow these rules thdLCédftware toolkit
should support writing software according to defined conventions and agnaee
grammers when software documents deviate from these conventions.

Version: 1.0 14-July-2004 Page 28/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

3 System Architecture

3.1 System Structure

The CHIL system consists of hardware and software componentsdhatogether to assist
the user to accomplish tasks in the most efficient manner. Herdeganponents are de-
scribed in section 3.2, while software components and architecture in section 3.3 and 0.

3.2 Hardware (sensors, devices)
The following hardware devices are part of the CHIL system infrasteictur

* A variety of sensors including cameras (fixed digital camexasanalogue pan-tilt-
zoom (PTZ) camera and pdnoramic camerg, microphones, close talking micro-
phones, microphone arrays as describebhitnal Specification of the Sensor Setup
[12] %

» Controlling workstations (e.g. hosting sensor controllers and perceptual software)

* End user terminals (e.g. laptops, PDAs, smart phones);

« Auxiliary peripherals and devices (in particular a projection screen).

Sensors are controlled by appropriate software (e.g. the capivgesdf an audio or video
stream, controlling software of PTZ camera), hosted in workstations (i.er semsroller).

Sensor Controllers are workstations hosting the sensor control safthaese entities are
usually directly connected (i.e. attached) to the sensors, and weikebke the sensors’ raw
data to other entities (Figure 3-1: Sensor Controllers and Device Controllers).

w MM Array

Sensor
Controller
Device Sensor .
Controller Controller Audio
Stre
Video Command/Control
Command/Control Stred
Command/Control

Figure 3-1: Sensor Controllers and Device Controllers

* Note thatinitial Specification of the Sensor Setufi2] specifies a minimum sensor set for
the CHIL system; additional sensors may be introduced in later stages of tlue proje

Version: 1.0 14-July-2004 Page 29/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

3.3 Software (low-level drivers, perceptual interfaes, services)

In terms of software components, the following types of distribetddies are assumed in
the scope of this document:

Device/Peripheral Controllers

Low-level software components (e.g. Drivers) used for interéacontrolling peripheral de-
vices (e.g. for regulating the environment).

Perceptual Components:

These are software components realizing perceptual providing inédipme of sensor data.
They receive sensor data from sensor controllers and produce outpingreavho, where
and what.

Context (Aware) Entities:

These entities process the output from perceptual components (from moeeoperceptual
entities) and encode contextual information at higher levels afagbieh than single percep-
tual entities.

Non-obtrusive service entities:

This class of components comprises applications exploiting perceuuglonents outputs,
as well as higher layer information (e.g., context) towards providing infamand automat-
ing tasks in a non-obtrusive (or non-disruptive) manner.

Version: 1.0 14-July-2004 Page 30/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

3.4 SWArchitecture (middleware)

3.4.1 CHIL agent based global architecture (high level)

A global architecture has been proposed in CHIL Annex | — “Iy@san of Work”. This ar-
chitecture has been updated as follows:

Process i

& User

Models
Request for
Information

Interface or Service
—>
Information

Results

Request for

~Information
or Service Interface
—

Information
Results

Observation Observation
User 1 User 2
with

PDA with
CHIL software

A

Perceptual Components &

Processes Microphone

Logical Sensors & Sensor &

Actuators *| Actuator Control |«—¢~ Sensor
Data

A\
‘ T%rggitg & Camera

| Remote Information

S m

Figure 3-2: CHIL agent based architecture

Ontology:

The Ontology contains the common concepts, relations, entities andofubeder in the
meeting room and lecture room domain.

Process & User Models:

These constitute the descriptions of the services & participaniés,(profiles, social aspects)
in the conceptual context, which the broker merely understands.

Public Knowledge Base:

The Public Knowledge Base holds the dynamic knowledge (instances)ptanned or pre-
sent lecture or some post-session actions like writing & mhisgging the minutes, taking
knowledge from inference into account.

Version: 1.0 14-July-2004 Page 31/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

Information and Service Access System:

The Information and Service Access System with its subparts Infmma&roker, Rule En-
gine, Process Execution Control is the central intelligence fosida support, resource plan-
ning, conflict and failure handling, process planning, execution and cdhtiots as the cen-
tral access point for the domain knowledge. Another task of this compsrteninanage the
user profiles.

Interface Agents (1As):

These are the agents, which act on behalf of the user viatiarmodial well adapted human
computer interface.

Service Agents:

These are the bridges (cardinality n to m, in first approach 1 bet®)een the “lower” level
services and the broker. These agents may assist in managingeesaun conflict resolu-
tions. Agents are communicating with the broker and with other @agena conceptual base
described in the common ontology. The interfaces to the services irtbkideapping from
the syntactical level of the services to the semantically level of thmt. age

Elementary Services:

Elementary Services are common services for domain tasks.afbespftware-oriented and
include role detection, browse context, Internet access managédnfentation retrieval
services and further more.

CHIL Services:

CHIL Services as Memory Jog, Connector, Attention Cockpit, etc. stavfsa set of Elemen-
tary Services. Special mechanisms control their semantic characserist

Service KB:

The Service knowledge base is private to the service, and mayncaentacabulary only
known and handled by a specific service. There may exist a mappihg tommon domain
ontology (see Service Agets

Private Sensors and Actuators:

These sensors are dedicated to one specific service and are only acaadstoletrollable by
this service. For example a dedicated service containing spsmminition runs on the user’s
notebook and uses the notebook’s internal microphone as sensor.

Perceptual Components and Processes:

Sensor Basédincl. Pre-processing) is the place where the incoming sefetaris stored.
There are several Elementary and CHIL Services that makef ulse data for interpretation
purposes. The resulting information can be used by other servicas loe tae answer to user
requests.

Version: 1.0 14-July-2004 Page 32/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

3.4.2 CHIL Layer model

The global architecture described above will be mapped to the folidayered model. This
model is described in the documemhoughts on CHIL-Architecture [14]. It shows
9 different horizontal layers of the proposed CHIL architecture. Acakdayer “CHIL utili-
ties” is added to provide global timing and other basic serviceatlatlevant to all layers.
The ontology is also part of the whole architecture.

Ontology

CHIL Workspace

personal devices User front-end

Service agents,

profile handling Service access and control

Memory Jog, Attention .
Cockpit, elementary Services
services, ...

Users, activities, Situation modelling
objects, roles
Person tracker,

speech recognition, ... Perceptual components

AV sensor, visual
sensor, vocal detector

Logical sensors and actuators

Quality of service,

control protocols Control Metadata

Binding, discovery, RT - Low-level
peer-to-peer delivery distributed data transfer

Figure 3-3: CHIL Layer Model

3.4.2.1 User front-end
3.4.2.1.1 Functionality

The user interface layer contains the InterfaceAgents, whiclasapersonal assistants of
users. InterfaceAgents take care of the demands of users byilsagsthem to the CHIL-
services they want to use. To do this, the InterfaceAgent intetpeetairrent role profile of a
user and its specific settings in the user profile or reacts due to a direatfiapuger.

The CHIL-services for which a user is subscribed notify thefadeAgent about information
that should be presented to the user. The InterfaceAgent then absurdse user gets the
information in the way the user prefers by verifying the spes#ttings in the user and role
profile.

Version: 1.0 14-July-2004 Page 33/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

3.4.2.1.2 Key abstractions

If a user is recognised when entering the room, a new IntAdace is created to act as a
personal assistant for the user. The InterfaceAgent queriesittent role of the user to re-
trieve the role profile from the RoleDetectionAgent. If thisrusealready identified and

he/she has a user profile, this is blended with the role profileer®ise the default settings of
the role profile apply.

Thereatfter, the InterfaceAgent subscribes to the CHIL servécpgested by the user by inter-
preting the blended user/role profile. For example, if a lectuastsimto be informed about an
attention loss, his (or her) InterfaceAgent subscribes to the Attention EpgseS

During a scenario, the InterfaceAgent must take attend to rotgebay its user. If a role
change occurs, the InterfaceAgent must again read the role profite foew role of the user,
blend it with the user profile, subscribe to new services and unsubBontaervices that are
no longer required.

If a CHIL-service produces information for a user, the Intef@ent must retrieve the user's
preferred means of notification by querying the user/rolelpsoind then use output compo-
nents (like Targeted Audio) or a GUI on the users laptop/PDA.

3.4.2.2 Service access and control
3.4.2.2.1 Functionality

This layer comprises the service agents, and their managemngesmcapsulating/wrapping
the underlying agent platform. This layer performs the “user sl wishes” of the “User
Front-end”-layer to the underlying “Services™-layer by adessed mechanisms, e.g. user-
triggered as described in the use case “BrowseContextinforatr profile-interpreted as
described in use case “NotificationAboutAttentionLoss”Hanctional Requirements[1].
Inversely this layer is responsible for providing information fritve “Services”-layer to the
“User Front-end”-layer according to the manner in which a sengiqotified, e.g. synchro-
nously or asynchronously.

The appropriate agent objects interact with objects of the pad&itayers “User Front-end
and “Services”, in first approach not directly with objects oftu&ion Modelling” This sort
of interaction may be necessary later on, and with objects ofdeai kind, especially via a
Broker/Facilitator agent. The interaction with other agent objant the “User Front-end’-
layer follows the communication mechanisms of the agent platfoime wommunication
with the “Services”-layer follows internal mechanisms, which will be $igeciater.

Furthermore this layer provides access to the Ontology-based ddgetlase of the CHIL-
System, so that a common ontology can be used for communication apcetateyn of con-
tents.

3.4.2.2.2 Key abstractions

General key abstractions/words are “Agent-Based Technology”, “Ontoltgnowledge-
base” and “Wrapper Techniques”. CHIL-specialised key abstraactiordg are the classes
“ServiceAgent” and its derivations, e.g. “ConnectorAgent”, “Attentiorkpdégent”,
“MemoryJogAgent”, “ProfileHandlerAgent” and “RoleDetectionAgerd§ well as its com-
mon interface “CHILAgent”. Further on there exist an “OntologydssAgent” and a
“CHILAgentManager”.

Version: 1.0 14-July-2004 Page 34/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

Our first approach is that in the beginning or during a CHIL-goerevery Service Agent
attaches to one and only one Service, e.g. “ConnectorAgent” to “ConreeiceS, etc. A
user driven request or subscription is handled via InterfaceAgenttAQentManager (as
Broker or Facilitator)->Special Service Agent->Special Service ackinzads.

3.4.2.3 Services
3.4.2.3.1 Functionality

This layer provides reusable components that help users solve tadky god easily. These
reusable components constitute elementary service (construtiesggiitat can be aggregated
to composite services representing the CHIL non-obtrusive ser@aps the Memory Jog,
the Attention Cockpit, the Connector, the Socially Supported Workspacasipdsition of
elementary service elements into sophisticated (non-obtrusive) €&rtices will be realized
based on appropriate control logic (e.g., an event-based triggercigani@m). As a result,
the functionality of the services layer consists of:

* The set of elementary services comprising the CHIL services

* A Control logic guiding the aggregation and activation of particular elemyesgavices in
the scope of the CHIL service.

The service layer models the elementary service, the commsasiteee and provides the
means for implementing control logic.

3.4.2.3.2 Key abstractions

Key abstractions can be defined at the level of an elemesearice, as well as at the level of
composite service. At the level of elementary services alistna represent individual ser-
vice oriented functionalities, which are offered within or out of twpe of perceptual inter-

faces. Characteristic examples of elementary services relatpeyceptual interfaces include:

« ATTS (text to speech) service
* A Targeted Audio Service

* A Summarization Service

* An IR Service

* A Keyword Extraction service

These services are abstracted based on appropriate servicedovieapping of perceptual
components. Characteristic examples of non-perceptual service abstraatiods:i

* Any database search service
* Any service regulating the environment (e.g., room temperature)

Key abstractions at the composite service level have altesely defined in CHIL Technical
Annex as an output of WP3 Services tasks, e.g. Memory Jog, AttentidpiCd&ocially
Supported Workspace, Connector, etc.

3.4.2.4 Situation modelling
3.4.2.4.1 Functionality

This layer is a collection of abstractions representing the ament context in which the
user interacts with the application. Ideally, it should act ‘@ktabase” that maintains up-to-

Version: 1.0 14-July-2004 Page 35/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

date state of objects (people, artefacts, situations) andelaionships. More insight will be
needed to understand how short term and long-term memory capabditidsbe modelled at
this layer.

Additional function of the situation-modelling layer is to act as‘iaference engine” that
regularly deduces and generalises some facts during the podcgstating the context mod-
els as a result of events coming from the underlying layer of Perceptual Caortgpone

Once CHIL ultimately becomes a toolkit, this layer can be etwas an Abstract Context
Toolkit, an analogy to Abstract Window Toolkit in the visual world.

We expect this layer to be an inevitable part of any futuracgpioin dealing with contextual
information that captures models of users and environments, espétiallys, homes, and
offices.

3.4.2.4.2 Key abstractions

The situation modelling process contains the set of context-redbsttactions of the mod-
elled universe. Therefore, there is a need to define the boundéribe modelled world,

which is embodied in form of @ontext Boundary Container. In this container, models of
abstractions may appear or disappear, as people or other areefactor exit the modelled
universe. For CHIL, this boundary will typically be carved outhwy limits of a CHIL room.

However, for other systems it may be something smaller like an interactne in front of an

appliance or a cockpit, or something bigger like a building, a street, or a city.

In this context boundary container, real objects will be modelled aokie for their intrinsic
information and their relationships. We basically distinguish betwle®® categories of ob-
jects:

* Subjects modelling people and/or animals,

* Artefacts, which model relevant objects of the scene, likéteboard tables doors
but also personal belongings liketebookPDA, mobile phone

» Situations/Roles/Tasks which models things likeneeting presentey participant
and also lower-level tasks lilgerson XY is using whiteboard

The situation modelling process will also track #tate of these objects, and their relation-
ships. The state of an object depends on the category to whicjde belongs; location
tracking makes sense for people and mobile artefacts, but ndtefarhiteboard. Level of
attention, on the other hand, does make sense only for people. ID neagilyediscovered
from a device (like a PDA), but may need fusion of several irntpugpecify a user’s identity.
And for devices or fixed artefacts, amusestatus can be monitored.

Relationships may be known in advance, or discovered. Two typesatbmehips are mod-
elled in CHIL:

1. Static relationships which represent the common knowledge of the modelled world,
static facts likea meeting is a collection of people and artefaptgrequisites like
meeting has a presenter and an audiermceembodiment of physical limits of the real
world, asto write on the whiteboard, a person must be close fthigse can be repre-
sented with the help of Ontologies and rule sets. Some of theseamiayn a level of
uncertainty, as ipeople use mostly their own PDAS

Version: 1.0 14-July-2004 Page 36/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

2. Dynamic relationships, which represent the discovered relationships. This includes
role assignment, like Person XYis the presenteiis part of the audiences writing
on the whiteboardrelations with artefacts as using a PDAwhich may be extended
based on the a priori knowledgepimbably owns a PDAor one-to-many relations, as
the count of people in the meeting, the number of presenters, the nunmbebitd
terminals, etc.

The situation modelling process will also keep track ohiktory of these different relation-
ships and states, so that it is possible to ask for the seqokepeEsenters in a meeting, or to
find out the content of the third question, or to ask for a screen stiw obntent of the white
board just before it was cleared.

3.4.2.5 Perceptual components
3.4.2.5.1 Functionality

This layer provides interpretation of data streams coming fronous audio and video
sources represented by the underlying layer of Logical SendoesPerceptual Component
layer will be populated with components that wrap different technotogynes (typically

those provided as output of WP4, WP5, and WP6 CHIL work packages).

The interpretation of raw data input into higher-level semantiemteoutput will, in most
cases, be required to happen in real-time. It is expected that diengitial stages of the
project, many components at this layer will be simulated.

Components at this layer will form interpretation hierarchigh wiany cross-links, feedback
loops, dependencies, and aggregations. It will be very important to dateling right, so
that existing component “wirings” can be captured and modelled. TisiEngxsystems main-
tained at various CHIL sites will be used both as use cas#sef@rchitecture design as well
as reality-check data to assess modelling capabilities of the frakew

3.4.2.5.2 Key abstractions

The Perceptual Components layer provides a collection of well-deAds that allow re-
placing one technology engine for another. Its output is used by tiai&it Modelling layer
and/or by the Services Layer.

* A collection of recognition engines for a specific modality é&gbe vision, haptic,
etc.) and their combination (AVSR, etc.).

* A collection of output generation components (speech, GUI) and thelrication is
required (animated TTS).

We expect that the APIs at this layer will need to be “caléid” via several iterations of API
prototyping and via a “committee process” that will also involvdlCidchnology providers
from various sites. This intra-CHIL standardization process ead to wider adoption of
CHIL APIs and provide strong input into the proper standardization bodies.

This can be achieved by carving a setmaindatoryfunctionality as an API for every compo-
nent being part of a particular engine class, e.g. Body Tracker, TTiEBtr.

This API then becomes a contract for the other layers of @rthitecture framework. More-
over, it will be used to determine CHIL compliance of third-party perceptual comgonent

Version: 1.0 14-July-2004 Page 37/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

Provider-specific extensions on top of the mandatory API will be swggptintough optional
APIs that will be formally described using component introspection mechanism

Detailed description of APIs is given in section 6.4.3 Perceptual Component APIs.
3.4.2.6 Logical sensors/actuators
3.4.2.6.1 Functionality

The components at Logical Sensors and Actuators layer are sdthgors feeding their data
to the Perceptual Component layer, or various actuators, such asdawioes receiving data
or steering mechanisms receiving control instructions from theepteial Components layer.
The aim of this layer is to organise the sensors and actuatorslasses with well-defined
and well-described functionality. The sensors will be classifiathiyibased on the kind of
output stream they produce and the actuators will be classifeedly based on the input
stream they consume.

Another goal of this layer is to define means for labelling #msars and actuators with logi-
cal names and to maintain the binding of namespaces to physica#slewagical names are
used by the upper layers to operate on the desired part of the#ambspace and select the
proper signal source for its processing and the proper actuatts fartput (e.g., “the door-

facing camera”, “the table microphone”).

This layer makes possible the abstract control of steerablesdeeig. an upper level compo-
nent may say, "Turn the camera a little bit to the left".

This layer also provides the means for controlling access rightseasensors. This includes,
for example, the right to read data from a sensor or to control the steeringerfisbe s

3.4.2.6.2 Key abstractions

There will be some categorisation work needed to come up with reasdmatarchy of logi-
cal sensors to which real sensors could map.

The key features for this layer of abstractions comprise:
» Ability to emulate the sensor by repeatedly serving the same data,
» Ability to control quality of service of data acquisition and transfer,
» Support for storing/retrieving raw data to/from database.

3.4.2.7 Control/Metadata
3.4.2.7.1 Functionality

These two layers provide mechanisms for data annotation, synchrambwssynchronous
system control, effective storing and searching multi-mediaeobr@nd metadata generated
by data sources. Synchronization of various data streamsery amportant capability of this
layer (e.qg., to allow speed to be traded off against accuracy).

Version: 1.0 14-July-2004 Page 38/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

3.4.2.7.2 Key abstractions

One of the key challenges will be to find proper abstractions tareaphstructured data as
annotations of data streams.

3.4.2.8 Low-level distributed data transfer
3.4.2.8.1 Functionality

Components and technologies at this layer are responsible for trangsfearious low and
high bandwidth data streams from producers to consumers, in readdtima desired quality
of service.

The usage of existing middleware “Smart Flow System” b$TNfo bootstrap the develop-
ment work on this layer has been agreed to.

3.4.2.8.2 Key abstractions

The two most important abstractions are data producers and data consumers.
3.4.2.9 CHIL utilities

3.4.2.9.1 Functionality

Most of the information that passes through the CHIL infrasiractomes from readily de-
fined sources. Examples include audio and video streams provided by kmjicars, user
models and context by the situation modelling, and so on. However, ssteensinternal
information has no obvious source in the framework, although it is needetdtyor all
components. In particular, utilities for over-all system monitorirey keetter provided by a
layer transcending the layer model. Global time is a cheample; general system informa-
tion and general system statistics may be others.

The CHIL architecture framework describes a distributed, event drigensyin which time-
stamped messages and streams are sent through the infrastinctuweh a system, latency
issues are inevitable. Tracking latency may serve several psimgh as measuring quality-
of-service on-line and off-line, but it is also essential ffier on-line functionality of the con-
trolling logic, which may use it to abort, skip, or amend operatiotiseifdelay is too long.
Although CHIL components are expected to time-stamp their messagceiving compo-
nents have no means of determining whether the delivery of a mesgéags from latency
unless they have access to global time — the sawas the senders.

3.4.2.9.2 Key abstractions

Initially, the key abstractions for the CHIL utilities arenslronisation and GlobalTime. Al-
though robust synchronisation in a large, distributed, asynchronous sysiéficult at best,

an estimation of synchronised global time can be achieved. Wheae@ellL component
starts up, it retrieves the systenmew from the CHIL utilities, and any time-stamps subse-
quently sent by the component should be relative to this global GME. Minimising la-
tency in the communication between initialising components and CHitiestwill improve
the quality of this semi-synchronisation.

Version: 1.0 14-July-2004 Page 39/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

3.4.2.10 Ontology
3.4.2.10.1 Functionality

In order to devise cognitive capabilities the CHIL softwamgironment will extensively use
Ontologies to conceptualise entities and to formally descalagions among them. To sup-
port novel sorts of computation and to make it particularly easgHit developers to make
contributions, it is necessary to specify the meaning of the @sotinat occur in the CHIL
software environment. CHIL software components will both know thenmgaof the data
they are operating on and they will expose their functionalitpraing to a common classifi-
cation scheme. Such self-description capabilities will fatdlithe implementation of self-
regulation features. Contributions that share common charactenséig be interchanged in
order to speculatively configure new working sets of componentier&nit configurations
may perform better under certain circumstances. Moreover, oitallggannotated CHIL
software will be easier to discover both at runtime and at design time.

Additionally to the technical use of ontological concepts CHIL Owjek are likely to help
resolving ambiguities that may arise from multilingual issllestead of using a number of
terms to talk about the same meaning one will use natural lgagelans to refer to ontologi-
cal concepts instead. Since an arbitrary number of dictionariebenatyached to an ontology
one can easily disseminate CHIL knowledge to various languages.

3.4.2.10.2 Key abstractions
CHIL Ontologies will contain concepts from the following domains of discourse.

Technical terms ontology (TTO): Technical terms, which are comamong parts of the
CHIL runtime environment, will be modelled as ontological concepts. ilbigdes concepts
like for exampleframe or image resolutiorand relations among those concepts ékeideo
recording has a frame ratéd common set of concepts will help to make the CHIL software
environment independent of a particular low level distributed datsfer layer middleware.
Moreover, it will be easier to extend upon a middleware, which may already be in use.

Contributions ontology (CO): Contributions to the CHIL software environméhbe classi-

fied according to a common classification scheme. Thus, one caceeaatributions such

as perceptual components or logical sensors by equivalent componemtayhae more ap-
plicable under certain circumstances. Semantically annotated compdhahtadhere to a
common classification scheme may be employed by optimisdtiategies that may operate

on knowledge such akthere is an instance of a component operating and the component’s
throughput is insufficient replace it speculatively by an instance oihgonent that shares
common characteristics but may perform better in this situation

Real life ontology (RLO): Real life concepts as mentioned iHLC$étenario descriptions.
Such concepts mainly present non-technical entities like for exampte user roles meet-

ing room equipmeniThese concepts will be used to formalize CHIL scenario psotieaised

during the planning- and design phase. Moreover, programs that opera@ bfe rentities

will be annotated with concepts that elucidate on what kind of inputdbpgnd and what
kind of output they produce.

How these three domains of discourse fit into the CHIL layer model is depicted below

Version: 1.0 14-July-2004 Page 40/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

Table 3-1: CHIL Ontology Layer Model

CHIL software environment layer Domain of discourse
Services RLG
Situation modelling RLO
Perceptual components TTO CO RILO
Logical sensors and actuators TTO CO
Control and metadata
Low-level distributed data transfer TTO
Version: 1.0 14-July-2004 Page 41/114

© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

3.4.3 Functional components mapping

Table 3-2: Functional components mapping

© g £ =
(7))
Layer = g 5 g 0
© 2| © o oo 4
T % 2a| 5§ 2| o2 2HE
- = o (] (]
232 o S5 TE| = © o009) S
=) =] S nl o0l © S S ©° = =
Functional Blocks 2B & S| 85| 55| 22 0 4 I
- — - — C
95 = O | S8 a3 &< G R = S

Ontology

Ontology

Process & User Models

Public Knowledge Base

Interface Agent

Information & Service
Access System

Service Agents

CHIL Services

Elementary Services

Service Knowledge Base

Private Sensors &
Actuators

Perceptual Components &
Processes

Logical Sensors &
Actuators

Sensor & Actuator
Control Unit

Meta Data -

Sensors & Actuators

Sensor Data

Remote Information

Personal Devices
(PDA, Notebook)

Global Timing
The table above maps the functional components of the global angtetéztthe correspond-
ing layers.
Version: 1.0 14-July-2004 Page 42/114

© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

3.4.4 Use cases

With respect to the use cases contained irFthectional Requirementocument (cf. Figure
3-3) some indicative use cases are detailed by sequence dialztamon (see Section
Sequence Diagrams for Use Cgséhese use cases do not aim at providing an exhaustive
walk-through to the functionality of the system; rather thiesgtitate the structure of the vari-
ous components and how information flows between them.

ConfigureUserProfiles
BrowseContextInformation

DemandAssistancelnContactingPeople

CHIL system

4 Memory Jog 5

DemandAssistancelnSchedulingMeetin

BrowseMinutesOfPastMeeting

BrowseMinutesOfCurrentMeeting

NotificationAboutDeviatiol
NotificationAboutDeviatio ™ <J— FromTimeSchedule
/ FromSchedule
= <1 NotificationAboutDeviatiol
==
\ —— FromGoals
2\ \ PersonalNotifications
Participanty
BrowselnformationAboutSpeaker

A

BrowsePastLecture

BrowseSummaryOfPastLectur

BrowselnformationAboutParticipant

NotificationAboutRoleChang

NotificationAboutScenarioStateChange
Userldentification

PersonalDevicelntegratiol

NotificationAboutTopicOfInterest
P
I — BrowseSummaryOfCurrentLecture

Listener BrowseCurrentLecture

— " Attention Cockpit
NotificationAboutAttentionLoss R,
NotificationAboutQuestionDemand
NotificationAboutTimeLimit

— ConfigureSystemr
L — ManageUserProfiles
Administrator

The use cases are colour-coded according to the scenario in which they ocqul'
light green: lecture scenario
blue: meeting scenario
white: both scenarios

Lecturer — |

light red: administration

Figure 3-4: Use Cases in the CHIL System as irFthectional Requirementdocument

Version: 1.0 14-July-2004 Page 43/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

(H I L Cooperative Information System Software Design

4 Mapping the Requirements to the Architecture Franework Layers Model

Table 4-1: Summary of Requirements

Code | Description Importance Met by
c
©
5 2
- $
. 2] =
Priori o C @ el =
Y |ZE g s SEE
= ® e | o o E T
S3 RS O
R1 Transparent Distributed Communications High
R2 Subscriptions High
R3 Polling High
R4 Synchronised Global Timing High
R5 Perceptual Components Simulation High
R6 Support for Heterogeneous Sensors and Medium
Perceptual Components
R7 Situation Interpretation Medium
R8 Storage Medium
R9 Situation Tagging Medium
Version: 1.0 14-July-2004 Page 44/114

© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/IFD

CHIL

Cooperative Information System Software Design

Code | Description Importance Met by
S
= 7
Priority g § § g % %
L & B < ..
R10 Direct Access to Raw (Sensor) Data High
R11 Raw data Storage High
R12 Integration with %8 party entities High
R13 Directory Services Medium
R14 Life supervision High
R15 User front-end integration High
R16 Scenario detection High
R17 Dynamic role assignment High
R18 Service handling High
R19 Profiling High
R20 Real time assembly and correlation of inputs High
R21 Heterogeneous Operating Systems Support Low
Version: 1.0 14-July-2004 Page 45/114

© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/IFD

‘ H I L Cooperative Information System Software Design

Code | Description Importance Met by
. 5
s -§ E TI) (%))
@ = f:ﬁ S 3 3 &
- % 3w | E 3 =
Priority o= %l 2 c | © i =
© Sl = e o Q Q o
O O | 8ol o gl = L Q P
] < + S 0n o 9 (] > > = =
@ 5|25 55 22 Il g =
20 O| 2% agn n n = O
R22 Multi User Front-End Support Medium
R23 Failure Resilience Low
R24 Multiple Data Formats Medium
R25 System management High
R26 System configuration High ? ? ? ? ?
R27 System instrumentation High ? ? ? ? ?
R28 Resource control Medium ? ? ? ? 2
R29 Access security Medium ? ? ? ? ?)
R30 Automatic client setup Medium

All requirements are summarised in Table 4-1, which also provides an initiatiodion the importance and priority of requirements within the
scope of the CHIL implementation. The last columns indicate the relevance for tienpasin the architecture layers model
(see chapter 3.4.2). Possibly open meetings are labelled by ‘?’.

The following chapters summarise all requirements for each layer.

Version: 1.0 14-July-2004 Page 46/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/IFD

‘ H I L Cooperative Information System Software Design

4.1 Requirements for the
“L_ow-Level Distributed Data Transfer (LDT)"-Layer

Table 4-2: Summary of Requirements for the LDT-Layer

Code | Description Priority

R1 Transparent Distributed Communications High

R2 Subscriptions High

R3 Polling High

R6 Support for Heterogeneous Sensors and Perceptual Components Medium

R10 Direct Access to Raw (Sensor) Data High

R11 Raw data Storage High

R12 Integration with "8 party entities High

R13 Directory Services Medium

R14 Life supervision High

R20 Real time assembly and correlation of inputs High

R21 Heterogeneous Operating Systems Support Low

R23 Failure Resilience Low

R24 Multiple Data Formats Medium

R25 System management High
Version: 1.0 14-July-2004 Page 47/114

© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

4.2 Requirements for the “Metadata (MD)”-Layer

Table 4-3: Summary of Requirements for the MD-Layer

R1 Transparent Distributed Communications High

R2 Subscriptions High

R3 Polling High

R6 Support for Heterogeneous Sensors and Perceptual Components Medium

R10 Direct Access to Raw (Sensor) Data High

R11 Raw data Storage High

R12 Integration with "8 party entities High

R13 Directory Services Medium

R14 Life supervision High

R20 Real time assembly and correlation of inputs High

R21 Heterogeneous Operating Systems Support Low

R23 Failure Resilience Low

R24 Multiple Data Formats Medium

R25 System management High
Version: 1.0 14-July-2004 Page 48/114

© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

4.3 Requirements for the “Gntrol (C)"-Layer

Table 4-4: Summary of Requirements for the C-Layer

Code | Description Priority

R1 Transparent Distributed Communications High

R2 Subscriptions High

R3 Polling High

R6 Support for Heterogeneous Sensors and Perceptual Components Medium

R10 Direct Access to Raw (Sensor) Data High

R11 Raw data Storage High

R12 Integration with "8 party entities High

R13 Directory Services Medium

R14 Life supervision High

R20 Real time assembly and correlation of inputs High

R21 Heterogeneous Operating Systems Support Low

R23 Failure Resilience Low

R24 Multiple Data Formats Medium

R25 System management High
Version: 1.0 14-July-2004 Page 49/114

© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

4.4 Requirements for the “Logical Sensors/Actuators (LSA)"-Layer

Table 4-5: Summary of Requirements for the LSA-Layer

Code | Description Priority

R1 Transparent Distributed Communications High

R2 Subscriptions High

R3 Polling High

R5 Perceptual Components Simulation High

R6 Support for Heterogeneous Sensors and Perceptual Components Medium

R10 Direct Access to Raw (Sensor) Data High

R11 Raw data Storage High

R12 Integration with "8 party entities High

R13 Directory Services Medium

R14 Life supervision High

R20 Real time assembly and correlation of inputs High

R21 Heterogeneous Operating Systems Support Low

R23 Failure Resilience Low

R24 Multiple Data Formats Medium

R25 System management High
Version: 1.0 14-July-2004 Page 50/114

© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

CHIL

Cooperative Information System Software Design

4.5 Requirements for the “Rerceptual Components (PC)’-Layer

Table 4-6: Summary of Requirements for the PC-Layer

Code | Description Priority
R1 Transparent Distributed Communications High
R2 Subscriptions High
R3 Polling High
R5 Perceptual Components Simulation High
R7 Situation Interpretation Medium
R10 Direct Access to Raw (Sensor) Data High
R12 Integration with "8 party entities High
R13 Directory Services Medium
R14 Life supervision High
R20 Real time assembly and correlation of inputs High
R21 Heterogeneous Operating Systems Support LoV

R23 Failure Resilience Low

R24 Multiple Data Formats Medium

R25 System management High
Version: 1.0 14-July-2004 Page 51/114

© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

CHIL

Cooperative Information System Software Design

4.6 Requirements for the “Stuation M odelling (SM)’-Layer

Table 4-7: Summary of Requirements for the SM-Layer

Code | Description Priority

R1 Transparent Distributed Communications High

R2 Subscriptions High

R3 Polling High

R7 Situation Interpretation Medium

R8 Storage Medium

R9 Situation Tagging Medium

R12 Integration with "8 party entities High

R13 Directory Services Medium

R14 Life supervision High

R15 User front-end integration High

R16 Scenario detection High

R17 Dynamic role assignment High

R18 Service handling High

R19 Profiling High

R21 Heterogeneous Operating Systems Support Low

R23 Failure Resilience Low

R25 System management High
Version: 1.0 14-July-2004 Page 52/114

© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

CHIL

Cooperative Information System Software Design

4.7 Requirements for the “Srvices (S)"-Layer

Table 4-8: Summary of Requirements for the S-Layer

Code Description Priority

R1 Transparent Distributed Communications High
R2 Subscriptions High
R3 Polling High
R8 Storage Medium
R9 Situation Tagging Medium
R12 Integration with "8 party entities High
R13 Directory Services Medium
R14 Life supervision High
R15 User front-end integration High
R16 Scenario detection High
R17 Dynamic role assignment High
R18 Service handling High
R19 Profiling High
R21 Heterogeneous Operating Systems Support Low
R22 Multi User Front-End Support Medium
R23 Failure Resilience Low
R25 System management High
R26 System configuration High
R27 System instrumentation High
R28 Resource control Medium
R29 Access security Medium
R30 Automatic client setup Medium
Version: 1.0 14-July-2004 Page 53/114

© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

CHIL

Cooperative Information System Software Design

4.8 Requirements for the “Srvice Access and Gntrol (SAC)"-Layer

Table 4-9: Summary of Requirements for the SAC-Layer

Code Description Priority

R1 Transparent Distributed Communications High

R2 Subscriptions High

R3 Polling High

R12 Integration with "8 party entities High

R13 Directory Services Medium

R14 Life supervision High

R15 User front-end integration High

R18 Service handling High

R19 Profiling High

R21 Heterogeneous Operating Systems Support Low

R23 Failure Resilience Low

R25 System management High

R26 System configuration High

R27 System instrumentation High

R28 Resource control Medium

R29 Access security Medium

R30 Automatic client setup Medium
Version: 1.0 14-July-2004 Page 54/114

© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

CHIL

Cooperative Information System Software Design

4.9 Requirements for the “UWser Font-End (UFE)"-Layer

Table 4-10: Summary of Requirements for the UFE-Layer

Code Description Priority

R1 Transparent Distributed Communications High

R2 Subscriptions High

R3 Polling High

R12 Integration with "8 party entities High

R14 Life supervision High

R15 User front-end integration High

R19 Profiling High

R21 Heterogeneous Operating Systems Support Low

R22 Multi User Front-End Support Medium

R23 Failure Resilience Low

R25 System management High

R26 System configuration High

R27 System instrumentation High

R28 Resource control Medium

R29 Access security Medium

R30 Automatic client setup Medium
Version: 1.0 14-July-2004 Page 55/114

© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

4.10 Requirements for the “CHIL Utility (U)’-Layer

Table 4-11: Summary of Requirements for the U-Layer

Code | Description Priority
R4 Synchronised Global Timing High
Version: 1.0 14-July-2004 Page 56/114

© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

CHIL

Cooperative Information System Software Design

5

Interface Design

5.1 Overview

InterfaceAgent

reconfigurelt]
seniceComplete

determinelserPrefered OutputTyp

i

interface
CHIL Agent

7

I
==ghstract==
ServiceAgent

requestSenice

Every agent is
aftached to its
specific service

Connectorfigent ackpitAgent

MemaonyJogag

ProfileHandler Agent

InfarmationRetrievalAg

requestSenice requestSenice

reguestSenice

requestSenice

requestSerice

inform roleChanged
1 1 1
1 1
1 1 1 1 1
Connector AttentionCockpit MemoryJog ProfileHandlerService InformationRetrievalService
calculateAttention determineCurrentTopic getlserProfile refrievelnformationSourceTitles
refrisveCurrentTopic gethotifications refrigvelnformationSources
\\.. —
- | -
-~ =T SummarizationService
Mol
[
. I I } TargetedAudioSenvice
RuleEngine ==abstract=» Ll c=abstract==
CHit Service | 1.* L 0.7 | E tary Service
[
[

Alternatively, a rule engine
or & situation listener
{instantiation) implements
the senice control logic

[
VY'Y
interface
Sitnationl istenar -

El—
= RoleDetectionService

- TTSService

0.1 |

SituationMociel4P1
==8ingleton=»
SituationModel

changehodel
guerySpecificinformation
userBehaviourChanged
refrieve CurrentTopic

PerceptualComponent

Figure 5-1: Interface Model Overview of the “Upper Layers”

Version: 1.0

14-July-2004
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

Page 57/114

‘ H I L Cooperative Information System Software Design

The picture above gives an overview of the interfaces between ther fagpes” combining
Agent Architecture, CHIL-Layer Model and layers themselves. &mtain consistency with
the layer model, the layers are represented as verticabbdhe left side of the diagram in
the same order and using the same colour as in the layer nmbel¢bces between the layers
are displayed as horizontal bars between the classes of eachTlayocus on the interfaces,
the diagram has been designed on a higher, analysis level, hidéngnieynal classes, attrib-
utes and operations.

Direct interaction with the user will be performed by InterfaceAgentsyHaeerfaceAgent is
dedicated to one specific user, managing his input devices such asafkynd mouse or
direct speech input and displaying information request results andcaunifis to the user.
This will not comprise perceptual tasks like speaker recagndr identification, which will
be handled by sensors and the components of the Perceptual Componeirisalaysobtru-
sive manner.

The InterfaceAgent also represents the interface betweenstéreRdont End Layer and the
Service Access and Control Layer by transmitting the usegseasts to appropriate services
and receiving results and notifications from them, whereas comation between user and
services will be organised by an Agent Management System.

Every service is associated with a specific agent that contiectervice to the communica-
tion mechanisms of the agent manager. In a first approach, the conneetween service
and agent is specified as an association having cardinality of &rtd fnay be extended to a
cardinality of N to M later. Information between agent and semiag be exchanged by sub-
scriptions, observer/listener pattern or any other mechanism. dlechioice will depend on
the concrete implementation of the services and their interfaces.

The services themselves may communicate with the underlyingti®in Model Layer using
subscriber mechanisms in order to get notifications about changes aifirrent situation and
using control patterns to assign computational results to thei@ituaodel. Interfaces be-
tween the Situation Model Layer and the Perceptual Componentsevaéscribed in detail in
the corresponding chapter.

Version: 1.0 14-July-2004 Page 58/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

5.2 Sequence Diagrams for Use Cases

5.2.1 Use case NotificationAboutAttentionLoss

% User Front End Senvice Access and Control Services Situation Modelling Perceptual Components
User — — — — —
1: Attach agent to senice
multiple fo=-

users -
possible

2: Demand user profile infg_r__ atjon for specific user

{i=-

2.1:Demand user profile

|

e — — — — — — — — —

3 Demand infarmation about|atiention oss

4: Signal change of behaviour

[i1 update the model

4.2:inform serdce about model change

4.2.1: query specific infofrition

o — — — — — — |

|: i.;.l calculate attentign

4.2.3: change the moEEI tofreflect the result of the calculatign

e - —]
424 infarm

4.2.41: deliver results

& Demand user profile inforrration for specific user
| | 8.1: Demand usar profile..

e — — — |
E: notify iser about attention loss

depending on preferred
notification type,

signals may be adressed
to different cormponents

Figure 5-2: Sequence diagram for use case “NotificationAboutAttentionLoss”

This use case can be divided into two phases. The first part isitiisation and setup
phase”, the second may be called the "notification phase".

The first phase contains the attachment of an agent to theisgeciice as well as the regis-
tration for this service by a user (initiated by the UsenFEnd according to the settings in
the user profile).

The second phase shows the actions that take place when a chartgeviunes detected by
the Perceptual Components Layer.

Version: 1.0 14-July-2004 Page 59/114

© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

5.2.2 Use case BrowseContextinformation

% User Front End Service Access and Control Services Situation Modelling

User

1: Demand information relevant to the topic currently undey discussion.

1.1: Demand information... .
1.1.1: ask for current topic

1.1.1.1: retrieve curre_n_t_} pic from rmodel

=

I
e — — - -

1.1.2: retrieve titles Dfinformat_iﬂrj squrces for the current topi

[-==

gre — — — — — — — —

1.2: Demand user profile information for specific user
o,

1.2.1: Demand user profile...

returns keywords ==
associated e — - —]
with the current topic <——————————"

[E{determine user preferred|adtput type
=— !

2: zelectiterns from ligt

=

2.1 getinformation for selecteq items
==

2.1.1: getinformation..

epe — — — — — — — — —

2.1.2: Demand user profile infaL atjon for specific user

[iiﬁ-.?: check authorisation
= 1

2.2: Demand user profile informaljon for specific user
==

returns papers, documents, e ———— —

video ete associtated with the

formetly retrieved and [Eﬁetermine user preferred|odtput types
selected keywords =——

Figure 5-3: Sequence diagram for use case “BrowseContextinformation”

In this use case, the user demands information relevant to the topic currently urukesiaiis
To satisfy the user's needs, the User Front End asks the Skeerss and Control Layer for
the titles of available information relevant to the current tdpéfore the Service Access and
Control Layer can build a list of these titles, it determitesdurrent topic. This task is done
by the Services Layer with the help from the Situation Modelling.

After the topic is known the Services Layer provides the requéisiesl In the following
step, the User Front End asks the underlying layers for the user profile iiéornraorder to
present the results to the user in the desired form.

Once this information has been obtained, the user can select aanidethe User Front end
requests the information from the other layers and presents thietoethe user in the desired
form. The authorization to view specific information is checked & Service Access and
Control Layer.

Version: 1.0 14-July-2004 Page 60/114

© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

CHIL

Cooperative Information System Software Design

6 Detailed SWArchitecture
6.1 Upper Layers

InterfaceAgent

+informxvoid

+reconfigurelJlvoid

+seniceCompletevoid
+determineUserPrafered OutputType: OutputType

«=Facilitator, Singleton==
KnowleageBase | | . ==Singleton=> <7 CHIL

- OntologyAccessAgent interface -instance CHILAgentManager
-instance:OntologyAcces sAgent CHi Agent | 0. manages =+ 1 #CHILAgentManager
#OntologyAccessAgent |7 T T T T L +hame:String _ +getinstance:CHILAgentManager

[Reuistration |

+readKbEntryvoid g +tegisterStatus agent entry
+uritekbEntry:void +deregisterStatus [T T T
+etinstance:OntologyAccessAnen é +modify:Status

+search:Gtatus
+sobveProblem:Status
+seniceCompletevoid

W

==association class==
Registration

-capabiliies:List
-expirationDate: DateTirne

instance ==ahstract=» +notifyvoid
ServiceAgent +checkAuthorisation:Status
+requestService:Status
instance
Connectorigent i ockpitAgent MemoryJogAgent ProfileHandler Agent InformationRetrievalAgent RoleDetectionAg UserldentificationAg
+requestSerice:Status +requestService:Status +reguestSenice Status +requestService:Status +reguestSerice: Status +requestService:Status +requestService:Status
+infarrvaid +roleChangedvoid +inforrrvoid +inforrnvaid
1 1 1
1 1 1 ‘ 1 ‘
1 1 1 1 1 1 1
CHILService CHILService CHILService ElementarySerice ElernentarySemice ElementarySerice ElementaryService
Connector Situationiistener ShuationListensar SitvationListenar InformationRetrievalService SituationListensr SlhuationListenar
ionCockpit MemoryJog ProfileHandlerService RoleD i vice UserldentificationService

‘ UserProfile | User |

Figure 6-1: Detailed class model of the upper layers.

Version: 1.0 14-July-2004
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/IFD

Page 61/114

‘ H I L Cooperative Information System Software Design

6.1.1 Use case NotificationAboutAttentionLoss

InterfaceAgent AgentManager ProfileHandler Agent ProfileHandler AttentionCockpitAgent AttentionCockpitService SituationModelController PerceptualComponents
InterfaceAgent CHILAgentManager ProfileHandlerfgent ProfileHandlerSenice AttentionCockpithgent AttentionCockpit SituationModel PerceptualComponent

User
1: attach{me)void

¥

multiple
users

— —|~ | 2: solveProblemigetl)gerProfile,userld):Status
possible ==

217 requestSericeigetl serRrofile, Userld) Status
e
2.1.1: getlserProfiled)sgr]
e

J:Status

s — — — — — — —]

3. solveProhleminofifvdbgutatientionLoss) Status
3.1 requestServicednotifpdboptittentionLos sy Status

4: userBehaviourChangedvoid
[i.W.updateMudelO.vuid

421 quewSpeciﬂclnfurmatiP_[] Ipfo ffattention related informatio
{==

4.2: update{vaid

g — — — — —]

|: i % 2 calculatesttention) voi

4.2.3: changeModel{:Status linteppretation

A informivoid bt — — —

& seniceComplete(SercdDescription, Results)void

T seneaCompletelSemiceDefcription, Results)void

2: soleProblemigetUgerProfile, userld) Status
fo==

depending on preferred B 8.1: requestService{get s erRrofile, userld) Status
notification type, signals =
ray be adressed to 811 getUserPrUme(gi gy Status
different components
e]
I

9: notify user phput attention loss e — — — — — — —

Figure 6-2: Sequence diagram for use case NotificationAboutAttentionLoss

Version: 1.0 14-July-2004 Page 62/114

© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/IFD

‘ H I L Cooperative Information System Software Design

This use case can be divided into two main parts: the initialisphase and the notification
phase.

In the first phase, the AttentionCockpitAgent is attached to thesmmonding AttentionCock-

pit Service. The next step is the user’s registration ford@rsice: The InterfaceAgent re-
quests the user profile from the ProfileHandlerAgent via the Adgmager. The ProfileHan-
dlerAgent delivers the requested user profile with the help from thedMafidlerService. As

soon as the InterfaceAgent knows the user profile it checks whbtheiser is interested in
notifications in the current situation. If the user is intexkste notifications the Inter-

faceAgent advises the AttentionCockpitAgent via the AgentManageibsrsbe the user for
notifications.

In the second phase, the Perceptual Components detect a changeris dalsviour. For
example, a user may be reading a newspaper or snoring. ThaoSMadel updates its
model after getting this information from the Perceptual Comporertsends a notification
to the AttentionCockpit. Now the AttentionCockpit requests all theiadie related informa-
tion from the SituationModel that is necessary to calculatedtualaattention (Example: par-
ticipants look at their note pads and computer screens rather thiacttirer.). The result of
this calculation is sent back to the SituationModel to be storedtidulaily the Attention-
Cockpit notifies the AttentionCockpitAgent. On receiving this notifaratthe Attention-
CockpitAgent sends a serviceComplete message to the InterfateAg¢he AgentManager.
Now the InterfaceAgent knows that it should inform the user and netstnaine the user’s
preferences for being informed. These preferences are stotteel user profile so the Inter-
faceAgent has to request the user profile from the Profileldefgént before the user can be
informed.

Version: 1.0 14-July-2004 Page 63/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

(H I L Cooperative Information System Software Design

6.1.2 Use case BrowseContextinformation

InterfaceAgent AgentManager MemaoryJogagent MemaoryJogService InformationRetrievalAgent InformationRetrievalService ProfileHandler Agent Profile Handler SituationModelControlier
InterfaceAgent CHILS t [) Profilet Prafile
User
1:Demand information rélefant to the topic currently unftef discussion
1.1 solveF urfentT itatu:
111 ulte itTopicy Status
|| 1.1 vetrieve CurrentTapicO KeynvordList
11,1 1 determine GurrentTopig(5tatus fiperarm Topic context sear
1.4.4.1.1.1: retrieveCurrentTapie:ieyiwordList
J§7 ,,,,,,,,,,, I [winen topic is known by the ontller S
I =
e]
112 , kevMoriList)..
== 1.1.21 T). ist
] I B
be —— |
125 tatu:
R tatu
1.2.1.1: gt
b e
e] e N M [
e - ——— |
determine in which vray the user prefers fa recefve data Ly
determinel OutputTyne(UserProfile, Outp.
retuns keywords assoriated
with the current topic
P ——
2 select tems fram list
21 lveF itemlist):Staty
=l | 311 iternlist):Status fipapers, fnovies
2111 ist) ist
e I I B e
212
Bl | 2.2.1: getl tatu:
e]
e] e N M [
may bie done by a special authorisation senice or a usetprofile related senvice B‘
ik i tatu
e - —— |
22 tatu
221
2211 getu It Statu:
e]
e] e N M [
be —— |
retumns papers, documents,
video etc associtated with the
formerly retrieved and QutoulTyre(UserProfile, Oty
selected keywords

Figure 6-3: Sequence diagram for use case BrowseContextInformation

Version: 1.0 14-July-2004

© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/IFD

Page 64/114

‘ H I L Cooperative Information System Software Design

This sequence diagram models the use case BrowseContextindorraatdescribed in the
Functional Requirementq1] document. It is assumed that the situation model includes the
topics currently under discussion.

The use case starts with the user’'s demand for information. Téré&atreAgent situated in the
User Front End Layer then passes this demand to the AgentMandlgerService access and
Control Layer. The AgentManager is responsible for routing thereliffesubtasks to the spe-
cific agents for these tasks. The first task is the detetimmaf the current topic, which is

done by the MemoryJogAgent by using the MemoryJog from the 8erlizmyer. On its way

to determine the current topic, the MemoryJog uses the Situation¥Madéinows about the

topic.

In the next task, the now known topic is passed to the InformadtaeRRalAgent. This agent
can now use the InformationRetrievalService to gather informatlating to this topic and
build a list of titles/headings. Before the InterfaceAgeart present this list to the user the
user profile must be available. Therefore the InterfaceAgent demands tipeaigerfrom the
AgentManager. The ProfileHandlerAgent (being attached to the éMafildlerService) pro-
vides the user profile so that the InterfaceAgent can now presehsttioé headings to the
user for selection.

Now it's the turn of the user to select items from this Ti$tis selection arrives at the Inter-
faceAgent who gathers the desired information via the InformatioeRat#\gent and its cor-
responding InformationRetrievalService. Before the information cardsented to the user
the AgentManager has to check authorisation issues and like in tlygapdrabove the user
profile is necessary to meet the user’s desires. FirnadlyirtterfaceAgent presents the gath-
ered content to the user.

Version: 1.0 14-July-2004 Page 65/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

6.1.3 Use case Userldentification

AgentManager RoleDetectionAgent RoleDetection Service UserldentificationAgent UserldentificationService SituationModelController PerceptualComponents
CHILAgentManager RoleDetectionAgent RoleDetectionSenice UserldentificationAgent UsarldentificationService SituationModel PerceptualCormpanent

1: requestService(notifpdpoutl serldentification): Staju:

2 requestService(notifpipoutRoleChanged) Status
3 userknferedRoamiPersanid) void

3.2 updatedooid [Fl

31 odel(waid [JState
3.2.1: querySpecificinformatiopd:inio fuser related informatioh for all
knowin users

Atthis stage itis not clear ifthe identification is done

by the service or by the perceptual components. Ifthe

identification is already done by the perceptual components,

then the service can check the existence ofthe user (is there a
repragentation far the user in the systern®, is the user known to the system)
otherwise the service has to identify the user by comparing the infarmation
about the known users with the information about the new user

3.2.2: checkUserExistancedfboolean

3.2.3: changeModel) Statuf fthe persan whao entered the gogm is

.y
3.2.31: updateQuoid

32311 queny! ificinfprinationd:Info firole related info tion

3.2.31.2: detectRaleq) vid|

3.2.3.1.3; changehodel(:Etdtus finew person has role

4 informioid

: geniceCompletedvoid
B inform{woid

7 senicezomplete (void

Figure 6-4: Sequence diagram for use case Userldentification.

This sequence diagram shows the elementary service "Useiilchgiaif” in conjunction with
the service "RoleDetection".

Possible notifications to the other users that may result frorevidaet "person enters room"”
are not shown in this diagram because they belong to other usdikadéstificationAbout-
ParticipantListChange, which are not yet covered by the current document.

In the first two steps of this use case The AgentManagelssequests for notification about
Userldentification and RoleChange to the appropriate Services.

When a user enters the CHIL room, the perceptual components infoi&ituaéonModel-

Controller by calling the method userEnteredRoom. The SituationModetlentrpdates its
model to reflect the current situation and informs the UserlitattonService about this
change by calling its update method. There might be other parerssted in this notifica-
tion as well.

Now it's up to the UserldentificationService to determine thatideof the new person. As
mentioned in the note in the diagram above, at this stage of the [@bjHct it is not clear if
the identification is done by the service or by the perceptraponents. If the identification

Version: 1.0 14-July-2004 Page 66/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

is already done by the perceptual components, then the service chritehexistence of the
user (is there a representation for the user in the systeitthi2, iser known to the system?)
otherwise the service has to identify the user by comparinmfibrenation about the known
users with the information about the new user. After this chexkdsult is sent to the Situa-
tionModelController by calling the changeModel method.

After sending the result to the SituationModelController the IdsatificationService inform
its corresponding agent about the new situation. The Userldentifiéatent is now able to
inform the AgentManager by sending a serviceComplete message.

The RoleDetectionService, which is also interested in notificatasit Userldentification,
receives an update call when the SituationModelController updatesodel. Before the
RoleDetectionService can detect the role of the new persor tblgather some role related
information from the SituationModelController by using the querySp#tibrmation
method. When all necessary information is available the Role@#t8etrvice can determine
the role of the user and send this result back to the Situation®wdeoller by using the
changeModel method. As a last step the RoleDetectionService sfissntorresponding
agent about the role detection. The RoleDetectionAgent can now infieridigentManager
by sending a serviceComplete message.

Version: 1.0 14-July-2004 Page 67/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

' H I L Cooperative Information System Software Design

6.1.4 User Front End

The user interface layer contains theerfaceAgentlass. An instance of this class acts as a
personal assistant for a specific user and responds to requesibduyibing to the CHIL-
services he/she wants to use.

Interfacefgent

+informoyoid

+reconfigurelUlvoid

+zaniceCompletenaid
+determinellserPreferadOutputType: OutpuiType

Y

interface
CHIL Agent

+name:String

Figure 6-5:User Front End Class Diagram

The creation and destruction of interface agents may be maithainalifecycleAgentThe
lifecycle agent creates an interface agent when a newisusecognised during entering the
room. To facilitate this, the lifecycle agent must be subsgribeheUserldentificationSer-
vice (encapsulated by thdserldentificationAgent The lifecycle agent gets notified about
new users through iserviceCompletéunction. If a user leaves the room, the lifecycle agent
can shut down the users interface agent but there should be a delagea user may only
leave the room for short time, e.g. to have a short break @oget required papers. It must
be discussed further if a lifecycle agent is required drigf functionality could also be pro-
vided by theAgentManagerlt may also be possible that an interface agent lives outsiae of
CHIL room on a users laptop e.g. for providing summary information of a meeting.

If a newly created interface agent starts up it, firgiee¢s the current role of the user from
the SituationModelto read the matching role profile from tReofileHandlerServicgencap-
sulated by théProfileHandlerAgent If the user is already identified and he/she has a user
profile the interface agent blends it with the role profile otlws the default settings of the
role profile apply (see step 2 of the NotificationAboutAttentionLoss sequeageadh).

After that, the interface agent subscribes to the CHIL seswitat the user demands, by inter-
preting the blended user/role profile. For example a lecturer wariis informed about an
attention loss so its interface agent must subscribe tdAtiemtionLossServicelinterface
agents do not directly subscribe to a service but sesavaProblenrequest to thé\gent-
Manager The AgentManagerknows which agents (who encapsulate CHIL-services) can
solve the demand, e.g. there may be different services thableanasproblem but some are
already busy for other users.

During a scenario, the interface agent must take care abouthaiges of its user. To facili-
tate this, the interface agent must be subscribed tBdleDetectionServicgncapsulated by

Version: 1.0 14-July-2004 Page 69/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

the RoleDetectionAgeht If a role change occurs it must again read the role prédi the
new role of the user, blend it with the user profile, subscribe toseevices and unsubscribe
from the no longer needed services.

If a CHIL-service comes up with some information for a udeo(igh the interface agents its
serviceCompletéunction) the interface agent must retrieve the users prefesag for notifi-
cations by querying the user/role profiles (indetermineUserPreferredOutputTyhenction)
and then use output components (like Targeted Audio) or a GUI on the users laptop/PDA.

Version: 1.0 14-July-2004 Page 70/114

© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

Cooperative Information System Software Design

CHIL

6.1.5 Service Access and Control Layer

==Facilitator, Singleton==
CHIL AgentManager
-instance:CHILAgentMananer
#CHILAgentManager
+getinstance:CHILAgentManager
+register Status
+deregister.Status

==gssociation class==
Registration

| _Aoententy [capaniliies:List

-expirationDate:DataTime

interface
CHiL Agent | .+
+narme:String

Registration 0.1

manages = +modify.Status
+5earch:Status
+s0lveProblem:Status
/./'C? \C‘Z\ +seniceCompletevoid
- - . +notifyoid
/f‘ \\ +checkauthorisation:Status
-~ - .
=<Singleton== \\
OntologyfccessAgent i N instance
KnowledgeBase | . . . |.instance:OntologyAccessAgent i
#OntologyAccessAgent =
ahstract==
+readkbEntryvoid ServiceAgent
+yritekbEntryvaoid
+getinstance:OntologyAccessAnen +requestService: Status
instance
ConnectorAgent AttentionCockpitigent MemonyJogagent ProfileHandler Agent InformationRetrievalAgent RoleDetectionAgent UserldentificationAgent

+reguestSerice Status

+requestSenice Status
+informovoid

+requestService; Status

Figure 6-6: Service Access and Control Layer Class Diagram

+reguestSernice Status
+roleChangedyoid

+requestSernice Status

+requestService Status
+informvoid

+reguestSenice Status
+informoyvoid

Version: 1.0

© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/IFD

14-July-2004

Page 71/114

‘ H I L Cooperative Information System Software Design

6.1.5.1 CHILAgentManager

The CHILAgentManager acts as a facilitator for the agentse Service Access and Control
Layer. It is implemented using the “singleton” pattern. lnages the agent’s registration.
Each registration of an agent consists of a list of its capebiand an expiration date. The
Agent Manager is also responsible for requesting the servioggled by the different ser-

vice agents, fusing the results and passing the fused resulis interface agent, which in
turn will present the results to the user. The AgentManagesses the ontology via the On-
tologyAccessAgent.

6.1.5.2 OntologyAccessAgent

The task of the OntologyAccessAgent is to make the ontology storaKimowledgeBase
available to the other agents in the system. It is implemented using thketsmi pattern.

6.1.5.3 ServiceAgents (MemoryJogAgent, ProfileHandlerAgent,
InformationRetrievalAgent, AttentionCockpitAgent, ConnectorAgent)

There are several ServiceAgents like the MemoryJogAgent oAttieationCockpitAgent.
They act as a wrapper for the underlying services and offer thgrotential clients in the
agent system.

Service agents register at the AgentManager (kind of adwejtiBy registering they publish
their capabilities to the other agents in the system.

Service invocation has normally started with a problem that awesstis to be solved. The
interface agent allocated to the user takes the problem descioid passes it as a solveP-
roblem() request to the AgentManager.

The AgentManager which knows the capabilities of all the selagemnts via their registra-
tion, determines which agents capabilities best fits the probleemtieally decomposes the
problem in subproblems and requests the services provided by the sgemte in order to
solve the subproblem.

The ServiceAgent is now responsible for dealing with the snéquest by using the corre-
sponding service.

6.2 Services Layer

In the scope of the CHIL, smart room every computing devicebiltapable of providing
services. These services include soft services (e.g., computatepebilities), as well as
physical services relating to mobile phones, computer periph@/alsall these services pro-
vided in the scope of individual devices "elementary services".

The service-modelling layer provides the foundation for implemer@H#l. non-obtrusive
services such as tidemory JogtheAttention Cockpiaind theConnector These services can
be viewed as composite services comprising a group of elemesgianges (for example,
searching information within a database or providing output througrBarfterface), that are
triggered based on appropriate control logic. Note that the controldbguld implement the
triggering functionality supporting the non-intrusive nature of the CHIL setvices

Version: 1.0 14-July-2004 Page 72/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

Therefore, a CHIL service can be defined as a set of semnioceations, based on appropriate
control/triggering mechanisms. The CHIL architecture provides the infcaste enabling:

* Implementation, deployment and invocation of elementary services
» Aggregation of elementary services into CHIL Services
* Implementation of the control logic

As far as the control logic is concerned, the CHIL architeatoss not specify the exact con-
trol algorithm. This is an application specific issue, to be défineonjunction with the Ser-
vices group (WP3). Rather the CHIL architecture will provide tleams for implementing
application specific control algorithms.

A service-oriented architecture (e.g., based on Web Servickd)enemployed to facilitate
the deployment and implementation of elementary services. Atethes the Service object
(or interface) will be the main object abstracting an elemgrsiarvice. This will provide a
mechanism such that other distributed software object can disttuseservice and interact
with it. All (elementary) services (soft-services or provitdgccomputing devices) extend this
class. Elementary services will provide the means for offehuman assistance in the CHIL
room, including the input/output procedures. Representative examples are:

« ATTS Service for outputting audio,

* A Target Audio Service for outputting audio to a particular person/participant,

* A Summarization Service providing summary of a portion of a speech / talk,

» A Person Information Retrieval (IR) Service providing information on a partitipa

Several of these services rely on perceptual interfacesefohe, the corresponding service
objects can be implemented through accessing directly theppgsteomponents layer. Al-
ternatively, wrappers of these components can be implemented artiee dayer. These
wrappers should simply implement the Service interface and démbkervice discovery and
invocation aspects.

CHIL services comprise one or more elementary services &idhg control logic guiding

the invocation of services (how, when, in which order). Therefore, CHilices feature a
one-to-many association relationship to elementary services. IA Sgtvice would get fea-
ture handles, bindings, and references to elementary services geetlater can be invoked.
Invocations will be performed in a distributed manner using aluliséd programming model
(e.g., Java RMI, Web Services, XML-RPC or an Agent Communication Language).

The control logic will encod#-then-elsestatements through accessing:
« Components of the situation modelling layer to reason about situatioresctoil to
be taken (i.e. the if part of the control logic)
* Elementary services or components of the perceptual layeetwtexactions/services
targeting human assistance.

With respect to the implementation of the control logic we envieageearly implementation
based on a simple event based mechanism, and a more complex impiemeatying on a
rule engine and Ontologies. Both simple events mechanisms and amopéex rule based
mechanisms will implement a reactive layer activated wheticpkar situations are recog-
nized.

In the sequel we elaborate on each on of those two design choices.

Version: 1.0 14-July-2004 Page 73/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

CHIL

Cooperative Information System Software Design

Soft-Senices and

RuleEngine

Physical Senices Elementary | CHILSenice e
derive from this —— | Senice < 1 T ———
class 0..n -n $ \1..n —— ___ | SituationListener
B -
™~
A rule engine or a
SummarizationSenvice : situation Listener
TTSSenvice implements the control
logic for non-intrusive
TargetedAudioService 1 LI RS RS
AttentionCockpit
MemoryJog Connector
InformationRetrieval
Senvice
1
\/1
PerceptualComponent

Perceptual Components - _—

(at the Perceptual

Layer of the CHIL

framework) are likely to

actually realize Senvc...

Figure 6-7: Service Layer Classes
Version: 1.0 14-July-2004 Page 74/114

© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/IFD

‘ H I L Cooperative Information System Software Design

SituationListener

The SituationListener class or interface provides an abstraction of an event based
triggering mechanism, along with a callback model for handlingrdiftesituations. The im-
plementation mechanism for the events is still an open issdellineing alternatives can be
envisaged:

» Subscribing the CHIL Services object to the Situation Identiboagingines (i.e. com-
ponents of the modelling layer).

* Implementing a global event mechanism, through maintaining an everg gumilar
to the approach taken in [3].

Callback functions implemented in tl&tuationListeners will then provide the re-
quired application specific control logic, through access elementary seayabilities.

RuleEngine

In order to improve the sophistication, scalability and extensilofithhe CHIL services the
control logic should be implemented withimade based inference engine (or "rule engine")
A rule engine may be viewed as an interpreter for condition-actios. dde if/then state-
ments that are interpreted are called rules. The condition portiaulesf contains a set of
tests. The action part specifies a sequence of actions that $leoelctcuted when all of the
of the tests have been satisfied [15]. Rule based inferenagesrayie often implemented us-
ing the RETE-matching algorithm. Rule based inference is sweted for implementing
situation-modelling processes using Ontologies [16].

Basic service layer classes are depicted in Figure 6-7.

Version: 1.0 14-July-2004 Page 75/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

6.2.1 User Profile Specification

The user is described by a set of attributes. These attrishudetd include all CHIL relevant
user data such as access rights, personality, body characteristics etc

BodyCharacteristics Personalinterest AdministrativeData UserCapability Characteristic ContactData
-hairColour:Siring -description:String -securityClearance:String -description:String -description:Siring -phoneMumber String
-eyeCalour:String -authority:String -eMail:String
-size:douhle -arganisation:Organisation -faxMumber:Biring
-weightdouble -adress:String

-rmohile:String
-InstantMessengerAccount String

-skinCalour:String

has
contacted via ="

SpeechPattern

141

UserProfile

1

T4
{Jta kes outa
1.7 0.*
OutputPreferences Professionallnterest
-outputPriarity: String n.r 0.1 -description:String

1.7
%fowns
ScenarioSpecificinterest UserSpecificinterest RoleSpecificinterest
| il
| user profile horder |l|
1. 1 | | 1.*

Device Scenario Role User
-type:Type -dateOfBirth:Date
-identifier:Siring -forename:String

-surname:String
- /’—
~ -
=— \\\ ”_,’ IS
- . = —

—_ . e —_—

are notpartofthe ="
user profile

Figure 6-8:User profile specification

UserProfile: This is a package of all attributes that provides relevaotnrdtion about the
user.

ContactData: Describes how the user can be contacted.

OutputPreferences Contains a description of the ranking order and how a user walés to
notified about something, on a specific device.

Professionallnterest Superclass for all interests that may automaticaly l® service sub-
scriptions. Subclasses are RoleSpecificinterest, UserSpetafiest and ScenarioSpeci-

Version: 1.0 14-July-2004 Page 76/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

ficInterest, which are meant to be used to specify interessufiscriptions in detail and de-
pending on certain roles and scenarios. An example might be thatbelmig assigned lec-
turer in a meeting, the user has the RoleSpecificinterdsting notified about attention loss.
Such an interest would automatically lead to a subscription of the appropriaeServi

Personallnterest The above-described interests do not necessarily lead to aeservic
subscription (e.g. a subscription to every Greek goal shot in the2B0#bfinal). These inter-
ests describe additional user-specific interests.

BodyCharacteristics Describe relevant physical attributes of the user (ske colour,
speech pattern, ...).

AdministrativeData: These are the user’'s administrative data in an organisatioexdmple
his access rights.

UserCapability andCharacteristics: These two attributes capture aspects of the user’s per-
sonality, such as languages that he might speak.

6.2.2 ProfileHandler Service

The ProfileHandler service is used to administer a user prtifiemeant to read and write

user specific attributes depending on the requested operation. Thee s=w also handle

more general requests for information, like “return all spgetterns available for the user”.
Another task is the handling of resource (information or device) spesér access. Every
resource has a set of rules defining access to the res@eifeTihe access is granted if the
user’s role or his AdministrativeData match the resource’s admissiomdsma

Additionally, the ProfileHandler service can be seen as a prigaayd of the user informa-
tion. This aspect of profile handling seems to be very important, mongethe extremely
sensible data in the profile.

6.2.3 InformationRetrieval Service

The InformationRetrieval Service provides information about a givpit.té retrieval job
starts with a call to the services with a list of keywasparameters. The service then begins
with the search in all available data sources. To increaggutiigy of the search results com-
putational measures are used. In this context the term qualitysrbeast fitting or covering
information about the given keywords.

6.2.4 Devicelntegration Service

The Devicelntegration Service offers the possibility of inteiggaall devices in the area cov-
ered by the local CHIL-system. A method of communication betvieendevice and the
CHIL-system, one-way or bi-directional, is a necessity fatitig up the device (e.g. WLAN,
Bluetooth, Infrared, ...). Through its perceptual components, the CHILrsyistentifies a
new device. Information about this device is then passed to the Ddemedtion Service. In
cooperation with data from the user profile (beeper number, etcdethee is assigned to a
user. After this the integration is started. This part of theiGeis appropriate for devices
that do not allow software installation, or are only located on tevieg end (e.g. beepers,
video projector, ...). Another way to integrate a device into theesyss by user-initiated
notification. This way is used to integrate a device into the Gydtem by equipping it with
a version of the current CHIL-software.

Version: 1.0 14-July-2004 Page 77/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

The actual integration consists of a user-to-device assignmernanpidate to the situation
model. User-to-device assignments are performed with infasmdtom the user profile
(phone number, ...) but are also influenced by knowledge about users ralevacel loca-
tions.

6.2.5 Userldentification Service

The Userldentification service identifies users by their bddracteristics (speech, face rec-
ognition, appearance), which have already been matched with users kntivenstystem by
the perceptual components. This service gathers information fromediffperceptual com-
ponents such as a voice recognition component or a face recognitipoream Even if the
information is incomplete, e.g. a user entering the room does natwaxd, the service then
tries to determines the user who'’s profile best matchesitba glentification information. It
also has to have a threshold of uncertainty. This threshold is usestitguish between a
new user to the system and the best matched user profile.

Version: 1.0 14-July-2004 Page 78/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

6.3 Situation Modelling Layer

The situation modelling layer provides the CHIL services wittescription of the current

state of the CHIL environment, and provides detection of events thaeaessary to initiate

or terminate service actions. A situation is a state desuripfithe environment expressed in
terms of entities (actuators and props) and their properties. i@ituabdels determine the

entities to observe, the properties to measure and the eventedtg ded thus specify the

selection and configuration of perceptual components.

A situation is a kind of state description composed of a conjunction dicptes. Predicates
are truth functions that can take on logical or probabilistic valBggations are defined in
terms of an assignment of observed entities to "roles", the properthes @ritities assigned to
roles, and the relations (relative properties) of the entiteagng roles. Thus the basic com-
ponent of a situation model is an entity.

An entity is a correlated set of observed properties. Enétesletected and tracked by per-
ceptual components as specified by the situation model. Entiigsom actuators or props.
Actuators are entities that are capable of spontaneous actios éhapontaneous changes in
state. In most cases, actuators will be people, but mechanidakctrcal devices for which
actions must be detected may also be considered as actBab@sare entities that are static,
i.e. do not act.

Entities have numerical attributes that describe as position, ati@ntsize, configuration or
external appearance. These may be used to compute relatiohetigvrs a predicate (truth)
function computed over the attributes of one or more entities. Relatiapse represented
by Boolean or probabilistic truth-values. A unary relation computestla function over an
attribute of a single entity. N-Array relations compute truth functions @tsro$ N entities.

Each situation is defined in terms of a set of roles andartat The concept of rols an
important (but subtle) tool for simplifying the network of situatiohss common to discover
a collection of situations for an output state that have the sanfiguwration of relations, but
where the identity of one or more entities is varied. A roteeseas a "variable" for the enti-
ties to which the relations are applied, thus allowing an equiveéemif situations to have the
same representation.

A role is played by an entity that can pass an acceptanc®tdbe role. In that case, it is
said that the entity can play or adopt the role for that situatiorour framework, the rela-

tions that define a situation are defined with respect to rakesapplied to entities that pass
the test for the relevant roles. A change in the assignment efitdy to a role can be an im-
portant source of events for CHIL services.

A situation model describes activity using a network of situatiomsh & model specifies the
entities, properties and relations that must be observed to providé&_as€rvice. Changes in
individual or relative properties of specified entities corresporavémts that signal a change
in situation. Such events can be used to trigger actions by the system.

For example, in a group discussion, at any instant, one person pldysl¢tef the speaker

while the other persons play the role of "listeners". Dyndigiessigning a person to the
role of "speaker" makes it possible to select perceptual companetqtire images and
sound of the current speaker. Detecting a change in roles d@levgystem to reconfigure the
video and audio acquisition systems.

Version: 1.0 14-July-2004 Page 79/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

Entities and roles are not bijective sets. One or more entiigsplay a role. A role may be
played by one or several entities. The assignment of entitiesle® may (and often will)
change dynamically. Such changes provide the basis for an impddastof events: role-
events. Role events signal a change in assignment of anterdityle, rather than a change
in situation.

Each situation is configuration of entities (actuators or propitions (predicates computed
over entities), and a list of adjacent situations that are Biractessible from the current
situation. A situation model determines the configuration of processessary to detect and
observe the entities that can play the roles and the relationsdretales that must be ob-
served.

Roles and relations allow us to specify a context model as akilsdript" for activity in an
environment. However, unlike theatre, the script for a context ingugssarily linear. Con-
text scripts are networks of situations where a change inisiigas determined based on
relations between roles.

6.3.1 Overview of layer architecture

Situation models rely on a few infrastructure classes thatgeaha set of entities, roles and
relations within the context model. These are shown in Figure 6-9.

<<singleton>> <<singleton>>
()~} SituationModel Persistence
Situation
//\\ K A
ModelAP]] - |
| o |
Relation Abstraction
AR -7
AN /
Tracker

Figure 6-9 Situation Modelling architectural classes.

The roles of these classes are as follows:

* Abstraction models entities. Examples incli®rson Whiteboard Table and Meet-
ing.

* Relation models a predicate (truth function) computed over one or miise Exam-
ples include At-Door(E1), In-Front-Of(E1, E2), Sitting(E1).

* Roles designate the specific entities within the scene aodiatksthem to potential
actions and events. Examples keeturer, Audience

History is maintained by recording the evolution of the situatiohiwithe network of situa-
tions so that chronological evolution can be queried.

Version: 1.0 14-July-2004 Page 80/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

The SituationModel is the main point of entry, enabling adding, quegnglisting of ob-
jects in the model. It also enables searching for a partitypar of objects, as for example
looking for the current list of person objects in the situation model.

Both Abstractions and Relations contain a set of attributes. Thebeitas may have an as-
sociated probability, and will vary in time.

All the objects that will be modelled will have to satisfy #iel of their base class. With the
current set of use cases, we envision the following hierarchy:

Version: 1.0 14-July-2004 Page 81/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

CHIL

Cooperative Information System Software Design

Abstraction
—1
FixedArtefact MobileArtefact Person Meeting Room Content
Zﬁ) Zﬁ V %
Whiteboard Table Chair PDA Phone Lecture Braimstorm Image Text
<<singleton>>
SituationModel
Relation Tracker
[~
<<singleton>>
Persistence
Lecturer Audience PersonTracker LecturerTracker ContentTracker
Figure 6-10: Modelled hierarchy of objects.
Version: 1.0 14-July-2004 Page 82/114

© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/IFD

‘ H I L Cooperative Information System Software Design

Here is a rough explanation of how the Person package would be hanthésdframework.
A CHIL service would select a situation model required for olisgrthe CHIL environment.
The situation model would launch and configure a perceptual componeshtémting per-
sons. When a person is detected, the situation model would launch atpgcken and sig-
nal the event to the CHIL service.

The PersonTracker registers itself with the BodyTrackerepénal component from the layer
below. As soon as there is an event from the BodyTracker sdngrgyis a new body entering
the room, the PersonTracker adds, through the SituationModel's APly &erson abstrac-
tion into the model. This Person abstraction will itself regisiér several perceptual compo-
nents so as to enable it to resolve the identity of the petsmigdation, and/or other aspects,
which are accessible through its interface.

If the CHIL service requires the identity of persons, thersituation model may launch one
or more perceptual components for person recognition. The identtyefson can be asso-
ciated with an observed (tracked) person by some form of cooreldthis could, for exam-

ple, be spatial co-occurrence of the detection zone for person tyakihthe observed area
for face recognition. It could, alternatively, depend on temporaklation. For example a

process that detects mouth movements may correlate with identification \ear&oagnition.

If the person does not speak and is not turned towards a faceitecogamera, that the
identity detection might not reach a sufficient level of confideMgbenever recognition is
achieved, events are transmitted to the situation model so tisanpeentity can be corre-
lated with a tracked entity.

Other perceptual components may register to be notified when thigtyidef the person is
known with a certain degree of confidence. One example would besting@bstraction,
registering with the PersonTracker to know the number of attésidand registering with all
persons to be notified about their identity. In case of identity tietedelay, the display of
meeting information will at least be able to tell that thera new person, but not yet who it
is.

Each objects is updated based on the information from the underlyceppel components
layer ("user moved out of the room", "someone came in", "persomxYed to whiteboard

and started presenting”) or possibly from its upper layer, asethies may know that a user
is interacting with the PDE through the web-server, but thisgaudt established yet through

other means de to occlusions, bad lighting conditions or bad location in room.

As a support for monitoring, we assume there will be some loggded that functions as
some kind of context consistency checker on the data models represetitesdlayer (pre-
conditions, post-conditions) — e.g. “number of people in the room” versusb&ruoh people
in meeting”. These consistency-checking logics will be spreddel different objects, so as to
implement them where most appropriate.

6.3.2 Eventing and polling

Every object in the framework implements an API for registeto attribute change events,
as well as methods for reading these attributes. The basid wiljgurovide events for attrib-
ute changes, and object activity (active/inactive). This ABiibodied in the Abstraction and
Relation interfaces.

Version: 1.0 14-July-2004 Page 83/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

Output of information is not yet well defined, but there may bératitons that present an
API to actually change some property. This may be the illumimabh a room, or sending a
targeted message to a particular user.

6.3.3 Extensibility

It is seen as important that new types of objects may be ad@daalessly into the situation
model. A new package typically will depend on perceptual components tiectida and
tracking, which will register to existing sources of events, agpe of abstraction or rela-
tion.

The object types, which are added, are heavily service dependsomassituation informa-
tion is collected only if a service needs it (e.g. audienemtain level), so that particular at-
tention is given to having a proper extensibility API for the situation modelligmen

6.3.4 History Tracking

An important part of the situation model is its ability of trackchanges in time. This part is
vital to recover information about the sequence of lecturers in &ngethe links to their
contents, or tracking the list of goals or agenda items.

The persistence layer models that aspect of history trackigalao provides the API for
recovering the history of a particular object or attribute, ongithe situation of all objects at
a given point in time. History tracks situations, and thus recordassignment of entities to
roles, as well as the relations concerning entities.

A
Person-Meeting

Questioner

Lecturer

Listener
Absent

>TIME

A .
Meeting status

ON
OFF

> TIME

Figure 6-11: History tracking

Version: 1.0 14-July-2004 Page 84/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

The person was the first lecturer of the meeting, then issing to another lecturer (not
shown), asked two short questions, then spent another few minutes in thafteroifme meet-
ing ended. The situation history process must be able to recovehbattldtion history and
the status (attribute) history.

6.3.5 Start-up of system

Beat first glance it appears desirable to discover all retesmtities within the scene auto-
matically in an unsupervised way. However, relevance depends oastheahd thus on the
currently running CHIL service, and the situation model that tmscgerequires. An impor-
tant part of situation modelling process is determining thefsentities and relations that are
required for each situation model. In early versions of the CHsttegy, this choice will be
made "off-line". In later versions, we will experiment with automatiquisition processes for
this information.

As a situation model is initialised, each of the relevant estitighin the scene must be dis-
covered. This will require development of appropriate detection proceduresiédisetion.

6.4 Perceptual Components Layer

Perceptual components layer provides interpretation of data stiamisg from various

audio and video sources represented by the underlying layer ofaL&ginsors to the upper
layers of Situation Modelling and Services, and transfers regioestsitput generation from
these upper layers to the layer of Logical Sensors.

6.4.1 Class Architecture

At the top of the object hierarchy of the Perceptual Componerds ldere is th@ercep-
tualComponent abstract object. This object includes attributes and operationsariat
common to all perceptual component objects and implements a se¢rfdices described in
chapterPerceptual Component APRIs

The next level in the hierarchy distinguish between a set opapents which provide inter-
pretation of data streams coming from various audio and video sources of the ugdaysin
of Logical Sensors (input components) and a set of components whiehaigeputput re-
quested by the Situation Modelling layer and/or by the Serviges (@utput components).
The objects are namddputPComponent andOutputPComponent for input and for

output perceptual components respectively.

Input perceptual components are grouped according to their modadiesesndants of Visu-
alPComponent, AcousticPComponent, or AudioVisualPComponent. These components have
a direct connection to the AudioSensor and/or VideoSensor objects frdmodloal Sensor

layer. Further extension to other types of input perceptual compof®ntk as event-
producing sensors like open-door detector) is represented by the phjaetl Otherin-
putPComponent.

The hierarchy of perceptual component classes is shorigure 6-12.

Version: 1.0 14-July-2004 Page 85/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

CHIL

Cooperative Information System Software Design

o——

PerceptualComponent

<

SubscriberAPl//

O

ControlAPI
RemoteAdminAPI

IntrospectionAPI O

AccessAPI

-

O

Interface for Logical
Sensor Layer

SensorBinding

tnputPComponent

By
APt

Possible extension of
the set of input
perceptual components

OthertnputP€omponent

|

VisuatPComponent

|

| |

AcousticPComponent

AudioVisuatPComponent

SpeechRecognition

DVisualPComponent

3DVisuatPComponent

T

-

SpeechDetection

OutputPComponent

T

FextToSpeech

FargetedAudio

PersonTracking3D

PersonFracking2b

Bodybetection

HeadAndHandFracking

HeadOrientation

PointingGestureRecognition

FaceDetection

GestureAndPostureRecognition

AvPersonTracking

Sourcetocatization

Persontdentity Tracking

Speakertdentification

EmotionRecognition

Beamforming

AcousticEventCtassification

cousticEmotionRecognition

FaceRecognition

Figure 6-12: Hierarchy of Perceptual Component Classes

Details will be
provided later

Objects from
Logical Sensor
Layer

Version: 1.0

14-July-2004

© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/IFD

Page 86/114

‘ H I L Cooperative Information System Software Design

6.4.2 Proposed Perceptual Components

Perceptual components to be plugged into CHIL architecture are higtier level divided
into two categories: input and output components.

Proposed input perceptual components are the following:

* Visual perceptual components — 2D

o
o
o
o

Person localization and tracking (2[NRIA, ITC-irst]

Body detectioniNRIA, ITC-irst]

Head orientatiofiNRIA, UniKarl/ISL]

Face detection and recognitippmiKarl/ISL, CMU, RESIT-AIT]

* Visual perceptual components — 3D

o
o
o
o

Person tracking (30VniKarl/ISL]

Gesture/posture recogniti@unikarl/ISL, ITC-irst]

Head & hand tracking using stereo cameuaikarl/ISL]
Pointing gesture recognition using stereo camjexasarl/ISL]

» Acoustic perceptual components

(0]

(@)

Speech recognition (including far-fielgnikarl/1SL]
Source localizatiofINRIA, UniKarl/ISL]

Speech detectioiNRIA, UniKarl/ISL]

Speaker identificatiofcMU]

Acoustic emotion recognitiojcMU]

Acoustic event classificatig@mMu]
BeamformingUniKarl/ISL]

* Audio-visual perceptual components

0]
o
0]
o
0]

A/V person trackingINRIA, UniKarl/ISL]
Person identity trackingnikarl/ISL]
Activity recognition[INRIA, UniKarl/ISL]
AVSR - mouth (lips) observatidiNnRIA]
Emotion recognitiokKTH]

Output perceptual components are:

o
o

Multimodal Speech SynthedisTH]
Targeted AudigINRIA, KTH, Daimler]

Version: 1.0

14-July-2004 Page 87/114

© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

6.4.3 Perceptual Component APIs

Perceptual component interfaces provided to Situation Modelling laykiSarvices Layer
are the following:

» Subscriber API — allows CHIL components to subscribe to the recognition events
generated by a particular engine. It also lets the clienpooents to subscribe for the
stream of raw data (using the abstractions at the underlying Logicalr$eved).

» Control APl — allows changing parameters or profiles for the recognitiek flan-
guage, resolution, prototypes, etc.).

 Remote Administration API — allows component monitoring and remote manage-
ment. This API will provide means for controlling the lifecyclecomponents, so that
they can be invoked, suspended, updated, and reconfigured at runtime. Aldalit wil
low probing the status of components, as well as explicit suppodefmrgging and
tracing component.

» Introspection API — provides information on component versioning, its current inter-
face version, mandatory and optional functionality, and offered semantics.

» Access API- provides functionality for allocation and release of a given resource.
An interface for the underlying layer of Logical Sensors is:

* Sensor Binding API— provides connectivity to the set of audio and video sensors rep-
resented by the Logical Sensors layer.

Generally, Perceptual Component interfaces can be eitherAB¢silor remote (XML-based)
APIs:

* Local API — directly accessing methods of particular objectemphted in a standard
language such as Java, C++, Python, Perl, etc. The first-cut will be Java.

* Remote API — XML-based, access to the standalone enginesp$dtimeen can be im-
plemented as Web services.

6.5 Logical Sensors and Actuators Layer

6.5.1 Logical Sensors

Software Objects residing at the Logical Sensor Layer prabd&actions of the various sen-
sors engaged in the CHIL sensing infrastructure. Theseaatishs will provide the means
for controlling sensors, as well as for exploiting / consuming the data that theyoséde.

At the top of the object hierarchy of the Logical Sensor Lahere is the LogicalSensor ab-
stract object (or interface) providing the most abstract repaggemof a sensor. This object
includes attributes and operations that are common to all sengardless of the physical
data, type and vendor. Such attributes and operations are those teldhiagensor descrip-
tion and its control functionality (e.qg., type, description, “start()”, “stopKitl()").

The next level in the hierarchy defines object pertaining tacpéat types of sensors. Two
major types of sensors are installed and user in the smart wiaims CHIL partners [12]:
audio and video sensors. As a result, two objects are specifiedpmrding to each of the
types, namelyAudioSensor andVideoSensor . Note that while these sensors derive

Version: 1.0 14-July-2004 Page 88/114

© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

from the most general sensor object, they still constitute septation of Logical Sensors
given that they remain independent of particular equipment vendoryfeesl df Audio and
Video sensors.

Additional Logical Sesnor

Objects can be derived. All
objects extends the Logical
Sensor class

WearableSensor
LogicalSensor
A
\
VideoSensor
/A\
AudioSensor T
A
\ - : - PTZCamera
MicArray Microphone FixedCamera
A /A\ v .
/\ [\ PanoramicCam
\ T ‘
RMEHammerFall - -
NISTMarklll LoalisationMic CloseTalkingMic

Figure 6-13: Basic Logical Sensor Layer Classes

Apart from theAudioSensor andVideoSensor objects, other objects can be devised at
the same level to represent other types of sensors \(éegrableSensor , Tempara-
tureSensor). These additional logical sensors do not seem expedient fommaplig the
early prototype CHIL services. It is no accident that the minireansor configuration for the
CHIL intelligent spaces does not suggest sensors other than camérascrophones. How-
ever, developers will be free to extend tlagicalSensor object towards extending the
CHIL space with additional sensing functionality.

Generalizations of thé&udioSensor and VideoSensor object provide more detailed
representations of audio and video sensors. These generalizationfres@ twecapture sen-
sor details pertaining to the various sensor typesioSensor can be extended to produc-
ing theMicrophone andMicArray objects encapsulating behaviour pertaining to micro-
phones and microphone arrays respectively. Accordingly, extensions didd&Sensor
object (e.g., FixedCamerRanoramicCamera , PTZCamera) will result in more specific

Version: 1.0 14-July-2004 Page 89/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

representations of video sensors comprising functionality pertatoirte various camera
types.

Following these definitions dfogicalSensor encapsulating behaviours tailored to spe-
cific sensor types, developers can further extend these objept®doce vendor specific
classes that capture vendor specific behaviour and characserigtiese allow CHIL compo-
nents to take advantage of vendor specific extensions.

Logical sensor layer objects will interface to perceptutlason modelling and service com-
ponents through allowing access to sensor streams. From an imgieomemerspective,
logical sensor objects might communicate with NIST client sariwvtowards interfacing with
sensor hardware (e.g., to control the sensor or capture stred®i§)Shhart Flow clients can
be wrapped within logical sensor classes throughNBESWrapper objects, and accord-
ingly used to implement the actual communication with low-level@etsntrol functional-
ities (e.g., capturing data, starting/stopping a sensor).

The hierarchy of logical sensor objects is depicted in Figure 6-13.

6.5.2 Logical Actuators
The description of these objects is an open issue yet.

6.6 Control/Metadata layer

In the CHIL architecture framework, the Control/Metadata |§g&1L) mediates between the
Low-Level Distributed Data Transfer layer (LDTL) and the load) Sensors and Actuators
layer (LSAL). The main purpose of this layer is to provide abstins to the contents of the
concrete data of the LDTL such that the LSAL can build its légieasors on the abstract
data.

6.6.1 Data and Control Abstraction: Interface to LDTL and LSAL

The NIST Smart Flow System is designed to handle continuous higmedtreams of data.
Such streams origin on the low-level distributed data transfaitecture level of the CHIL
architecture framework, mainly from hardware sensors suchi@asphone arrays or video
cameras.

For the logical sensors level, the control/metadata level masidera metadata view onto
and stream control over the continuous high-volume streams. Metadatartrol are real-
ized through low-volume, typically non-continuous streams of data.

Version: 1.0 14-July-2004 Page 90/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

CHIL

Cooperative Information System Software Design

Get part, SHWM and Flow information
from command line

Open local socket for signaling link and
TCP socket for remote data exchange

Startup

(Keep connection open

Data on signaling link

Something happened

MNew connaction

Wait for events -

provider Client
disconnects

New provider Client comes up

Inform the Application Server
and wait a little while

Data on TCP socket

(What kind of signal

< Send back a "buffer read” signal)

)

Mothing comes up

(Close connections and quit) ;@

Exit

Take buffer from SHM and pravider Client

forward it to consumer(s) j\

"buffer read" from corsumer Client

T \/ "buffer available” from

Copy Buffer(s) to Clients) SHM

/ Can send the next Buffer

)

Forward means: copy the buffer into
the SHM of local consumers

andior send it to remote Duplicators
through the TCP socket,

Figure 6-14: Duplicator Activity Diagram

Send "buffer available" signal to
local consumer Clients

Version: 1.0
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/IFD

14-July-2004

Page 91/114

‘ H I L Cooperative Information System Software Design

The NIST Data Flow System Version 2 (NDFS-II) will beétable to handle non-continuous
streams (personal information from Cedrick Rochet on the ISLAfeeting on June 03,
2004). That is, NDFS-II can handle event-like data (such as camtbimetadata in the
CHIL architecture). Still, a simple wrapper around NDFS-Iitlo& control/metadata level is
desirable in order to not directly expose NDFS-II to the logealsors level. This wrapper
will be essential for eventually replacing NDFS-II with &etent low-level distributed data
transfer system in the (far) future.

Some software components on the logical sensors level need daess & the high-volume
data streams. However, it is not desirable to build anotherdittd data transfer system for
the upper levels that competes with NDFS-II. Rather, the wragrpend NDFS-Il on the
control/metadata architecture level should provide handles for providregt diccess to
NDFS-II streams without exposing internals of the NDFS-II systesif.its

6.6.2 Resource Limitation Aspects

Care has to be taken when software components on the logicatsséngel or above sub-
scribe/unsubscribe direct access to high-volume streams of th&-ND#a handles of the
NDFS-II wrapper.

Due to limitations regarding network or system bus bandwidth, layishndic subscription
may endanger proper functionality of the components on the lowds lane thereby break
the whole CHIL system. For example, requesting additional &sivéuich as a user search-
ing for a particular event in a video recording, may exhaustothé landwidth and thereby
endanger proper function of the core system functionality. Anokaen@e is a user copying
a video recording to her/his notebook.

CHIL partners may want to define a static set of critilcals that minimally must be granted
to work properly in order to guarantee core functionality of the smart room.

6.6.3 Exception Event Abstraction: Impact of Hardware Device Failures

In case a hardware device fails, exceptions from the hardwiaez dn the LDTL MUST be
forwarded to the LSAL. This is necessary, because the uppes Ievible CHIL architecture
framework must be able to dynamically reconfigure the wholeesy#n order to maximize
availability of the smart room functionality even in the preserideardware failures. Excep-
tions may be forwarded in an abstracted form, i.e. the dét&iés of error messages may be
reduced for the benefit of a better classification of ertbat better fits the needs of the logi-
cal sensors level (e.g. classification into permanent or éansardware failure rather than a
concrete device's error message).

6.7 Low-Level Distributed Data Transfer layer

The primary functionality of low level distributed middleware @uments is to manage me-
dia flows originating from the various sensors and accordingiydke them available for
processing by perceptual components. As flows are transmitigd densors to perceptual
components within a distributed system, these middleware components émsusensor
input quality and throughput are the highest possible. To accomplish thwsimdnagement
components must implement high-throughput data transfer between ersl-pait& that low
level middleware components need to export appropriate interfaties $ensors and percep-
tual components, in order to communicate with the sensors and peraejgidace. It is also

Version: 1.0 14-July-2004 Page 92/114
© CHIL Fraunhofer IITB, IBM, KTH, RESIT/AIT

‘ H I L Cooperative Information System Software Design

desirable that other context-aware components (e.g., residing sitdation modelling layer)
are capable of accessing individual flows, to allow processingdel sensor input at higher
layers as well.

The CHIL project will employ the flow management capabsited the NIST Smart Flow
System (NSFS) [7] middleware, developed in the scope of the [SI8art Space project.
Reusing the NSFS middleware provides a solution that will aetel@roduction of early
prototypes. As a consequence, middleware components defined in thisaplaréae into
account the design and flow management functionality of the NSFSewdowhe CHIL low-
level middleware will feature individuality, without being coupled e NSFS. Practically,
this implies that the design offers a possibility for replgd8FS with pure CHIL low-level
middleware components, without essentially affecting the functigr@ithe low-level mid-
dleware services. Adopting a major part of the NIST SmartBlgstem design has the fol-
lowing advantages:

* Minimizes the design and implementation work required in the scop@atential fu-
ture replacement of the NSFS, towards migrating to a pure CHIL middlewat®s0l

* Minimizes the effort required to migrate technology componentspiare CHIL mid-
dleware solution.

Indeed, the following Low Level Distributed Middleware focusesinly on the NIST Smart
Flow System (NSFS) and on its successor, the NIST Data$yatem Version 2 (NDFS-II).
Note that the design and development of the NDFS-II has altszglyn, but most likely it
won't be finalized before the end of 2004 and will certainly maete time to fix bugs and
bring it to a stable and usable state. Several members GHheWP2 will follow closely
(and some will participate in) the development of the NDF$8ilbrder to design a system
that fits our needs and to speed up its development. In the meantilNSERewill be de-
ployed and extended with functionality needed to facilitate thé wbdevelopers (messag-
ing, synchronized flow between clients, dynamic sized buffers).

6.7.1 NIST Smart Flow System

The current version of the NIST Smart Flow System (NSES)eployed by several CHIL
participants. It is based on design approaches that includey dlexable flow history and a
reference count garbage collection system for the flow history gu€hese queue histories
have multiple references from the various clients, and all cllemts to free the history stor-
age before it is actually freed for reuse. This behaviour redbeerobustness to faults, since
the queue history can fill up and block further processing by all of the client tihzdese the
flow when any single client using the flow fails, or cannot keepvitip the input data rate.
This reduces the scalability of the system. NSFS also irm@osery complex management
problem for the shared memory subsystem, and a bottleneck througirtbetbhat handles
the network 1/0O for the flow exchange between hosts.

6.7.1.1 NSFS Components

The NSFS has the following main components:
* Client An executable program that uses the NSFS client libraryonsumne
and/or provide Flows, and process the Flows’ data.
* Flow: A buffered data stream connecting two Clients and providinghuistd
data transport. These Flows have a type (e.g.. “Audio”), a néar:
“Microphone Array”) and a group.

Version: 1.0 14-July-2004 Page 93/114
© CHIL Fraunhofer IITB, IBM, KTH, RESIT/AIT

‘ H I L Cooperative Information System Software Design

« Buffer. The base unit of data exchanged among Clients via Flows tlubg emit
data to, or consume data from a Flow. Each Flow has its own buffer
characteristics, in particular the data type being trétessinrand the maximum size
that a buffer can have.

* Host Server (sfd) An executable program that handles the distribution of the
Flows between the Clients on a single host or on other hosts nétWwerk, and
conducts control functions using special control protocol.

« Control Centre It carries out the connections among Flows and contains the list
of the Flows, subscriptions, components, and all meta-informationveeltdi
Flows, starts Host Servers and Clients.

* Host or System A computer participating in the NSFS by running a Host $erve
and some number of Clients.

There is one and only one Control Centre running in the systermh Heat participating in
the NSFS runs one Host Server, zero or one Flow provider ClientqyeraRd zero or more
consumer Client per Flow. Host Servers are connected to eachantht the Control Cen-
tre by TCP sockets. Flow data and control information betwees sent through this
socket. The Clients are connected only to the local Host Sereeigthia local socket, but
they are never connected directly to other Clients on the sameohdstHost Servers and
Clients on other hosts or to the Control Centre. Control and meta-atfonris exchanged
between a Client and the local Host Server through this socket.H®st Server maintains a
single Flow History Queue for each Flow, i.e. the Clients do na Haeir own copies of the
buffers: the consumer Clients of the same Flow on the samedtastly read-only access to
this common Flow History Queue.

6.7.1.2 C++ interface to the Smart Flow library

The functionality of the NSFS is available through a client libreutyich provides functions
to connect to the system, create and subscribe to Flows, sendeind data from other Cli-
ents, etc. This library is written in C. Since some CHILn®#s have requested to write their
clients in the Perceptual Components layer using the NSFS (thather layers) in C++, we
developed a C++ interface for the NSFS client library. Therfate covers all functions and
most of the data types and constants of the original C library. It is usefutioulaarfor C++
developers as long as NDFS-Il is not yet available. Thes dasgram of the interface is
shown on Figure 6-15.

6.7.1.3 Messaging

Clients send and receive messages from the local Host Servéhebatmessages are only
used to organize the cooperation between them (e.g.: to create atlsubs a Flow, to indi-
cate that a new buffer is available, or the Client exits).efThese messages are sent and re-
ceived by the Smart Flow library internally, and they are matlable from the Clients. This
facility will be extended to provide an additional channel for commtinicebetween any
Clients of the NSFS by additional library functions. Since aaxehFlows for high-bandwidth
data exchange, and messages are small and rare, and thesenimatiom channels should be
independent from Flows, they will not use Shared Memory but the soakeéction between
the Client and the local Host Server. When a Host Servesgetisa message from one of its
Clients, it forwards the message to the recipient Client thrthelocal socket connection, if
the Client is local, or to the Host Server running on the reciggent’s host, using the same

Version: 1.0 14-July-2004 Page 94/114
© CHIL Fraunhofer IITB, IBM, KTH, RESIT/AIT

‘ H I L Cooperative Information System Software Design

TCP socket used for other types of communication or data exeharhe messages are buff-
ered by the Host Servers until the recipient Client reads them.

Messages can be sent or received either synchronouslyrmhasyously. As a result, a Cli-
ent may block until the next message arrives, or it may cteedetermine if any new mes-
sage have arrived, or it may send a message and continue itswaoekliately, or block and
wait for the response message.

These messages can be used by Client developers for remotebjliconthe behaviour of
Clients on the other end of a Flow as via a remote procedure @@tol, e.g.: one consumer
Client may say to the provider Client “Hey, I'm ready, you can send yoat.dat

Note, that this is just a facility to send messages to othemt§, neither the message format,
nor its contents or its meaning is defined by the NSFS.

Version: 1.0 14-July-2004 Page 95/114
© CHIL Fraunhofer IITB, IBM, KTH, RESIT/AIT

(H I L Cooperative Information System Software Design

SF:lnit_param

—param :sf_init_param

+Init_param (}): SF:Handle

+~Init_param () —handl= :sf_handle
+Set_name (name :corst char” ovoid —
+Set_group (group :conet char® 1 void + Handle U . .)

+Set_flow_count (input :SF::Flow_type output :SF:Flow_typs jvoid + Handle init_param :SF:Init_param* 0wt em:SF::Error):

+Set_flow_name (kind :SF::Flow_kind ,number :SF::Flow_kind ,name :coret char”):void +~Handla ()

+Set_flow_group (kind :SF::Flow_kind ,number :SF:Flow_type, group conet char® J:void * '”i? (init_param -SF-J”“—F‘:‘_m'—"‘ jou, err:SFiEmort)void

+Set_flow_type (kind :SF::Flow_kind number :SF::Flow_type type :SF:Flow_type):void +Exit(ow em:SFuEmor):veid

+Set_flow_desc (kind :SF:Flow_kind,number :int size size_t, type :const char”):void +Gat_metadata (name corst char” | group conet char™ metaname conet char® | size 'size t type const char” | datavoid* ot arr:SF::Error*):void
+Set_flow_width (kind :SF::Flow_kind ,number sint, wich i . +Set_metadata (name :comet char” | group :const char” | metaname conet char® | size :size_t type conel dher” | data:void* ok err:SF:Emor) void
+Set_flow_height (kind :SF:Flow_kind ,number int ,height :int - void +Set_blocking_mode (thread :pthread_t | blocking int ot err:SF::Error*) void

+Set_flow_size (kind :SF::Flow_kind ,number :int width :int height :int):void
+Set_flow_active (kind :SF::Flow_kind ,number :int active :int j:void

+Args (i arge:int® ot argy:char Jovoid

+Get_flow_active (kind :SF:Flow_kind ,number :int J:int

+Get_flow_name (kind :SF::Flow_kind ,number :int) const char
+Get_flow_group (kind :SF:Flow_kind ,number :int J:const char

SF:Flow sync SF:Flow_emit
—flow_syne :sf flow_sync* —flow_emit :=f_flow_emit*
+ Flow_sync(): + Flow_amit ():
+ Flow_sync (handle :SF:Handle®, flow_param :SF:Flow_param® hist_size :int ot em:SF:Ermor) + Flow_amit (handle :SF::Handle” flow_param :SF:Flow_param® ot err:SF:Ermor)
+~Flow_sync (): +~Flow_amit ()
+Subscribe (handle :SF:Handle* flow_param :SF:Flow_param* hist_size :int ot err:SF:Error*) void + Create(handle :SF::Handle* flow_param :SF::Flow_param*® ot em:SF:Emor* void
+Closeit err:SF:Errort) void +Closeiot err:SF:Error):void
+Get buffer (jnout posifon (SF::Counter* ot err:SF:Error* jvoid +Get output_ buffer (ot err:SF::Emor) void*
+Get_buffer_with_ts (ts:const strudt imespec” jnowt position (SF:Counter® owt err:SF:Emor®) void + Gat_output_buffer_number (out e :SF:Error*) SF:Counter
+Gat_buffer_size (position :SF:Counter ot emr :SF::Error* Jsize_t +Send_buffer (size :size_t ot err:SF::Error*):void
+Get_buffer_ts (position :SF::Counter ts:stnictimespec” ok err:SF:Error* j:void +Send_buffer with ts (size size_t ts:consl sned limespec™ mk err:SF:Emor*) void
+ Release_buffer (position :SF::Counter, out em:SF:Emor*):void + Drop_bufer (ot em :SF:Emor pvoid
+Audio_samplenr_calc (position :SF:Counter index :int o em:SF:Emor*):SF:Samplenr + Audio_samplenr_calc (position :SF::Counter index :int* out em:SF:Emor):5F::Samplenr
+Audio_bufferindex_calc (number :SF:Samplenr, oot position :2F::Counter* ot index :int* ot em:SF:Emor):void + Audio_bufferindex_calc (number :SF::Samplanr oot position :SF::Counter* o index :int* out em:SF:Emor):void

SF::Flow param

—param :sf_flow_param

+Flow_param ():

+~Flow_param ():

+ Get_flow (init_param :SF:Init_param* kind :SF.Flow_kind owt e :SF::Error*)void
SF::Error +Set_name(name :conet char™) voi

—amr:sf_emor +Sat_group (group conet char’

+Error(): +Set_subtype (sublyp

+~Error () + Set:size(widh tint height :int):void
+ Pemor (comment :comet char”) :void +Set_fraquancy (frequency :int j:void
+ Ermor_code (jint +Set_format (format :int y:void

+Set_buffer_size (buffer_size :int):void
+Sat_buffer_offsat (buffer_cffsat :int):void
+Set_description (size:size_t type ‘comst char®):void
+Set_width fwidth :int):void

Figure 6-15: Class diagram of the C++ interface of the Smart Flow clibrary

Version: 1.0 14-July-2004 Page 96/114
© CHIL Fraunhofer IITB, IBM, KTH, RESIT/AIT

‘ H I L Cooperative Information System Software Design

6.7.1.4 Synchronized Flow between Clients

The provider and consumer Clients of a Flow are not synchronizedvilgr Client sends
Buffers to a consumer Client as soon as the data is available, @nsumer Client asks for a
new Buffer as soon as it has processed the previous one. If the eorGlnt is not fast
enough, it can lose data. This behaviour is acceptable, if tr@rsisbn-line and data comes
from sensors and real-time conditions must be met. However, thisibehmakes develop-
ment of Clients more difficult, if data is read from hard-drieesl if there are no real-time
requirements. For the latter case, new types of flows willdveloped whose Clients are
synchronized with each other, i.e. the provider Client sends buffersmelly all consumer
Clients have free slots in their Buffer History Queue. The I$@sver(s) performs all the
work needed for synchronization when delivering Buffers; the synclatoizwill be fully
transparent to the Clients.

6.7.2 NIST Data Flow System Version>2

The NIST Data Flow System Version 2 (NDFS-Il) addressaegydeflaws and weaknesses
found in the NSFS. Its architecture is designed to replacexisting NSFS, but enhance its
scalability, cross-platform compatibility, fault-tolerance and genetaistness under load.

The NDFS-II will consist of a class library that client neadan use to access and communi-
cate with other (most probably remote) clients. The clientghisdibrary to create and/or
attach to data flows, and send messages to other clients. niimyindicate which data
flow(s) they need and which ones they provide (if any). The floespecified with name
and instance number, and are transparent with respect to networérdoétcourse limited
by bandwidth and network latency).

To achieve this, each computer participating in the system roost@erver daemon (sfd), an
application server daemon, and one or more duplicators. Socket connectarnzened be-
tween servers on different hosts to allow each server to nraetall knowledge of the cur-
rent state of the data flow system network of which the host is part.

6.7.2.1 NDFS-Il components

The NDFS-II has the following main components:

» Client An executable program that uses the NDFS-II client ybi@consume and/or
provide Flows and process the Flows’ data. There are also splemiéd that do not
use flows, but provide control over the NDFS-II control network or dyspéavices
such as the Control Centre.

* Flow: A buffered data stream connecting two Clients and providingliised data
transport. These flows have a type (e.g.: “Audio”), a name (&jcrophone
Array”) and an instance number. They can also carry additional informat@lents
(e.g.: bits=24, rate=22050, channels=64).

* Duplicator. An executable program that handles the distribution of the fldweles
the Clients on a single host or on other hosts of the network.

® This section is mainly based on a comment drafutithe functional architecture of the NDFS-II.

Version:1.0 14-July-2004 Page 97/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

» Buffer. The base unit of data exchanged among Clients via Flows when thejaganit
to, or consume data from a Flow. Some kind of Flows can haveaivaiBuffer
characteristics, in particular the data type being tratetn#nd the maximum size that
a buffer can have, but we plan to add Flows with more flexible deaistcs, e.g.:
dynamic sized buffers.

» Client Message Clients can send messages to other Clients attached to thé-kkam
(or maybe to any other Clients as well). This facilignde used e.g. to remote
control the behaviour of provider Clients by consumer Clients, but netohsif Flow
data exchange. For more details about messaging see Section 6.7.1.3.

* Application An Application is a Flow domain in which the Clients run. Thieved
the execution of several NDFS-Il Flow graphs independently on the paysical
computers without logical collisions.

* Application Server The main server that centralizes all the information fgivan
Application. The information is in particular what and where heeGlients on the
network and which Flows they provide or consume.

» Host Server It is just a “gathering” server that lists the Application Serverssomast
and conducts the NDFS-II control functions using the protocol transpoaeXiMA-
RPC. (It acts as a “name server” for the Applications.)

* Shared Memory (SHM) This facility is used by a given host to exchange data
between Duplicators and Clients.

* Host or System A computer participating in the NDFS-Il graph by running @astH
Server, an Application Server, and some number of Duplicators and Clients.

The operational relationship among these components is shown in Figure 6-16.
6.7.2.2 Host and Application Servers

The Host and Application Servers coordinate the data transport ithtleed-lows to the Cli-
ents. There are two major communication protocols that make up tR&INDthe metadata
or control interface among the Servers, and the data interéemeng Clients. The metadata
or control interface is implemented by a set of RPC tramseciiin particular using XML-
RPC), and the data interface by buffered Flows.

One Host Server runs on each physical host. This server lmteaspublicly known TCP
port for both local and remote connections. It is created around a singkf) selgement and
thus exchanges messages synchronously. It is the central point aétdonttransmitting
metadata or control across the NDFS-II Applications.

Zero or more Application Servers operate on each host. ThesFssaraintain the state of
their Application within each running host, including list of Flowse@is, and other flow
graph metadata.

The Host and Application Servers are based on a Remote ProcetlumeClaanism. Each
server listens on an open socket for incoming requests. This rbé@sestname and various
numbers of parameters. This request in turn invokes a method wiéhserver. When the
work is done (including other RPC to other servers as well, if tgedeesponse message is
built and sent back to the caller. The RPC is transported via-RFIC, but since the inter-
face is decoupled from the implementation, on could replace this mechanism by others,

Version:1.0 14-July-2004 Page 98/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

Host Server Client
Messaging
thread Client thread
AP er ((ETRGIGE))
Server
[2)
17
o
E L Flow thread
g Duplicator
o
IO ﬁ
SHM
Flow thread
_— Duplicator
SHM
One Host
Flow

Administrative link

Signaling link
Figure 6-16. Operational relationship among the components of the NDFS-II.

including Unix RPC or Corba. The RPC calls handled by Host Semeplication Servers
or Clients are subject to further discussion.

When an Application Server starts, it does the following:

» It creates a list of Hosts, a list of Flows, and a list lér@s (all these lists are empty
at startup).

* It sends an RPC message to the Host Server, advertising itsadippl membership
and port number.

* It contacts the other Application Servers by using a discovemghamésm. This
mechanism is at first a simple file containing the hostnanmegst but other methods
and protocols will be developed in the future (e.g.: via network Broadcast, DNS TEXT
records, UPNP).

* It opens a TCP socket and waits for connections.

* When a Client connects, the Application Server enters it in the peer list.

* When a Client asks for a Flow (either in provider or in consumer madbde)
Application Server first looks in its Flow list to see if this Flow is alyeselrved either
locally or remotely. If yes, it returns the information about Flev and about the
Duplicator serving the Flow (e.g.: local socket and SHM) to thenClilf not, it

Version:1.0 14-July-2004 Page 99/114

© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

spawns a new Duplicator, passing the information about the Flotv tdhen the
Application Server informs all other connected Application Servbmitathe new
Flow creation. Finally, the Duplicator contact information is returned to thatClie

* When another Application Server connects, a replication sessionaseiso that all
Application Servers know the information concerning all others. Tlieng to speed
up the Application Server in deciding if a Flow exists or not.

* If alink is closed, the Application Server immediately removkseéerences to this
peer from the lists, and forwards this information to the remote ApplicationrServe

6.7.2.3 Clients

Clients perform the actual work in the data Flow. They actesmput Flows, execute algo-
rithms, and transform the data and place it in the output Flow huffdérsre are many control
options that can be accessed through the API.

Each Client runs three types of threads: one messaging threaat, moee flow threads and
one client (main) thredd The first two types of threads are provided and managetieby
client library; they are transparent for the Client developgds Client startup, the main
thread is started, which initialises the Client, creates ther ahreads (the messaging thread
just after startup and the flow threads when the client createsbscribes to Flow(s)), con-
nects to Application and Host Servers, and performs the actual Wwbkk.messaging thread
is responsible for exchanging control and Client Messages &etthhe main thread and the
Host Server through the administrative link using a remote proeezilr protocol. Client
Messages are buffered by the messaging thread until tinetimead reads them. Each Flow
has its own flow thread(s), each of them being responsible for comatingievith the Dupli-
cator(s) (i.e. handle the signalling link, and exchange Buffecagfr Shared Memory), and
manage the Flow History Queue(s).

When a Client starts it does the following:

* It attempts to connect to the local Application Server using 3&Ret connection. If
it does not succeed, it tries again until timeout.

* Once connected, the Client uses RPC to identify itself to the &gpipin Server. The
Application Server registers it in its application table.

» Authentication procedure is conducted, if required.

e It transmits its input and output Flow requirements to the Applic&emer through
RPC. The Application Server can disagree, for example if time $dow is already
provided elsewhere in the system. If it agrees, it returnsniaioon about the local
socket to the Client, that will be used to communicate with thgli€ator for this
Flow (signalling link), as well as the SHM information for the Flow.

* The Client connects to the Duplicator(s).

® Of course a Client can have multiple client theedzlit the developer must take care of these thread

Version:1.0 14-July-2004 Page 100/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

Creata list of Hosts,
Flows and Cliants RPC 1o Host Server
Startup

All these lists ars Cpen TCP socket
empty at startup.
< Contact other Application Sarvers)

Wait for evants

Forward information to
ather Application Servars

1

Remove all references from the lists)

Client connects Conneclion doses

Enter Client in list

Application Server
connects

Client asks for a Flow

Replication session

Check for Flow

Al Application Servers should

Retum information about Flow exists ';E:—WGH the i"il::?l'matisn Dfﬂl:‘le
the Duplicator responsible er servers lo speed up e
decision the Application Senver
for the Flow
must take whereas a Flow
exists or not.

Flow doesn't exist

Spawn new Duplicatar Inform other connected Application Return information about
Servers about the new Flow creation the new Duplicator
]
SHM and signaling |
link information. F- - - - - - o oo oo oo oo o - !

Figure 6-17. Application Server Activity Diagram

 The Client starts using the Shared Memory segment and the lisigniahk to
exchange Buffers.

o If the Client is a consumer Client, it waits on the signallink. When a Buffer is
available in the Shared Memory, the Duplicator sends a Buffer nuoybeto the
Client. The Client (or more accurately: the flow threadhef Client) reads this
Buffer, places it into its Flow History Queue, and returns afdoutad” indicator
to the Duplicator. If the Client is not consuming the data for eweatreason, it
must return this “buffer read” indicator anyway.

o If the Client is a provider client, it copies the Buffer to thei®d Memory and
then sends a “buffer available” indicator. The Duplicator takesBbffer, and
returns a “buffer read” indicator. When time comes to copyhendiuffer, the
Client can copy it into the next available Shared Memory bufférnone is
available, it waits on the signalling link for the next “buffead&indicator, and it
can then reuse the buffer. The buffers are always used in ortlevutaskips, to
simplify the design and to avoid buffer locking management.

Version:1.0 14-July-2004 Page 101/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

* Inany Client, if atead()” returns -1 or 0, then something went wrong and the case
must be dealt with. Most likely, however, the other end has jusicclb® connection
and exited.

* When a Client wants to quit, it closes all connections and exits.

6.7.2.4 Data Flows

The data flows are the means of data transport and distributeskpirog: They are buffered
to offer rudimentary Quality of Service (QoS) by allowingnttnuous smooth playback of
audio and video, at the expense of some latency. In order to decouflketits from one
another, the Flow History Queues are duplicated in each Clientthandata is copied to
queues local to each Client. This means that each Client hasntsvriteable copy of the
data contrary to the NSFS Clients, where thy Clients have only read only copies.

The provider and consumer Clients of the same Flow are currentBynciironized to each

other, i.e. a provider Client sends its Buffers as fast, asjtazal the consumer Client can
lose Buffers, if it's not fast enough. However, each Flowlvalle an attribute, which speci-
fies, that the provider Client and the Consumer Client(s) wikyrehronized, i.e. the pro-

vider Client sends its next Buffer only after received the asledgement from the con-

sumer Client(s) about receiving the previous Buffer. This fgahn be realized using inter-
nal messages between Clients or through special cooperation of Duplicators aSdhers.

There is one Duplicator per Flow on each host. The Duplicatospemnsible for flow distri-
bution to other hosts as well as on the local host.

There is zero or one provider Client per Flow and zero or more cendDhent per Flow.
This Client is connected to a Duplicator and to a Host Server agathe host, but never di-
rectly to other Clients or Servers on other hosts.

On a given host, flow data are exchanged by Shared Memory (SHiJementation is cho-
sen as arhapped()” -file without backing store, as this kind of shared memory is aviail
on most platforms. Synchronization is made over local connectionshaitlesponsible Du-
plicator for this Flow (using semaphores should be avoided here, tofgienolss-platform
compatibility and avoid dead-locking if a Client crashes unexpectedly).

When a Duplicator starts, it does the following:

e Using its command-line parameters, it knows the port it must openShieed
Memory information, and the Flow it is supposed to serve.

» It opens a local socket in listening mode for the signalling linkaA@P socket in
either listening or connecting mode, depending on the direction of the Flow.

* It waits for Client connections.

« If a consumer Client connects, it keeps the connection open and waits.

« If the provider Client connects with the local link, then it stestéorward Buffers to
consumers, and collecting their acknowledgements.

» If a remote provider Client connects, the Buffers from the remot@ection start to
come in, the Duplicator is now provider of this Flow for this node antsstapying
Buffers to the Shared Memory, sending signals to the consumetClia the opened
connections.

Version:1.0 14-July-2004 Page 102/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

» If the provider Client is local, and remote consumer Clientsiédlg not the Client
itself but the Duplicators of remote Clients) have connected, thsaris to act as a
client for this node, and sends Buffers to the remote peer(s) whearthe from the
Shared Memory and signalling link.

* When the provider Client is disconnected @atl()” from the Client returns -1 or
0), the Duplicator informs the Application Server and waits fottle ivhile. Another
provider Client may start, and this way the current consument€limay starve, but
not die. If nothing comes up, the Duplicator closes its connection(s) and quits.

6.7.2.5 Security

The Secure Socket Layer (SSL) can be used to create encdgieedlow application
graphs that effectively operate within their own Virtual Private NetWdmN).

* Can be at the server port level for Host and Application Servers

* Flow level security is provided by the Duplicators using SSL

» All control channel can be encrypted

» Control Centre reads selected application map with application pass phrase

* Needs an Application specific pass phrase to access and control the Application

Servers
* One key for each Application and one for the Host Server Network

6.8 CHIL Utilities

CHIL utilities provide general system internal information thtouge CHIL Utility ob-
ject/interface, a wrapper that in turn provides the specifityutibjects/interfaces. Initially,
only GlobalTime is defined.

6.8.1 Global timing

GlobalTime is used for tracking system latency, qualityeovise, and to decide if an event is
too delayed to warrant a response. In CHIL, an estimated giomlig achieved by having
all components retrieve the system’s conceptat from the CHIL utilities at start-up. Any
time-stamps sent by the process are relative to this gleidtl time. The GlobalTime ob-
ject/interface, provide methods (e.g. now()) for any given componesmtdess the besbw
available. GlobalTime is configurable for time resolution and formad should be able to
provide time in any time data type defined in the CHIL architectunaeveork.

Should a component for some reason fail to retrieve a global timgiaisation, it is permit-
ted to continue. However, it is expected to:

1. Clearly mark all time-stamps agsynchronisedr local.
2. Repeat the attempt to retrieve global time at regular intervals.

Methods for comparing the local time of a component with the ghkidpal, comparing two
global times, and formatting time stamps should follow a standardb&Pshould be imple-
mented in each component, since it makes little sense to letshefttracking latency rely
heavily on network transactions. The methods may, however, be providedibyities in
the form of for example a library.

Version:1.0 14-July-2004 Page 103/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

6.9 Ontology

CHIL Ontologies will be modelled using the Web Ontology Langu@&/L) [17]. In order
to get the maximum expressiveness while retaining computatongpleteness (all conclu-
sions are guaranteed to be computable) and decidability (afiutations will finish in finite
time) OWL DL will be used. OWL DL is so named due to its cgpomdence with descrip-
tion logics, a field of research that has studied the logiasform the formal foundation of
OWL.

Ontological annotations will be used to define a manifest thatdelies a component's func-
tionality based on ontological concepts and common classificatiomssh®&oreover, mani-
fests give information about how to syntactically access a compohe€omponent's ground-
ing information may be used to automatically generate interfadiegt code (e.g. wrapper
code to make a perceptual component available to intelligent sefawggnts). Contribution
manifests are to be generated automatically from metadata containedde sode- and class
files. Since ontological statements are to be machine intepj@etas necessary to agree on a
common syntax to serialize ontological information. The normativehange syntax for
OWL is RDF/XML. The CHIL software environment does not imposgrastrictions on the
tools that may be used to work with CHIL Ontologies as londheset tools process OWL
RDF/XML compliant source code. However, it may improve productivity if &lllCpartners
involved in ontology engineering tasks agreed on one tool. The open-soustepdeent
environment for Ontologies and knowledge-based systems ProtégénfilB ©WL plug-in
from Stanford University is suggested as the reference tool fologytengineering in course
of the CHIL project. The description logic reasoning systehCRR [19] is suggested as a
reference inference engine for query answering over CHIL Ogied. Figure 6-18lepicts
how ontology- and software engineering tools interact in the CHIL softwaremament.

CHIL Ontologies will constitute the knowledge base used ®aaoner (e.drace) for infer-

ring and query answering. A knowledge acquisition system Reaiegé will be used for
ontology editing. Annotated source files present one-to-one functional nmaptations of
ontological concepts. Typed relations among ontological concepts willdserved in those
source files.Eclipse [20] has an extensible software development workbench will be aug
mented to process annotated source files and to make use of additional reasoner support.

At runtime, ontological manifests of annotated executables wilised for dynamic discov-
ery of components. Learning algorithms will make use of additionalagital information
in order to constitute a new working set of annotated executtidesnay perform better.
Since contributions to the CHIL software environment may be writtedifferent languages
interfacing client code is to be generated automatically frtinerecomponents' metadata or
from manifest files.

Version:1.0 14-July-2004 Page 104/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

' H I L Cooperative Information System Software Design

Annotated
source files

CHIL Ontologies

Reasoner
(e.g.Race)

Annotated
executables

Discovery

Learning

Binding

Knowledge acquisition
system (e.gProtége

Software development
environment (e.geclipse

Figure 6-18: CHIL Semantic Software System

Version:1.0 14-July-2004 Page 105/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

7 Open Issues

7.1 General Issues

User/Device-Mapping
Fraunhofer IITB question(s):

1. How is the mapping between a wuser and a personal device solved?
Example: A user boots his notebook. The notebook connects to the CHIL qystem
WLAN). How can the CHIL system identify the user of the botek? Does the notebook
send personal information to the CHIL system on login?

2. Is a personal device mapped to exactly one user, can a deglcarbd between users or
can a user have more than one device?

3. Are users and devices tracked, i.e. can devices be swapped between users?
IBM answer(s):

The user will have to login to CHIL, either under an enrolled naie CHIL would then
activate his/her profile) or as anonymous (stateless connecti@uiltderofile). That should
suffice at least as the first cut, because it also allowssérs to move across different client
machines.

User Identification
Fraunhofer IITB question(s):

1. Where does the actual user identification take place? Is ittjoaeservice (User Identifi-
cation Service) or is it part of the Perceptual Components?

2. Where is the reference data for the user identificatign {eice pattern, user characteris-
tics, etc.) stored? Does every perceptual component store thimation locally or is
there a common database, for example in the Situation Modelling layer?

KTH answer(s):

It seems that any component needing to access a user modeh(leice pattern or user
preferences) should do so through the same interface. This inteofaldebe connected to an
array of local databases provided by other components, or centfaligbdllow components
to store data), or a mix of both, with an option to get externah datown in.
Using a common interface provides a way of postponing that decisionyé&owevould also
allow partners to code local test databases with the "rigtéfface, so that they can be re-
used.

Version:1.0 14-July-2004 Page 106/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

INRIA answer(s):

The primary tasks of the situation-modelling layer are
» toinform the service about the current state of the environment, in particulangtgene
ing events when the situation changes - only events relevant to the service should be
generated -,

» to specify the minimal set of perceptual components for the service.

Static world knowledge may be needed in the situation recognitprocess.
The addition of a history module to the situation-modelling layer esgbat it is possible to
obtain a trace of past situations, and of past roles and relatiemsitiés (particularly actua-
tors).

User Interfaces
RESIT/AIT proposal(s):

User interfaces should define a scheme for interfacing to ssnnather than a set of specific
(“hard-coded”) Uls. As far as Uls are concerned, a look atGhafter framework developed

in the scope of Stanford iRoom projebttp://iwork.stanford.ed)/ enabling automatic ser-

vice specific Ul generation, is useful.

Perceptual Component Interfaces
IBM question(s):
1. Isit “OK” to rigorously divide visual components into 2D and 3D?

2. Are the acoustic, visual, etc. models viewed as being inside pétbeptual components
wrapper — or should they be stored elsewhere and accessible through a dedicated API?

3. Should output component belong to this layer?

User Front-end
KTH proposal(s):

We believe that in order to decide in which manner to notify or conatenwith users, the
user front end should not only be allowed to access the user preference, but alsoxhefconte
the situation. Fort example, an audio notification may be inappropnateif the user prefers

it in general, and some notifications may be relevant to alcpmants in a meeting, in which
case an audio message to all may be more efficient than seegingessages to those who
prefer that and voice to others. Furthermore, one of the effok3tatinvolves finding ap-
propriate moments for the system to interrupt the meeting/éeetthis would be a service
that delivers OkTolnterrupt events or responds to OkTolnterrupt quélsess preferring
spoken notifications may want the user interface to utilise sudtidmality as well, so that
they aren't interrupted in their speech, for example.

Version:1.0 14-July-2004 Page 107/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

Ontology

RESIT/AIT question(s):

1. How far Ontologies are relevant for all layers of the framework?

2. How far dynamic relationships may be represented with Ontologies &s well

Miscellaneous
IBM question(s):
1. Is a mechanism needed to prevent cycles in event chains?

2. At which layer resides the interface to personal calenparsonal info, room occupation
calendars, etc?

3. Are User Profiles assumed to be provided at upper layers? Lase atases involving
notifications.

Scheduled meeting and detected meeting: How do we match them?
5. At what levels of CHIL hierarchy happens the fusion of speaker location andrsip@ake

7.2 Special Issues

Chapter 2.11, 2.12
RESIT/AIT proposal(s):

We should pledge documentation (and external documentation in partjastaigr the final
prototype system to be delivered in CHIL.

UKA/IPD proposal(s):

Define data formats. We may want to choose XML. An XSD schema may be defiresth
documentation category.

Define presentation formats. We may want to support HTML and PDF as priesefuat
mats. XSLT programs could transform XML based documentation material int@grbit
presentation formats. Textinfo may be an option.

KTH proposal(s):

If we choose XML, we may want to have a look at DocBolitp(//www.docbook.org/
Benefits are that it is an open standard, it's extensible, #nerguite a number of program-
ming related elements predefined (it is originally intendedrfan page style documentation),
etc.), and Norman Walsh has coded a set of XSLT documents transfdboaipok to
HTML as well as PDF and PS (the latter two are not suchtasy task in reality - XSL-FO
isn’t all that user friendly).

Version:1.0 14-July-2004 Page 108/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

Chapter 2.13
UKA/IPD proposal(s):

Consensus on the WP2 meeting in Karlsruhe was to defer the decision of whethex bugse
tracking system to the Paris meeting. This includes defir@ggirements to a prospective
CHIL bug-tracking tool (e.g. Web based, automatic reporting ofasaputer environment).
Are we going to use a COTS solution?

KTH proposal(s):

One way of building up a set of test cases gradually is toatelst case every time one fixes
a bug. The test case should test for the fixed bug.

Chapter 6.1
How will agents be created and supervised during runtime?

Chapter 6.2
How will services be created and supervised during runtime?

Chapter 6.3
IBM proposal(s):

The Section needs to be synchronized with Section 3.4.2.4.

The discovery of entities (supervised/unsupervised) is an open question and needs to be dis-
cussed.

A Taxonomy for describing entities, roles, relationships, and situations isdieed@prove

the clarity of text.

Chapter 6.5.2
The description of Logical Actuators is missing.

Version:1.0 14-July-2004 Page 109/114
© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

CHIL

Cooperative Information System Software Design

8 Annex

8.1 References

[1]

[2]

[3]

[4]

[5]
[6]

[7]
[8]

[9]

Burkle, Axel et al.:
Functional Requirements.
CHIL-WP2-FunctionalRequirements-V1.0-2004-07-14-PU, 14-July-2004

Phillips, Brenton A.:

Metaglue: A programming language for multi-agent systems

Meng, dissertation. Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology. Cambridge, MA. 1999

Johanson, Brad and Fox, Armando:

The Event Heap:

A Coordination Infrastructure for Interactive Workspaces.

Proc. of the 4th IEEE Workshop on Mobile Computing Systems and
Applications (WMCSA), 2002

Gray, Matthew et al.:
Hive: Distributed agents for networking things.
IEEE Concurrency 8(2): pp. 24-33, April-June 2000

Microsoft Easy Living Project.
http://research.microsoft.com/easyliving/

Abowd, Gregory D. et al.:

A conceptual framework and a toolkit for supporting the rapid prototyping
of context-aware applications.

Human-Computer Interaction 16, 2001

The NIST Smart Flow System
http://www.nist.gov/smartspace/toolChest/nsfs/

Baeg, Soon C. et al.:

An Open Agent Architecture.

Proceedings of the AAAI Spring Symposium Series on Software Agents
(AAAI Technical Report SS-94-03), pp. 1-8, Palo Alto, CA, AAAL.

March 21-23, 1994

Garlan, David et al.:
Project Aura: Towards distraction-free pervasive computing.
IEEE Pervasive Computing, pp. 22—-31, 2002

[10] Facilitating Agent for Multi-cultural Communication.
IST FAME Project (IST-2000-28323)
[11] The NIST Smart Spaces Project.
http://www.nist.gov/smartspace/smartSpaces/
[12] Stiefelhagen, Rainer et al.:
Initial Specification of the Sensor Setup.
CHIL-ProposedSensorSetup-V1.3-2004-03-02(-CC), 02-March-2004
Version:1.0 14-July-2004 Page 110/114

© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

CHIL

Cooperative Information System Software Design

[13] Computers in the Human Interaction Loop.
Annex | — “Description of Work”, 20-October-2003
[14] Kleindienst, Honza:
Thoughts on CHIL-Architecture.
Grenoble, March 232004, £ architecture meeting
[15] Forgy, C.L.:
RETE: A fast algorithm for the many pattern/many object pattern match
problem.
Atrtificial Intelligence, Volume 19, Number 1, 1982
[16] Java Rule Engine API™ JSR-94
Java Community Process Specificatibtip://java.sun.com/jcp/
[17] W3C Web-Ontology (WebOnt) Working Group
http://www.w3.0rg/2001/sw/WebOnt/
[18] Protégé knowledge acquisition system
http://protege.stanford.edu/
[19] RACER: Renamed ABox and Concept Expression Reasoner
http://www.sts.tu-harburg.de/~r.f.moeller/racer/
[20] Eclipse Foundation
http://www.eclipse.org/
Version:1.0 14-July-2004 Page 111/114

© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

8.2 Table list

Table 2-1: Portability LEVEIS..........uiiiei e e e e e e e e e 17
Table 2-2: “Contribution”-RUIEooei e 20
Table 2-3: “Lazy INStallation™-RUIEoooeiicee e e e e e e 20
Table 2-4: “No Function NO IMpact’™-RUIE ... 20
Table 2-5: “Sharing”-RUIEccoiiie e e e e e e e e e e e 20
Table 2-6: “Conformance”-RUIEooooriii e e e e e eeeeeaeaees 21
Table 2-7: “Explicit EXtENSION"-RUIEcooeieiiicee e 21
Table 2-8: “EXPlCIt API™-RUIE ... 21
Table 2-9: “Stability”™=-RUIEooe e ————————— 21
Table 2-10: “Defensive API™-RUIEccoo i e e e e e e eeees 21
Table 2-11: “Run It And RepOrt It"-RUIE...........uuieiiiie e 21
Table 2-12: “Responsibility”-RUIEuuuiii e 22
Table 2-13: “INVItAtION"-RUIE ..o e e e e e e e e e e e e e e 22
Table 2-14: “Fair Play™-RUIE ... 22
Table 2-15: “DIVEISItY -RUIEcccoiiieeeeeeece et e e e e e e e e e e e e 22
Table 2-16: “G00d FENCES"-RUIEueieiie e 22
Table 2-17: “Safe Software Environment™RUIEccccciiiiiiiiiiiiiieee e 23
Table 2-18: DeSigN PrINCIPIE L.... ...t e e e e e e e e 23
Table 2-19: DeSIgN PrINCIPIE 2........ueeeiiiee et a e e e e e e 23
Table 2-20: DeSigN PrINCIPIE it e e e e e e e e 23
Table 2-21: DeSigN PrINCIPIE d........eeeeiee e e e e e e e e 24
Table 2-22: Design PrINCIPIE 5.......u et 24
Table 2-23: DeSIigN PrINCIPIE B........uveeiiie i a e e e e e 24
Table 2-24: DeSIgN PrINCIPIE 7uiiiiiieieeieie ettt e e e 24
Table 2-25: DeSign PrINCIPIE 8........uueeiiiii i e e e e e 25
Table 3-1: CHIL Ontology Layer MOdel ... 41
Table 3-2: Functional components MapPiNgcoevvuuiiiuiiiieie e eeeeee e e e e e e aeaes 42
Table 4-1: Summary Of REQUITEMENTSeeiiiiiiiiiiiieee e e e e e e e 44
Table 4-2: Summary of Requirements for the LDT-Layercccccevveieieeiiiiiiieeeeeee e 47
Table 4-3: Summary of Requirements for the MD-Layer............cooooiiiiiiiiiiiiiiiiiiieeeee e 48
Table 4-4: Summary of Requirements for the C-Layeruiiiiiiiiiiiieieeeeee, 49
Table 4-5: Summary of Requirements for the LSA-LAYErooooiiiiiiiiiiiiiiiiiiieeeeeeeeeee e 50
Version:1.0 14-July-2004 Page 112/114

© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

Table 4-6: Summary of Requirements for the PC-Layer.............oooovvviiiiiiiiiiiiii e, 51
Table 4-7: Summary of Requirements for the SM-Layerccciiiiiiniiieeeeiien 52
Table 4-8: Summary of Requirements for the S-Layer..............oooovviiiiiiii e, 53
Table 4-9: Summary of Requirements for the SAC-LaYerceeiiiiieiieieeeeeeeeeeee 54
Table 4-10: Summary of Requirements for the UFE-Layerccccoovveeiiiiiiiiiiiiien, 55
Table 4-11: Summary of Requirements for the U-Layer ... 56

8.3 Figure list

Figure 2-1: COMMITMENT LEVEISuuiiiiiiiiiiiiiieee et e e e e e 19
Figure 3-1: Sensor Controllers and Device Controllers...........ccccceveeeiiiii e 29
Figure 3-2: CHIL agent based arChiteCIUIeuuuiiiiiiiiiiiiieiee e 31
Figure 3-3: CHIL Layer MOAEL..........ovuriiiiiiiiee e 33
Figure 3-4: Use Cases in the CHIL System as in the Functional Requisethoentnent..... 43

Figure 5-1: Interface Model Overview of the “Upper Layers”.............covvevieiiiiiiieeeeeeeieeeeeeiinnns 57
Figure 5-2: Sequence diagram for use case “NotificationAboutAttentisihiLos............... 59

Figure 5-3: Sequence diagram for use case “BrowseContextinformation”................. 60........
Figure 6-1: Detailed class model of the upper [ayers. ... 61
Figure 6-2: Sequence diagram for use case NotificationAboutAttentionloss............... 62

Figure 6-3: Sequence diagram for use case BrowseContextinformation...................ccccuvvveee. 64
Figure 6-4: Sequence diagram for use case Userldentification...............cccooovvvviiiiiiiicciiieeeeennn. 66
Figure 6-5:User Front ENd Class Diagram............coooiiiiiiiiiiiiiiiiiiiiee et 69
Figure 6-6: Service Access and Control Layer Class Diagram............cccoeeeevvvveeeiiviiiiiiinneneennn. 71
Figure 6-7: SErviCe Layer ClaSSES.cooiiiiiiiiiiiiiie ettt e e e e e eeeeas 74
Figure 6-8:User profile SPeCIfICAtioNciiiiiiii e 76
Figure 6-9 Situation Modelling architectural ClasSesS.uueiiiiiiiiiiiiiiii 80
Figure 6-10: Modelled hierarchy of ObJECES.vuvuiiiiiii e 82
FIgure 6-11: HiSTOrY traCKiNgccccueieiiiiiiiee ettt e e e e e e e e e e e e e e e e e e e 84
Figure 6-12: Hierarchy of Perceptual Component ClasSes...........ccceeeiveiiiiieeeeiiiieeeeeiinn 86
Figure 6-13: Basic Logical Sensor Layer ClasSes. ... 89
Figure 6-14: Duplicator ACtiVity DIagram.............ceuuiiuiiiiiiiiee e eee e e e e e e e eees 91
Figure 6-15: Class diagram of the C++ interface of the Smart Flow cheatyi................. 96

Figure 6-16. Operational relationship among the components of the NDFS-II........................ 99
Figure 6-17. Application Server ACtivity DIagramuueeeeeiiiiiiiiiiieeeeeaae e 101
Version:1.0 14-July-2004 Page 113/114

© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

‘ H I L Cooperative Information System Software Design

Figure 6-18: CHIL Semantic Software System

Version:1.0 14-July-2004 Page 114/114

© CHIL Fraunhofer IITB, IBM, INRIA, KTH, RESIT/AIT, UKA/ID

