
Fast and Effective Striping

Johannes Behr
ZGDV Darmstadt

jbehr@zgdv.de

Marc Alexa
TU Darmstadt, GRIS

alexa@gris.informatik.tu-darmstadt.de

January 27, 2002

Abstract

An algorithm for striping triangle meshes in the context of OpenSG is presented.
The technique is similar to STRIPE, however, a careful yet simple implementation leads
to significant faster execution. Furthermore, we propose to randomly sample several
partitions and chose the one that minimizes a given cost function. More samples are
expected to lead to better solutions, thus, introducing a parameter to scale between
speed and quality.

1 Introduction

Rendering triangular meshes requires to send the vertices of each triangle to the graphics
subsystem. In order to minimize the necessary bandwidth it is favorably to send the tri-
angles so that consecutive triangles share an edge, which allows to specify each triangle
(except the first one) with a single vertex. Such sequences of triangles are calledstrips.
Note that finding the minimum number of strips to cover a given polygonal mesh is a NP
hard problem. However, several heuristical algorithm achieve partitions close to the theo-
retical bounds [5, 7].

Lately, the idea of strips has been generalized to avertex cache. Instead of storing
only the two last vertices for the possible definition of a new triangle, the vertex cache
stores more, which would theoretically allow to specify each triangle with less than one
vertex [2, 4]. However, in practice it seems that the perfomance gain over triangle strips on
commodity hardware is negligible - as is documented in NVIDIA white papers and stated
as a ’hindsight’ by Hoppe referring to his work on optimizing vertex locality to exploit the
vertex cache [6].

Here, we present a simple implementation of a variant of the algorithm developed by
Evans et al [5], whose implementation is publicly available as STRIPE. The execution of
this new implementation within OpenSG turns out to be so fast that we decided to add the
option of generating several random sample partitionings. This allows to trade in speed for
a possible improved partition. In addition, the cost function used to chose a partition could
be adapted to suite the needs of application and available graphics hardware.

2 Algorithm

The algorithm adheres to the simple heuristic of starting at faces with lowest degree. The
degree of a face refers to the number of adjacent faces which have not been added to a strip.

In the first step of the algorithm faces are triangulated. Then, complex edges (i.e. edges
with more than two incident faces) are resolved by cutting the mesh at the edge. This is
done automatically when generating the data structures for the process. Note that complex
vertices are no problem for striping provided that the right data structures are used. All
faces are sorted into bins of their respective degree.

1



For each strip, a face is fetched from the bin representing the lowest degree. A random
neighboring face is used to build the strip into one direction. This strip is extended trying
to build a sequence of left-right turns. If only one adjacent face is available, which would
introduce a swap (i.e. a left-left or right-right turn), a dummy face is inserted. If no adjacent
face is avalable the strip is extended from the starting face into the other direction.

By randomly picking the starting face for the strips from the lowest degree bin a ran-
dom sample partioning is generated. Accordin to the heuristic, all faces of lowest degree
are equally suited. Random sampling has proven to be an effective method for generating
approximate solutions to NP-type problems. In our setting, it has the additional benefit of
using an arbitrary cost function to chose the best sample. This cost function could, for ex-
ample, be measured as the actual frame rate in the target application. In our implementation
we simply use the vertex count.

3 Implementation

The mesh connectivity is stored in a half-edge type data structure (e.g. double-connected
edge list [3] or directed edges [1]). When a face is added to the data structure and one
if its oriented edges exists the oriented edge is repeated, thus, effectivily cutting the non-
manifold mesh at this edge. To accomodate complex vertices, all edges incident upon a
vertex are stored explicitly as an array. In particular, each edge has fieldsnext , twin ,
andface referring to the respective elements of the data structure. Each face has aedge
field containing an arbitrary bounding edge and aprocessed field, which is true once
the face has been added to a strip.

The degree bins are implemented as doubly-connected lists. Each list has a pointer to
the list with the next lower degree. Each face has a pointer to the list it is contained in. This
data structure is geared towards the repeated operation of degree reduction of a face while
striping. If a face is added to a strip, its degree as well as the degrees of all adjacent faces
have do be decremented. Using the pointer structure, reducing the degree of a face works
as follows: The face is removed from the current list by redirecting the pointers of its list
neighbors and added to the next lower degree bin using the pointer between the lists. For
convience, faces have methodsrelease() , to reduce the degree and set theprocessed
flag as well asdropNeighbors() to reduce the degree of adjacent faces.

The generation of a strip consists of several phases, which are stored as thewalk-
Mode. ThewalkMode is one of{START,LEFT,RIGHT,FINISH }, each of which will
be explained in detail later. Using a c-like notation the main loop of strip generation looks
like this:

while(nodesLeft > 0) {
switch (walkMode) {

case START: ...
case LEFT: ...
case RIGHT: ...

case FINISH: ...
}

To indicate the start of a new strip,walkMode is set toSTARTand the followin steps
are executed:

case START:
firstDirection = true;
stripIndex++;
strip[stripIndex].clear();

for (lowestDegree = 0; lowestDegree < 4; lowestDegree++)

2



if (faceList[lowestDegree].size() > 0) {
currentFace = faceList[lowestDegree].first();

strip[stripIndex].add(currentFace->index);
currentFace->release();
currentFace->dropNeighbors();

walkMode = NEW;
nodesLeft--;

After this, currentFace contains a face of lowest possible degree obtained from
the degree bins. This face has already been added to the currentstrip with index
stripIndex . ThecurrentFace is marked asprocessed (as part ofrelease() )
and it is moved to the next lower degree bin. Now, the walking direction has to be chosen.

nextFace = 0;
lowestDegree = 4;
edge = currentFace->edge;
do {

if (edge->twin->face != 0 && !edge->twin->face->processed)
if (gateEdge->twin->face->degree < lowestDegree) {

nextFace = gateEdge->twin->face;
lowestDegree = nextFace->degree;
gateEdge = edge;

}
edge = edge->next;

while (edge != currentFace->edge);
firstEdge = gateEdge;
if (nextFace) {

strip[stripIndex].add(gateEdge->index);
strip[stripIndex].add(nextFace->index);
nextFace->drop();
nextFace->dropNeighbors();
cost++;
walkMode = RIGHT;
nodesLeft--;
firstTurn = START;

} else {
walkMode = START;

}
break;

For a new face, all adjacent faces are inspected. From the set of existent and non-striped
neighbors the one with lowest degree is picked and stored innextFace . Throughout the
strip generation,gateEdge stored the edge betweencurrentFace andnextFace . In
addition,firstEdge keeps the first gate edge for later striping in the other direction from
the start face.

If a valid nextFace has been found, the face and the gate edge are pushed in the strip,
face degrees are adjusted, andwalkMode is set toRIGHT.

case RIGHT:
currentFace = gateEdge->twin->face;
gateEdge = gateEdge->twin->next;
nextFace = 0;
if (gateEdge->twin->face != 0 && !gateEdge->twin->face->processed) {

3



nextFace = gateEdge->twin->face;
walkMode = LEFT;
if (firstTurn == START)

firstTurn = RIGHT;
} else {

gateEdge = gateEdge->next;
if (gateEdge->twin->face != 0 && !gateEdge->twin->face->processed) {

nextFace = gateEdge->twin->face;
if (firstTurn == START)

firstTurn = LEFT;
}

}
break;

Here,currentFace is updated andgateEdge is set to the expected gate for right
turn (i.e. the next ccw edge from the gate). If the face adjacent to the gate edge exists
and is has not been processedwalkMode and nextFace are set accordingly. If this
preferred face is not available, the other open edge is tried as a possible gate edge. In this
case,walkMode stays unchanged. If this turn was the first one,firstTurn has store
the move.

The LEFT case looks quite similar. The only difference is that instead of using the
next edge as gate, the previous one should be used. For triangle meshes this is identical to
next->next .

case LEFT:
currentFace = gateEdge->twin->face;
gateEdge = gateEdge->twin->next->next;
nextFace = 0;

if (gateEdge->twin->face) {
nextFace = gateEdge->twin->face;
walkMode = RIGHT;
if (firstTurn == START)

firstTurn = LEFT;
} else {

gateEdge = gateEdge->next->next;
if (gateEdge->twin->face) {

nextFace = gateEdge->twin->face;
walkMode = LEFT;
if (firstTurn == START)

firstTurn = RIGHT;
}

}
break;

If a nextFace has been found, it ahs to be added to the strip and the degrees have to
be updated. In case the strip cannot be continued either the other direction from start face
is tried or the strip is finished.

case LEFT:
case RIGHT:

if (nextFace) {
strip[stripIndex].add(gateEdge->index);
strip[stripIndex].add(nextFace->index);
nextFace->drop();
nextFace->dropNeighbors();

4



Figure 1: The result of the striping procedure. The left picture shows triangle fans in
green and isolated triangles in blue. On the right, strips are color according to when the
respectiver triangles have been processed.

cost++;
nodeLeft--;

} else {
if (firstDirection) {

walkMode = firstTurn;
gateEdge = firstEdge;
strip[stripIndex].flipped = true;
firstDirection = false;

} else
walkMode = FINISH;

}
if (nodesLeft <= 0)

walkMode = FINISH;
break;

A C++ implementation of this striping algorithm, including random sampling and fan-
ning is available as part of the OpenSG open scene graph project (http://www.opensg.org -
OSGNodeGraph.*).

4 Results

First results with the striping algorithm show a significant speed-up for striped vs. non-
striped meshes, as expected. A set of strips for a triangle mesh is computed at a speed of
more than 500K triangles/sec on commodity hardware (e.g. a 1GHz Pentium PC). Table 1
shows results achieved with our implementation. Since the striping process conatins some
randomness, the model is striped 100 times. Visual results of the striping algorithm are
depicted in Figures 1.

We compare the execution times and number of strip vertices of our implementation
to the those of the publicly available version of STRIPE. For STRIPE we use the the
NOSWAP option, which generally produces the best results. For comparison average ver-
tex count results from our implementation are used together with execution times for a
single run. Note that this is what one could expect when running the algorithm a single
time. The results are depicted in the Table 2.

5



Model Vertices in Strips Time in sec
Name # Vertex # Face min avg max start-up striping

Bunny 34834 69451 81390 81684.6 81875 0.12 0.09
Lady 178445 356902 458816 459304 459905 0.48 0.36
Elephant 27015 54026 69026 69196.1 69350 0.05 0.05
Dino 2832 5660 7208 7258.5 7312 0.01 0.01
Horse 48485 96966 116716 116988 117263 0.13 0.11

Table 1: Results of our striping implementation for 100 runs per model. The time for
building up data structures has to be spent only once, independent of the number of striping
runs.

STRIPE OpenSG
Model verts time verts time

Bunny 82128 1.78 sec 81684.6 0.26 sec
Lady 463989 7.96 sec 459304 0.85 sec
Elephant 69948 1.19 sec 69196.1 0.11 sec
Dino 7340 0.12 sec 7258.5 0.02 sec
Horse 117538 2.32 sec 116988 0.25 sec

Table 2: Running times and striping results of the STRIPE code and our implementation in
OpenSG. Vertex counts for the OpenSG implementation show theexpectedresult (i.e. the
average of 100 runs). Timings include built up of data structures and allocation of memory.
The new implementation is consistently faster and produces slightly better results.

References

[1] Swen Campagna, Leif Kobbelt, and Hans-Peter Seidel. Directed edges–a scalable
representation for triangle meshes.Journal of Graphics Tools, 3(4):1–12, 1998. ISSN
1086-7651.

[2] Mike M. Chow. Optimized geometry compression for real-time rendering.IEEE Visu-
alization ’97, pages 346–354, November 1997. ISBN 0-58113-011-2.

[3] Mark de Berg, Mark van Kreveld, Mark Overmars, and Otfried Schwarzkopf.Compu-
tational Geometry – Algorithms and Applications. Springer-Verlag, Berlin Heidelberg,
1997.

[4] Michael F. Deering. Geometry compression.Proceedings of SIGGRAPH 95, pages
13–20, August 1995. ISBN 0-201-84776-0. Held in Los Angeles, California.

[5] Francine Evans, Steven S. Skiena, and Amitabh Varshney. Optimizing triangle strips
for fast rendering.IEEE Visualization ’96, pages 319–326, October 1996. ISBN 0-
89791-864-9.

[6] Hugues Hoppe. Optimization of mesh locality for transparent vertex caching.Pro-
ceedings of SIGGRAPH 99, pages 269–276, August 1999. ISBN 0-20148-560-5. Held
in Los Angeles, California.

[7] Xinyu Xiang, Martin Held, and Joseph S. B. Mitchell. Fast and effective stripification
of polygonal surface models.1999 ACM Symposium on Interactive 3D Graphics, pages
71–78, April 1999. ISBN 1-58113-082-1.

6


