ABLATIVE FAST PYROLYSIS – PROCESS FOR VALORIZATION OF RESIDUAL BIOMASS

Tim Schulzke, Group Manager Thermochemical Processes and Hydrocarbons Stefan Conrad

- 1. Fundamentals of pyrolysis
- 2. Ablative fast pyrolysis results from laboratory test rig
- 3. Application of biooil Upgrade by staged condensation
- 4. Examples for application of biooil fractions
 - Phenolic resin for non-structural timber
 - Rigid polyurethane foams
- 5. Summary

- 1. Fundamentals of pyrolysis
- 2. Ablative fast pyrolysis results from laboratory test rig
- 3. Application of biooil Upgrade by staged condensation
- 4. Examples for application of biooil fractions
 - Phenolic resin for non-structural timber
 - Rigid polyurethane foams
- 5. Summary

Definition of Pyrolysis

Pyrolytic decomposition means a thermo-chemical conversion, which - in contrary to gasification or combustion - takes place only under the influence of heat in absence of any additionally introduced oxygen (equivalence ratio = 0).

As wet biomass contains oxygen (wood \approx 44 weight-%) and (bound) water, the reactions within pyrolytic decomposition may still be oxidation reactions (at least part of them).

During pyrolytic decomposition [...] longchain organic compounds contained in the biofuel are cracked due to the introduced heat energy into shorter chain compounds which are mainly liquid or gaseous under normal conditions; additionally a solid residue called biochar occurs during this thermo-chemical process.

Translated from: Kaltschmitt, Hartmann, Hofbauer (Eds.): Energie aus Biomasse, 2nd Edtiton, Springer-Verlag Berlin, 2009, pp. 378-9

Pyroloysis processes - Characteristics

The different pyrolysis processes are characterized by the following parameters:

- heating rate,
- residence time of original material within the reaction zone,
- residence time of primary products within the reaction zone and
- target products,

in which the parameters are not fully independent.

There are 2 larger groups of pyrolysis processes:

- Slow Pyrolysis (traditional: charcoal burning) target product charcoal low heating rate, long residence time in reactor (educt days + vapour minutes)
- Fast pyrolysis target product biooil high heating rate (≈ 1000 °C/s), short residence time vapour (< 1 s), medium residence time educt (minutes)

Reactor types for fast pyrolysis

- a) bubbling fluidized bed
- b) circulating fluidized bed
- c) ablative fast pyrolysis
- d) rotating cone reactor
- e) vortex reactor
- f) vacuum reactor
- g) twin screw reactor

a, b, d, g need bed material as heat carrier a, b, d, e, f, g require small particles to ensure high heating rates

While (dry) wood can be milled relatively efficient, herbaceous biomass needs very high milling energy.

- 1. Fundamentals of pyrolysis
- 2. Ablative fast pyrolysis results from laboratory test rig
- 3. Application of biooil Upgrade by staged condensation
- 4. Examples for application of biooil fractions
 - Phenolic resin for non-structural timber
 - Rigid polyurethane foams
- 5. Summary

Ablative flast pyrolysis – Experimental facilities

Laboratory plant

10 kg/h

heat supply: electrical resistance heater wood and straw

Functional model for mobile plant 100 kg/h (design capacity)

heat supply: flue gas (propane combustion) straw only

Mass balance – Results from pyrolysis of wheat/barley straw

Ablative fast pyrolysis – Quality of pyrolysis biooil

Pyrolysis temperature	486 °C	539 °C	580 °C
total Water	49.4 %	49.9 %	50.3 %
reaction Water	31.6 % / 64 %	35.1 % / 70 %	34.4 % / 68 %
nonaromatic Acids	6.1 %	6.9 %	10.7 %
nonaromatic Alcohols	0.9 %	1.1 %	2.1 %
nonaromatic Aldehydes	0.4 %	0.4 %	0.4 %
nonaromatic Ketones	5.5 %	6.3 %	10.9 %
Phenols	4.1 %	4.7 %	4.4 %
Sugars	1.8 %	1.6 %	2.0 %
Heterocyclic Sub.	1.8 %	1.9 %	2.1 %
not GC-detectable Sub.	30.5 %	26.7 %	22.8 %

wheat / barley straw; original water content approx. 8 weight-%

Ablative fast pyrolysis – Quality of pyrolysis biooil

	aqueous	organic	Beech wood
mass ratio	67.5 %	32.5 %	100 %
total Water	61.7 %	25.3 %	28.7 %
nonaromatic Acids	7.4 %	5.9 %	10.4 %
nonaromatic Alcohols	1.5 %	0.3 %	0.2 %
nonaromatic Aldehydes	0.0 %	1.1 %	3.5 %
nonaromatic Ketones	5.9 %	7.1 %	5.5 %
Phenols	1.2 %	12.0 %	7.7 %
Sugars	1.6 %	1.5 %	6.0 %
Heterocyclic Sub.	1.4 %	2.9 %	2.7 %
not GC-detectable Sub.	19.1 %	42.4 %	34.8 %
lower heating value	7.9 MJ/kg	22.3 MJ/kg	15.4 MJ/kg

wheat / barley straw at 549 °C, beech wood at 550 °C

- 1. Fundamentals of pyrolysis
- 2. Ablative fast pyrolysis results from laboratory test rig
- 3. Application of biooil Upgrade by staged condensation
- 4. Examples for application of biooil fractions
 - Phenolic resin for non-structural timber
 - Rigid polyurethane foams
- 5. Summary

Applications for pyrolysis biooil

Staged condensation – Approach

Staged Condensation – Three stages experiment

Staged Condensation – Three stages experiment

Staged Condensation – Two stages experiment

Staged Condensation – Two stages experiment

- 1. Fundamentals of pyrolysis
- 2. Ablative fast pyrolysis results from laboratory test rig
- 3. Application of biooil Upgrade by staged condensation
- 4. Examples for application of biooil fractions
 - Phenolic resin for non-structural timber
 - Rigid polyurethane foams
- 5. Summary

Phenolic resin as wood glue in non-structural timber

Phenolic resin as wood glue in non-structural timber

Tensile strength measurement according to DIN EN 205

Phenolic resin as wood glue in non-structural timber

- 1. Fundamentals of pyrolysis
- 2. Ablative fast pyrolysis results from laboratory test rig
- 3. Application of biooil Upgrade by staged condensation
- 4. Examples for application of biooil fractions
 - Phenolic resin for non-structural timber
 - Rigid polyurethane foams
- 5. Summary

$$R^1$$
 R^2 R^2 small amount of water releases CO_2 Isocyanate Alcohol Urethane

First tests were promising

- Poly-Dialcohol component substituted by weight without any modification
- Poly-Dialcohol component contains
 - catalyst
 - foaming agent
 - stabilizer

substitution rate:

Structured set of experiments conducted:

3 different types of biomass, varying method of biooil drying

Component A	concentration	Component B		
Pyrolysis oil	0-80% of active mass	PMDI (polymeric methylene diphenylene diisocyanate)		
PEG 400	rest of active mass			
Blowing agent (water)	4.1% of component A			
Catalyst DABCO	0.5% of active mass			
Catalyst SnOct	1.5% of active mass			
Surfactant / Stabilizer	2% of active mass			
Mixing the constituents				

Mixing two components (A:B = 100:145)

Mixing time, Rising time

Commercial products: 0.02-0.03 W/mK

Sample with original recipe: 0.0308 W/mK

Benchmark material cut from insulation at Fraunhofer UMSICHT: 0.0282 W/mK

- 1. Fundamentals of pyrolysis
- 2. Ablative fast pyrolysis results from laboratory test rig
- 3. Application of biooil Upgrade by staged condensation
- 4. Examples for application of biooil fractions
 - Phenolic resin for non-structural timber
 - Rigid polyurethane foams

5. Summary

Summary

- Economic assessment of decentraliced pyrolysis of straw showed general feasibility
- Principle of ablative Flash-Pyrolysis is well suitable for straw conversion
- Char can be used as catalyst, solid fuel or soil enhancer/fertilizer
- Condensates from flash pyrolysis of straw are always two-phase
 -> Utiliztation appears challenging, especially for ageous phase
- Esterification yields single-phase product (stable, reduced corrosivity)
 -> higher value-added applications accessible (e.g. bunker fuel)
- staged condensation opens pathways to material utilization
 - -> phenolic resins and rigid polyurethane foams partly based on biomass
 - -> aqueous acidic residue can be valorized (e.g. in biogas plant)

Fraunhofer UMSICHT

Department Biorefinery & Biofuels

Thank You for Your kind attention!

Contact: Fraunhofer UMSICHT

Osterfelder Strasse 3, 46047 Oberhausen, Germany

E-Mail: info@umsicht.fraunhofer.de

Internet: http://www.umsicht.fraunhofer.de/en

Dipl.-Ing. Tim Schulzke

Telephone: +49 208 8598 1155

E-Mail: tim.schulzke@umsicht.fraunhofer.de

