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Foreword

The present thesis can take its place among the numerous doctoral theses and

other publications that are currently revolutionizing the area of machine learning�

The author�s basic concern is with kernel�based methods and in particular Support

Vector algorithms for regression estimation for the solution of inverse� often ill�

posed problems� However� Alexander Smola�s thesis stands out from many of

the other publications in this �eld� This is due in part to the author�s profound

theoretical penetration of his subject�matter� but also and in particular to the

wealth of detailed results he has included�

Especially neat and of particular relevance are the algorithmic extensions of Sup�

port Vector Machines� which can be combined as building blocks� thus markedly

improving the Support Vectors� Of substantial interest is also the very elegant un�

supervised method for nonlinear feature extraction� which applies the kernel�based

method to classical Principal Component Analysis �kernel PCA�� And although

only designed to illustrate the theoretical results� the practical applications the

author gives us from the area of high�energy physics and time�series analysis are

highly convincing�

In many respects the thesis is groundbreaking� but it is likely to soon become

a frequently cited work for numerous innovative applications from the �eld of

statistical machine learning and for improving our theoretical understanding of

Support Vector Machines�

Stefan J�ahnichen� Professor� Technische Universit�at Berlin

Director� GMD Berlin
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Alex Smola�s thesis has branched out in at least �ve novel directions broadly based

around kernel learning machines	 analysis of cost functions� relations to regular�

ization networks� optimization algorithms� extensions to unsupervised learning in�

cluding regularized principal manifolds� entropy numbers for linear operators and

applications to bounding covering numbers� I will highlight some of the signi�cant

contributions made in each of these areas�

Cost Functions This section presents a very neat coherent view of cost functions

and their e
ect on the overall algorithmics of kernel regression� In particular� it

is shown how using a general convex cost function still allows the problem to be

cast as a convex programming problem solvable via the dual� Experiments show

that choosing the right cost function can improve performance� The section goes

on to describe a very useful approach to choosing the � for the ��insensitive loss

measure� based on traditional statistical methods� Further re�nements arising from

this approach give a new algorithm termed ��SV regression�

Kernels and Regularization The chapter covers the relation between kernels

used in Support Vector Machines and Regularization Networks� This connection

is a very valuable contribution to understanding the operation of SV machines

and in particular their generalization properties� The analysis of particular kernels

and experiments showing the e
ects of their regularization properties are very

illuminating� Consideration of higher dimensional input spaces is made and the

case of dot product kernels studied in some detail� This leads to the introduction

of Conditionally Positive De�nite Kernels and semiparametric estimation� both of

which are new in the context of SV machines�

Optimization Algorithms This section takes the interior point methods and

implements them for SV regression and classi�cation� By taking into account the

speci�cs of the problem e�ciency savings have been made� The consideration then

turns to subset selection to handle large data sets� This introduces among other

techniques� SMO or sequential minimal optimization� This approach is generalized

to the regression case and proves an extremely e�cient method�

Unsupervised Learning The extension to Kernel PCA is a nice idea which

appears to work well in practice� The further work on Regularized Principal

Manifolds is very novel and opens up a number of interesting problems and

techniques�

Entropy numbers� kernels and operators The estimation of covering numbers

via techniques from operator theory is another major contribution to the state�of�

the�art� Many new results are presented� among others the generalization bounds

for Regularized Principal Manifolds are given�

John Shawe�Taylor� Professor� Royal Holloway� University of London
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Abstract

Support Vector �SV� Machines combine several techniques from statistics� machine

learning and neural networks� One of the most important ingredients are kernels�

i�e� the concept of transforming linear algorithms into nonlinear ones via a map into

feature spaces� The present work focuses on the following issues	

Extensions of Support Vector Machines�

Extensions of kernel methods to other algorithms such as unsupervised learning�

Capacity bounds which are particularly well suited for kernel methods�

After a brief introduction to SV regression it is shown how the classical ��insensitive

loss function can be replaced by other cost functions while keeping the original

advantages or adding other features such as automatic parameter adaptation�

Moreover the connection between kernels and regularization is pointed out� A

theoretical analysis of several common kernels follows and criteria to check Mer�

cer�s condition more easily are presented� Further modi�cations lead to semipara�

metric models and greedy approximation schemes� Next three di
erent types of

optimization algorithms� namely interior point codes� subset selection algorithms�

and sequential minimal optimization �including pseudocode� are presented� The

primal�dual framework is used as an analytic tool in this context�

Unsupervised learning is an extension of kernel methods to new problems� Besides

Kernel PCA one can use the regularization to obtain more general feature exractors�

A second approach leads to regularized quantization functionals which allow a

smooth transition between the Generative Topographic Map and Principal Curves�

The second part deals with uniform convergence bounds for the algorithms and

concepts presented so far� It starts with a brief self contained overview and an

introduction to functional analytic tools which play a crucial role in this problem�

By viewing the class of kernel expansions as an image of a linear operator one may

give bounds on the generalization ability of kernel expansions even when standard

concepts like the VC dimension fail or give too conservative estimates�

In particular it is shown that it is possible to compute the covering numbers

of the given hypothesis classes directly instead of taking the detour via the VC

dimension� Applications of the new tools to SV machines� convex combinations of

hypotheses �i�e� boosting and sparse coding�� greedy approximation schemes� and

principal curves conclude the presentation�

Keywords Support Vectors� Regression� Kernel Expansions� Regularization� Sta�

tistical Learning Theory� Uniform Convergence�
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Support Vektor �SV� Maschinen verbinden verschiedene Techniken der Statistik�

des maschinellen Lernens und Neuronaler Netze� Eine Schl�usselposition f�allt den

Kernen zu� d�h� dem Konzept� lineare Algorithmen durch eine Abbildung in Merk�

malsr�aume nichtlinear zu machen� Die Dissertation behandelt folgende Aspekte	

Erweiterungen des Support Vektor Algorithmus

Erweiterungen und Anwendungen kernbasierter Methoden auf andere Algorith�

men wie das un�uberwachte Lernen

Absch�atzungen zur Generalisierungsf�ahigkeit� die besonders auf kernbasierte

Methoden abgestimmt sind

Nach einer kurzen Einf�uhrung in die SV Regression wird gezeigt� wie die � unemp�

�ndliche Kostenfunktion durch andere Funktionen ersetzt werden kann� w�ahrend

gleichzeitig die Vorteile des urspr�unglichen Algorithmus erhalten bleiben� oder auch

neue Eigenschaften wie automatische Parameteranpassung hinzugef�ugt werden�

Weiterhin wird die Verbindung zwischen Kernen und Regularisierung aufgezeigt�

Es folgt eine theoretische Analyse verschiedener h�au�g verwendeter Kerne� nebst

Kriterien zur leichten �Uberpr�ufung von Mercers Bedingung� Weitere Ver�anderungen

f�uhren zu semiparametrischen Modellen sowie geizigen� N�aherungsverfahren� Ab�

schlie�end werden drei Optimierungsalgorithmen vorgestellt� n�amlich die Methode

der inneren Punkte� Auswahlalgorithmen und sequentiell minimale Optimierung�

Als analytisches Werkzeug fungiert hier das prim�ar�duale Konzept der Opti�

mierunge� Auch Pseudocode wird in diesem Zusammenhang zur Verf�ugung gestellt�

Un�uberwachtes Lernen ist ein Anwendungsfall kernbasierter Methoden auf neue

Probleme� Neben Kern PCA kann man das Regularisierungskonzept dazu verwen�

den� allgemeinere Mermalsextraktoren zu erhalten� Ein zweiter Ansatz f�uhrt zu

einem stufenlosen �Ubergang zwischen der der erzeugenden topographischen Abbil�

dung �GTM� und Hauptkurven�

Der zweite Teil der Dissertation besch�aftigt sich mit Absch�atzungen zur uni�

formen Konvergenz f�ur die bisher vorgestellten Algorithmen und Konzepte� Dazu

wird zuerst kurz ein �Uberblick �uber existierende Techniken zur Kapazit�atskontrolle

und Funktionalanalysis gegeben� Letztere spielen eine entscheidende Rolle� da die

Klasse der Kernentwicklungen als Bild unter einem linearen Operator aufgefa�t

werden kann� was Absch�atzungen der Generalisierungsf�ahigkeit sogar in den F�allen

erm�oglicht� in denen klassische Ans�atze wie die VC Dimension versagen bzw� zu

konservative Absch�atzungen geben�

Insbesondere wird gezeigt� da� es m�oglich ist� die �Uberdeckungszahlen einer

gegebenen Hypothesenklasse direkt zu berechnen� ohne den Umweg �uber die Berech�

nung der VC Dimension zu nehmen� Anwendungen �nden die neuen Methoden bei

Support Vektor Maschinen� Konvexkombinationen von Hypothesen �z�B� Boosting

und sp�arliche Kodierung�� geizigen� N�aherungsverfahren und Hauptkurven�

Schlagworte Support Vektoren� Regression� Kernentwicklungen� Regular�

isierung� Statistische Lerntheorie� Uniforme Konvergenz�



Preface

The goal of this thesis is to give a self contained overview over Support Vector

Machines and similar kernel based methods� mainly for Regression Estimation� It is�

in this sense� complementary to Bernhard Sch�olkopf�s work on Pattern Recognition�

Yet it also contains new insights in capacity control which can be applied to

classi�cation problems as well�

It is probably best to view this work as a technical description of a toolset� namely

the building blocks of a Support Vector Machine� The �rst part describes its basic

machinery and the possible add�ons that can be used for modifying it� just like the

lea�et one would get from a car dealer with a choice of all the �extras� available�

In this respect the second part could be regarded as a list of operating instruc�

tions� namely how to e
ectively carry out capacity control for a class of systems of

the SV type�

How to read this Thesis

I tried to organize this work both in a self contained� and modular manner� Where

necessary� proofs have been moved into the appendix of the corresponding chapters

and can be omitted if the reader is willing to accept some results on faith� Some

fundamental results� however� if needed to understand the further way of reasoning�

are derived in the main body�

How not to read this Thesis

This is the work of a physicist who decided to do applied statistics� ended up

in a computer science department� and sometimes had engineering applications

or functional analysis in mind� Hence it provides a mixture of techniques and

concepts from several domains� su�cient to annoy many readers� due to the

lack of mathematical rigor �from a mathematician�s point�� the sometimes rather

theoretical reasoning and some technical proofs �from a practicioner�s point�� the

lack of hardly any connection with physics� or some algorithms that work� but have

not �yet� been proven to be optimal or to terminate in a �nite number of steps� etc�

However� I tried to split the nuisance equally among the disciplines�
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I Algorithms

The algorithms for constructing the separating hyperplane considered above will

be utilized for developing a battery of programs for pattern recognition��

�Vapnik� ����� p� ����

In recent years the number of di
erent Support Vector �SV� algorithms �Vapnik�

����� Vapnik et al�� ����� Smola and Sch�olkopf� ����a� Smola et al�� ����b�

Sch�olkopf et al�� ����a� ����� Bennett� ����� Weston et al�� ����� and other kernel

based methods �Sch�olkopf et al�� ����a� has grown rapidly� This is due to both� the

success of the method �Burges and Sch�olkopf� ������ and the need to adapt it to

particular problems� Consequently� Support Vector methods have been proposed

for classi�cation� regression estimation� solution of inverse problems� general cost

functions� multiple operators� arbitrary kernel expansions� modi�ed regularization

methods� etc� � just to name a few of them�

It is therefore sometimes hard to �nd the basic idea that generates them all�

or to custom tailor a SV like algorithm that �ts ones needs best� without causing

unnecessary overhead� Whilst learning theoretic concerns will be relegated to the

second part of the thesis �chapters � to ��� the following chapters will give an

overview over the basic idea of SVMs and possible directions for an extension of

the framework�

This will include several ways how to extend or modify the standard SV frame�

work� In particular it will cover three di
erent ways how to restrict the set of ad�

missible functions via regularization functionals� several di
erent cost functions and

how these can be dealt with� adaptive estimates and their asymptotic optimality�

extensions to semiparametric modelling by changing the regularization functional

and considerations on regularization operators for vector valued functions� Opti�

mization algorithms are given to e�ciently solve the problems described above�

Finally� the ideas are applied to unsupervised learning via kernel methods�

Most of these concepts may be combined much in a way like the options of a

menu �i�e� many choices go together quite well� other combinations may not yield
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overly satisfactory results� however the taste may vary�� Due to the combinatorial

nature� it is impossible �and of little use� to present all combinations one might

think of explicitly� New algorithms therefore should be considered whether they

may be �led into one of the categories presented below� or show a new way for even

further modi�cations�

Roadmap

Chapter � explains the basic SV regression setting as introduced by Vapnik �������

This is the common base all further extensions and enhancements build on� More�

over it is �still� the most widespread setting� and also relatively simple to deal with�

Hence it will serve as point of reference for new techniques� Some fundamental

calculations are carried out with respect to this setting� such as the Wolfe dual�

ization approach� which is by itself central to the convex programming setting of

the problems� Basic notions of statistical learning theory are mentioned �they will

be dealt with in full detail in part II of this work�� In particular� the concept of

risk functionals� both empirical and regularized� is explained� Finally� techniques to

restrict the model class are described�

The next chapter ��� shows how SV machines can be adapted to a wider class

of convex loss functions	 the optimization problem is set up in a way to suit

arbitrary convex functions and subsequently optimization equations are given for

this extension� Experimental evidence shows that� not surprisingly� this increased

degree of freedom may contribute to improved generalization� In a second step� an

answer is sought to the question� which cost function� or more speci�cally� which

setting of parameters� would be best to achieve good estimates� The answer can

be stated in the context of asymptotical statistics� Experiments show that these

�ndings carry over to the �nite sample size case� To make this choice automatic�

adaptive noise model selection is introduced� One can show that in this setting the

choice of parameters� like the ��insensitive loss zone� can be reduced to �nding one

parameter per class of noise models�

To make the �so far linear� estimators nonlinear� kernels are introduced in chapter

�� After a brief overview on admissible SV kernels and feature spaces� this chapter

focuses on the regularization properties of SV machines� It is shown that the SV

kernels correspond to implicit regularization by matching regularization operators�

hence that SV machines and regularization networks are closely related� This �nding

is exploited to analyze some commonly used translation invariant kernels such as

B�n�� splines� Gaussian kernels� and the �somewhat underperforming� Dirichlet

kernel� Some considerations on kernels when prior knowledge is available and an

analysis of translation invariant kernels in higher dimensions conclude this section�

After the analysis of scalar valued functions a uniqueness theorem regarding vector

valued functions is stated� It shows that all regularization operators for vector

valued functions� satisfying certain homogeneity and permutation symmetries� have

to be scalar� This rules out the construction of possibly very elaborate extensions

of the scalar case �hence saves time seeking nonexistent extensions�� As polynomial

kernels are rather relevant in practice� they are also looked at in the subsequent

section� It provides a regularization theoretic interpretation of �in�homogeneous

kernels� Finally the class of admissible kernels is extended to conditionally positive

de�nite ones� thus largely extending the SV setting to cases like �thin plate�

splines and other expansions widely used in interpolation theory� This leads to

a modi�cation of the standard SV algorithm to account for these changes� The new
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algorithm leads directly to what can be called semiparametric SV estimation� It

exploits the fact that one can easily modify the nullspace of operators in an explicit

way �as done before when dealing with conditionally positive de�nite functions�

by adding the corresponding basis functions� This also leads to �mixed� linear

programming regularizers and sparse coding versions of SV machines� A worked

through example of a particular regularization operator ends the discussion on

kernels and regularization�

Chapter � may be of particular interest for practicioners as it provides an overview

over three popular techniques for solving convex mathematical programming prob�

lems of the SV type� After a brief overview over some general properties of convex

optimization problems a couple of useful tricks is pointed out� which may greatly

decrease the computational cost and simplify control of the algorithms� Next� in�

terior point algorithms are presented� including the particular implications for SV

regression� and also why it would be rather ine�cient to use o
 the shelf� optimiz�

ers in this case� The other bene�t from presenting these techniques is that many

of the considerations may be adapted to other optimization techniques as well�

Unfortunately� for medium and large sized problems �more than ���� samples� in�

terior point methods become numerically quite expensive O�m�� and one has to

seek cheaper methods to �approximately� solve the problem� Chunking and other

working set algorithms are such techniques� After an overview of selection rules for

the latter an adaptation of the Sequential Minimal Optimization �SMO� algorithm

to regression is presented� Besides that SMO is extended to a more �exible setting

of regularization properties� and a more realistic stopping rule� using the size of the

feasibility gap� is stated� Pseudo code of the SMO regression algorithm is given�

After this rather lengthy discourse on supervised learning� some concepts of

unsupervised learning are brie�y mentioned in chapter �� Two ways of gathering

information are discussed in this context	 a feature extracting approach leading to

Kernel PCA and kernel feature analysis algorithms� where the goal is to �nd highly

reliable feature extractors� secondly� a data descriptive approach where the goal is

to minimize a quantization functional not unlike vector quantization or principal

curves� The latter leads to a new algorithm� regularized principal manifolds �a

hybrid between the generative topographic map and principal curves�� which has

nice practical and theoretical properties� Moreover the regularized quantization

functional setting o
ers further extensions of this algorithm� to be explored in the

future�

Applications of the methods described so far are presented in chapter �� It is

shown that SV machines yield excellent performance in time series prediction tasks�

Moreover SV classi�cation �a testbed for development of algorithms� is applied to

data from particle physics� It is shown that even without much prior knowledge�

SV machines yield state of the art performance� even in the high noise regime�

Shortcuts

I tried to make each chapter as self contained as possible� such that combinations

of the di
erent techniques can be achieved even without having read all other

chapters� However it appears reasonable to read chapter �� the introduction of

chapter � and section ��� before proceeding to more advanced topics� In particular�

some knowledge about kernel expansions is required in nearly all formulations of

the optimization problem� Figure � depicts the connections between the chapters�
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For the sake of convenience the �rst chapter gives a brief overview of the basic SV

equations for the simplest case� namely linear regression with bounded loss� Many

of the properties of this simplest of all SV regression algorithms can be found in

the more complicated and elaborate settings as well� Hence it serves as a point of

reference for further developments� Moreover many of the results presented here�

directly carry over to classi�cation� However� for the ease of presentation� results on

the latter will be omitted� See the works of Cortes ������� Vapnik ������� Sch�olkopf

������� Vapnik ������ for details�

Roadmap

The �rst section takes an algorithmic approach to SV regression� This is done in

favour of readers familiar with the practical details of the SV machines rather than

their statistical implications� Readers with a learning theory background may want

to swap the order and read section ��� �rst�

First the basic setting of �nding the �attest linear function that approximates

given data with � precision is introduced� Next� this setting is transformed into

a convex optimization problem� After a slight modi�cation of the problem to suit

for errors larger than �� the Wolfe dual of the convex minimization problem is

computed� resulting in a quadratic programming problem� Basic properties like the

expansion of the weight vector w in terms of the training patterns� the Karush�

Kuhn�Tucker conditions �for optimality�� and a simple way to compute the constant

threshold b are discused in this context�

Beyond the algorithmic viewpoint� the SV problem can also be considered as

a special instance of the problem of risk minimization� This aspect illuminates

the interaction between the class of models� the empirical risk functional and the

expected risk� It is shown that regularization� i�e� restriction of the hypothesis

class� is bene�cial for two reasons � uniform convergence and well posedness of

the optimization problem� Three di
erent settings of regularization are discussed

subsequently� namely the SV constraint� a convexity constraint used in linear

programming� and a weight decay constraint in parameter space� Finally it is shown

that minimization of the regularized risk functional is equivalent to minimizing the

empirical risk for a �xed class of models� or minimization of the model complexity

for a �xed amount of errors�
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��� Introduction

����� The Basic Setting

Let X and Y be �subsets of� normed vector spaces� normally Rd and R� Suppose

one is given some training� inputs

X 	 fx�
 � � � 
 xmg � X �����

together with corresponding observations

Y 	 fy�
 � � � 
 ymg � Y �����

�sometimes also brie�y denoted as Z 	 f�x�
 y��
 � � � 
 �xm
 ym�g � X � Y� drawn

independently identically distributed �iid� according to some probability measure

dP �x
 y��

The goal is to learn the data Z� This could be done� for instance� by seeking

a function that has the least mean squared error� Another possible goal would be

to �nd a function f�x� that has at most � deviation from the actually obtained

targets yi for all the training data Z� and at the same time� is as �at as possible�

The present section is about methods for satisfying this goal� In other words� one

does not bother about errors� provided they are smaller than �� but will not accept

any deviation larger than that�

An example is data that has been measured by some digital device �e�g� a

voltmeter� with a rather limited number of digits� Roundo
 errors� i�e� uniform

noise� are exactly the type of additive noise� an ��insensitive loss zone can account

for� best� The data is given subject to a range �y� �
 y# ��� Another example might

be the case where Z is some exchange rate of a currency measured at subsequent

days together with corresponding econometric indicators� There one wants to be

sure not to lose more than � money when dealing with the exchange rates��

For the sake of simplicity assume that we are only interested in linear functions f

�the extension to nonlinear functions will follow in chapter ��� For this purpose we

have to make the additional assumption that X is an inner product space to de�ne

dot products� We assume

f�x�  hw
 xi # b with w � X
 b � Y �����

where h � 
 � i denotes the dot product in X�

����� A Convex Optimization Problem

In order to solve the problem posed above� it is necessary to transform it into

a constrained convex optimization problem� This is done as follows	 choosing the

�attest function means that one wants the factor w to be as small� as possible�

This may mean� for instance� that �
�kwk� is small �there exist other criteria for

choosing small� w� which will be futher discussed in examples ���� ���� and �����

This criterion is chosen in analogy to SV classi�cation� where �
kwk determines the

width of the margin� At the same time the constraints have to be satis�ed� namely

�� Of course one would not like to lose any money at all � this is what everyone would
hope for � but that may not be possible� Morover one might tolerate bounded losses in
the strong L� metric rather than in the L� metric of least mean squares�
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that the error jf�xi�� yij � � for all i � f�
 � � � 
mg� Formally this is equivalent to
solving	

minimize �
�kwk�

subject to

�
yi � hw
 xii � b � �

hw
 xii# b� yi � �

�����

The silent assumption in ����� is that such a function f actually exists� that

approximates all pairs �xi
 yi� with � precision� or in other words� that the convex

optimization problem is feasible� In some cases� however� this may not be the case�

or one actually might want to allow for some errors� thus trading o
 errors by

�atness of the estimate� Analogously to the soft margin loss function of Cortes and

Vapnik ������ one can introduce slack variables to cope with otherwise infeasible

optimization problems� This leads to the formulation stated in �Vapnik� ������

minimize �
�kwk� # C

mP
i��
��i # ��i �

subject to

����
���

yi � hw
 xii � b � �# �i

hw
 xii# b� yi � �# ��i
�i
 �

�
i � �

�����

The constant C � � determines the trade o
 between the �atness of f and the

amount up to which deviations larger than � are tolerated� Eq� ����� corresponds

to the so called ��insensitive loss function j�j� �Vapnik� ����� described by

j�j� 	 
�
� if j�j � �

j�j � � otherwise�
�����

Viewing ����� in this way also shows how to extend the basic SV problem to

cost functions other than ������ This will be done in Sec� �� Fig� ��� depicts the

situation graphically	� only the points outside the shaded region contribute to the

cost insofar� as the deviations are penalized in a linear fashion� It turns out that
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Figure ��� The soft margin loss setting corresponds for a linear SV machine�

the optimization problem ����� can be solved more easily in its dual formulation�

Moreover� as will be seen in chapter �� the dual formulation provides the key for

extending SV machine to nonlinear functions� Therefore a standard dualization

approach by means of Lagrange multipliers is taken �cf� Fletcher ��������

�� Courtesy of Bernhard Sch�olkopf�
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����� Dual Formulation and Quadratic Programming

The key idea is to construct a Lagrange function from both the objective function

�it will be called the primal objective function in the rest of this article� and the

corresponding constraints� by introducing a dual set of variables� It can be shown

that this function has a saddle point with respect to the primal and dual variables

at the optimal solution� For details see e�g� �Goldstein� ����� Mangasarian� �����

McCormick� ����� Vanderbei� ������ Hence one proceeds as follows	

L 	 
�

�
kwk� # C

mX
i��

��i # ��i ��
mX
i��

�i��# �i � yi # hw
 xii# b� ���	�

�
mX
i��

��i ��# ��i # yi � hw
 xii � b��
mX
i��

��i�i # ��i �
�
i �

It is understood that the dual variables in ����� have to satisfy positivity constraints�

i�e� �i
 �
�
i 
 �i
 �

�
i � �� It follows from the saddle point condition �this is where the

primal objective function is minimal� and the dual is maximized� that the partial

derivatives of L with respect to the primal variables �w
 b
 �i
 �
�
i � have to vanish for

optimality�

�bL  

mX
i��

���i � �i�  � ���
�

�wL  w �
mX
i��

��i � ��i �xi  � �����

�
�
���
i

L  C � �
���
i � �

���
i  � ��� denotes variables with and without � ������

Substituting ����� and ������ into ����� lets the terms in b and � vanish �they only

contribute in a linear fashion anyway�� Consequently also ������ can be transformed

into �i � ��
 C�� Finally substitution of ����� into ����� shows that the expressions
in w� the now quadratic terms in �i� can be collected into one term� thus yielding

the dual optimization problem�

maximize

����
���

� �
�

mP
i�j��

��i � ��i ���j � ��j �hxi
 xji

��
mP
i��
��i # ��i � #

mP
i��

yi��i � ��i �

subject to

��
�

mP
i��
��i � ��i �  �

�i
 �
�
i � ��
 C�

������

In deriving ������ the dual variables �i
 �
�
i were already eliminated through condi�

tion ������� as these variables did not appear in the dual objective function anymore�

but only were present in the dual feasibility conditions� Eq� ����� can be rewritten

as follows	

w  

mX
i��

��i � ��i �xi and therefore f�x�  
mX
i��

��i � ��i �hxi
 xi# b� ������

This is the well known Support Vector expansion� i�e� w can be completely described

as a linear combination of the training patterns xi� Note that this expansion is

independent of both the dimensionality of the input space X and the sample size m�

Moreover the complete algorithm can be described in terms of dot products between
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the data� Even when evaluating f�x�� by virtue of ������ one need not compute w

explicitly� The latter is of course more computationally e�cient in the linear setting�

but these observations will come handy in the formulation of a nonlinear extension

in chapter ��

����� Computing b

So far the issue of computing b was neglected� It can be calculated by exploiting the

so called Karush�Kuhn�Tucker �KKT� conditions �Karush� ����� Kuhn and Tucker�

������ These state that at the optimal solution the product between dual variables

and constraints has to vanish� In the SV case this means �cf� �M�uller et al�� ������

�i��# �i � yi # hw
 xii# b�  �

��i ��# ��i # yi � hw
 xii � b�  �
and

�C � �i��i  �

�C � ��i ��
�
i  �

������

In other words

b  yi � hw
 xii � � for �i � ��
 C�
b  yi � hw
 xii# � for ��i � ��
 C�

������

Another way of computing b will be discussed in the context of interior point

optimization� There b turns out to be a by�product of the optimization process�

See section ����� and ����� for more details on this topic�

��� A �more� Statistical View

Besides the practical aspect of SV regression� it will be helpful to consider the

problem of regression and function estimation from a more statistical perspective�

In the framework of risk minimization� as presented in �Vapnik� ������ the problems

regression� classi�cation and density estimation reduce to the same fundamental

class of problems�

����� The Problem of Risk Minimization

The general goal is to estimate a function

f 	 X	 Y
 y  f�x� ������

that has minimal expected error on X � Y� More precisely� deviations will be

penalized according to a cost function c�x
 y
 f�x��� Without loss of generality

assume

c��
 �
 �� � � and c��
 y
 y�  � ������

In other words one will neither win by making extra good predictions nor will

correct predictions incur any loss� Hence the problem to be solved can be written

as follows	

minimize R�f � 	 

Z
X�Y

c�x
 y
 f�x��dP �x
 y� ����	�

Eq� ������ is the fundamental problem� one tries to solve in statistical learning the�

ory� Unfortunately it cannot be minimized exactly� as this would require knowledge

of the probability measure dP �x
 y�� Hence the problem is unsolvable in this formu�
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lation� The only way out is to approximate the latter by the empirical probability

density function �pdf�

pemp�x
 y� 	 
�

m

mX
i��

��x� xi���y � yi� ����
�

leading directly to the empirical risk functional

Remp�f � 	 

Z
X�Y

c�x
 y
 f�x��pemp�x
 y�dxdy  
�

m

mX
i��

c�xi
 yi
 f�xi��� ������

One might think that �nding a function f which minimizes Remp�f � would ensure

that R�f � is at least close to minimal� too� However this is not true since f may be

chosen arbitrarily�

Just imagine choosing f such that f�xi�  yi for all xi � X and f�x�  � for

x � XnX � It is very unlikely that such a function will be a minimizer of R�f ��
Moreover one can show that the attempt to minimize Remp�f � generally is an ill

posed problem �except for very restrained model classes� �Tikhonov and Arsenin�

����� Morozov� ����� Vapnik� ����� Bickel et al�� ������ i�e� the map from the

training data X
Y to f may not be continuous� and can lead to a behaviour known

as over�tting in the Neural Networks literature �Duda and Hart� ����� Ripley�

����� Bishop� ������ This raises the question under which conditions at least some

statement can be made about R�f ��

����� Uniform Convergence

The situation is not as desperate as it may seem� First of all one can render the

problem of minimizing Remp�f � well posed� i�e� make the map from X
Y to f

continuous� This is done by restricting the set from which f is chosen to some

compact set F� This settles the algorithmic question� One can show by virtue of

the operator inversion lemma �Tikhonov and Arsenin� ����� that in this case the

problem of empirical risk minimization becomes well posed� In particular one uses

the following theorem�

Theorem ��� Operator Inversion Lemma� e�g� Riesz and Nagy ������

Let X be a compact set and let the map f 	 X 	 Y be continuous� Then there

exists an inverse map f�� 	 f�X�	 X that is also continous�

Considering Remp�f � as a continuous map from the space of admissible func�

tions F into R� one may construct an inverse map� and in particular obtain

argmin f�FRemp�f �� which is then well posed as required above� Section ����� will

introduce basic concepts for constructing feasible sets F�

Restricting F has yet another advantage� One can show �Vapnik and Chervo�

nenkis� ����� that if F is su�ciently well behaved� i�e� has �nite covering number �a

quantity introduced in chapter ��� the empirical risk Remp�f � will converge to R�f �

for increasing sample size m� i�e�

Pr

�
sup
f�F

jR�f ��Remp�f �j � �

�
	 � for m	
 and � � �� ������

The sup is taken over all functions in F� as one would like to make a statement

independently of the actual function that is chosen� Vapnik and Chervonenkis ������

show that such a worst case� statement is necessary and su�cient to give uniform

convergence bounds �the worst� function determines the behaviour of the whole
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class�� Note that there is an additional subtlety which goes unnoticed quite often	

e
ectively it is not the complexity of F but of the loss function induced class� i�e�

c�f�x�
 y
 x� with f � F that determines the overall complexity� This can be seen
quite easily	 assume c  � for all possible arguments� Here errorbounds are easily

obtained independent of F� However� under normal circumstances� F and the loss

function induced class cjF are related � see section ����� for more details�

Often function classes satisfying ������ are also called generalized Glivenko

Cantelli classes� These issues will be discussed in greater detail in chapter ��

In particular� tools for deriving generalization bounds will be presented� For the

moment assume that the classes F actually do satisfy ������� Finally note that

usually ������ imposes an overly strict condition� For practical purposes all one

needs is that the probablity Prfsupf�F jR�f ��Remp�f �j � �g � � for some � � �

rather than the fact that the probablilty converges to ��

����� Regularized Risk Functionals�

A large part of the elegance in SV machines and related kernel based methods

comes from the fact that the problem is reduced to a linear setting� i�e� one tries to

estimate linear functions in some space which need not be the input space at all�

Most of the ideas on feature spaces developed in SV learning are based on a result

in �Aizerman et al�� ������ however also note similar approaches by Nilsson �������

Hence in the following assume the case of ������

As mentioned in section ����� one may have to restrict F even further� In practice

this is done by imposing a convex penalty term on some quantity related to f �

These functionals of f will be called Q�f � subsequently� Two requirements will be

imposed on Q�f �	 it has to be convex and continuous �in order not to mess up the

optimization problem� and should restrict the function class in such a way that

uniform convergence bounds can be stated �this issue will be relegated to part II

of the thesis�� In this view one can rewrite ����� as follows	

minimize Q�f � # C �
m

mP
i��
��i # ��i �

subject to

����
���

yi � hw
 xii � b � �# �i

hw
 xii# b� yi � �# ��i
�i
 �

�
i � ��

������

The convex programming problem ������ can be rewritten as

minimize Rreg�f �  �Q�f � #
�

m

mX
i��

jf�xi�� yij� ������

with �  �
C � R� � This is the default notation when dealing with regularization

networks� The following three choices of regularization terms are quite common in

statistical learning theory�

Example ��� Support Vector Constraint

As already shown above in SV machines �Vapnik and Lerner� ����� Boser et al��

����� Smola and Sch�olkopf� ����b� and regularization networks �Girosi et al�� �����

the regularization term is

Q�f � 	 
�

�
hw
wi  �

�
kwk�� ������

It leads to quadratic programming problems as shown above�
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Example ��� Convexity Constraint

The convexity regularization is most used in Mathematical Programming �Man�

gasarian� ����� Bradley et al�� ����� Bennett� ������ There� the assumption is that

the weight vector w can be expanded as a linear combination of (basis� patterns xi�

usually the training set� such that w  
Pm

i�� �ixi� A bound on the absolute sum

of the expansion coe�cients is imposed� i�e�

Q�f � 	 

mX
i��

j�ij ������

Similar methods for regularization have been proposed in the context of sparse

decompositions �Olshausen and Field� ����� and basis pursuit denoising �Chen�

����� Chen et al�� ������ See also �Vapnik� ����� for a similar approach�

Example ��� Weight Decay Constraint

Weight Decay is a well known principle from the Neural Networks literature �e�g�

�Rumelhart et al�� ����� Hinton� ������� Again assume that w  
Pm

i�� �ixi and

regularization to be imposed indirectly via the coe�cients �i� The incremental

learning rule to minimize Remp�f � is formulated as follows

%�i  �� ���iRemp�f � # ��i� � ������

Here �� a small positive constant� is the so called weight decay parameter and � is

the learning rate� Minimizing Remp�f � according to ������ is equivalent to a squared

norm constraint on the weights� as can be seen by integrating ������ over �i�� Hence

one has

Q�f � 	 
�

�

mX
i��

��i 
 ������

or in a more general version allowing for coupling between separate patterns

Q�f � 	 
�

�

mX
i�j��

�i�jDij ����	�

for some positive matrix D�

In all three examples presented above restricting f to Q�f � � ! for some ! � �

results in compact function classes F	 for which the problem of empirical risk

minimization becomes well posed�� As will be shown in chapter �� examples ���

and ��� lead to good means of capacity control� whereas example ��� may imply

diverging bounds on the generalization error under some circumstances�

Both example ��� and ��� may give rise to the question why only indirect measures

of regularization have been imposed� In fact� this is unnecessary when dealing with

�nitely dimensional Euclidean spaces like Rd 
 one could directly use kwk� instead
of k�k� to obtain similar results� In general� however� these norms may not even

�� Note that this imposes the weight decay constraint on the expansion coe�cients rather
than on the actual weight w� The approach presented here leads to regularizers of ridge
regression type�
�� Actually this is not quite true � the parameter b was neglected� However one can show
that an additional single free parameter does not spoil the overall setting� The calculations
could also be carried out without this parameter� see corollary ���	 for details� Yet� most
papers use b for various� sometimes historic� reasons� Thus omitting b would lead to results�
less familiar in notation�
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Q�f �Q�f�� Q�f��Q�f��

�

�

�

Remp�f �

Figure ��� Three algorithms for risk minimization� ��� Q
f � is �xed �see intercept

with the Q axis� and Remp
f � is minimized subject to Q
f � � � ��� The tradeo


�� �the slope of the graph� between Q
f � and Remp
f � is speci�ed� thus the solution

adapts to the actual learning problem� ��� The empirical risk Remp
f � is �xed �see

intercept with the R axis� and Q
f � is minimized subject to this constraint�

be de�ned �e�g� a k � k� norm in feature space� and the Hilbert space where the dot
products h�
 �i are computed may only be indirectly accessible� This point will be
clari�ed by the introduction of kernels in chapter ��

����� Three Algorithms in one Picture

According to the considerations in the previous section the risk minimization

problem for f � F should be formulated as follows
minimize Remp�f � with Q�f � � !� ����
�

In other words� one minimizes Remp�f � while keeping the model complexity �xed

by enforcing an upper bound on the measure of complexity �regularization term�

Q�f �� This is what should be done when following the empirical risk minimization

principle� In many cases� however� one tries to solve a di
erent problem �with � � ��

minimize Rreg�f � 	 Remp�f � # �Q�f �� ������

The advantage of this formulation is that it results in an optimization problem that

can be solved more easily by numerical means� Therefore� unless stated otherwise�

it will be the standard setting in this thesis� The function to be minimized Rreg�f �

is also called regularized risk functional� Finally one could also think of a third

problem	

minimize Q�f � with Remp�f � � !�� ������
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Algorithmically all three problems are �provided Q�f � and Remp�f � are convex�

by themself convex optimization problems which can be solved rather e�ciently�

The obvious question is whether� and under which conditions� ������� ������� and

������ are equivalent� Figure ��� depicts these three di
erent choices of a learning

algorithm�� As the functional Q�f � de�nes a structure of nested subsets on F it is

immediately obvious that the minimum of Remp�f � decreases monotonically with

increasing Q�f �� One could� thus� parametrize the solutions with minimal empirical

risk Remp�f � chosen from the set F	 	 ff � FjQ�f � � !g by !�
The three algorithms in �gure ��� are thus equivalent� One may specify the model

class ���� i�e� F	� or the maximum training error ���� or determine the tradeo


between Remp�f � and Q�f � beforehand ���� In the latter case � is the negative slope

of Remp�f � with respect to Q�f � at the optimal solution	 there the derivative of

Rreg�f � wrt� Q�f � has to vanish� hence

�Rreg�fopt�

�Q�fopt�
 

�Remp�fopt�

�Q�fopt�
# �

�Q�fopt�

�Q�fopt�
 

�Remp�fopt�

�Q�fopt�
# �  �� ������

In other words� �nding some f � that decreases Remp�f � by some � would at least

increase Q�f � by ���� This tangent condition is unique if the overall functional is

strictly convex� Then there exists only one optimal solution for each given ��

In the case where Remp�f � is not di
erentiable on a �nite subset� one may still

use the convexity of Remp�f � to obtain a similar statement� In that case� the left

and right sided derivatives form an interval containing ��

Finally� one might seek even further ways of combining Remp�f � and Q�f � into

one overall functional to be minimized� instead of a simple linear combination as

in ������� There are two reasons why this might not be too desirable at all� First�

nonlinear combinations might render minimization of the functional more di�cult

from an algorithmic point of view� Secondly� besides an initial guess of the trade o


factor � regularization constant� � one will have to vary this parameter anyway� in

order to �nd the particular hypothesis class �associated with �� that promises best

generalization error� Hence a new �and possibly more clever� way of minimizing a

regularized risk functional might have virtually no in�uence on the �nal hypothesis

that is chosen�

��� Summing Up

Basic concepts like regression with �nite precision were introduced� and it was

shown how this can be connected with regularization to obtain well posed problems�

In particular� it was pointed out how regularization can be bene�cial in two regards	

rendering the optimization problem well posed and ensuring uniform convergence�

Moreover� techniques from optimization theory such as dualization and feasibility

conditions were formulated� showing central properties of the SV solution such as

the expansion of the solution in terms of the training patterns �independent of

the dimensionality�� Means for computing thresholds and for translating similar

constrained optimization problems into problems with a trade o
 between model

�� A similar curve is known as the L�curve in statistics Hansen 
����� and is used to
perform model selection� The di�erence in that approach is that instead of plotting Q
f �
vs� Remp
f � one plots the log thereof in order to avoid scaling dependencies� The optimal
model is assumed to lie in the �kink� of the L that is formed by the correponding curve�



��� Summing Up �

complexity and empirical error were pointed out�

What will be done in the following is an extension of the basic SV setting to

cost functions other than the ��insensitive loss� while keeping the property of being

solvable by a convex optimization program� This is the topic of the next chapter�

Nonlinearities and a more thorough analysis of regularization are the issues of

chapter �� There a deeper connection between dot products and function spaces is

pointed out and further methods to regularize functions are given�

Finally� the algorithmic details will be dealt with in chapter �� presenting three

di
erent algorithms for solving the optimization equations�

Applications of these techniques to unsupervised learning and to real world

problems conclude the �rst part� The second part of the thesis� in turn� will deal

with the theoretical aspect of minimizing regularized risk functionals by assessing

the capacity of such estimators�





� Cost Functions

In order to construct algorithms for the problems ������� ������� and ������ one

has to specify which cost function c�x
 y
 f�x�� to choose� This thesis will only

consider convex cost functions� The practical reason being that in this case the

problems mentioned above can be proven to have a unique minimum �cf� Fletcher

�������� For many nonconvex cost functions the attempt to solve the corresponding

risk minimization problems results in combinatorial optimization settings which are

NP�hard as they exhibit many local minima��

Roadmap

After a brief review of the connection between cost functions and noise models the

�rst section focuses on deriving the optimization equations for arbitrary convex

cost functions� This lays the foundations for decoupling the SV approach from the

speci�c choice of a cost function made by Vapnik ������� Sparsity will be preserved as

long as there exists an � insensitive zone in the loss function� Robustness� conversely�

as long as the maximum slope of the cost function c with respect to f�x� is bounded�

For several cases of loss functions �linear� polynomial� piecewise polynomial� hard

margin� etc� �� explicit optimization problems are given in a directly implementable

way� Experiments show that the increased degree of freedom in choosing a model

may� in fact� contribute to improved generalization�

This� however� raises the question of what to do with this increased degree of

freedom� In a restricted toy model of a SV machine with ��insensitive loss� an

answer can be given by means of asymptotical statistics� Astonishingly� despite the

rather crude assumptions made in deriving the result� experimental �ndings con�rm

the linear scaling behaviour between external noise level and the �asymptotically�

optimal degree of ��insensitivity� Unfortunately these results hold only in the case

when both level and type of the external noise are known�

A modi�cation of the basic SV algorithm to allow for automatic tuning of the

margin can be used to adjust � in an �asymptotically� optimal fashion� provided�

the type of the external noise is known� This result builds on the scaling behaviour

between optimal � and noise level� Parameters for polynomial noise are given�

Maximum likelihood takes the following approach to choosing cost functions�

Remark ��� Cost Functions and Maximum Likelihood

Under the assumption that the samples were generated by an underlying functional

dependency plus additive noise yi  ftrue�xi� # �i with density p��� the optimal

�� It is possible to �nd reasonable convex proxies �cf� Wahba 
����� for the case of pattern
recognition� for most real world cost functions� though�
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cost function in a maximum likelihood sense would be

c�x
 y
 f�x��  � log p�y � f�x��� �����

Proof The likelihood� of an estimate

Zf 	 f�x�
 f�x���
 � � � 
 �xm
 f�xm��g �����

under the assumption of additive noise which is independent of x and iid data is

PrfZf jZg  
mY
i��

Prff�xi�j�xi
 yi�g  
mY
i��

Prff�xi�jyig  
mY
i��

p�yi � f�xi��� �����

Maximizing PrfZf jZg is equivalent to minimizing � logPrfZf jZg� Using �����
yields

� logPrfZf jZg  
mX
i��

c�xi
 yi
 f�xi��� �����

which proves the statement�

However� the cost function resulting from this reasoning might be nonconvex� In

this case one would have to �nd a convex proxy in order to deal with the situation

e�ciently �i�e� to �nd an e�cient implementation of the corresponding optimization

problem��

Moreover� the situation of regression as such� i�e� without any knowledge of cost

functions� is not properly de�ned from the viewpoint of structural risk minimiza�

tion	 risk can only be minimized if it can be quanti�ed via a cost function �i�e� a

penalty for deviations��

Finally� given a speci�c cost function from a real world problem� one should try

to �nd as close a proxy to this cost function as possible� as it is the performance

wrt� this particular cost function that matters ultimately�

��� Convex Programming Problems �again�

This section lays the foundations for general convex optimization problems� For this

purpose one has to generalize the quadratic programming problems stated in �����

and ������� By replacing the slack variables �i
 �
�
i by ci��i� and c

�
i ��

�
i � one obtains

the following optimization problem�

minimize Q�f � # C
mP
i��
�ci��i� # c�i ��

�
i ��

subject to

����
���

yi � hw
 xii � b � �i # �i

hw
 xii# b� yi � ��i # ��i
�i
 �

�
i � �

�����

where

ci��� 	 c�xi
 yi
 yi # �i # ��

c�i ��� 	 c�xi
 yi
 yi � ��i � ��
�����

�� We are not looking for the probability of f which would require the knowledge of a prior
on f � Hence the present reasoning is in order� With slight abuse of notation we denote the
likelihood by Prfg just in the same way as the probability�
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loss function c��� density model

��insensitive j�j� p��� � �
������

exp��j�j��

Laplacian j�j p��� � �
�
exp��j�j�

Gaussian �
�
�� p��� � �p

��
exp�� ��

�
�

Huber�s

robust loss

�
�
��
���� if j�j � �

j�j � �
�
otherwise

p��� �

�
exp�� ��

��
� if j�j � �

exp��
�
� j�j� otherwise

Polynomial �
p
j�jp p��� � p

�����p�
exp��j�jp�

Piecewise

polynomial

�
�

p�p��
���p if j�j � �

j�j � � p��
p

otherwise
p��� �

�
exp�� �p

p�p��
� if j�j � �

exp�� p��
p

� j�j� otherwise

Table ��� Common loss functions and corresponding density models

and �i
 �
�
i are chosen such that c�xi
 yi
 yi# ��  � for � � ����i 
 �i�� For squared loss

this would imply� �
���
i  �� c

���
i ���  

�
��

��

����� Common Choices

The initial choice in Vapnik ������� as already discussed in Sec� ��� is the ��

insensitive loss function� cf� ������ with

c�x
 y
 f�x��  jy � f�x�j� hence c
���
i ���  � ���	�

It follows directly from �Huber� ����� that this cost function is robust in the class

of uniform densities (polluted� by an additional small arbitrary density� This is also

backed by empirical results �M�uller et al�� ����� for SV machines�

Other possible loss functions include Laplacian loss� leading to median type

approximations� squared loss� being optimal for normal additive noise� several

polynomial loss functions� and their robust counterparts where the maximum

steepness has been limited� Table ��� summarizes common loss functions and the

corresponding density models as de�ned by ������ �gure ��� contains graphs of the

corresponding functions�

Besides these standard choices one may enounter some more problem speci�c

functions in practical situations�

Example ��� Locally Dependent �i
Assume the precision of the measurements depends on the location of the measure�

ment� Hence it appears reasonable to take advantage of the latter� This can be done

by de�ning

c�x
 y
 f�x�� 	 jy � f�x�j��x�
 ���
�

and in particular c�xi
 yi
 f�xi�� 	 jyi � f�xi�j�i � Note that there is no direct need
to de�ne the function c on X� In order to minimize the regularized risk� or solve one

of the related problems it su�ces to know c on the training set Z� Though� if c was

allowed to vary too much� uniform convergence could not be satis�ed even with a

very simple class of models� On the other hand� if c was �xed before the analysis is

performed� this problem vanishes�

�� It is understood that expressions written with ��� are assumed to hold for the corre�
sponding quantities with and without the asterisk �� Moreover note that ci is the ��clipped
version of the original cost function and should not be confused with the ��insensitive loss
itself� In the latter case ci��i� � ��
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One may think of even more complicated cost functions� even in very generic settings

like pattern recognition�

Example ��� Soft Margin in Classi	cation �Cortes and Vapnik� �����

There is no reason why c should only depend on the di
erence between y and f�x��

In the case of binary classi�cation one has yi � f��
 �g� and therefore
c�x
 y
 f�x�� 	 maxf�
 �� yf�x�g� �����
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Figure ��� Graphs of loss functions and corresponding density models� upper

left	 Gaussian� upper right	 Laplacian� lower left	 Huber�s robust� lower right	 ��

insensitive

����� Solving the Equations

For practical issues it is crucial to bring ����� into a form which is more suitable

to solve� Unfortunately there is �so far� no general way of doing this for arbitrary

regularization functionals Q�f �� In fact� one has to solve the equations separately

for any of the three choices ������� ������� and �������

For the sake of simplicity additionally assume c� as described by ����� to have at

most two �for symmetry� discontinuities in the �rst derivative at ���i and �i �with
�
���
i � �� and to be zero in the interval between� This is not a major restriction�

as all loss functions from table ��� belong to this class� For nonzero cost functions

in the interval ����i 
 �i� use an additional pair of slack variables� At the expense of
additional Lagrange multipliers in the dual formulation� additional discontinuities

also can be taken care of�



��� Convex Programming Problems �again	 ��

Assume Q�f �  �
�kwk�� Now again� by standard Lagrange multiplier techniques�

exactly in the same manner as in the j � j� case� one can compute the dual
optimization problem of ������ Indices i and

� are omitted where their meaning is
obvious� This yields

maximize

����
���

� �
�

mP
i�j��

��i � ��i ���j � ��j �hxi
 xji

#
mP
i��

�
yi��i � ��i �� �i�i # ��i�

�
i #

�
� �Ti��i� # T �i ��

�
i ��
� ������

where

��
� w  

mP
i��
��i � ��i �xi

T
���
i ��� 	 c

���
i ��� � ���c

���
i ���

������

subject to

�������
������

mP
i��
��i � ��i �  �

� � �
���c���

�  inff� j ����c � �g
�
 � � �

������

The proof is straightforward� rather technical� and follows from �Smola and

Sch�olkopf� ����a�� Now consider the examples of table ���� The two following ex�

amples show� how ������ can be further simpli�ed to bring it into a form that is

practically useful�

Example ��� Vapnik
s Loss Function

As already shown before in the ��insensitive case� i�e� ci���  � one gets T ���  

��� ��  �� Morover one can conclude from ��ci���  � that �  inff� j �� � �g  �
and hence � � ��
 ��	�
Example ��� Piecewise Polynomial Loss

Here one has to distinguish two di
erent cases	 � � � and � � �� The �rst case

yields

T ���  
�

p�p��
�p � �

�p��
�p  �p��

p ���p�p ������

and �  f� j �����p�p�� � �g  ��
�

p���
�

p�� � Therefore

T ���  �p��
p ��

p
p���

p
p�� � ������

In the second case �� � ��

T ���  � � � p��
p � �  �� p��

p ������

and

�  inf


� j �� � �

�
 � and hence � � ��
 �� 	 � ������

These two cases can be combined into one as

� � ��
 ��	 and T ���  �p��
p ��

p
p���

p
p�� � ����	�

Table ��� contains a summary of the various conditions on � and formulas for T ���

for di
erent cost functions� Note that the maximum slope of ci determines the

region of feasibility of �� i�e� s 	 sup��R� ��ci��� � 
 leads to compact intervals

��
 ��s� for �� This means that the in�uence of a single pattern is bounded� leading

to robust estimators �Huber� ������ One can also observe experimentally that the

performance of a SV machine depends signi�cantly on the cost function �M�uller
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� � �
�
T ���

��insensitive � �� � � � 
�� �
�
� �

�
T ��� � �

Laplacian � � � � � 
�� �
�
� �

�
T ��� � �

Gaussian � � � � � 
���� �
�
T ��� � � �

�
���

Huber�s

robust loss
� � � � � 
�� �

�
� �

�
T ��� � � �

�
����

Polynomial � � � � � 
���� �
�
T ��� � � p��

p
�

�
p���

p
p��

Piecewise

polynomial
� � � � � 
�� �

�
� �

�
T ��� � � p��

p
��

�
p�� �

p
p��

Table ��� Terms of the convex optimization problem depending on the choice of

the loss function�

et al�� ����� Smola et al�� ����b��

A cautionary remark is necessary regarding the use of cost functions other

than the ��insensitive one� Unless � � � one will lose the advantage of a sparse

decomposition� This may be acceptable in the case of few data� but will render

the prediction step computationally quite expensive otherwise� Hence one will have

to trade o
 a potential loss in prediction accuracy for faster predictions� Note�

however� that a reduced set algorithm like in �Burges� ����� Burges and Sch�olkopf�

����� Osuna and Girosi� ����� Sch�olkopf et al�� ����b� could be applied to alleviate

this problem�

����� Experiments

A close look at table ��� shows that one may distinguish two di
erent cases� Lapla�

cian� Gaussian� Huber�s robust� and the ��insensitive cost function lead to quadratic

programming problems which can be solved by standard quadratic programming

methods� Other cost functions lead to convex programming problems which are

more di�cult to minimize� Whilst the algorithmic issue will be considered in chap�

ter �� one also has to answer the question whether additional generalization perfor�

mance can be gained by further extending the choice of available cost functions�

One can see that this is the case� indeed� For the experimental setup arti�cial

data generated by an additive noise model with p��� � exp��j�j���� and standard
deviation ��� was used� Clearly in this case� neither an L� nor an L� cost function

would be optimal in a maximum likelihood sense� The generalization error is

measured in terms of the k�k��� norm�
To cope with potential nonlinearities in the training data� Gaussian rbf�kernels�

are used with ��  ���� the analyzed cost functions are of the piecewise polynomial

type with �  �� and polynomial degree p � ��
 ��� The functional dependency

is y  sinc�x�� x � R
� and the data equidistantly distributed over the interval

���	
 �	� with sample size ��� In order to obtain reliable results the generalization
error was averaged over ��� runs where the best regularization parameter �  ��C

was selected by crossvalidation for each run independently� The exponent of the

cost function is varied to measure how well each exponent performs� Figure ���

exhibits a minimum close to p  ���� which was the exponent of the exponential

distribution that generated the noise� Observe the improvement with respect to L�

�� See section � for details�
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Figure ��� Generalization error depending on the noise model� Left	 sample size

m � ���� right	 sample size m � ���� The noise had unit variance and zero mean�

distributed � exp��j�j�����

�p  �� and Huber�s �p  �� robust loss� i�e� the values at the boundary of the

interval�

This experimentally shows that the additional freedom in adapting the noise

model can improve generalization performance in SV regression� The large error

bars are due to the overall variation of the generalization error in di
erent runs�

This in turn is caused by the rather small sample size �m  ���
 ���� and signal

to noise ratio ������� Measuring the relative variance �i�e� for each �xed test and

training set separately� would have led to much smaller error bars�

��� Asymptotically Optimal Choice of �

The above reasoning still leaves one with the question which cost function to choose�

and even for a �xed cost function� say the ��insensitive� it is not clear� how to adjust

the parameter �� One might think that setting �  � would lead to best results as

it pays most attention� to the data� However� in general this is not true�

For the sake of simplicity let us consider a toy model of a SV machine � the

estimation of a location parameter setting� i�e� the attempt to estimate one single

parameter by using the ��insensitive cost function�

This section follows largely �Smola et al�� ����a�� One can show that there is a

nontrivial choice of � for which the statistical e�ciency of estimating a location

parameter using the ��insensitive loss function is maximized and that the optimal

� is proportional to the variance of the random variable �here additive noise� under

consideration�

����� Statistical Preliminaries

For this purpose one has to introduce some statistical notations� Denote by )��Z�

an estimator of the parameters � �not to be confused with the Lagrange multipliers

of the previous section� based on the sample Z and let Z �in this section� be drawn

according to some probability measure dP �Z
 �� �also parametrized by ��� Finally

denote by E���� the expectation of the random variable � with respect to p�Z
 ���

Now one can de�ne an unbiased estimator )��Z� by requiring

E �)��Z��
�  *�� ����
�
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Moreover one may introduce the Fisher information matrix I denoting

Iij 	 E
�
��i ln p�Z
 *�� � ��j ln p�Z
 *��

	

�

 ������

and the covariance matrix B of the estimator )� by

Bij 	 E ��)�i �E�)�i�
���)�j �E�)�j �
���
� � ������

The Cram+er�Rao inequality �Rao� ����� states that det IB � � for all possible

estimators )�� This allows us to de�ne the statistical e�ciency e of an estimator as

e 	 
�

det IB
� ������

Comparing the quality of unbiased estimators in this context can be reduced to

comparing their statistical e�ciencies� For a special class where )� is de�ned by

)��Z� 	 argmin
�

d�Z
 �� ������

and d is a two times di
erentiable function in � one can show �Murata et al�� �����

Lemma �� that asymptotically B  Q��GQ�� with

Gij 	 Cov
�
�
��id �Z
 *�� 
 ��jd �Z
 *��

	
and Qij 	 E

h
���i�jd�Z
 *��

i

�

������

and therefore e  �detQ����det IG�� This allows one to formulate the following

proposition�

Proposition ��� Asymptotically Optimal Choice of �

Denote by  a noise model and �i random variables drawn iid from � In the

estimation of a location parameter case with the ��insensitive loss as cost function�

the estimator achieves its maximal e�ciency for � chosen as

�opt  argmin
�

����� # ������
�� R �

�� ���d�

E
h
��� ln����

�
i
�

� ������

Proof For estimation of a location parameter one has to deal with a one�

parametrical model and estimate the mean of a distribution� Denote by p���� the

noise model given by the ��insensitive loss function�

p����  c� exp��j�j��  �

��� # ��

�
� if j�j � �

exp��� j�j� otherwise
� ������

Without loss of generality assume the location parameter to be � or formally

E �Zi��  ��
� Then the maximum likelihood estimator )��Z� is given by setting

d�Z
 ��  � �
m

mX
i��

ln p��Zi � ��� ������

Substituting ������ and ������ into the de�nitions of I
G
 and Q yields

I  E
h
��� ln����

�
i
�

����	�

G  E
h
��� ln p�����

�
i
�
 ��

Z �

��
���d� ����
�

�� One always could rede�ne the problem for a nonzero location parameter by shifting all
variables by the corresponding amount� We use the assumption for being able to compute
the second order moment more easily�
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Q  E
�
��� ln p����

	
�
 ���� # ��� ������

In ������ we exploited that  is symmetric and hence the E ��� ln���� term cancels

out� Exploiting e  Q���GI� and noting that optimal e�ciency is obtained �by

de�nition� for maximal e��� proves the statement�

����� Scaling Properties for di�erent Noise Models

To make things more explicit� consider di
erent choices of  and the corresponding

values of e�

Example ��� Gaussian Noise

Set  ���  ��
p
�	�� exp

����� ������� Then I  ���
 G  � � erf
�

�p
��


and

therefore

�

e
 
detGI

detQ�
 �	 exp�������

�
�� erf

�
�p
��

��
� ������

The maximum of e is obtained for ���  ������ and therefore one has a linear

dependency between � and the noise level�

A sanity check is to compute the optimal � for Laplacian noise�

Example ��� Laplacian Noise

Set ���  ������ exp��j�j���� Then I  ���
 G  exp������ and therefore
�
e  exp������ Here the maximum of e is achieved for ���  �� i�e� the case where

p� degenerates to the L
� loss� exactly matching the Laplacian noise� In this case

the estimator is asymptotically e�cient �e  ���

Finally consider the general case� For the sake of simplicity assume a symmetric

noise model� The only thing one has to show is that the e�ciency is not optimal

for ���  � but depends on the coe�cient � 	 ����

Example �� Arbitrary Symmetric Noise

One can derive general conditions for a linear scaling behaviour of �� Assume ��� to

be a symmetric density with unit variance� Hence �������� has standard deviation

�� Now rewrite G and Q in terms of � as

G  �

Z �

	

�

�
�����d�  �

Z �




���d�
 ������

I�  ��� and Q  �
����� This leads to

e  
detQ�

detGI
 

�������
����

R�

 ���d�

 
�����R�

 ���d�

� ������

What remains is to check that e does not have a maximum for �  �� Computing

the derivative of e with respect to � for �  � yields the su�cient condition

�����#���� � �� For instance any density with �����  � and ��� � � satis�es
this property�

It is not directly possible to carry over the conclusions to the SV case due to two

assumptions that may not be satis�ed� Neither is one dealing with the asymptotic

case nor is a SV machine a model of a single parameter� Instead� one has �nite

a sample size and estimates a function� Experiments illustrate� however� that the

conclusions obtained from this simpli�ed situation are still approximately valid in

the more complex SV case�
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����� Experiments

Consider a toy example� namely f�x�  �sinc ��	�x� ��� on ��
 ���� �� and ���
datapoints xi were drawn iid from a uniform distribution on ��
 ���� and generated

the sample via yi  f�xi� # �i� Here �i was a Gaussian random variable with zero

mean and variance ��� We used a Gaussian rbf kernel �see section �� of width �
� �

The purpose of these experiments was to exhibit the dependency on �� Hence

(model�selection� for the regularization parameter is carried out in such a way to

always choose the value which led to the smallest L� error �the same reasoning

works for the L� error� too� on the test set� Thereby it was possible to exclude side

e
ects of possible model selection criteria� For statistical reliability the results were

averaged over ��� trials�
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Figure ��� Left	 Inverse asymptotic e�ciency ������ for an ��insensitive model

and data with Gaussian noise� Right	 L� loss for m � �� and �xed noise level

� � ��� for di
erent values of �� averaged over ��� trials�

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Standard Deviation of the additive Noise σ

B
es

t ε
 fo

r 
L 1 lo

ss

Theoretical Prediction
50 samples            
100 samples           
200 samples           

Figure ��� Experimentally optimal choice of � and � for di
erent levels of Gaussian

noise vs� their theoretically predicted best value �	 � �����
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Figure ��� Relative L� error for di
erent values of � and di
erent levels of

Gaussian noise� For each �xed noise level the performance was normalized to

the best performing setting ���� i�e� the minimum of the error valley is �xed to

� independently of the noise level� The contour lines indicate the shape of the

valley � each line corresponds to a deterioration of ���" of the performance of the

estimator�

The left graph in �gure ��� shows the behaviour of the inverse statistical e�ciency

of estimators of a location parameter with the ��insensitive loss function� ��e clearly

exhibits a minimum at �  ���  ������ The right graph shows the L����
 ���� error

of the optimal �wrt� C� estimate for di
erent values of � for �xed noise �  ��� and

sample sizes m  ��� It shows a minimum for �  ������ which is not too far away

from the theoretically predicted minimum of ����� � ���  ������ Moreover observe
the qualitatively similar behaviour of both graphs�

Also note the approximately linear dependency in �gure ���� Again� � was chosen

such that optimal generalization performance was achieved� It is a striking example

for the quality of the calculations� It shows that over a wide range of di
erent

sample sizes and noise levels there exists a linear scaling behaviour which matches

closely the �  ������ prediction from theory� even though the assumptions are not

exactly satis�ed�

Figure ��� shows this dependency again� but this time already rescaled for

�  ���������� and relative to the best performance of the estimator for a

given noise level� Observe that the contour lines �each line corresponds to a

deterioration of ���"� are rather well centered around the theoretically optimal

quotient ����������  �� corresponding to the minimum of the relative error with

respect to the optimal predictor for a given noise �

These �ndings are corroborated by results of Solla and Levin ������� where it is

shown that for linear Boltzmann machines the best performance is achieved when

the internal noise� matches the external noise�
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��� Adaptive Noise Models

The considerations about asymptotically optimal choice still leave one with the

problem of having to guess a parameter� now the variance of the additive noise�

Thus� this result by itself� is not particularly useful in practice� What one wants is

an automatic method to determine �� This can be found as follows�

It is convenient to remember that asymptotically for �xed � the number of

Support Vectors converges to the number of samples deviating from the true

function more than � �this is true under the assumption that one is dealing with a

uniform convergent estimator� and SV regression is assumed to be one�� Now� if one

could construct a modi�ed algorithm that could be proven to have an asymptotically

�xed �previously chosen� fraction of SVs one would only have to adjust this fraction

such that it yields the corresponding setting of �� This is what will be done in the

following� but �rst some details of the algorithm � � �

����� The Basic Idea

Assume the case of ��insensitive loss� In this section denote by Remp�f
 �� the

corresponding empirical risk functional� Sch�olkopf et al� �����a�� Sch�olkopf et al�

�����b� modify the regularized risk functional Rreg�f � to automatically adapt ��

Rreg�f
 �� 	 Remp�f
 �� # ��# �Q�f � ������

Depending on the choice of the regularizer Q�f � one obtains Boosting type algo�

rithms� Linear Programming settings� or for Q�f �  �
�kwk� a new SV regression

algorithm� Rewriting ������ as a constrained convex optimization problem yields

minimize �
�kwk� # C

�
��# �

m

mP
i��
��i # ��i �

�

subject to

����
���

yi � hw
 xii � b � �# �i

hw
 xii# b� yi � �# ��i
�i
 �

�
i � �

������

Now one has to compute the Wolfe dual �for details see Sch�olkopf et al� �����a��

just as in the standard SV regression setting� As � is a variable of the optimization

problem this time and contributes only linearly it drops out in the dual� An equality

constraint takes its place and we obatin

maximize � �
�

mP
i�j��

��i � ��i ���j � ��j �hxi
 xji#
mP
i��

yi��i � ��i �

subject to

������
�����

mP
i��
��i � ��i �  �

mP
i��
��i # ��i �  C�

�i
 �
�
i � ��
 Cm �

������

with the standard expansion of f in terms of the Lagrange multipliers �i
 �
�
i 
 and

b� The nice property of this setting is that it still can be solved by a standard

optimization algorithm� just with an additional constraint� Just as b also � can

be computed by making direct use of the KKT conditions just as in section ������

However �also like b� it is more convenient to exploit primal�dual properties directly
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and obtain this parameter as a by product �i�e� the dual variable of the second

equality constraint� of the optimization algorithm�

Further modi�cations to �non�parametric models of cost functions instead of a

constant margin �i�e� heteroscedastic noise� exist� Moreover also the classi�cation

problem can be rewritten in a similar way to specify asymptotically the number

of SVs beforehand�� A thorough analysis of these issues can be found in Sch�olkopf

et al� �����b��

����� Properties of � SV Regression

The following proposition captures some fundamental properties of ��regression

�this name is chosen to distinguish this algorithm from the standard � regression

approach��

Proposition ��� Sch�olkopf� Bartlett� Smola� and Williamson �����a�

Assume � � �� The following statements hold	

�� � is an upper bound on the fraction of errors� i�e� number of samples lying outside

the � tube�

�� � is a lower bound on the fraction of SVs�

�� Suppose the data Z were generated iid from a distribution P �x
 y�  P �x�P �yjx�
with P �yjx� continuous� With probability �� asymptotically � equals both the

fraction of SVs and the fraction of errors�

The �rst two claims follow immediately from the dual optimization problem� The

third claim can be proven via a uniform convergence argument� Hence � SV

regression is an algorithm that can be used to �asymptotically� specify the number

of SVs beforehand�

����� Asymptotically Optimal Choice of �

Combining the previous results leads immediately to the following proposition

which solves asymptotically the choice of an optimal � for given classes of noise

models� This allows to compute � once and for ever�� given that the noise model

is known�

Remark ��� Optimal Choice of �

Denote by p a probability density with unit variance� and by P a famliy of noise

models generated from p by

P 	 


p
��p  �

� p
�
y
�

��
� ������

Moreover assume that the data were generated iid from a distribution p�x
 y�  

p�x�p�y � f�x�� with p�y � f�x�� continuous� i�e� generated by an underlying

functional dependency f � corrupted by additive noise� Then under the assumption

�� Specifying the number of SVs beforehand may appear strange� especially in separable
cases� However� by increasing the regularization parameter �� i�e� decreasing C� also
�separable� problems become �nonseparable�� This is not an unreasonable approach
as when using e�g� Gaussian rbf�kernels all problems would be separable for a certain
regularization strength on� See chapter � for details�
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of uniform convergence� the asymptotically optimal adaptation parameter � is

�  ��
Z �

��
p�t�dt where � 	 argmin




�

�p���� # p�����
�
��

Z 


�

p�t�dt

�
����	�

Proof For a uniformly convergent algorithm the estimate )f converges to the

underlying functional dependency f � Assume that SV regression satis�es this

property�� Then the probability of a deviation larger than � can be computed as

Pr
n
jy � )f�x�j � �

o
 Pr fjy � f�x�j � �g ����
�

 

Z
X�fR������g

p�x�p���dxd� ������

 ��
Z �

��
p���d�� ������

This is also the fraction of samples that will �asymptotically� become SVs� Therefore

an algorithm generating a fraction �  � � R �
�� p���d� SVs will correspond to an

algorithm with a tube of size �� The consequence is that� given a noise model

p���� one can compute the optimal � for it� and then� by using ������� compute

the corresponding optimal value �� This leads to an algorithm with asymptotically

optimal choice of ��

Next one exploits the linear scaling behaviour between the standard deviation �

of a distribution p and the optimal �� established in section ��� for the estimation of

a location parameter context� This means that one has to consider only distributions

of unit variance� say� p� to compute an optimal value of � that holds for the whole

class of distributions P generated via �������

The last step is to use e
�
	
�

�
 Q�

GI where the Fisher information is independent of

� and thus by ������ and ������ �the det was dropped as Q
G
 I are scalar quantities

in the present case�

�

e���
� G

Q�
 

�

�p���� # p�����
�
��

Z �

��
p�t�dt

�
������

The minimum of ������ yields the optimal choice of �� which allows computation of

the corresponding � and thus proves the statement�

Note that this reasoning only holds in the asymptotical case� with the approximation

of a SVM by the estimation of a location parameter� Thirdly we assumed the SVM

to be uniformly convergent to the true model� Hence the proof� is by no means

rigorous� Still the basic properties hold�

����� Polynomial Noise

Arbitrary polynomial noise models �� e�j�j
p

� with unit variance can be written as

p���  
�

�

r
�� �p �
�� �p �

p

�� �p �
exp

�
�
�r

�� �p �
�� �p �

j�j
�p
�

������

where ,�x� is the gamma function�	 Figure ��� shows the optimal value of � for

polynomial degrees in the interval ��
 ���� For convenience� the explicit numerical

values are repeated in table ����

�� Ways to show this are pointed out in part II of this thesis�
	� Equation ������ can be checked using some computer algebra program� e�g� Maple�
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Figure ��� Optimal 
 and � for various degrees of polynomial additive noise�

Polynomial Degree p � � � � �

Optimal 
 � ������ ������ ���	�	 ����	�

Optimal � for unit variance � ������ ����	� ����	� ���	��

Polynomial Degree p � � 	 � ��

Optimal 
 ����	� ���		� ������ ������ ������

Optimal � for unit variance ������ ������ ������ ������ ������

Table ��� Optimal 
 and � for various degrees of polynomial additive noise�

Observe that the lighter�tailed� the distribution becomes� the smaller � are

optimal� This is reasonable as only for very long tails of the distribution �data

with many outliers� it appears reasonable to use an early cuto
 on the in�uence of

the data �by basically giving all data equal in�uence via �i  C�m��

��� Summing Up

Contrary to common belief there is no explicit inherent connection between the

overall setting of SV machines and the particular ��insensitive or soft margin cost

functions mainly used in this context� In fact� the extension of the model of admis�

sible cost functions to arbitrary convex ones can lead to improved generalization

performance� while leaving the computational complexity rather unchanged �at

least for up to medium sized problems of up to ���� patterns��

The problem of choosing an optimal cost function from this �now even larger�

family can be solved in the asymptotic case of large sample size for a toy model of
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one estimating one parameter� Astonishingly� the predictions still work in the �nite

sample size case quite well� However one has to compute the optimal parameter

setting beforehand� knowing both the variance and the noise model of the data�

Thus� by itself� this additional insight is not very useful�

However� it can be quite e
ective when combined with a new variant of SV

regression� where the margin is adjusted automatically� As shown in the previous

section� one can compute an asymptotically optimal tradeo
 parameter for the

margin for each class of noise models� This solves the problem of having to know

the variance beforehand� However it does not address the problem of knowing the

noise model� i�e� p� Future research will show whether also this problem can be come

by as e
ectively�
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All the considerations so far only led to linear functions due to the nature of the

dot product in X� A possible way to extend SV machines is to extract features� e�g�

all quadratic monomials that can be constructed from x � Rd � and compute linear

dot products there��

Roadmap

The present chapter is central to this thesis� as it establishes a connection between

regularization operators and linear expansions in feature spaces� This� together with

Mercer�s theorem constitutes the foundation of methods for capacity control for a

wide range of regularizers�

Feature maps build the basis for the introduction of kernels with the de�nition of

the latter as dot products between mapped data in feature space� It is shown that

all basic equations from linear SV regression remain virtually unchanged by simply

replacing dot products by kernel functions� Mercer�s theorem states a condition

under which kernels may be used in SV machines� thus obviating the need to know

the feature map explicitly� This� however� raises the problem �to be answered in

the subsequent section� that in many cases it is by no means obvious that linear

functions in highdimensional spaces may exhibit good generalization performance�

The connection between kernels and regularization is made in the next section

by showing that the kernels k are Green�s functions of corresponding regularization

operators� Thus an equivalence between SV regression and regularization networks

is proven� Examples for both continuous and discrete expansions in eigensystems

provide the necessary tools for the analysis of some particular popular kernel

functions� Moreover the techniques also allow an analysis of ridge regression in

the regularization context�

Translation invariant kernels are a special� yet important case of SV kernels�

Thus they are analyzed �rst� It is shown that the Fourier transform diagonalizes

the regularization operators in this context� i�e� that the Fourier transform of the

kernel shows the �lter properties of a SV machine in frequency domain� Detailed

analysis is carried out for Gaussian� periodical Gaussian� Bn�spline� and Dirichlet

kernels� Finally� in the case of prior knowledge about the power spectrum of the

estimate� it is shown in the maximum likelihood context that a matching kernel

should be given by the inverse Fourier transform of the power spectrum�

Whilst the previous exposition was restricted to functions de�ned in �subsets of�

R� the analytic methods are extended to multivariate regression� Again� translation

invariant kernels are analyzed� this time Gaussian� exponential� and damped

�� Nilsson 
����� proposed a similar approach� however with explicit evaluation of the
maps into feature space�
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harmonic oscillator� rbfs� and their regularization properties in Fourier space are

stated� A note on invariances other than translation� and how corresponding kernels

could be obtained� concludes the exposition of this chapter�

The other popular group of kernels consists of �in�homogeneous polynomial ones�

A decomposition of the latter in terms of eigenfunctions� the identi�cation of a

corresponding regularization operator and rules how to construct further kernels

based on these techniques conclude the sections on speci�c SV kernels�

The next sections aim at extensions of the basic framework� First a non existence

statement of vector valued regularization operators is given which holds� provided

some basic assumptions �like permutation symmetry� on the space of target values

are satis�ed� This rules out the search for possibly elaborate means of controlling

capacity in the multi output case�

Using results from interpolation theory the class of kernels itself is extended

to conditionally positive functions� This also leads to new criteria for testing

which functions might satisfy Mercer�s condition� Moreover� the requirement of

orthogonality with respect to certain polynomial subspaces� which is needed for

some of the new functions� leads to algorithmic modi�cations of the basic SV setting�

These very modi�cations show the way to yet another extension � semipara�

metric modelling with SV machines� In contrast to previous attempts of encoding

prior knowledge in the kernel the idea is to encode this information by creating a

nullspace of the regularization operator� i�e� to encode prior knowledge outside the

kernel�

Relations of semiparametric modelling to other types of regularization such

as linear programming constraints and a worked through example conclude the

chapter�

��� Feature Maps

The SV equations are non�linearized� in the following way� De�ne the map

$ 	 X 	 S where S is some feature space� Now instead of ����� assume f to

take on the form	

f�x�  hw
$�x�i # b with w � S
 b � Y �����

where h � 
 � i denotes the dot product in feature space S� As all the equations
concerning the SV optimization problem can be written in terms of dot products

�cf� ������ and �������� it is straightforward to replace every occurence of x by $�x��

and obtain a nonlinear algorithm�

However� this plain setting has its limitations� Sure� one may compute many

features from input data� but this is quite expensive� with computational cost

increasing �at least� linearly in the number of features� Hence the dimensionality of

$�x� is limited to a few thousand features� Moreover� it is di�cult to compute the

right� features� requiring a serious amount of domain knowledge for the problem

at hand� Finally� it is not always clear what �atness in feature space� means for

f which is de�ned on input space X� A solution to these problems can be obtained

by a simple change of notation�

h$�x�
$�x��i  	 k�x
 x�� �����
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Thus k�x
 x�� replaces hx
 x�i� One obtains the equations for nonlinear SV regression	

maximize

����
���

� �
�

mP
i�j��

��i � ��i ���j � ��j �k�xi
 xj�

��
mP
i��
��i # ��i � #

mP
i��

yi��i � ��i �
�����

subject to

��
�

mP
i��
��i � ��i �  �

�i
 �
�
i � ��
 C�

�����

with

f�x�  

mX
i��

��i � ��i �k�xi
 x� # b� �����

f can be expressed in terms of k alone �$ appears only implicitly through the dot

product in S�� If k�x
 x�� is a function that can be computed easily� it is reasonable
to use k instead of $�x�� A simple example shows this situation	

Example ��� Quadratic Features on R� �cf� �Vapnik� ������

De�ne $ 	 R� 	 R� as

$�x�  �x��

p
�x�x�
 x

�
��� �����

In this case one obtains

k�x
 x��  h$�x�
$�x��i  x��x
��
� # �x�x�x

�
�x

�
� # x��x

��
�  hx
 x�i� ���	�

It follows directly from �Poggio� ����� that one can de�ne analogous kernels of

the type k�x
 x��  �hx
 x�i # ��p with p � N� In those cases� it is a signi�cant

improvement not having to compute $�x� explicitly� as the number of monomial

features of order p in n dimensions grows in a combinatorial fashion� The elegance of

using kernels lies in the fact that one can deal implicitly with spaces S of arbitrary

dimensionality without having to compute the map $ explicitly�

����� Fundamental Properties of SV Kernels

The next question is whether it is possible to reverse the way of reasoning for

kernels� i�e� under which conditions a symmetric kernel k�x
 x�� corresponds to a
dot product in some feature space S�

In �Mercer� ����� Aizerman et al�� ����� Boser et al�� ����� an answer is given�

Namely� a kernel corresponds to a dot product inS� if it satis�es Mercer�s condition�

i�e� if it generates a positive integral operator�

This follows directly from Mercer�s theorem� The version stated below is a special

case of the theorem proven in �K�onig� ����� p� ����� In the following we will assume

�X
 �� to be a �nite measure space� i�e� ��X� �
� As usual� almost all� means all
elements of Xm except a set of �m�measure zero�

Theorem ��� Mercer

Suppose k � L��X � X� is a symmetric kernel �i�e� k�x
 x��  k�x�
 x�� such that
the integral operator

Tk 	 L��X�	 L��X�

Tk 	 f��� 	 R
X
k��
 y�f�y�d��y� ���
�
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is positive� Let �j � L��X� be the eigenfunction of Tk associated with the eigenvalue

�j � � and normalized such that k�jkL�  ��
�� ��j�Tk��j � ���

�� �j � L��X� and supj k�jkL� �
�
�� k�x
 y�  

X
j�N

�j�j�x��j�y� �����

holds for almost all �x
 y�� where the series converges absolutely and uniformly for

almost all �x
 y��

A kernel satisfying the conditions of this theorem will be called a Mercer kernel� k

is a Mercer kernel if and only if it satis�esZ
X�X

g�x�g�x��k�x
 x��dxdx� � � for all g � L��X�� ������

����� A Serious Problem

However� de�ning $ implicitly through k also creates some serious problems� Mostly�

this map and many of its properties are unknown� Even worse� this method does

not generate any general rule about which kernel should be used� or why mapping

into a very high dimensional space often provides good results� seemingly defying

the curse of dimensionality� �Bellman� ������ This dilemma can be resolved by

showing that the kernels k�x
 x�� correspond to regularization operators P � the link
being that k is the Green�s function of P �P �with P � denoting the adjoint operator
of P �� In other words � given a Mercer kernel �nd the corresponding regularization

operator and vice versa�� For the sake of simplicity� only the case of regression will

be dealt with � the considerations� however� are also valid for classi�cation and

the solution of inverse problems�

��� The Connection between SV Machines and Regularization Networks

As already stated above� the key to the questions raised� lies in the consideration

of regularization operators� For this purpose it is necessary to brie�y review the

de�nition of the latter�

����� Regularization Networks

In regularization networks one minimizes the empirical risk functional Remp�f � plus

a regularization term� with

Q�f � 	 
�

�
kPfk� ������

de�ned by a regularization operator P in the sense of Tikhonov and Arsenin �������

i�e� P is a positive semide�nite operator mapping from the Hilbert Space H of

functions f under consideration to a dot product space D such that the expression

hPf � Pgi is well de�ned�� In the following the aim will be to show that ������ and
������ are equivalent �for some kernel k corresponding to P ��

�� The further exposition in this chapter follows largely 
Smola et al�� ���	e��
�� Formally one has the following de�nitions�
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For instance by choosing a suitable operator that penalizes large variations of

f one can reduce the well�known over�tting e
ect� Another possible setting also

might be an operator P mapping from L��R
d � into some Reproducing Kernel

Hilbert Space �Kimeldorf and Wahba� ����� Girosi� ����� �see also de�nition ������

In section ����� a worked through example �mainly taken from �Girosi et al�� ������

is provided for a simple regularization operator to illustrate this reasoning�

Similar to ������� one minimizes

Rreg�f �  Remp # �kPfk�  �

m

mX
i��

c�xi
 yi
 f�xi�� # �kPfk�� ������

Using an expansion of f in terms of some symmetric function k�xi
 xj� �note here�

that k need not ful�ll Mercer�s condition��

f�x�  
X
i

�ik�xi
 x� # b
 ������

and the cost function de�ned in ������ this leads to a quadratic programming

problem similar to the one for SVs� By computing Wolfe�s dual �for details of

the calculations see �Smola and Sch�olkopf� ����a��� and using

Dij 	 h�Pk��xi
 ��
 �Pk��xj 
 ��i ������

Kij 	 k�xi
 xj� ������

one gets �  D��K�� � ���� with �i
 ��i being the solution of

minimize �
�

mP
i�j��

���i � �i���
�
j � �j��KD��K�ij#

mP
i��
�����i # �i�� yi��

�
i � �i��

subject to
mP
i��
��i � ��i �  �
 �i
 �

�
i � ��
 �

m� �

������

����� The Relation to SV Machines

Comparing ����� with ������ leads to the question if and under which condition

the two methods might be equivalent and therefore also under which conditions

regularization networks might lead to sparse decompositions �i�e� only a few of

the expansion coe�cients �i in f would di
er from zero�� A su�cient condition is

D  K �thus KD��K  K�� i�e�

k�xi
 xj�  h�Pk��xi
 ��
 �Pk��xj 
 ��i �self consistency� ����	�

In the case of K not having full rank D is only required to be the inverse on the

image of K� The pseudoinverse for instance is such a matrix� Eq� ������ is the main

equation of this chapter� The goal now is to solve the following two problems	

Given a regularization operator P � �nd a kernel k such that a SV machine using

k will not only enforce �atness in feature space� but also correspond to minimizing

a regularized risk functional with P as regularization operator�

Given an SV kernel k� �nd a regularization operator P such that a SV machine

using this kernel can be viewed as a Regularization Network using P �

P � H� D� P � � D� H� and P �P � D � D�
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The two problems can be solved by employing the concept of Green�s functions as

described in �Girosi et al�� ������ These functions were introduced in the context of

solving di
erential equations� For the current purpose� it is su�cient to know that

the Green�s functions Gxi�x� of P
�P satisfy�

�P �PGxi��x�  �xi�x�� ����
�

The relationship between kernels and regularization operators is formalized in the

following proposition	

Proposition ��� Green
s functions and Mercer Kernels

Be P a regularization operator� and G be the Green�s function of P �P � Then G

is a Mercer Kernel such that D  K� i�e� G�xi
 xj�  h�PG��xi
 ��
 �PG��xj 
 ��i�
SV machines using G minimize the regularized risk functional with kPfk� as
regularizer��

Proof Substituting ������ into Gxj �xi�  
�
Gxj ���
 �xi���

�
yields

Gxj �xi�  
�
�PGxi����
 �PGxj ����

�

 ������

hence G�xi
 xj� 	 Gxi�xj� is symmetric and satis�es ������� Thus the SV optimiza�

tion problem ����� is equivalent to the regularization network counterpart �������

Furthermore G is an admissible nonnegative kernel� as it can be written as a dot

product in Hilbert Space� namely

G�xi
 xj�  h$�xi�
$�xj�i with $ 	 xi ��	 �PGxi����� ������

which proves the proposition�

A similar result can be obtained by exploiting Mercer�s theorem in a more straight�

forward manner� by using the expansion into a convergent series of its eigensystem

�cf� ����� in theorem ���� directly�

This is particularly useful for the approximation of periodical functions and will

come handy in section ����� as we will have to deal with a discrete eigensystem in

this case�

Proposition ��� A Discrete Counterpart

Given a regularization operator P with an expansion of P �P into a discrete

eigensystem ��n
 �n� and a kernel k with

k�xi
 xj� 	 
X
n

dn
�n

�n�xi��n�xj�
 ������

where dn � f�
 �g for all m� and
P

n
dn
�n
convergent� Then k satis�es �������

Proof Evaluating ������ and using orthonormality of the system � dn�n 
 �n�� yields	

hk�xi
 ��
 �P �Pk��xj 
 ��i ������

�� �xi�x� is the ��distribution� which has the property that hf� �xii � f�xi��
�� This condition is su�cient but not necessary for satisfying ������� Any projection of G
onto an invariant subspace of P �P would also satisfy this equation� Note that as G� � � � �
being a function on X�X the projection operator has to be applied to it as a function of
both the �rst and the second argument�
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�X
n

dn
�n

�n�xi��n���
 P
�P

�X
n�

dn�

�n�
�n��xj��n����

��

 
X
n�n�

dn
�n

dn�

�n�
�n�xi��n��xj� h�n���
 P �P�n����i

 
X
n

dn
�n

�n�xi��n�xj�  k�xi
 xj�

Rearranging of the summation coe�cients is allowed� as the eigenfunctions are

orthonormal and the series
P

n
dn
�n
converges� Consequently a large class of kernels

can be associated with a given regularization operator �and vice versa� thereby

restricting oneself to some subspace of the eigensystem of P �P �
The intuition of this reasoning is� that there exists a one to one correspondence

between kernels and regularization operators only on the image of H under the

integral operator �Tkf��x� 	 
R
k�x
 y�f�y�dy� namely that Tk and P

�P are inverse
to another� On the null space of Tk� however� the regularization operator P

�P
may take on an arbitrary form� In this case k still will ful�ll the self consistency

condition�

Excluding eigenfunctions of P �P from the kernel expansion e
ectively decreases
the expressive power of the set of approximating functions� i�e� one limits the capac�

ity of the system of functions� Removing low capacity �i�e� very �at� eigenfunctions

from the expansion will have an adverse e
ect� though� as the data will have to be

approximated by the higher capacity functions�

In the following this relationship will be exploited in both ways	 to compute

Green�s functions for a given regularization operator P and to infer the regulariza�

tion operator from a given kernel k�

��� Translation Invariant Kernels

Now consider more speci�cally regularization operators P that may be written as

multiplications in Fourier space �i�e� P �P is diagonalized in the Fourier basis�

hPf
 Pgi  �

��	�n��

Z
�

'f���'g���

P ���
d� ������

with 'f��� denoting the Fourier transform of f�x�� and P ���  P ���� real valued�
nonnegative and converging to � for j�j 	 
 and & 	 supp�P ����� Small values

of P ��� correspond to a strong attenuation of the corresponding frequencies� Hence

small values of P ��� for large � are desirable� since high frequency components of
'f correspond to rapid changes in f � Thus P ��� describes the �lter properties of

P �P � note that no attenuation takes place for P ���  �� as these frequencies

have been excluded from the integration domain &�

For regularization operators de�ned in Fourier Space by ������ it can be shown

by exploiting P ���  P ����  P ��� that

G�xi
 x�  
�

��	�n��

Z
Rd

ei��xi�x�P ���d� ������

is a corresponding Green�s function satisfying translational invariance� i�e�

G�xi
 xj�  G�xi � xj� and 'G���  P ���� ������
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Figure ��� Left	 B��spline kernel� Right	 Fourier transform of k �in log scale��

For the proof� one only has to check that G satis�es ������� This yields an e�cient

tool for analyzing SV kernels and the types of capacity control they exhibit� In

fact� the above is a special case of Bochner�s theorem �Bochner� ����� stating that

the Fourier transform of a positive measure constitutes a positive Hilbert Schmidt

kernel�

����� Bn�splines

Vapnik et al� ������ proposed to use Bn�splines �see Fig� ���� as building blocks for

kernels� i�e�

k�x�  

dY
i��

Bn�xi� ������

with x � R
d � For the sake of simplicity� consider the case d  �� Recalling the

de�nition �up to scaling factors� of Bn splines as n # � times convolutions of the

unit interval �cf� �Unser et al�� ������

Bn  

n��O
����������
 ����	�

one can utilize the above result and the Fourier�Plancherel identity to construct

the Fourier representation of the corresponding regularization operator� Up to a

multiplicative constant� it equals

P ���  'k���  
dY
i��

sinc�n���
��i
�


� ����
�

This solves the question why only B�splines of odd order are admissible� although

both even and odd order B�splines converge to a Gaussian for n 	 
 due

to the law of large numbers	 the even ones have negative parts in the Fourier

spectrum �which would result in an ampli�cation of the corresponding frequency

components�� The zeros in 'k stem from the fact that Bn has only compact support

���n # ����
 �n # ������ By using this kernel one trades reduced computational
complexity in calculating f �one only has to take points into account whose distance

kxi � xjk is smaller than c� for a possibly worse performance of the regularization
operator as it completely removes frequencies �p with 'k��p�  ��
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Figure ��� Left	 Gaussian kernel with standard deviation ���� Right	 Fourier

transform of the kernel�

����� Gaussian Kernels

Following the exposition of Yuille and Grzywacz ������ as described in �Girosi et al��

������ one can see that for the pseudodi
erential operator�

kPfk�  
Z

dx
X
n

��n

n-�n
�Onf�x��� ������

with O�n  %n and O�n��  r%n� % being the Laplacian and r the Gradient

operator� we get Gaussians kernels �see Fig� ����

k�x�  exp

�
�kxk

�

���

�
� ������

Moreover� we can provide an equivalent representation of P in terms of its Fourier

properties� i�e� P ���  exp
�
���k�k�

�


up to a multiplicative constant� Training

a SV machine with Gaussian RBF kernels �Sch�olkopf et al�� ����� corresponds to

minimizing the speci�c cost function with a regularization operator of type �������

Recall that ������ means that all derivatives of f are penalized to obtain a very

smooth estimate� This also explains the good performance of SV machines in this

case� as it is by no means obvious that choosing a �at function in some high

dimensional space will correspond to a simple function in low dimensional space

�see section ����� for a counterexample��

Empirical �ndings show that Gaussian kernels tend to give good performance un�

der general smoothness assumptions� and therefore should be considered especially

if no additional knowledge of the data is available�

�� Roughly speaking a pseudodi�erential operator di�ers from a di�erential operator
insofar as it may contain an in�nite number of di�erential operators� These correspond
to a Taylor expansion of the operator in Fourier domain� Note the additional requirement
that the arguments lie inside the radius of convergence�
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Figure ��� Left	 Dirichlet kernel of order ��� Note that this kernel is periodical�

Right	 Fourier transform of the kernel�
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Figure ��� Left	 Regression with a Dirichlet Kernel of order N � ��� One can

clearly observe the over�tting �solid line	 interpolation� �#�	 original data�� Right	

Regression of the same data with a Gaussian Kernel of width �� � � �dash dotted

line	 interpolation� �#�	 original data��

����� Dirichlet Kernels

Vapnik et al� ������ also introduced a class of kernels generating Fourier expansions

to interpolate data on Rd � namely

k�x� 	 �

nX
j��

cosjx  
sin��n# ��x�

sin x
�

� ������

As in section ����� consider x � R� to avoid tedious notation� By construction�

this kernel corresponds to P ���  �
�

Pn
i��n �i���� A regularization operator with

these properties� however� may not be desirable� as it only damps a �nite number

of frequencies �cf� Fig� ���� and leaves all other frequencies unchanged which can

lead to over�tting �Fig� �����

In some cases it might be useful to approximate periodical functions� e�g� func�

tions de�ned on a circle� This leads to the second possible type of translation in�

variant kernel functions� namely functions de�ned on factor spaces	 de�ning trans�

lation invariant kernels on a bounded interval is not a reasonable concept as the

data would hit the boundaries of the interval when translated by a large amount�

Therefore only unbounded intervals and factor spaces are possible domains�
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Figure ��� Left	 Periodical Gaussian kernel for several values of � �normalized to

� as its maximum and � as its minimum value�� Peaked functions correspond to

small �� Right	 Fourier coe�cients of the kernel for �� � ���

Without loss of generality assume the period to be �	� thus consider translation

invariance on R��	� The next section shows the consequences of this setting for the

operator de�ned in section ������

����� Periodical Gaussian Kernels

Analogously to ������� de�ne a regularization operator on functions on ��
 �	�d by

kPfk�  	�d
Z
�����d

dx
X
n

��n

n-�n
�Onf�x��� ������

with O as in section ������ For the sake of simplicity assume d  �� A generalization

to multidimensional kernels is straightforward�

It is easy to check that the Fourier basis f �� 
 sin�nx�
 cos�nx�
 n � Ng is an
eigensystem of the operator de�ned above� with eigenvalues exp�n

���

� �� Now apply

proposition ���� taking into account all eigenfunctions except n  �� This yields the

following kernel	

k�x
 x��  
�X
n��

e�
n���

� �sin�nx� sin�nx�� # cos�nx� cos�nx���

 

�X
n��

e�
n���

� cos�n�x � x��� ������

For practical purposes one may truncate the expansion after a �nite number of

terms� Moreover k can be rescaled to have a range of exactly ��
 �� by using the pos�

itive o
set
�P
n��
����n��e�n���

� and the scaling factor �
�

�P
n��

e�
��n������

� �cf� Fig� �����

Another kernel kp for P on a periodical domain can by found by letting

kp�x
 x
�� 	 

X
n�Z

k�x� x� # �	n�� ������

In the context of periodical functions� the di
erence between this kernel and the

Dirichlet kernel of section ����� is that the latter does not distinguish between the

di
erent frequency components in � � f�n	
 � � � 
 n	g� However� it e
ectively limits
the maximum capacity of the system to an approximation of the data with a Fourier

expansion up to the order n�
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����� Practical Implications

The question that arises now is which translation invariant kernel to choose� One

can think of two extreme situations�

Suppose that the shape of the power spectrum� Pow�f ���� of the function one

would like to estimate is known beforehand� In this case one should choose k such

that 'k matches the expected value of the power spectrum of f � This can be seen as

follows in a maximum likelihood setting	

The power spectrum of a function f�x�  
P

j �jk�xj 
 x� �i�e� the Fourier transform

of its autocorrelation� is de�ned as

Pow�f ���� 	 jF �f ����j� � ������

One has to show that the expected value of the power spectrum of f has to be

proportional to the autocorrelation of the kernel function itself� i�e�

E �Pow�f ����� � Pow�k����� ������

By the linearity of the Fourier transform� F �f ���� can be written as

F �f ����  F �k����
X
j

�je
�i�xj � ����	�

Hence

E �Pow�f �����  E

�
�Pow�k����ei�
 X

j

�je
i�xj

X
j�

�j�e
�i�xj�

�
�

 Pow�k����E

�
�X

j

�je
i�xj

X
j�

�j�e
�i�xj�

�
�

 Pow�k����E
hX

j
j�j j�

i
����
�

as E��j�j�e
i��xj�xj� ��  �jj� under the assumption of translation invariance of the

setting� The same result can be obtained directly by construction in a Gaussian

process setting � there the functions f are estimated according to a covariance � 

autocorrelation� function� namely k�x
 x���

However� if one knows very little about the given data� a general smoothness

assumption is a reasonable choice� Thus a Gaussian kernel like in section �����

or ����� is recommendable� If computing time is important one might moreover

consider kernels with compact support� e�g� using the Bn�spline kernels of section

������ This choice will cause many matrix elements kij  k�xi � xj� to vanish�

The usual scenario will be in between the two extreme cases and one will have some

limited prior knowledge available which should be used in the choice of kernels as

the goal of the present reasoning is to give a guide to selection of kernels through

a deeper understanding of the regularization properties� For more information on

using prior knowledge for choosing kernels� e�g� by explicit construction of kernels

exhibiting only a limited amount of interactions� see �Sch�olkopf et al�� ������

�� In the following Pow
f ���� denotes the power spectrum of f at frequency �� Similarly
F 
f ���� denotes the Fourier transform of f at ��
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Figure ��� Comparison of regularization properties in the low frequency domain

of B��spline kernel and Gaussian kernel ��� � ���� Down to an attenuation factor

of � 	 ����� i�e� in the inteval 
��� �� both types of kernels exhibit similar �lter

characteristics�

Prior knowledge can also be used to determine the free parameters of the kernel�

e�g� its width ��� in sections ����� and ����� � Besides that model selection principles

like structural risk minimization �Vapnik� ������ cross validation �Stone� ����� Amari

et al�� ����� Kearns� ����� Guyon et al�� ������ MDL �Rissanen� ������ Bayesian

methods �MacKay� ����� Bishop� ������ etc� can be employed� See also chapters �

and � on generalization bounds for kernels�

Choosing a small width of the kernels can lead to high generalization error as it

e
ectively decouples the separate basis functions of the kernel expansion into very

localized functions which is equivalent to memorizing the data� whereas an overly

wide kernel tends to oversmooth�

Finally� note that the choice of the width may be more important than the actual

functional form of the kernel� There may be little di
erence in the relevant part of

the �lter properties between e�g� a B�spline and a Gaussian kernel �cf� Fig� �����

As will be shown in Sec� � this heuristic is quite true if one is interested only in

uniform convergence results of a certain degree of precision � in that case only a

small part of the power spectrum of k really matters�

The current section concludes with an analysis of Ridge Regression viewed under

the aspect of regularization in Fourier domain�

����� Ridge Regression

A frequent choice of the regularization operator is D  � �see �������� i�e� Dij  �ij �

This approach often is called Ridge Regression� and is a very popular method in

the context of shrinkage estimators� For instance example ��� leads to this setting

when introducing nonlinear functions�

Now one may pose a similar question as in section ������ namely regarding the

equivalence of Ridge Regression and Support Vectors� No answer is available for a

direct equivalence� however� one can show that one may obtain models generated
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by the same type of regularization operators� The requirement for an equivalence

of the latter would be

Dij  D�xi
 xj�  h�Pk��xi
 ��
 �Pk��xj 
 ��i  �ij ������

for all possible choices of xi � Rd � Unfortunately this requirement cannot be met for

the case of the Kronecker �� as ������ implies the function D�x�
 � � to be nonzero

only on a set with �Lebesgue� measure �� The solution is to change the �nite

Kronecker � into the more appropriate ��distribution� i�e� ��xi � xj��

By a similar reasoning as in Proposition ���� one can see that ������ holds for

k�x
 y� being the Green�s function of P � Note that as a regularization operator

�P �P �
�
� is equivalent to P as one can always replace the latter by the former

without any di
erence in the regularization properties� Therefore� without loss of

generality� assume that P is a positive semide�nite endomorphism� Formally one

requires

h�Pk��xi
 ��
 �Pk��xj 
 ��i  
�
�xi���
 �xj ���

�
 �xi�xj ������

Again� this allows to connect regularization operators and Kernels �one has to �nd

the Green�s function of P to satisfy the equation above�� For the special case of

translation invariant operators denoted in Fourier space one can associate P with

Pridge���� leading to

kPfk��  
Z ����� 'f���

Pridge���

�����
�

d�� ������

This expansion is possible as the Fourier transform diagonalizes� the corresponding

regularization operator� i�e� multiple applications of P become multiplications in

the Fourier domain� Comparing ������ with ������ leads to the conclusion that

the following relation between kernels for Support Vector Machines and Ridge

Regression has to hold	

'PSV���  jPridge���j� ������

In other words� the in Ridge Regression it is the squared Fourier transform of the

kernels that determines the regularization properties�

This connection also explains the performance of Ridge Regression Models in a

smoothing regularizer context �the squared norm of the Fourier transform of kernel

functions describes the regularization properties of the corresponding kernel� and

allows one to �transform� Support Vector Machines to Ridge Regression models and

vice versa� Note� however� that the sparsity properties of Support Vectors are lost�

Also note �cf� section ������ that it is much more di�cult to obtain good capacity

bounds in this context� as very often the model complexity increases arbitrarily

with the number of basis functions�

��� Translation Invariant Kernels in Higher Dimensions

Things get more complicated in higher dimensions� There are basically two ways

for constructing kernels in Rd � Rd 	 R with d � �� if no particular assumptions

on the data are made� Firstly one could construct kernels k 	 Rd � Rd 	 R by

k�x� x��  k�x� � x��� � � � � � k�xd � x�d�� ������
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This choice will usually lead to preferred directions in input space� as the kernels

are not rotation invariant in general �the exception being Gaussian kernels��

The second approach consists in setting

k�x� x��  k�kx� x�k��� ������

This approach leads to kernels which are both translation invariant and rotation

invariant� It is quite straightforward� however� to generalize the exposition to the

rotation asymmetric case� In order to proceed one has to de�ne the basic ingredients

needed for the further calculations�

����� Basic Tools

The d�dimensional Fourier transform is de�ned by

F 	 L��R
d �	 L��R

d � with F �f ���� 	 
�

��	�d��

Z
Rd

e�ih��xif�x�dx� ������

Then its inverse transform is given by

F�� 	 L��R
d �	 L��R

d � with F���f ��x�  
�

��	�d��

Z
Rd

eih��xif���d�� ������

Moreover for radially symmetric functions� i�e� f�x�  f�kxk��� one can explicitly
carry out the integration on the sphere to obtain a Fourier transform which is also

radially symmetric �cf� �Sneddon� ����� M�uller� ������	

F �f ��k�k�  ���H� �r
�f�r���k�k�
 ����	�

where � 	 �
�d� � and H� is the Hankel transform over the positive real line� The

latter is de�ned as

H� �f ���� 	 

Z �

�

rf�r�J� ��r�dr� ����
�

Here J� is the Bessel function of the �rst kind de�ned by	

J��r� 	 r����
�X
j��

����jr�j
��jj-,�j # � # ��

� ������

Note that H�  H��
� � i�e� f  H� �H� �f �� �in L�� due to the Hankel inversion

theorem �Sneddon� ������ This �nally allows one to use ������ to compute the

Green�s functions directly from the regularization operators given in Fourier space

in Rd �

����� Regularization Properties of Kernels in Rd

Now for some examples of kernels typically used in SV machines� this time in Rd �

First one has to compute the Fourier�Hankel transform of the kernels�

Example ��� Gaussian RBFs

For Gaussian rbfs in d dimensions one gets k�r�  ��de�
r�

��� and correspondingly

F �k����  �����dH�

h
r�e�

r�

���

i
��� ������

	� ��x� is the gamma function� i�e� for n � N we have ��n� �� � n��
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 �����������d��e�
����

�

 e�
����

�

or in other words � the Fourier transform of a Gaussian is a Gaussian� also in

higher dimensions�

Example ��� Exponential RBFs

In the case of k�r�  e�ar one gets

F �k����  ���H�

�
r�e�ar

	
��� ������

 ���������a	�
�
�,
�
� # �

�

� �
a� # ��

���� �
�

 �
d
� a	�

�
�,
�
d
� # �

� �

�a� # ���
d��
�

i�e� in the case of d  � one recovers the damped harmonic oscillator �in fre�

quency domain�� In general� a decay in the Fourier spectrum like ���d��� can
be observed� Moreover the Fourier transform of k� viewed itself as a kernel� i�e�

k�r�  
�
� # r�

�� d��
� � yields the initial kernel as its corresponding power spectrum

in Fourier domain�

Example ��� Damped Harmonic Oscillator

Another way to generalize the harmonic oscillator� this time in a way� that k does

not depend on the dimensionality d is to set k�r�  �
a��r� � Following �Watson� �����

sec� ����� leads to

F �k����  ���H�

�
r�

a� # r�

�
��� ������

 ���a�K���a�

whereK� is the Bessel function of the second kind� de�ned by �see �Sneddon� ������

K��x�  

Z �

�

e�x cosh t cosh��t�dt� ������

It is possible to upper bound F �k� via

K��x�  

r
	

�x
e�x

�
�p��X
j��

��x��j
,
�
� # j # �

�

�
j-,

�
� � j # �

�

� # � � ��x��p ,
�
� # p# �

�

�
j-,

�
� � p# �

�

�
�
� ������

with p � �� �
� and � � ��
 �� �Gradshteyn and Ryzhik� ����� eq� ������������ As one

can see� the term in the brackets ��� converges to � for x 	 
 and thus results in

exponential decay of the Fourier spectrum�

Example ��� Generalized Bn Splines

Finally it remains to �nd a suitable generalization of Bn�splines to d dimensions�

One method consists in de�ning

Bd
n 	 

nO
j��

�Ud��� ������

i�e� to de�ne Bd
n to be the n#��times convolution of the unit ball Ud in d dimensions�

Employing the Fourier�Plancherel identity one can obtain its Fourier transform as

the �n# ��th power of the Fourier transform of the unit ball� i�e�

F �Bd
� ����  �������J������ ������
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and therefore

F �Bd
n����  ���n��������Jn����� ���� ����	�

One can observe that only odd n generate admissible Hilbert�Schmidt kernels� as

only then the kernel has a nonnegative Fourier transform�

����� A Note on Other Invariances

The invariance of the kernels presented so far has been exploited only in the context

of invariance with respect to the translation group in Rd � Yet the methods could

also be applied to other symmetry transformations corresponding to other canonical

coordinate systems such as the rotation and scaling group as proposed by Segman

et al� ������ and Ferraro and Caelli ������� e�g� to a logpolar parametrization of Rd

�leading to the Fourier�Mellin transform�� or the parametrization of manifolds� In

particular any Abelian �Lie� group generates a map on X via its generators� This

in turn can be exploited to de�ne Fourier transforms on these domains and thereby

build kernels which exhibit invariance wrt� other transformations�

��� Kernels of Dot�Product Type

A large class of Support Vector Kernels is not translation invariant� This includes

kernels of the type

k�x
 x��  t �hx
 x�i� � ����
�

For instance� polynomial kernels �hx
 x�i# c�p of homogeneous �c  �� or inhomo�

geneous type �c � �� belong to this class� As already discussed in the beginning

of this chapter it follows directly from �Poggio� ����� that polynomial kernels sat�

isfy Mercer�s condition� Now the question arises� which regularization operator P

these kernels might correspond to� and which functions t might be admissible ones�

Obviously P cannot be translation invariant� as this is not the case for k either�

Note that although lacking translation invariance� these kernels still exhibit �by

construction� the property of rotation invariance � orthogonal transformations R

are isometries of the Euclidean dot product	 hx
 yi  hRx
Ryi�
Skipping tedious calculations� one can guess� an operator satisfying ������ for

homogeneous polynomials� The following proposition formalizes this �nding

Proposition ��� Regularization for Polynomial Kernels

Denote by n  �n�
 � � � 
 nd� � Nd� a multi index with jnj 	 
Pd

i�� ni and by�
p

n

�
	 

p-

�p� jnj�-Qd
i�� ni-

������

the multinomial coe�cient� Moreover let

Dn
� f 	 

�

n�-
�n�x� � � �

�

nd-
�ndxd f�x�

���
x��

������
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and en be an orthonormal basis� i�e� hen
 en�i  �nn� �� Then the operator Pp

Pp 	 
X
jnj�p

en

�
p

n

� �
�

Dn
� � ������

acts as a regularization operator and satis�es ������ with k�x
 x��  hx
 x�ip as its
Green�s function�

Note that Pp is only well�de�ned on functions that are p times di
erentiable�

Accordingly one has to restrict the space of functions under consideration to Cp�

This is not a major restriction as polynomial kernels are in C� by construction�

Proof sketch only� To prove the statement one has to expand k into

hx
 x�ip  
X
jnj�p

�
p

n

�
xjnjx�jnj ������

Here xjnj  
Qd

i�� x
ni
i � Substitution of ������ and ������ into ������ proves the

proposition�

This result can be used to give an analogous expansion for the inhomogeneous case�

and present a su�cient condition for t�hx
 x�i� to be an admissible Mercer kernel�
Going back to example ��� one may now construct an operator for k�x
 x��  

hx
 x�i�� Denoting �
��

�
x� 
 �x��x� 


�
��

�
x� the projectors onto the corresponding mono�

mials one gets

P�  e�
�

�
��x� # e��x��x� # e�

�

�
��x� � ������

An intuitive description of P� would be that the data is mapped from R� into

a ��dimensional feature space �S  R
� � by computing monomials of degree ��

Subsequently one seeks to compute the �attest function in this new space�

It is interesting that the homogeneous polynomial kernel also satis�es the self

consistency condition ������ for the following operator

P  
�X
i��

Pi� ������

Remark ��� Regularization for Inhomogeneous Polynomial Kernels

In order to construct an operator for inhomogeneous polynomials� one makes use

of the expansion

�hx
 yi# c�p  

pX
i��

�
p

i

�
cp�jnjhx
 yii ������

�for convenience set c  ��� Hence one may decompose the inhomogeneous polyno�

mial kernel into a series of homogeneous kernels and construct the corresponding

operator by

Pinh  

pX
i��

�
p

i

� �
�

Pi  
X
jnj�p

en

�
p

n

� �
�

Dn
� � ������

�� Observe how for each n Dn

� extracts exactly one coe�cient from the monomials of
degree n�
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Exploiting this idea even further allows to state a su�cient condition for t�hx
 yi� to
be a Mercer kernel� As homogeneous polynomial kernels satisfy Mercer�s condition

so does any positive linear combination of them�

Corollary ��� Functions with Nonnegative Power�Series

For every function t�x� that can be expanded into a uniformly convergent power

series on R with nonnegative expansion coe�cients� i�e�

t�x�  
�X
i��

aix
i with ai � � ����	�

the kernel k�x
 x�� 	 t�hx
 x�i� is a Mercer kernel� The corresponding regularization
operator is

Pt  
�X
i��

a
���
i Pp� ����
�

Consequently� functions like ex� cosh�x�� sinh�x�� etc� could be used as possible

Mercer kernels �their practical usability may be a di
erent question� though��

Moreover note that the same argument applies for t�k�x
 x���	 if k is a Mercer
kernel� and t satis�es the conditions of Corollary ��� then

t�k�x
 x���  t�h$�x�
$�x��i� ������

is a Mercer kernel� So ������ provides further means to construct more general

kernels� e�g� k�x
 y� 	 sinh�ehx�yi��

��	 Regularization for the Multi Output Case

One might conclude that a regularizer of the type kPfk� is the most suitable one in
all cases� In fact� it is one of the most widespread ones �cf� �Tikhonov and Arsenin�

����� Morozov� ������� However� there is more to regularization than just to consider

functions where Y is a scalar or Q�f � is a quadratic functional�

Consider a straightforward extension of the functional Q�f �  �
�kPfk� to

�
� hPf
 Pfi where now Y� the space of target values� is a dot product space of di�

mensionality greater than � and P remains a scalar operator �i�e� it acts identically

and independently in each dimension � direction of Y�� It is quite di�cult even to

notice what has changed� and this extension de�nitely does not look very excit�

ing� Yet� under some assumptions of invariance� this is the only valid extension of

homogeneous second order regularization terms to vector valued functions�

Proposition �� Homogeneous Invariant Regularization

Any regularization term Q�f � that is both homogeneous quadratic and invariant

under an irreducible orthogonal representation � of the group�� G on Y� i�e� satis�es

Q�f � � � for all f � F ���	��

Q�af �  jaj�Q�f � for all scalars a ���	��

Q���g�f �  Q�f � for all g � G ���	��

��� G also may be directly de�ned on Y� i�e� it might be a matrix group like SU�d��



� Kernels and Regularization

is of the form

Q�f �  hPf
 Pfi where P is a scalar operator� ���	��

The motivation for the requirements ������ to ������ is as follows� The necessity

that a regularization term has to be positive ������ is self evident � at least it has

to be bounded from below� which then� via a positive o
set� can be transformed

into a posititivity condition�

Homogeneity ������ is a useful condition for e
ective capacity control � it allows

easy capacity control by noting that the entropy numbers �a quantity to be de�ned

in chapter �� scale in a linear� hence homogeneous� fashion when the hypothesis class

is rescaled by a constant� The requirement of being quadratic is a mere algorithmic

one as it allows to avoid the modulus operation in the linear or cubic case to ensure

positivity�

Finally� the invariance has to be chosen beforehand� If it happens to be su�ciently

strong� it can rule out all operators but scalar ones� Permutation symmetry is such

a case � for instance in classi�cation this would mean that all class labels are

treated equally�

Proof It follows directly from ������ and Euler�s homogeneity property� that Q�f �

has to be a quadratic form� thus Q�f �  hf
Mfi for some operator M � Moreover
M can be written as P �P as it has to be a positive operator �cf� �������� Finally

from

hPf
 Pfi  hP��g�f
 P��g�fi ���	��

and the polarization equation it follows that P �P��g�  ��g�P �P has to hold for

any g � G� Thus� by virtue of Schur�s lemma �cf� e�g� �Hamermesh� ������� it follows
that P �P only may be a scalar operator� Then� without loss of generality� also P

may be assumed to be scalar�

A consequence of the proposition above is that there exists no vector valued

regularization operator satisfying the invariance conditions� Hence it is useless to

look for other operators P in the presence of a su�ciently strong invariance�

Now for some practical applications of proposition ���� which will be stated in

the form of corollaries�

Corollary ��� Permutation and Rotation Symmetries

Under the assumptions of proposition ��� both the canonical representation of

the permutation group in a �nite dimensional vector space Y and the group of

orthogonal transformations on Y enforce scalar operators P �

This follows immediately from the fact that these groups �or representations on

Y� are unitary and irreducible on Y by construction�

Corollary ��� Kernel Expansions

Under the assumptions of proposition ��� the regularization functional Q�f � for a

kernel expansion

f�x�  
X
i

�ik�xi
 x� with �i � Y
 ���	��

where k�xi
 x� is a function mapping X�X to the space of scalars compatible with
the dot product space Y� can be stated as follows	

Q�f �  
X
i�j

h�i
 �jihPk�xi
 ��
 Pk�xj 
 ��i� ���	��
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In particular� if k is the Green�s function of P �P � one gets

Q�f �  
X
i�j

h�i
 �jik�xi
 xj�� ���		�

For possible application such as regularized principal manifolds see section ����

��
 A New Class of Support Vector Kernels

The strategy follows the lines of �Madych and Nelson� ����� as pointed out by

�Girosi et al�� ������ The main statement is that conditionally positive de�nite �cpd�

functions generate admissible SV kernels� This is very useful as the property of being

cpd is often easier to verify than Mercer�s condition� especially when combined

with the results of Schoenberg and Micchelli on the connection between cpd and

completely monotonic functions �Schoenberg� ����a�b� Micchelli� ������ Moreover

cpd functions lead to a class of SV kernels that do not necessarily satisfy Mercer�s

condition� yet still can be used in a �modi�ed� SV algorithm�

����� Tools and Functions from Interpolation Theory

De	nition ���� Conditionally Positive De	nite Functions

A continuous function h� de�ned on ��

�� is said to be conditionally positive
de�nite �cpd� of order p on Rd if for any distinct points x�
 � � � 
 xm � Rd the

quadratic form

mX
i�j��

cicjh�kxi � xjk�� ���	
�

is nonnegative provided that the scalars c�
 � � � 
 cm satisfy
Pm

i�� cip�xi�  � for all

polynomials p��� on Rd of degree lower than p�
De	nition ���� Completely monotonic functions

A function h�x� is called completely monotonic of order m if

����n dn

dxn
h�x� � � for all x � R

�
� and n � m� ���	��

It can be shown �Schoenberg� ����a�b� Micchelli� ����� that a function h�x�� is

conditionally positive de�nite if and only if h�x� is completely monotonic of the same

order� This gives a �sometimes simpler� criterion for checking whether a function is

cpd or not�

Proposition ���� CPD Functions and Admissible Kernels

De�ne .dp to be the space of polynomials of degree lower than p on R
d � Every cpd

function h of order p generates an admissible Kernel for SV expansions on the space

of functions f orthogonal to .dp by setting k�xi
 xj� 	 h�kxi � xjk���
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Proof Dyn ������� Madych and Nelson ������ show that cpd functions h of order

p generate semi�norms k�kh by

kfk�h 	 
Z

dxidxjh�kxi � xjk��f�xi�f�xj�
 ���
��

provided that the projection of f onto .dp is zero� For these functions� this� however�

also de�nes a dot product in some feature space� Hence they can be used as SV

kernels�

Consequently� one may use kernels like those proposed in the context of regulariza�

tion networks by �Girosi et al�� ����� as SV kernels	��

k�x
 x��  e��kx�x
�k� Gaussian
 �p  �� ���
��

k�x
 x��  �pkx� x�k� # c� multiquadric
 �p  �� ���
��

k�x
 x��  �p
kx� x�k� # c�

inverse multiquadric
 �p  �� ���
��

k�x
 x��  kx� x�k� ln kx� x�k thin plate splines
 �p  �� ���
��

Here the corresponding regularization operator P is given implicitly by the semi�

norm ������ as

kPfk�� 	 kfk�h� ���
��

However one has to ensure the orthogonality of the estimate with respect to .dp�

i�e� ensure that
Pm

i�� cip�xi�  � for all polynomials p��� on Rd of degree lower than
p with ci being the expansion coe�cients of the estimate� i�e� �i�

����� Algorithms

The next step is to state the algorithmic details how to actually compute the

expansion� In order not to lose expressive power in the estimate f it is necessary to

take the polynomials separately into account� i�e� modify expansion ������ to get

f�x�  

mX
i��

cik�xi
 x� # p�x� with p�x� � .dp ���
��

Both of these issues can be addressed by splitting f into a term f� orthogonal to .dp
for which kf�k�h is well de�ned� and a polynomial term which will not be regularized
at all� A logical extension of this concept leads to semiparametric regression schemes

as discussed in section ���� Hence the regularized risk functional ������ takes on the

following form

Rreg�f �  Remp�f � # �kf�k�h ���
	�

with f� 	 ���Proj�.dp��f and Proj��� denoting the projection operator� Note the
similarity to the expansions in �Kimeldorf and Wahba� ����� Cox and O�Sullivan�

������ which were stated to obtain expansions in the context of Reproducing Kernel

Hilbert Spaces �cf� de�nition ������ Repeating the calculations that led to �����

��� The necessary conditions derived by Burges 
���	a� using di�erential geometrical
methods on the �rst and second derivative of k are a subset of the necessary and su�cient
requirement of positive de�niteness�
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yields a similar optimization problem with the di
erence being that the equality

constraint
mX
i��

��i � ��i �  � ���

�

has been replaced with

mX
i��

��i � ��i �p�xi�  � for all p � .dp ���
��

Note that for p  � condition ������ reduces to ������ as .d� contains only the con�

stant function� The resulting optimization problem is positive semide�nite� however

only in the feasible region given by the equality constraints� Some of the eigenvalues

of the matrix K may be negative in the space of coe�cients not satisfying ������� It

can be seen very easily for the multiquadric case ������ � all entries Kij are neg�

ative� This can lead to numerical instabilities for quadratic programming codes as

they usually assume the quadratic matrix to be positive semide�nite not only in the

feasible region of the parameters but on the whole space �More and Toraldo� �����

Vanderbei� ������ A way to solve this problem is to remove the space S spanned by

all polynomials .dp on the data fx�
 � � � 
 xmg from the image of Kij while keeping

it symmetric by substituting Kij with ���� Proj�S��tK��� Proj�S���ij �
Example ��� Projecting out .d�

The space .d� consists of all polynomials on R
d of degree lower than �� i�e� only of the

constant function� Hence S� the span of .d� on any nonempty set fx�
 � � � 
 xmg � R
d

is spanf��g� Consequently �
m
����t is a projector onto that space and one gets

kij ��	
��
�� �

m
����t


k
�
�� �

m
����t


ij

������

Curiously enough the matrix one obtains by this method is identical to the one

being diagonalized in Kernel PCA �Sch�olkopf et al�� ����a� �see also section �����

This is clear� as projecting out the span of constant polynomials is equivalent to

centering in feature space�

Note that the standard SV approach already can deal with p  �� due to the

constraint
mP
i��
��i � ��i �  ��

Example �� Projecting out .d�

.d� consists of all constant and linear functions on fx�
 � � � 
 xmg� Here S  

span�fv�
 � � � 
 vng� with
v� 	 ��
 � � � 
 ��

vi 	 �xi�
 � � � 
 xim� for i � f�
 � � � 
 dg
������

In the case of m � d# �� already a linear model will su�ce to reduce Rreg�f � to ��

In this case the solution of the quadratic optimization problem is simply � as kij
will have rank � after the projection�

For m � d#� one has to transform v� � � � 
 vn into an orthonormal basis e�
 � � � 
 ed
of S� e�g� by applying the Gram�Schmidt procedure� This in turn allows one to

construct an orthogonal projector onto S and the corresponding modi�ed matrix

from kij �
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As one can observe� only cpd functions of order up to � are of practical interest

for SV methods� as the number of additional constraints and projection operations

increases in a combinatorial way� rendering the calculations computationally infea�

sible for p � �� For p  � for instance� one would have to project out all quadratic

monomials that can be computed in d dimensions �d  dim�X��� This is clearly too

expensive to compute� provided d is su�ciently large�

��� Semiparametric Estimation

The developments in the previous section lead to the question whether the action

of projecting out subspaces of the regularization operator might not be useful by

themselves� This is true� indeed� as it leads to semiparametric estimators���

����� Why Semiparametric Models are useful

One of the strengths of Support Vector �SV� machines is that they are nonpara�

metric techniques� where one does not have to e�g� specify the number of basis

functions beforehand�

While this is advantageous in general� parametric models are useful techniques

in their own right� Especially if one happens to have additional knowledge about

the problem� it would be unwise not to take advantage of it� For instance� it might

be the case that the major properties of the data are described by a combination

of a small set of linear independent basis functions f����
 � � � 
 n���g� Or one may
want to correct the data for some �e�g� linear� trends� Secondly it also may be

the case that the user wants to have an understandable model� without sacri�cing

accuracy� Many people in life sciences tend to have a preference for linear models�

This may be some motivation to construct semiparametric models� which are both

easy to understand �for the parametric part� and perform well �often due to the

nonparametric term�� For more advocacy on semiparametric models see �Bickel

et al�� ������

A common approach is to �t the data with the parametric model and train the

nonparametric add�on on the errors of the parametric part� i�e� �t the nonpara�

metric part to the errors� It is shown in Sec� ����� that this is useful only in a very

restricted situation� In general� it is impossible to �nd the best model amongst a

given class for di
erent cost functions by doing so� The better way is� to solve a con�

vex optimization problem like in standard SV machines� however� with a di
erent

set of admissible functions

f�x�  hw
��x�i #
nX
i��

�ii�x�� ������

����� Theoretical Basis

In the following this setting will be treated more formally� For the sake of simplicity�

the exposition is restricted to the case of SV regression with the ��insensitive loss

function ������ Extensions are quite straightforward and follow directly from the

results of chapter ��

��� Parts of this section have been published as 
Smola et al�� ���	c��
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Some basic notions on reproducing kernel Hilbert spaces are useful in this context�

The following de�nition is adapted from �Aronszajn� ������

De	nition ���� Reproducing Kernel Hilbert Space

Let F be a class of functions de�ned in H forming a Hilbert space �complex or

real�� The function k�x
 y� in H is called a reproducing kernel of F if

�� For every y� k�x
 y� as function of x belongs to F �

�� The reproducing property 	 for every y � E and every f � F �

f�y�  hf���
 k��
 y�iH ������

The function k is unique for given F
H � in fact� it is the SV kernel introduced pre�

viously� As the regularization operator P generates a Hilbert space by hP ���
 P ���i�
one can associate a corresponding kernel k �i�e� the Green�s function of P �P � with
it�

Note that the regularized risk approach can also be dealt with� by using Repro�

ducing Kernel Hilbert Spaces �RKHS�� which may lead to sometimes more elegant

exposition of the subject �cf� �Aronszajn� ����� ����� Kimeldorf and Wahba� �����

Micchelli� ����� Saitoh� ����� Wahba� ����� Girosi� ����� Sch�olkopf� �������

The semiparametric approach now is motivated by the following theorem �which

holds for arbitrary cost functions�	

Theorem ���� Kimeldorf and Wahba ������ Cox and O
Sullivan ������

Let H be a reproducing kernel Hilbert space of real valued functions on X with

reproducing kernel k� Denote byX the training set� and let $ 	 f�
 � � � 
 ng
 n � N

be a set of functions on X such that the matrix $�j 	 ��xj� has maximal rank�

Then for

)f  argmin
f�span ����h�h�H

�
�

m

mX
i��

c�xi
 yi
 f�xi�� # �khk�H
�

������

one has

)f � span �$  fk�x�
 ��
 � � � 
 k�xm
 ��g�� ������

Thus an expansion of type ������ is equivalent to ������ and moreover optimal in

the above setting� E
ectively this result already contains the subsequent reasoning�

Hence one should consider it mainly as an approach to include semiparametric

regularization functionals in a convex programming approach� Moreover it is also

an extended solution to the problem created in Sec� ���� where for conditionally

positive de�nite kernels of order p � � the �nal estimate may not contain polynomial
contributions up to degree p�

Keeping Q�f �  �
�kwk�� i�e� the standard regularizer ������� means� that there

exist functions ����
 � � � 
 n��� whose contribution is not regularized at all� If n is
su�ciently smaller than m this need not be a major concern� as the VC�dimension

of this additional class of linear models is n� hence the overall capacity control will

still work� provided the nonparametric part is restricted su�ciently�

Figure ��� explains the e
ect of choosing a di
erent structure in detail� Observe

that the optimal model is already contained in much a smaller �in the diagram� size

corresponds to the capacity of a subset� subset of the structure with solid lines than

in the structure denoted by the dotted lines� Hence prior knowledge in choosing the

structure� i�e� making a luckier� guess� can have a large e
ect on generalization
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Figure ��� Two di
erent nested subsets �solid and dotted lines� of hypotheses

and the optimal model �#� in the realizable case�

bounds and performance� Chapter � contains considerations on how to control the

capacity of such mixed models as semiparametric SV machines�

����� The Algorithm

Formulating the optimization equations for this particular expansion ������� the ��

insensitive loss function� and introducing kernels one arrives at the following primal

optimization problem	

maximize �
� kwk� #

mP
i��

�i # ��i

subject to

������
�����

hw
��xi�i#
nP
j��

�jj�xi�� yi � �# ��i

yi � hw
��xi�i �
nP
j��

�jj�xi� � �# �i

�i
 �
�
i � �

������

Solving ������ for its Wolfe dual yields

maximize

����
���

� �
�

mP
i�j��

��i � ��i ���j � ��j �k�xi
 xj�

��
mP
i��
��i # ��i � #

mP
i��

yi��i � ��i �

subject to

��
�

mP
i��
��i � ��i �j�xi�  � for all � � j � n

�i
 �
�
i � ��
 ����

����	�

Note the similarity to the standard SV regression model� The objective function and

the box constraints on the Lagrange multipliers �i
 �
�
i remain unchanged� The only

modi�cation comes from the additional unregularized basis functions� Instead of a

single �constant� function b � � in the standard SV case� one now has an expansion
in the basis �ii���� This gives rise to n constraints instead of one� Finally f can be
found as

f�x�  

mX
i��

��i � ��i �k�xi
 x� #
nX
i��

�ii�x� since w  

mX
i��

��i � ��i ���xi�� ����
�

The only di�culty remaining is how to determine �i� This can be done by exploiting

the Karush�Kuhn�Tucker optimality conditions �by a reasoning much similar to the

one that led to �������� or much more easily� by using an interior point optimization
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code �Vanderbei� ����� �see also Chapter ��� In the latter case the variables �i can

be obtained as the dual variables of the dual �dual dual  primal� optimization

problem ������ as a by�product of the optimization process� This is also� how these

variables were obtained in the experiments described below�

����� Why Back�tting is not su�cient

One might think that the approach presented above is quite unnecessary and overly

complicated for semiparametric modelling� In fact� one could try to �t the data to

the parametric model �rst� and then �t the nonparametric part to the residuals�

an approach called back�tting� In most cases� however� this does not lead to the

minimum of the regularized risk functional� It can be shown at a simple example�

Take a SV machine with linear kernel �i�e� k�x
 x��  hx
 x�i� in one dimension
and a constant term as parametric part �i�e� f�x�  wx # ��� This is one of the

simplest semiparametric settings possible� Now suppose the data was generated by

yi  xi where xi � � ������

without noise� Clearly then also yi � � for all i� By construction the best overall �t
of the pair ��
w� will be arbitrarily close to ��
 �� if the regularization parameter

� is chosen su�ciently small�

For back�tting one �rst carries out the parametric �t to �nd a constant �

minimizing the term
Pm

i�� c�yi���� Depending on the chosen cost function c���� �
will be the mean �L��error�� the median �L��error�� a trimmed mean ���insensitive

loss�� etc�� of the set fy�
 � � � 
 ymg� As all yi � � also � � �� which is surely not the
optimal solution of the overall problem� as in the latter case � would be close to ��

as seen above� Hence� not even in the simplest of all settings� back�tting minimizes

the regularized risk functional� thus one cannot expect the latter to happen in the

more complex case either� There exists only one case in which back�tting would

su�ce� namely if the function spaces spanned by the kernel expansion fk�xi
 ��g
and fi���g were orthogonal� Consequently in general one has to jointly solve for
both the parametric and the nonparametric part�

����� Experiments

What follows is a proof of concept and an analysis of the properties of the new

algorithm� The function analyzed is a modi�cation of the Mexican hat function�

namely

f�x�  sinx# sinc ���x� ���� �������

Our semiparametric assumption consists in using the basis functions �
 sinx� and

cosx �and for a sanity check also �
 sin �x
 cos �x�� Data is generated by an additive

noise process� i�e� yi  f�xi�#�i� where �i is additive noise� For the experiments we

choose Gaussian rbf�kernels with width �  ���� normalized to maximum output

�� The noise is uniform with standard deviation ���� the cost function j � j� with
�  ����� Unless stated otherwise averaging is done over ��� datasets with ��

samples each� The xi are drawn uniformly from the interval ��
 ���� L� and L�

errors are computed on the interval ��
 ��� with uniform measure�

Figure ��� shows the function and typical predictions in the nonparametric�

semiparametric� and parametric setting� Note the di
erent length scales of sinx and

sinc �x� For convenience the functions are shifted by an o
set of � and � respectively�
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parametric regression �dots��
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Figure ��	 L� error �left� and L� error �right� of the nonparametric � semipara�

metric regression computed on the interval 
�� ��� vs� the regularization strength

����

The regularization constant for the estimate was set to �  �� Observe that the

semiparametric model picks up the characteristic wiggles of the original function�

thus is able to generalize better than the standard SV machine�

Figure ��� shows that the generalization performance is better in the semipara�

metric case� Note that in both error measures the semiparametric model consistently

outperforms the nonparametric one�

The length of the weight vector of the kernel expansion kwk is displayed in
Fig� ����� Note that kwk� controlling the capacity of that part of the function�
belonging to the kernel expansion� is smaller �for practical choices of the regu�

larization term� in the semiparametric than in the nonparametric model� If this

di
erence is su�ciently large� the overall capacity of the resulting model is smaller

in the semiparametric approach�

Finally �gure ���� shows the quality of the estimate of the nonparametric part

�note that for decreasing regularization strength the contributions of the parametric

model converge to their least mean squares values� i�e� ������ sinx # ������ cosx��

Training set size was m  ��� Note the small variation of the estimate� Also note

that even in the parametric case ����  C  �� neither the coe�cient for sinx

converges to �� nor does the corresponding term for cosx converge to �� This is due

to the additional frequency contributions of sinc �x�

To make a more realistic comparison� model selection �in this case how to deter�

mine ���� was carried out by ���fold cross validation for both algorithms indepen�

dently for all ��� datasets� Table ��� shows generalization performance for both a
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Figure ���
 Length of the vector w in feature space �
P

i�j��i � ��i ���j �

��j �k�xi� xj��
��� vs� regularization strength� As before dotted lines indicate the vari�

ance�

Nonparam� Semiparam� Semiparam�

sinx� cos x� � sin �x� cos �x� �

L� error ������ 
 ������ ���� ���		� 
 �����	 �	�� ������ 
 ������ ���

L� error ������ 
 ������ ���� ������ 
 ������ �	�� ���	�� 
 ������ ���

Table ��� L� and L� error for model selection by ���fold crossvalidation� The

number in parentheses denotes the number of trials in which the corresponding

model was the best among the three models�

nonparametric model� a correctly chosen and an incorrectly chosen semiparametric

model� The correct semiparametric model �sinx
 cosx
 �� outperforms the nonpara�

metric model by at least ��"� and has signi�cantly smaller variance� whereas the

wrongly chosen semiparametric model �sin �x
 cos �x
 �� gives performance compa�

rable to the nonparametric one� in fact� no signi�cant performance degradation was

noticeable�

The experiments indicate that cases� in which prior knowledge exists on the

type of functions to be used� will bene�t from semiparametric modelling� Future

experiments have to show how much can be gained in real world examples�

��� �m
p
Norms and Other Extensions

The last modi�cation of regularization functionals are semiparametric regularizers

based on functionals of type ������ and ������� These will be brie�y reconsidered

with the concept of kernel expansions in mind� It leads to slightly modi�ed versions

of the previously discussed algorithms �e�g� linear programming semiparametric

machines��
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Figure ���� Estimate of the parameters for sinx �top picture� and cosx �bottom

picture� in the semiparametric model vs� regularization strength ���� The dotted

lines above and below show the variation of the estimate given by its variance�

��	�� Linear Programming Regularization �m� �

For Q�f �  
P

i j�ij the regularized risk minimization problem can be rewritten as

minimize Rreg�f �  �
mP
i��

j�ij#
mP
i��
�'c��i� # 'c��

�
i ��

subject to

������
�����

yi �
mP
j��

�jk�xj 
 xi��
nP
j��

j�xi�� b � �# �i

mP
j��

�ik�xj 
 xi� #
nP
j��

j�xi� # b� yi � �# ��i

�i
 �
�
i � �

�������

Besides replacing �i with �i���i � j�ij with �i#��i � and requiring �i
 �
�
i � � there

is hardly anything that can be done to render the problem computationally more

feasible � the constraints are already linear� Moreover most optimization software

can deal with problems of this type e�ciently�



��
 	mp Norms and Other Extensions ��

��	�� Weight Decay �m� �

What remains is to consider problems of the type

minimize Rreg�f �  
�
�

mP
i�j��

�i�jDij #
mP
i��
�'c��i� # 'c��

�
i ��

subject to

������
�����

yi �
mP
j��

�jk�xj 
 xi��
nP
j��

j�xi�� b � �# �i

mP
j��

�ik�xj 
 xi� #
nP
j��

j�xi� # b� yi � �# ��i

�i
 �
�
i � �

�������

resulting in weight decay for D  �� This setting leads to optimization problems as

stated in section ����� in ������� As already mentioned previously� sparsity is lost

due to the unmatched regularization term D and kernel k�

��	�� Mixed Semiparametric Regularizers

Eq� ������ in combination with ������ gives rise to the question whether not also

mixed regularization functionals would be possible� Indeed one can construct the

following variants� which is a mixture between linear and quadratic regularizers�

i�e�

Q�f �  
�

�
kwk� #

nX
i��

j�ij� �������

The equation above is essentially the SV estimation model where an additional

linear regularization term has been added for the parametric part� In this case the

constraints of the optimization problem ������ change into

�� �
mP
i��
��i � ��i �j�xi� � � for all � � j � n

�i
 �
�
i � ��
 ����

�������

and the variables �i are obtained as the dual variables of the constraints as already

mentioned before for several similar cases� Finally one could reverse the setting to

obtain a regularizer like

Q�f �  

mX
i��

j�i � ��i j#
�

�

nX
i�j��

�i�jMij �������

for some positive semide�nite matrix M � Note that ������� can be reduced to the

case of ������� by renaming variables accordingly and a proper choice of M �

The proposed regularizers are a simple extension of existing methods like Basis

Pursuit �Chen et al�� ����� or Linear Programming for classi�cation �e�g� �Frie�

and Harrison� ������� The common basic idea is to have two di
erent sets of basis

functions that are regularized di
erently� or where a subset may not be regularized

at all� This is an e�cient way of encoding prior knowledge or the preference of the

user� as the emphasis will be on the functions with little or no regularization at all�



�� Kernels and Regularization

��� Summing Up

A connection between SV kernels and regularization operators has been established�

which can provide one key to understanding why SV machines have been found

to exhibit high generalization ability� In particular for the common choices of

kernels� the mapping into feature space is not arbitrary but corresponds to good

regularization operators �see sections ������ ����� and ������� For kernels� however�

where this is not the case� SV machines may show poor performance �section �������

This will become more obvious in Sec� � where� building on the results of the current

chapter� the eigenspectrum of integral operators is connected with generalization

bounds of the corresponding SV machines�

Capacity control is one of the strengths of SV machines� however� this does not

mean that the structure of the learning machine� i�e� the choice of a suitable kernel

for a given task� should be disregarded� On the contrary� the rather general class

of admissible SV kernels should be seen as another strength� provided that we

have a means of choosing the right kernel� The link to regularization theory can

thus be seen as a tool for constructing the structure consisting of sets of functions

in which the SV machine �approximately� performs structural risk minimization

�e�g� �Vapnik� ������� possibly in a data dependent manner� In other words it allows

to choose an appropriate kernel given the data and the problem speci�c knowledge�

A simple consequence of the proposed link is a Bayesian interpretation of Support

Vector machines� In this case the choice of a special kernel can be regarded as a

prior on the hypothesis space with P �f � � exp���kPfk���
It should be clear by now that the setting of Tikhonov and Arsenin ������ is a

very powerful� but surely not the only one� However� a theorem on vector valued

regularization operators showed that already under quite generic conditions on the

isotropy of the space of target values only scalar operators are possible� thus an

extended version of their approach is the only admissible one�

The regularization framework has made it possible to extend the class of admis�

sible kernels to those de�ned by conditionally positive de�nite functions � a class

of kernels that do not necessarily have to satisfy Mercer�s condition�

Finally a closer consideration of the nullspace of regularization functionals Q�f �

led to the aforementioned semiparametric models� Its roots lie in the representer

theorem �Th� ����� proposed and explored in the context of smoothing splines by

Kimeldorf and Wahba ������� In fact� the SV expansion is a direct result of it�

Moreover the semiparametric setting solves a problem created by the use of

conditionally positive de�nite kernels of order p �see sec� ����� There one had to

exclude polynomials of order lower than p� Hence� to cope with this e
ect� one

has to add polynomials back in manually�� The semiparametric approach presents

a way of doing that� Another application of semiparametric models besides the

conventional approach of treating the nonparametric part as nuisance parameters

�Bickel et al�� ����� is the domain of hypothesis testing� e�g� to test whether

a parametric model �ts the data su�ciently well� This can be achieved in the

framework of structural risk minimization �Vapnik� ����� � given the di
erent

models �nonparametric vs� semiparametric vs� parametric� one can evaluate the

bounds on the expected risk and then choose the model with the best bound�



���� Appendix� A worked through example �

���� Appendix� A worked through example

This section shows how to construct a Support Vector kernel for the operator

kPfk�� 	 kfk�� #
nX
i��

k�xifk��� �������

This example is taken from �Girosi et al�� ����� and used to illustrate the reasoning

of this chapter in detail� For ease of notation assume f 	 R 	 R�

A corresponding representation of P �P in Fourier space yields

kPfk��  
Z
R

d�j 'f���j��� # ��� �����	�
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Figure ���� Left	 Laplacian kernel� Right	 Regression with a Gaussian �� � �� and

a Laplacian kernel �kernel width �� of the data shown in Fig� ����

or equivalently �cf� section ���� eq� ������� P ���  �
���� � In order to satisfy the self

consistency condition ������� one has to compute the inverse Fourier transform of

P ��� to obtain the Green�s functions of P �P �cf� �������� This leads to a kernel of
the form k�x
 x��  e�jx�x

�j�
An expansion in terms of the Laplacian kernel �not to be confused with the

Laplacian distribution of the same shape�� however� may not always be desirable

as it is by far less smooth than when using a Gaussian kernel �see Fig� ������
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Due to the size of the optimization problems arising from the SV setting one has to

pay special attention as to how these problems can be solved e�ciently� The current

chapter presents three algorithms for solving these convex programming problems

and gives an outline on how these can be combined and under which conditions

which algorithm should be preferred� This is quite an ambitious task and there

is absolutely no claim that the conclusions are optimal� It should be considered

as a starting point for the development of e�cient algorithms� Finally the present

chapter di
ers from the previous considerations insofar as it takes the setting of

pattern classi�cation� into account �as most of the conclusions drawn here apply

to pattern recognition� too� and the latter is still the testbed of choice for new

optimization algorithms��

Roadmap

Basic properties of convex optimization problems are reviewed in the �rst section�

This lays the foundations of the subsequent development of algorithms� After a

description of basic facts regarding the optimal solutions of such optimization

problems� the primal�dual formulation of mathematical programming problems�

a central aspect to constrained optimization problems� is introduced� Useful tricks

which may be applied to any type of optimization algorithm conclude this �rst

overview over optimization algorithms�

A direct consequence of the primal�dual reasoning are so called interior point

algorithms� These proceed by �nding a set of variables that is both primal and

dual feasible � an attempt that is quite contrary to common intuition which would

attempt to minimize the dual objective function directly without much further ado�

Interior point algorithms are some of the most �exible ones� especially regarding the

extensions of the basic SV algorithm to allow for optimal choices of �� general convex

cost functions� and semiparametric modelling� Special considerations concerning SV

regression and numerical experiments on the computational �sample� complexity of

such algorithms are given�

As interior point methods are �exible and precise but computationally expensive

methods for large datasets� working set methods are looked at in the subsequent

section� After deriving the optimization equations for the restricted set of variables

it is shown how subset selection rules can be seen from the point of primal and dual

objective functions� Common selection rules are described with an analysis of their

signi�cance�

�� For the optimization equations see 
Boser et al�� ����� Cortes and Vapnik� ����� Vapnik�
����� Sch�olkopf� ������



�� Optimization Algorithms

The last section is devoted to sequential minimal optimization �SMO� which could

be seen as a special case of the previously described working set algorithms� Besides

explicit optimization equations for a subset of two variables� detailed instruction for

implementation �including pseudocode� are given� Minor extensions such as pattern

dependent regularization complement the modi�cations of the algorithm that was

devised initially for pattern recognition�

��� Basic Notions and Duality Theory

Most optimization algorithms rely� in a more or less direct manner� on results from

duality theory in convex optimization� Although some of the basic ideas already

have been mentioned in section ������ these issues� for the sake of convenience� will

be brie�y reviewed� These constitute the core results one needs in order to derive

interior point and subset selection algorithms� Details and proofs can be found in

textbooks on optimization� e�g� �Fletcher� ����� Vanderbei� ������

����� Properties of the Optimal Solution

The purpose of the properties� stated in the following� is to �nd a characterization

of the optimal solution in terms of some optimality conditions� which� in turn can

be exploited to compute the optimum�

Uniqueness Every strictly convex constrained optimization problem has a unique

or no solution�� This means that SVs are not plagued with the problem of local

minima as Neural Networks are�� The uniqueness property can be seen as follows	

assume that there exist two points� say x� and x� where the minimum of the �primal

objective� i�e� target� function f�x�� is obtained� As the problem is strictly convex� all

points x� 	 �x�#�����x� are feasible� i�e� satisfy the constraints on the manifold

of the solution� Moreover f�x�� � �f�x�� # �� � ��f�x�� for � � ��
 �� due to the
convexity� This is a contradiction to the initial assumption that f�x��  f�x�� are

both minima of the constrained optimization problem� The same reasoning also

shows that there exist no local minima�

Lagrange Function The Lagrange function is given by the primal objective func�

tion �the one that should be minimized� minus the sum of all products between con�

straints and corresponding Lagrange multipliers �cf� e�g� �Goldstein� ����� Fletcher�

������� Optimization can be seen as minimzation of the Lagrange function wrt� the

primal variables or maximization wrt� the Lagrange multipliers� i�e� dual variables�

�� The latter might occur e�g� if the feasible region is noncompact in situations like
minx e

�x� Thanks to Olvi Mangasarian for pointing this out�
�� For large and noisy problems �e�g� ������� patterns and more� it is quite impossible
to �nd the exact minimum of the optimization equations� This is due to the fact that
one has to use subset selection algorithms� hence joint optimization over the training set
is impossible� and the global optimum is only approached up to a certain precision� say
������ Neural Networks� however� have the additional problem that one can not even be
sure that it is the global minimum one is approaching� as there are exponentially many
local minima 
Minsky and Papert� ������ Moreover� no statement can be made about the
absolute quality of the solution� i�e� the maximum distance of the current set of variables
to the optimal solution� However� all this reasoning is valid only in the case of convex cost
functions�
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Thus it has a saddle point at the optimal solution in terms of the primal and dual

variables� Usually the Lagrange function is only used as a theoretical device to

derive the dual objective function �cf� chapter �������

Dual Objective Function It is derived by minimizing the Lagrange function with

respect to the primal variables and subsequent elimination of the latter� Hence it

can be written solely in terms of the dual variables �i�e� Lagrange multipliers� and

leads to the dual maximization problem�

Duality Gap For both feasible primal and dual variables the primal objective

function �of a convex minimization problem� is always greater or equal than the

dual objective function� Equality is obtained if and only if we are at the optimal

solution� Thus the duality gap is a measure how close �in terms of the objective

function� the current set of variables is already to the optimal solution� It follows

directly from the saddlepoint property of the Lagrange function�

Karush�Kuhn�Tucker KKT� conditions A set of primal and dual variables

that is both feasible and satis�es the KKT conditions is the optimal solution �i�e�

constraint � dual variable  ��� The sum of the violated KKT terms determines

�by construction of the Lagrange function� exactly the size of the duality gap� This

allows to compute the latter quite easily�

A simple intuition to see why constraint � dual variable  �� can be found

in the fact that for violated constraints the dual variable could be increased

arbitrarily� thus rendering the Lagrange function arbitrarily large� This� however�

is in contradition to the saddlepoint property�

Consider a simple example	 a box containing a ball subject to the forces of gravity�

Only at the faces of the box �i�e� the constraints� where the ball �i�e� the variables�

touches the box �the domain of feasible regions� forces may be applied �i�e� yield

nonzero Lagrange multipliers�� The amount is given by the projections of the

gradient of the objective function �potential energy� onto the constraints �faces

of the box��

The above mentioned results allow to �nd e�cient solutions of the convex opti�

mization problem� In particular� a primal�dual formulation is quite useful in this

context�

����� Primal�Dual Formulation

In order to avoid tedious notation consider a slightly more general problem� The

results will be specialized to the SV case in the end�

minimize �
�q��� # hc
 �i

subject to A�  b

l � � � u

�����

with c
 �
 l
 u � Rm � A � Rn�m � b � Rn � the inequalities between vectors holding

componentwise� and q��� being a convex function of � �in the feasible region� i�e� in

the region where the constraints are satis�ed�� In the case of SV pattern recognition

�with soft margin� q���  �
� �� � ���	K�� � ��� with Kij  yiyjk�xi
 xj��

l  �
 u  C  �
� 
 b  �� etc�
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Now add slack variables to get rid of all inequalities but the positivity constraints�

This yields	

minimize �
�q��� # hc
 �i

subject to A�  b
 �� g  l
 �# t  u

g
 t � �
 � free
�����

The Wolfe dual of ����� is �cf� section ������

maximize �
� �q���� h��q���
 �i� # hb
 yi# hl
 zi � hu
 si

subject to �
���q��� # c� �Ay�	 # s  z

s
 z � �
 y free
�����

Moreover� one gets the Karush Kuhn Tucker �KKT� conditions� namely

gizi  �

siti  �

�
for all i � f�
 � � � 
mg� �����

As stated before� a necessary and su�cient condition for the optimal solution to

be found is that the primal � dual variables satisfy both the feasibility conditions

of ����� and ����� and the KKT conditions ������ Interior Point path following

algorithms work by solving the system of equations iteratively�

����� Useful Tricks

The following tricks apply to all algorithms described subsequently and �despite

their simplicity� can be used to speed up training signi�cantly or to monitor

convergence in a reliable fashion�

Training with Di�erent Regularization Parameters For several reasons

�model selection� controlling the number of support vectors� etc�� it may happen

that one has to train a SV machine with di
erent regularization parameters C� but

otherwise rather identical settings� If the parameters Ci are not too di
erent� it is

advantageous to use the rescaled values of the Lagrange multipliers �i�e� �i
 �
�
i � as

a starting point for the new optimization problem� Rescaling is necessary to satisfy

the modi�ed constraints� Thus one gets

�new  
Cnew

Cold
�old and analogously bnew  

Cnew

Cold
bold� �����

Assuming that the �dominant� convex part q��� of the primal objective is quadratic�

the latter scales with
C�
new

C�
old
� which is faster than the linear part� However� as

the linear term dominates the objective function �one obtains negative values in

practice� the convex term� however can only be nonnegative�� the rescaled values are

still a better starting point than �  �� In practice a speedup of approximately ��"

of the overall training time can be observed when using the sequential minimization

algorithm �cf� �g� �����

A similar reasoning can be applied when retraining with the same regularization

parameter but di
erent �yet similar� width parameters of the kernel function� See

�Cristianini et al�� ����� for details thereon in a di
erent context�

Monitoring Convergence via the Feasibility Gap In the case of both primal

and dual feasible variables the following connection between primal and dual
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objective function holds	

Dual Objective  Primal Objective�
X
i

�gizi # siti� �����

This can be seen immediately by the construction of the Lagrange function� In the

case of SV pattern recognition this translates intoX
i

�gizi # siti�  
X
i

�max��
 f�xi�yi � ���i �min��
 f�xi�yi � ���C � �i�� � ���	�

In regression estimation �with the ��insensitive loss function� one has

X
i

gizi # siti  
X
i

�
�����
#max��
 f�xi�� �yi # �i���C � ��i �

�min��
 f�xi�� �yi # �i���
�
i

#min��
 �yi � ��i �� f�xi���C � �i�

�max��
 �yi � ��i �� f�xi���i

�
    � � ���
�

Thus convergence with respect to the optimal solution can be expressed in terms

of the duality gap� An e
ective stopping rule is to requireP
i gizi # siti

jPrimal Objectivej# � � �tol �����

for some precision �tol� This condition is very much in the spirit of primal dual

interior point path following algorithms� where convergence is measured in terms of

the number of signi�cant �gures �which would be the decimal logarithm of �������

a convention that will also be adopted in the subsequent parts of this exposition�

��� Interior Point Algorithms

In a nutshell the idea of those algorithms is to solve ����� and ����� simultaneously�

This is achieved by seeking a set of variables that is both primal and dual feasible

and satis�es the KKT conditions� The latter are only gradually enforced� while

iteratively converging to a feasible solution� The duality gap between primal and

dual objective function is used to determine the quality of the current set of

variables� The special �avour of algorithm adopted is a primal�dual path�following

one as described by Vanderbei ������ �the present chapter largely preserves his

notation��

����� Solving the Equations

Hence one tries not to solve ����� as it is� but a modi�ed version instead for some

� � � in the �rst place� and decrease � while iterating�

gizi  �

siti  �

�
for all i � f�
 � � �mg� ������

Simultaneously the feasibility constraints are kept satis�ed �or at least improved

while iterating�� Still it is rather di�cult to solve the nonlinear system of equations

������ ������ and ������ exactly� However one is not interested in obtaining the exact

solution � instead the aim is to �nd a somewhat more feasible solution for a given

�� then decrease �� and keep on iterating� This can be done by linearizing the above

system �i�e� expanding variables x into x#%x� and solving the resulting equations



�� Optimization Algorithms

by a predictor�corrector approach until the duality gap is small enough� This means

that one will solve the linearized system for the variables in % once � this is the

predictor step � then substitute these variables back into the quadratic terms in

% and solve the linearized system again �corrector�� The advantage is that one will

get approximately equal performance as by solving the quadratic system directly�

provided that the terms in %� are small enough� The linearized system yields	

A�� #%��  b

�#%�� g �%g  l

�#%�# t#%t  u

c# �
���q��� #

�
��

�
�q���%� � �A�y #%y��	 # s#%s  z #%z

�gi #%gi��zi #%zi�  �

�si #%si��ti #%ti�  �

������

for the variables in %� This method is described in great detail in �Vanderbei� �����

for quadratic programming� One gets

A%�  b�A�  	 �

%��%g  l� �# g  	 �

%�#%t  u� �� t  	 �

�A%y�	 #%z �%s� �
��

�
�q���%�  c� �Ay�	 # �

���q��� # s� z  	 �

g��z%g #%z  �g�� � z � g��%g%z  	 �z

t��s%t#%s  �t�� � s� t��%t%s  	 �s

������

where g�� denotes the vector ���g�
 � � � 
 ��gn�� and t�� analogously� Moreover
denote g��z and t��s the vector generated by the componentwise product of the
two vectors� Solving for %g
%t
%z
%s yields

%g  z��g��z �%z�
%t  s��t��s �%s�

de�ne )� 	 � � z��g�z
)� 	 � � s��t�s

hence %z  g��z�)� �%��
%s  t��s�%�� )� ��

������

Now one can formulate the reduced KKT�system �cf� �Vanderbei� ����� for the

quadratic case�	�
� ������q��� # g��z # t��s

�
A	

A �

� �
%�

%y

�
 

�
� � g��z)� � t��s)�

�

�
������

This equation is best solved by a standard Cholesky decomposition�� No special

considerations about sparse matrices are necessary� as in general the matrix given

by the kernel function k will be dense�

�� See 
Press et al�� ����� for details� If the matrix should happen to be ill conditioned� as
may occur in rare cases during the iterations� it is recommendable to use the pseudoinverse
or the Bunch�Kaufman decomposition 
Bunch and Kaufman� ����� as a fall�back option�
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����� Iteration Strategies

For the predictor�corrector method one proceeds as follows� In the predictor step

solve the system of ������ and ������ with �  � and all %�terms on the rhs set to ��

i�e� �z  z
 �s  s� The values in % are substituted back into the de�nitions for �z
and �s and ������ and ������ are solved again in the corrector step� As the quadratic

part in ������ is not a
ected by the predictor�corrector steps� one only has to invert

the quadratic matrix once� This is done best by solving �thus manually� pivoting�

for the �
��

�
�q��� # g��z # t��s part� as it is positive de�nite�

Next the values in % obtained by such an iteration step are used to update the

corresponding values in �
 s
 t
 z
 � � �� To ensure that the variables meet the positivity

constraints� the steplength � is chosen such that the variables move at most �� �

of their initial distance to the boundaries of the positive orthant� Usually one sets

�  ���� �Vanderbei� ������

Another heuristic is used for computing �� the parameter determining how much

the KKT�conditions should be enforced� Obviously the aim is only to reduce � as

fast as possible� however if one happens to choose � too small� the condition of

the equations will worsen drastically� A setting that has proven to work robustly

�Vanderbei� ����� is

�  
hg
 zi# hs
 ti

�n

�
� � �
� # ��

��

� ������

The rationale behind ������ is to use the average of the satisfaction of the KKT�

conditions ������� i�e� the size of the feasibility gap� as point of reference and then

decrease � rapidly if we are far enough away from the boundaries of the positive

orthant� to which all variables �except y� are constrained to�

Finally one has to come up with good initial values� Analogously to �Vanderbei�

����� choose a regularized version of ������ with auxiliary variables reset to �� in

order to determine the starting point� One solves�
� ������q��� # �� A	

A �

��
�

y

�
 

�
c

b

�
������

Moreover one has to ensure positivity of the variables� thus

x  max �x
 u�����

g  min ��� l
 u�

t  min �u� �
 u�

z  min
�
max

�
�
���q ��� # c� �Ay�	 
 �


# u����
 u


s  min

�
max

�
� �

���q ���� c# �Ay�
	

 �

# u����
 u


����	�

����� Special Considerations for SV Regression

The algorithm described so far can be applied to both SV pattern recognition and

regression estimation� For the standard setting in classi�cation

q���  
mX

i�j��

�i�jyiyjk�xi
 xj�
 ����
�
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and consequently

��iq���  yi
Pm

j�� �jyjk�xi
 xj�

���i�jq���  yiyjk�xi
 xj�

������

i�e� the Hessian is dense� and as mentioned before the only thing one can do is

compute its Cholesky factorization to solve ������� In the case of SV regression�

however� one gets �with �  ���
 � � � 
 �m
 �
�
�
 � � � 
 �

�
m��

q���  

mX
i�j��

��i � ��i ���j � ��j �k�xi
 xj� # �C
mX
i��

T ��i� # T ���i � ������

and therefore

��iq���  yi
Pm

j�� �jyjk�xi
 xj� #
d
d�i

T ��i�

���i�jq���  k�xi
 xj� # �C�ij
d�

d��i
T ��i�

���i��j
q���  �k�xi
 xj�

������

����i ��j q��� and �
�
��i �j

q��� can be computed analogously� Hence one has to deal with

a Hessian M  

�
K #D �K
�K K #D�

�
where D
D� are diagonal� Via an orthogonal

transform O 	 �p
�

�
� �

�� �

�
one obtains O	MO  

�
�K # D�D�

�
D�D�

�
D�D�

�
D�D�

�

�
�

which can be inverted essentially by inverting an m � m matrix instead of a

�m � �m system	 essentially�� as in addition to the inversion of �K # D�D�

� one

has to solve for the diagonal matrices D�D�� which is� however� only an operation
of computational cost O�m�� This is the additional advantage one can gain from

implementing the optimization algorithm directly� instead of using an o
 the shelf

optimizer�

Finally note that by solving the primal and dual optimization problem simulta�

neously one also computes parameters corresponding to the initial SV optimization

problem� This observation is useful� as it allows to obtain the constant term b di�

rectly� namely by setting b  y �where y denotes the corresponding dual�dual  

primal variable�� See appendix ����� for details�

����� Experiments

The purpose of the little benchmark described below is to show that by using interior

point techniques for general convex cost functions� the optimization problems

resulting from the latter can be solved just as e�ciently as the commonplace ��

insensitive loss functions�

As interior point primal�dual path following methods are computationally very

e�cient in comparison to classical techniques �Vanderbei� ������ an implementation

of this algorithm for quadratic programming �i�e� standard ��insensitive loss� is used

as reference model� Figure ��� shows the number of �oating point operations which

was measured with MATLAB�s flops command� The modi�ed SV algorithm is as

fast �in some cases it needs even less iterations� as the standard one� even though it

uses more general cost functions� and thus results in a non quadratic programming

problem� For both algorithms the same dataset was used� The cost functions used

were those of tables ��� and ���� namely ��insensitive and piecewise polynomial

loss with �  ����� �  � and p  ���� the width of the Gaussian RBF�kernels was
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Figure ��� Floating point operations for regression problems of di
erent size�

�  ���� the dataset was m samples of x drawn uniformly from the interval ��
 ���

and yi  �sinc ���x� ��� # � with � normal noise with standard deviation ����

��� Subset Selection Algorithms

The convex programming algorithms described so far can be used directly on

moderately sized �up to ���� samples� datasets without any further modi�cations

to obtain a very precise solution �i�e� the duality gap is of the relative size of ������
especially if one happens to have a fast implementation of BLAS �Lawson et al��

����� Dongarra et al�� ����� ����� and LAPACK �Anderson et al�� ����� at hand�

On large datasets� however� it is di�cult� due to memory and cpu limitations�

to compute the dot product matrix k�xi
 xj� and keep it in memory� A simple

calculation shows that e�g� storing the dot product matrix of the NIST OCR

database ������� samples� at single precision �� bytes� would consume ��� GBytes�

already using the fact that k�xi
 xj�  k�xj 
 xi�� A Cholesky decomposition thereof�

which would additionally require roughly the same amount of memory� and ��

TeraFlops �counting multiplies and adds separately�� seems unrealistic� at least at

current processor speeds� Even worse� interior point algorithms typically need ��

Cholesky iterations to converge� i�e� nearly ���� �oating point operations� Hence one

has to �nd more e�cient ways for large datasets� even at the expense of obtaining

a worse solution than what would be possible by using an interior point approach�

����� Chunking

A �rst solution� introduced by Vapnik ������� relies on the observation that only

the SVs are relevant for the �nal form of the hypothesis� In other words � if one

was given only the SVs� one would obtain exactly the same �nal hypothesis as if

one had the full training set at disposition� Hence� knowing the SV set beforehand�

and moreover being able to �t it into memory� one could directly solve the reduced
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problem and thereby deal with signi�cantly larger datasets� The catch is� that one

does not know the SV set before solving the problem� The heuristic is to start with

an arbitrary subset� a �rst chunk that �ts into memory� train the SV algorithm on it�

keep the SVs� and �ll the chunk up with data� on which the current estimator would

make errors �i�e� data lying outside the ��tube of the current regression�� Then

retrain the system and keep on iterating until after training the KKT�conditions

are satis�ed for all samples�

����� Working Set Algorithms

The basic chunking algorithm just postponed the basic problem of dealing with

datasets whose dot�product matrix cannot be suitably kept in memory� A possible

solution to this dilemma was given by Osuna et al� ������� They propose to use only

a subset of the variables as a working set� and optimize the problem with respect

to them while freezing the other variables� This method is described in detail in

�Osuna et al�� ����� Joachims� ����� for the case of pattern recognition� Further

information can be found in Saunders et al� �������

The following is an adaptation thereof to the case of regression with convex cost

functions� This is straightforward� as the only non�quadratic part will appear in

the term
P

i T ��i�#T ���i �� Without loss of generality assume � � � and � � ��
 C�
�for �  � the corresponding terms vanish and the case the yi � f�xi� � ���
 ��
obviously never occurs�� First� one has to extract a reduced optimization problem

for the working set when all other variables are kept �xed� Denote Sw � f�
 � � � 
mg
the working set and Sf � f�
 � � � 
mg the �xed set with Sw  Sf  f�
 � � � 
mg and
Sw � Sf  �� Writing ������ as an optimization problem only in terms of Sw yields

maximize

��������
�������

� �
�

P
i�j�Sw

��i � ��i ���j � ��j �k�xi
 xj�

#
P
i�Sw

��i � ��i �

�
yi �

P
j�Sf

��j � ��j �k�xi
 xj�

�
#

P
i�Sw

��� ��i # ��i � # C �T ��i� # T ���i ���

subject to

��
�

P
i�Sw

��i � ��i �  � P
i�Sf

��i � ��i �

�i � ��
 C�

������

Hence one only has to update the linear term by the coupling with the �xed set

� P
i�Sw

��i � ��i �
P
j�Sf

��j � ��j �k�xi
 xj� and the equality constraint
� by � P

i�Sf
��i �

��i �� It is easy to see that minimizing ������ also decreases ������ by exactly the same
amount� By choosing variables for which the KKT�conditions are not satis�ed� one

is guaranteed to strictly decrease the overall objective function� whilst still keeping

all variables feasible� Moreover� the objective function is bounded from below by ��

Table ��� describes the basic algorithm�

Even though the algorithm presented in table ��� cannot be shown to converge

in a �nite number of steps�� in many cases this algorithm proves useful in practice�

�� Also note that it is convenient to store the vector K� and update it after each
optimization step� This is signi�cantly cheaper than computing the linear term of the
restricted optimization problem from the coe�cients �i� �

�
i over and over again�

�� The reasoning in Osuna et al� 
����� is slightly incorrect� as they argue that a decreasing
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��� Initialize �i� �
�
i � �

��� Choose arbitrary working set Sw
��� Repeat

����� Compute coupling terms �linear and constant� for Sw
����� Solve reduced optimization problem

����� Choose new Sw from variables �i� �
�
i not satisfying the

KKT conditions

��� Until working set Sw � �

Table ��� Basic structure of a working set algorithm�

It is one of the few methods �besides �Kaufmann� ����� Platt� ������ that can deal

with problems whose quadratic part does not completely �t into memory� Still in

practice one has to take special precautions to avoid stalling of convergence� The

crucial part is step ����� of the algorithm in table ���� namely which working set

Sw to select�

����� A Note on Optimality

For convenience the KKT conditions are repeated in a slightly modi�ed form�

Denote �i the error made by the current hypothesis at sample xi� i�e�

�i 	 yi � f�xi�  yi �
�
� mX
j��

k�xi
 xj���i � ��i � # b

�
� � ������

Rewriting the feasibility condition of ����� in terms of �i
 �
�
i yields

���iT ��i� # �� �i # si � zi  �

����i T ��
�
i � # �# �i # s�i � z�i  �

������

for all i � f�
 � � � 
mg with zi
 z�i 
 si
 s�i � �� Now one has to �nd a set of dual feasible
variables z
 s� This is done by letting

zi  max ����iT ��i� # �� �i
 ��

si  �min ����iT ��i� # �� �i
 ��

z�i  max
�
����i T ��

�
i � # �# �i
 �

�
s�i  �min �����i T ���i � # �# �i
 �

� ������

Consequently the KKT conditions ����� can be translated into

�izi  � and �C � �i�si  �

��i z
�
i  � and �C � ��i �s

�
i  �

������

All variables �i
 �
�
i violating some of the conditions of ������ may be selected for

further optimization� In most cases� especially in the initial stage of the optimization

algorithm� this set of patterns is much larger than any practical size of Sw�

Unfortunately �Osuna et al�� ����� contains little information on how to select Sw�

The heuristics presented here are an adaptation of �Joachims� ����� to regression�

sequence always reaches a corresponding lower bound in a �nite number of steps� which
is clearly not correct�
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����� Selection Rules

Similarly to a merit function approach �El�Bakry et al�� ����� the idea is to select

those variables that violate ������ and ������ most� thus contribute most to the

feasibility gap� Hence one de�nes a score variable �i by

�i 	 gizi # siti

 �izi # ��i z
�
i # �C � �i�si # �C � ��i �s

�
i

����	�

By construction�
P

i �i is the size of the feasibility gap �cf� ����� for the case of ��

insensitive loss�� By decreasing this gap� one approaches the optimal solution �upper

bounded by the primal objective and lower bounded by the dual objective function��

Hence� the selection rule is to choose those patterns for which �i is largest��

Finally� heuristics like assigning sticky��ags �cf� �Burges� ����b�� to variables

at the boundaries� thus e
ectively solving smaller subproblems� or completely

removing the corresponding patterns from the training set while accounting for

their couplings �Joachims� ����� can signi�cantly decrease the size of the problem

and thus result in a noticeable speedup�

��� Sequential Minimal Optimization

Recently an algorithm � Sequential Minimal Optimization �SMO�� was proposed

�Platt� ����� that puts chunking to the extreme by iteratively selecting subsets

only of size � and optimizing the target function with respect to them� It has been

reported to be several orders of magnitude faster �up to a factor of ����� and exhibit

better scaling properties �typically up to one order better� than classical chunking

�sec� ������� The key point is that for a working set of � the optimization subproblem

can be solved analytically without explicitly invoking a quadratic optimizer�

While readily derived for pattern recognition by Platt ������� one simply has to

mimick the original reasoning to obtain an extension to regression estimation� This

is what will be done in the following � for the sake of convenience� the complete

algorithm is described �including pseudocode� cf� appendix ������� The modi�cations

consist of a pattern dependent regularization� convergence control via the number

of signi�cant �gures� and a modi�ed system of equations to solve the optimization

problem in two variables for regression analytically�

Note that the reasoning only applies to SV regression with the � insensitive loss

function � for most other convex cost functions an explicit solution of the restricted

quadratic programming problem is impossible�

The exposition proceeds as follows	 �rst one has to derive the �modi�ed� boundary

conditions for the constrained � indices �i
 j� subproblem in regression �section

������� next one can proceed to solve the optimization problem analytically �cf�

�� Some algorithms replace �i by

��i �� �iH�zi� � ��iH�z
�
i � � �C � �i�H�si� � �C � ��i �H�si� or ������

���i �� H��i�zi �H���i �z
�
i �H�C � �i�si �H�C � ��i �si ������

where H��� denotes the Heavyside function which is � if its argument is positive� and zero
otherwise� One can see that �i � �� �

�
i � �� and ���i � � mutually imply each other� But

only �i measures the contribution of the variable i to the size of the feasibility gap�
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section ������� and �nally one has to check� which part of the selection rules have

to be modi�ed to make the approach work for regression �section �������

����� Pattern Dependent Regularization

Consider the constrained optimization problem ������ for two indices� say �i
 j��

Pattern dependent regularization means that Ci may be di
erent for every pattern

�Schmidt and Gish� ����� �possibly even di
erent for �i and �
�
i � �for convenience�

also results for the classi�cation case are given � these are a direct drop in

replacement of the corresponding equations in �Platt� ������� De�ne an auxiliary

variable s 	 yiyj for classi�cation �here yi � f�
��g�� For regression one has to
distinguish four di
erent cases	 ��i
 �j�
 ��i
 �

�
j �
 ��

�
i 
 �j�
 ��

�
i 
 �

�
j �� Here� set s  �

for the �rst and last case� and s  �� otherwise� Thus one obtains from the

summation constraint

s�i # �j  s�oldi # �oldj  	 � ������

for classi�cation� and

��i � ��i � # ��j � ��j �  ��
old
i � ��i

old� # ��oldj � ��j
old� 	 � ������

for regression� Exploiting �
���
j � ��
 C���

j � yields �
���
i � �L
H � where L
H are de�ned

as in Tables ��� and ����

yi � yj yi �� yj

�i
L � max��� � � Cj�

H � min�Ci� ��

L � max��� ��

H � min�Ci� � � Cj�

Table ��� Boundary of feasible regions for classi�cation�

�j ��j

�i
L � max��� � � Cj�

H � min�Ci� ��

L � max��� ��

H � min�Ci� C
�
j � ��

��i
L � max������

H � min�C�i ��� � Cj�

L � max����� � C�j �

H � min�C�i ����

Table ��� Boundary of feasible regions for regression�

����� Analytic Solution for Regression

Next one has to solve the optimization problem analytically for two variables

�actually one has to consider four variables � �i
 �
�
i 
 �j 
 �

�
j in the regression case��

In analogy to �Platt� ������ using ������ de�ne

vi 	 yi �
P
a
�i�j

��a � ��a�Kia # b

 �i # ��
old
i � ��i

old�Kii # ��
old
j � ��j

old�Kij

������
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and therefore

vi � vj � ��Kij �Kjj�  �i � �j # ��
old
i � ��i

old��Kii #Kjj � �Kij� ������

Now ������ restricted to �i
 j� can be rewritten as follows	

maximize

����
���

� �
�

�
�i � ��i
�j � ��j

�	�
Kii Kij

Kji Kjj

��
�i � ��i
�j � ��j

�

#vi��i � ��i � # vj��j � ��j �� ���i # ��i # �j # ��j �

subject to

�
��i � ��i � # ��j � ��j �  �

�i
 �
�
i 
 �j 
 �

�
j � ��
 C�

������

Next one has to eliminate �j 
 �
�
j by exploiting the summation constraint� Ignoring

terms independent of �
���
i one obtains	

maximize

�
� �

� ��i � ��i �
��Kii #Kjj � �Kij�� ���i # ��i ���� s�

#��i � ��i ��vi � vj � ��Kij �Kjj��

subject to �
���
i � �L���
 H�����

������

The unconstrained maximum of ������ with respect to �i or �
�
i can be found in

Table ���� Here the shorthand � 	 Kii#Kjj��Kij is used� It may happen that for

�i� �j
vi � vj � ��Kij �Kjj�

�
� �oldi �

�i � �j
�

�i� �
�
j

vi � vj � ��Kij �Kjj�� ��

�
� �oldi �

�i � �j � ��

�

��i � �j
vj � vi � ��Kij �Kjj�� ��

�
� ��i

old
�
�i � �j � ��

�

��i � �
�
j

vj � vi � ��Kij �Kjj�

�
� ��i

old
�
�i � �j

�

Table ��� Unconstrained maximum of the quadratic programming problem�

a �xed pair of indices �i
 j� the initially chosen quadrant� say e�g� ��i
 �
�
j � is the one

with the optimal solution� In this case one has to check the other quadrants� too�

This occurs if one of the two variables hits the � boundary � here computation of

the corresponding values for the variable with�out� asterisk according to table ����

is required� This has to be repeated at most twice� if the overall optimum lies in the

opposite quadrant� Fortunately� the additional computational cost is negligible in

comparison to the overall update cost for the gradient�error vector� which is O�m�

per successful optimization step� All one has to recompute is �newi � �newj � which

can be found as

�newi � �newj  �oldi � �
��newi � ��newi �� �

�oldi � ��oldi

��
�Kii �Kij�

��oldj � ��
�newj � ��newj

�� �
�oldj � ��oldj

��
�Kij �Kjj�

 �oldi � �oldj � �
�
��newi � ��newi �� �

�oldi � ��oldi

�� ������

	� Note that ������ only holds for �i�
�
i � �j�

�
j � ��
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The last equality was derived using �������

Due to numerical instabilities� it may happen that � � �� In that case � should

be set to �� Negative values of � are not allowed� as k��
 �� has to satisfy Mercer�s
condition� In that case set �  �� The optimal value of �i lies on the boundaries

H or L� One can �nd out by looking at the gradient� or simply by computing the

value of the objective function at the endpoints� which one of the endpoints to take�

����� Selection Rule for Regression

Finally� one has to pick indices �i
 j� such that the objective function is maximized�

Again� the reasoning of SMO �Platt� ����� sec� ������� for classi�cation will be

mimicked� This means that a two loop approach is chosen to maximize the objective

function� The outer loop iterates over all patterns violating the KKT conditions�

�rst only over those with Lagrange multipliers neither on the upper nor lower

boundary� and once all of them are satis�ed� over all patterns violating the KKT

conditions� to ensure self consistency on the complete dataset�� This solves the

problem of choosing the index i�

Now for j	 To make a large step towards the minimum� one looks for large

steps in �i� As it is computationally expensive to compute � for all possible pairs

�i
 j� one chooses the heuristic to maximize the absolute value of the numerator

in the expressions of table ��� �i�e� j�i � �j j and j�i � �j � ��j� depending on the
presence�absence of asterisks�� The index j corresponding to the maximum absolute

value is chosen for this purpose�

If this heuristic happens to fail� in other words if little progress is made by

this choice� all other indices j are looked at �this is what is called second choice

hierarcy� in �Platt� ������ in the following way�

�� All indices j corresponding to non�bound examples are looked at� searching for

an example to make progress on�

�� In the case that the �rst heuristic was unsuccessful� all other samples are

analyzed until an example is found where progress can be made�

�� If both previous steps fail� SMO proceeds to the next index i�

For a more detailed discussion of these heuristics see �Platt� ������

Unlike interior point algorithms SMO does not automatically provide a value for

b� However this can be chosen like in section ����� by having a close look at the

Lagrange multipliers �
���
i obtained� If at least one of the variables �

���
i and �

���
j is

inside the boundaries� one can exploit ������� In the rare case that this does not

happen� there exists a whole interval �say �bi
 bj �� of admissible thresholds� Hence

one simply takes the average of both	 b  
bi�bj
� �

�� It is sometimes useful� especially when dealing with noisy data� to iterate over the
complete KKT violating dataset already before complete self consistency on the subset
has been achieved� Otherwise much computational resources are spent on making subsets
self consistent that are not globally self consistent� This is the reason why in the pseudo
code a global loop is initiated already when only less than �� of the non bound variables
changed�
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����� Number of Signi�cant Figures and Feasibility Gap

By essentially minimizing a constrained primal optimization problem one cannot

ensure that the dual objective function increases with every iteration step���

Nevertheless one knows that the minimum value of the objective function lies in the

inteval �dual objectivei
 primal objectivei� for all iteration steps i� hence also in the

interval
�
�maxj�i dual objectivej�
 primal objectivei

	
for all i� One uses the latter

to determine the quality of the current solution�

The calculation of the primal objective function from the prediction errors is

straightforward� One usesX
i�j

��i � ��i ���j � ��j �kij  �
X
i

��i � ��i ���i # yi � b�
 ����	�

i�e� the de�nition of �i to avoid the matrix�vector multiplication with the dot prod�

uct matrix� The dual objective function can be computed via the KKT conditions

�cf� ������� The number of signi�cant �gures� �nally� is computed as the decimal

logarithm of ������ i�e�

SigFig  log��

� P
i gizi # siti

jPrimal Objectivej# �
�

����
�

The constant � is added to avoid division by zero� To save computational cost�

primal and dual objective function are computed only every� say� ��� steps of the

algorithm� Appendix ����� contains the pseudocode for SMO regression�

��� Summing Up

Several algorithms can be used to solve the quadratic programming problem arising

in SV regression� Most of them can be shown to share some common strategy that

can be understood well in the view of duality theory� as shown in secion ���� In

particular� monitoring of convergence is done most reliably in this formulation�

as the variables �i are less interesting quantities than the value of the objective

function itself�

A class of algorithms to exploit these properties explicitly are interior point

primal�dual path following algorithms �see sec� ����� They are relatively fast and

achieve a high precision of the solution in the case of moderately sized problems

�up to approximately ���� samples�� Moreover� these algorithms can be modi�ed

easily to suit for general convex cost functions without additional computational

cost� However� they require computation and inversion of the kernel matrix Kij �

and are thus overly expensive for large problems�

Chunking in its di
erent variants is a �rst modi�cation to make large scale

problems solvable by classical optimization methods� It requires to break up the

initial problem into subproblems which are then in turn solved separately� This

is guaranteed to decrease the objective function� thus approaching the global

optimum� Selection rules in view of duality theory are given in section ������

��� It is still an open question how a subset selection optimization algorithm could be
devised that decreases both primal and dual objective function at the same time� The
problem is that this usually involves a number of dual variables of the order of the sample
size� which makes this attempt unpractical�
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Finally� an adaptation of SMO to the case of regression estimation is derived�

Most of the considerations for pattern recognition carried over analogously� however

with the additional twist of having to deal with four instead of two separate cases�

which rendered some of the equations less elegant than in the classi�cation setting�

It is a very robust algorithm� easy to implement� and thus might be the method of

choice for a �rst attempt�

��	 Appendix

����� Derivation of Equation ����

The Lagrange function corresponding to ����� can be found as

L  �
�q��� # hc
 �i � hy
A�� bi
�h�� g � l
 zi � hu� t� �
 si � h�
 gi � h�
 ti ������

Here s
 z
 y are free Lagrange multipliers and �
 � are positively constrained� The

derivative of L with respect to the primal variables �
 g
 t has to vanish� Hence one

obtains the following dual constraints�

��L  
�

�
��q��� # c� �Ay�	 � z # s  � ������

�gL  z � �  � ������

�tL  t� �  � ������

The last two constraints can be rewritten as z
 t � �� i�e� one obtains positively

constrained dual variables� Moreover� substituting ������ and ������ into ������

yields

L  
�

�
q��� # hc
 �i � hy
A�� bi � h�� l
 zi � hu� �
 si ������

together with the KKT conditions gizi  �
 siti  � for all i � f�
 � � � 
mg� Solving
������ yields

�

�
��q��� # c� �Ay�	 # s  z
 ������

which is the equality constraint of ������ moreover substitution into ������ yields

the corresponding dual objective function	

D  
�

�
q���� �

�
h��q���
 �i # hb
 yi# hl
 zi � hu
 si ������

Thus one obtains the dual objective function of ������

����� The Dual�Dual Argument

The subsequent reasoning illustrates why the dual variables of the constraints in the

SV optimization problem� thus the dual�dual variables� may be used as solutions

of the corresponding primal variables in the case of linear dependencies� Assume

one wants to solve the following linear programming problem

minimize hc
 �i
subject to K�#B� � Z and �
 � free�

������
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Here the constraint is meant to hold coe�cientwise� The corresponding Lagrange

function is

L  hc
 �i � hy
 Z �K��B�i� ����	�

Requiring ��L  � and ��L  � yields the dual constraints c # K	y  � and

B	y  �� and consequently� after backsubstitution� the dual optimization problem�

maximize �hZ
 yi
subject to c#K	y  �
 B	y  �� and y � �� ����
�

Dualizing again yields 'L  hZ
 yi � h'�
 c#K	yi � h'�
B	yi� Hence the dual�dual
problem yields

maximize �hc
 '�i
subject to K '�#B '� � Z and '�
 '� free�

������

which is again the primal optimization problem� thus also the dual�dual variables

can be used instead of the primal ones�

����� Pseudocode for SMO Regression

target � desired output vector

point � training point matrix

procedure takeStep�i��i��

if �i� �� i�� return �

alpha�� alpha�� � Lagrange multipliers for i�

y� � target�i�	

phi� � SVM output on point�i�	 
 y� �in error cache�

k�� � kernel�point�i�	�point�i�	�

k�� � kernel�point�i�	�point�i�	�

k�� � kernel�point�i�	�point�i�	�

eta � ��k��
k��
k��

gamma � alpha� 
 alpha�� � alpha� 
 alpha��

� we assume eta  �� otherwise one has to repeat the complete

� reasoning similarly �compute objective function for L and H

� and decide which one is largest

case� � case� � case� � case� � finished � �

alpha�old � alpha�� alpha�old� � alpha��

alpha�old � alpha�� alpha�old� � alpha��

delta�phi � phi� 
 phi�

while �finished

� this loop is passed at most three times

� case variables needed to avoid attempting small changes twice

if �case� �� �� ��

�alpha�  � �� �alpha�� �� � �� deltaphi  ��� ��

�alpha�  � �� �alpha�� �� � �� deltaphi � ���
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compute L� H �wrt� alpha�� alpha��

if L � H

a� � alpha� 
 deltaphi�eta

a� � min�a�� H�

a� � max�L� a��

a� � alpha� 
 �a� 
 alpha��

update alpha�� alpha� if change is larger than some eps

else

finished � �

endif

case� � ��

elseif �case� �� �� ��

�alpha�  � �� �alpha�� �� � �� deltaphi  � epsilon�� ��

�alpha��  � �� �alpha� �� � �� deltaphi  � epsilon��

compute L� H �wrt� alpha�� alpha���

if L � H

a� � alpha�� � �deltaphi 
 � epsilon��eta

a� � min�a�� H�

a� � max�L� a��

a� � alpha� � �a� 
 alpha���

update alpha�� alpha�� if change is larger than some eps

else

finished � �

endif

case� � ��

elseif �case� �� �� ��

�alpha��  � �� �alpha� �� � �� deltaphi � � epsilon�� ��

�alpha�  � �� �alpha�� �� � �� deltaphi � � epsilon��

compute L� H �wrt� alpha��� alpha��

if L � H

a� � alpha� 
 �deltaphi 
 � epsilon��eta

a� � min�a�� H�

a� � max�L� a��

a� � alpha�� � �a� 
 alpha��

update alpha��� alpha� if change is larger than some eps

else

finished � �

endif

case� � ��

elseif �case� �� �� ��

�alpha��  � �� �alpha� �� � �� deltaphi � ��� ��

�alpha��  � �� �alpha� �� � �� deltaphi  ���

compute L� H �wrt� alpha��� alpha���

if L � H

a� � alpha�� � deltaphi�eta

a� � min�a�� H�

a� � max�L� a��

a� � alpha�� 
 �a� 
 alpha���

update alpha��� alpha�� if change is larger than some eps

else
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finished � �

endif

case� � ��

else

finished � �

endif

update deltaphi

endwhile

Update threshold to reflect change in Lagrange multipliers

Update error cache using new Lagrange multipliers

if changes in alpha����� alpha���� are larger than some eps

return �

else

return �

endif

endprocedure

procedure examineExample�i��

y� � target�i�	

alpha�� alpha�� � Lagrange multipliers for i�

C�� C�� � Constraints for i�

phi� � SVM output on point�i�	 
 y� �in error cache�

if ��phi�  epsilon �� alpha�� � C��� ��

�phi� � epsilon �� alpha��  � � ��

�
phi�  epsilon �� alpha� � C� � ��

�
phi�  epsilon �� alpha�  � ��

if �number of non
zero � non
C alpha  ��

i� � result of second choice heuristic

if takeStep�i��i�� return �

endif

loop over all non
zero and non
C alpha� random start

i� � identity of current alpha

if takeStep�i��i�� return �

endloop

loop over all possible i�� with random start

i� � loop variable

if takeStep�i��i�� return �

endloop

endif

return �

endprocedure

main routine�

initialize alpha and alpha� array to all zero

initialize threshold to zero

numChanged � �

examineAll � �

SigFig � 
���

LoopCounter � �
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while ��numChanged  � � examineAll� � �SigFig � ���

LoopCounter��

numChanged � ��

if �examineAll�

loop I over all training examples

numChanged �� examineExample�I�

else

loop I over examples where alpha is not � � not C

numChanged �� examineExample�I�

endif

if �mod�LoopCounter� �� �� ��

MinimumNumChanged � max��� ����NumSamples�

else

MinimumNumChanged � �

endif

if �examineAll �� ��

examineAll � �

elseif �numChanged � MinimumNumChanged�

examineAll � �

endif

endwhile

endmain
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The problems in unsupervised learning are by far less precisely de�ned than in the

supervised counterpart� Usually no explicit cost function exists with desired outputs

or anything alike� Instead� one has to make certain assumptions on the data� with

respect to which several questions may be asked�

A possible problem is	 Which properties of the data can be extracted with

high con�dence/� Or in other words� which feature extracting functions can be

found among a given class with� say unit variance and zero mean� and moreover

whose properties will not change too much on unseen data� This leads to a feature

extracting approach of unsupervised learning�

Another question is	 Which properties describe the data best/� This means that

one is looking for a descriptive model of the data� thus also a �possibly quite crude�

model of the underlying probability distribution� Generative models like Principal

Curves �Hastie and Stuetzle� ������ the Generative Topological Map �Bishop et al��

������ several linear Gaussian models �Roweis and Ghahramani� ������ or also simple

vector quantizers �Bartlett et al�� ����� are examples thereof�

Roadmap

In the feature extracting approach to extend PCA data is mapped into some feature

space S where PCA is performed� As the latter can also be seen as connected to

regularization� i�e� to extracting the simplest function with given variance� the initial

algorithm is extended in two ways� First the contrast function �i�e� the variance

in kernel PCA� is replaced� choosing functions common in projection pursuit�

Secondly� the regularization is replaced by constraints from sparse coding and linear

programming�

The second� data descriptive� approach to generalize PCA follows the reasoning

of principal surfaces and generative topographic maps� After the introduction of a

regularized quantization functional� a setting that is able to describe a number of

unsupervised learning algorithms in a common framework� one may observe that

the resulting kernel based algorithm to minimize this functional is closely connected

to principal curves with a length constraint� Finally an algorithm for �nding such

manifolds is given�

��� Kernel Principal Component Analysis

Principal Component Analysis �PCA� is widely used as a tool to extract reliable

features from given data� Possible applications are object recognition �cf� �Kirby and

Sirovich� ����� Swets and Weng� ������ or image processing� and compression� For

more details on the matter see e�g� �Pearson� ����� Hotelling� ����� Karhunen� �����
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Jolli
e� ����� Diamantaras and Kung� ������ However there may arise situations

where PCA is simply not enough� Not enough in the sense that one might have a

large amount of low dimensional data at hand� i�e� the case where one could extract

more features reliably� or the case where linear features extracted from the data

are simply not the �most� interesting ones�

One possible solution is to nonlinearly preprocess the data� i�e� map the data into

some feature space and perform principal component analysis there� This is exactly

what is done in Kernel PCA �Sch�olkopf et al�� ����a�� The following two sections

brie�y review the basic algorithm�

����� The Basic Algorithm

As in PCA� one tries to �nd directions of maximum variance of the data� i�e� one

tries to diagonalize the covariance matrix of the data � however this time not of

xi but of $�xi�� Thus the goal is to �nd the eigensystem of the matrix

C 	 
�

m

mX
i��

$�xi�$
	�xi�� �����

As in chapter �� the map into feature space may lead to very high dimensional

spaces� thus the explicit computation of C is a di�cult �and computationally

expensive� task� For instance� one might want to compute PCA in the space of

all monomials of degree p� in other words compute most important p�th order

correlations of the data�

Again� as in chapter �� the solution is to rewrite the problem� to diagonalize

����� in terms of dot products between the mapped images� i�e� h$�xi�
$�xj�i  	
k�xi
 xj�� To achieve this goal note that the requirement for eigenvectors�eigenvalues

�v
 �� in feature space can be written as

Cv  �v �����

By construction� the image of C lies in span f$�x��
 � � �$�xm�g� thus for � � � v
can be written as a linear combination of the mapped images �v  

Pm
i�� �i$�xi���

This is all one needs to reformulate the problem� Eq� ����� is equivalent to the

following equation which has to hold for all i � f�
 � � �mg	
h$�xi�
 Cvi  �h$�xi�
 vi �����

�

m

mX
j�j�

k�xi
 xj�k�xj 
 xj� ��j�  �
X
j

k�xi
 xj��j �����

This problem can be solved essentially� by computing the eigensystem of the matrix

Kij 	 k�xi
 xj�� This gives an eigensystem ��i
 �
i� where the eigenvectors are

normalized to � in coe�cient space� Thus one has to rescale �i to obtain the

eigensystem ��i
 vi��!!!!!!
mX
j��

�ij$�xj�

!!!!!!
�

 
mX
j�j�

�ij�
i
j�k�xj 
 xj��  �i

mX
j��

��ij�
�  �i �����

�� The problem comes from the nullspace of the matrix Kij � however the corresponding
eigenvectors are not interesting anyway for the present considerations� For details see

Sch�olkopf et al�� ���	a�
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Thus the eigenvectors vi can be written as

vi  ��i�
� �

�

mX
j��

�ij$�xj�� �����

with eigenvalues �i�m due to the normalization of C� Moreover the projection of

$�xj� onto vi can be written as follows

h$�xj�
 vii  ��i�� �
�

mX
j���

k�xj 
 xj� ��
i
j�  ��i�

�
��ij ���	�

and therefore

jh$�xj�
 viij � ��i� �� � ���
�

This equation will become quite useful in chapter � as it means that the data in

feature space is contained inside a box with sidelengths at most �
p
�i�

Also note that the above reasoning works just as well for bilinear forms h�
 �i with
non positive signature �i�e� there exist vectors v with hv
 vi � �� � most of the

considerations regarding Mercer kernels can be thrown overboard in the latter case

and one may use quite general symmetric kernels k�x
 y��

����� Centering in Feature Space and Higher Order Subspaces

The de�nition of the covariance matrix C according to ����� relies on the silent

assumption that the data be centered in feature space� In general� however� this is

not true� One has to compute C based on

'$�xi� 	 $�xi�� �

m

mX
i��

$�xi�� �����

After some algebra �see e�g� �Sch�olkopf et al�� ����a�� this results in computing the

eigensystem of

'K 	 ��� �m�K��� �m�
 ������

where the matrix �m is de�ned as the matrix with all entries set to ��m� thus

the projector onto constant features� This setting is identical to the one derived in

section ����� for the case of conditionally positive de�nite kernels� There it was used

to project out polynomial components of order � to ensure positive semide�niteness

of the resulting optimization problem�

The above fact leads to the question whether not a similar approach also might be

possible for the case of higher order features� In fact� one might� similar to example

���� project out all linear features from K and use matrices as de�ned in �������

This is useful when one wants to ensure that the extracted features are orthogonal

to those found by conventional PCA�

Carrying the idea even further� one could construct feature extractors that extract

complete hierarchies of features� say the most prominent features of �rst� second�

and third order� plus possibly additional features connected with rbf�kernels�

����� Optimality of Polynomial Kernel PCA

As already mentioned in the introduction� it is sometimes important to compute

the p�th order correlations of some data� or more precisely the most important p�th
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order cumulants� One can easily see that this goal cannot be achieved by simply

computing all correlations and performing PCA on such preprocessed data� simply

due to the requirements in terms of memory and computational resources� On the

other hand� homogeneous polynomial kernels like k�x
 y�  hx
 yip allow to compute
these features by using kernel PCA� The theorem stated below shows that Kernel

PCA is not just a method which is second best�� in lack of alternatives� but that

in fact� it is the only possible method to compute p�th order moments under some

invariance conditions�

Theorem ��� Invariance of Polynomial Kernels

Up to a scaling factor� kernel PCA with k�x
 y�  hx
 yip is the only PCA in a space
of all monomials of degree d which is invariant under orthogonal transformations

in input space�

This means that even if one could compute all monomials of degree p for the data

at hand and perform PCA on the monomials� with the additional requirement of

not implying any preferred directions� one would obtain multiples of the results

generated by kernel PCA� The proof is given in the appendix�

��� Kernel Feature Analysis

A closer look at the properties of PCA �e�g� �Jolli
e� ������ shows that �nding the

�rst eigenvector with respect to some �centered� data X  fx�
 � � � xmg can also
be formulated as �nding the direction which exhibits most variance wrt� X � More

formally� the �rst eigenvector v� can be obtained as

v�  argmax
kvk���

�

m

mX
i��

jhv
 xiij�
 ������

and the next eigenvectors v�
 � � � vd as those which form an orthonormal basis

where each eigenvector vi satis�es a similar propertiy to ������ with respect to

the remaining �d� i#���dimensional subspace� A similar reasoning can be applied

in the case of Kernel PCA� De�ne the set of admissible weight vectors as

VSV 	 

��
�w

������w  
mX
i��

�i$�xi� with kwk�  
mX
i�j

�i�jk�xi
 xj�  �

"#
$ � ������

Now ������ may be transformed into

v�  argmax
v�VSV

�

m

mX
i��

jhv
$�xi�ij�� ������

This immediately leads to the question whether not other sets V might lead to

useful feature extractors� In particular one could choose

VLP 	 

�
w

�����w  
mX
i��

�i$�xi� with
mX
i

j�ij  �
�
� ������

This is equivalent to a regularizer of the type of ������ and leads to the following

de�nition of the �rst principal vector� in the �� context� hence a new way of kernel
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feature analysis�

v�  argmax
v�VLP

�

m

mX
i��

jhv
$�xi�ij� ������

Again� subsequent principal vectors� can be de�ned by enforcing optimality with

respect to the remaining subspaces� The solution of ������ has the nice property of

being sparse in terms of the coe�cients �i� due to the �� constraint �the coe�cients

may be chosen from the hyperdiamond�shaped� �� ball���

The second modi�cation regarding ������ is to choose another contrast function

instead of the variance� that should be optimized� Hence one obtains solutions of

the following type of problems

v�  argmax
v�V

�

m

mX
i��

q�hv
$�xi�i� ������

or more generally

v�  argmax
v�V

Q �fhv
$�x��i
 � � � 
 hv
$�xm�ig� ����	�

where q��� andQ��� are functions which are maximized for a property of the resulting
function hv�
$�x�i that might be of interest� This leads to methods which are quite
similar to projection pursuit� however with the novelty that they act in feature

space rather than in input space��

Common contrast functions de�ne directions as interesting� if they extract fea�

tures which are least Gaussian� have several modalities� maximize the Fisher Infor�

mation� the negative Shannon entropy� or other quantities of interest� For a detailed

account on these issues see the work of Friedman and Tukey ������� Friedman and

Stuetzle ������� Huber ������� Jones and Sibson ������� Friedman ������� H�ardle

�������

The price one has to pay for these modi�cations with respect to standard Kernel

PCA is quite high � the optimization problems may get trapped in local minima

and the computation of the projections can be computationally expensive�

��� Regularized Principal Manifolds

Principal Curves represent the other option given in unsupervised learning�� Instead

of trying to extract reliable features from the data� one wants to describe properties

of the distribution itself�

����� Quantization Errors

In the following consider �compact� index sets B� maps � 	 B 	 X� and classes of

such maps F �with � � F�� Here the map ���� is supposed to describe some basic
properties of the probability distribution underlying the sample X � In particular�

�� Note that the requirement of kvk� � � or the corresponding 	� constraint are necessary
� the value of the target function could increase without bound otherwise�
�� Both methods coincide when setting !�x� � x�
�� For an extended version of this chapter see 
Smola et al�� ���	d��
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it minimizes the so�called quantization error

Rq��� 	 E

�
min
b�B

kx� ��b�k�
�
� ����
�

Unfortunately� the problem of �nding the map � that minimizes Rq is unsolvable�

due to the same problems as in section ������ Hence instead of ������ one analyzes

the empirical counterpart de�ned by

Rq�emp��� 	 
�

m

mX
i��

min
b�B

kxi � ��b�k�� ������

This de�nition is more useful than it may seem� Many problems of unsupervised

learning can be cast in the form of �nding a minimizer of ������ or ������� Consider

some practical examples�

Example ��� Sample Mean

De�ne B 	 f�g� � 	 �	 �� with �� � X� and F to be the set of all such functions�
Then

Rq��� 	 E
�kx� ��k�

	
������

denotes the variance of the data and

argmin
��F

Rq���  E�x� ������

argmin
��F

Rq�emp���  
�

m

mX
i��

xi� ������

Hence� one obtains the �empirical� sample mean as minimizer of the quantization

functional� It follows from the law of large numbers that the sample mean and the

�estimated� variance converge to the actual values of the distribution� The same

holds for Rq�emp and its convergence to Rq�

Example ��� k�Means Clustering

De�ne B 	 f�
 � � � 
 kg� � 	 i 	 �i with �i � X� and F to be the set of all such

functions� Then

Rq��� 	 E

�
min

i�f������kg
kx� �ik�

�
������

denotes the canonical distortion error of a vector quantizer� In practice one uses the

k�means algorithm to �nd a set of vectors f��
 � � � 
 �kg �nding a �local� minimum
of the empirical quantization error� Also in this case� one can prove convergence

properties of Rq�emp��� to Rq��� �cf� �Bartlett et al�� �������

Instead of discrete quantization one can also consider a quantizer that maps the data

onto a manifold of lower dimensionality than the input space and tries to achieve

optimality for this mapping� PCA can also be viewed in this way� In particular

the line along the �rst principal component passing through the empirical sample

mean is the line with minimal quantization error �Hastie and Stuetzle� ������ This

is formalized in the following example	

Example ��� Principal Components

De�ne B 	 R� � 	 b	 �� # b � �� with ��
 �� � X� k��k  �� and F to be the set of
all such line segments� Then the minimizer of

Rq��� 	 E

�
min
b�R

kx� �� � b � ��k�
�

������
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yields a line segment that is parallel to the �rst principal component vector of the

distribution underlying X �

Based on the properties of the current example� Hastie and Stuetzle ������ carried

this idea further by also allowing other functions ��b� than linear ones� This leads

to the next example�

Example ��� Principal Curves

De�ne B 	 ��
 ��� � 	 b 	 ��b� with � � F  C����
 ���� i�e� the class of continuous

curves� possibly with a further restriction of F� Unfortunately the minimizer of

Rq��� 	 E

�
min
b�����

kx� ��b�k�
�

������

is not well de�ned� unless F is a compact set� Moreover� even the minimizer of the

empirical quantization functional Rq�emp is generally not well de�ned� either� In

fact it is an ill posed problem in the sense of Tikhonov and Arsenin ������� Finally�

until recently �K+egl et al�� ����� no convergence properties of Rq�emp��� to Rq���

could be stated�

Despite the problems mentioned above� an algorithm to minimize Rq�emp���� was

devised by Hastie and Stuetzle ������� It proceeds as follows	 after initialization

to the principal components� the projections of the datapoints onto the curve are

estimated� the curve based on that is reestimated� and the latter is smoothed by

kernel smoothers or similar techniques�

K+egl et al� ������ modi�ed the original principal�curves� algorithm slightly� to

be able to prove uniform convergence type results� In particular the changes imply a

restriction of F to polygonal lines with a �xed number of knots and� most important�

�xed length L�� Under these assumptions they are able to prove upper bounds on

the expected quantization error with respect to the empirical error�

����� A Regularized Version

In the following� yet another modi�cation will be proposed� which will lead to an

algorithm that is more amenable to implementation� Moreover uniform conver�

gence bounds can be obtained for smooth curves� independently of the number of

nodes�gridpoints� For this purpose� a regularized version of the empirical quantiza�

tion functional is needed�

Rq�reg��� 	 Rq�emp��� # �Q���� ������

In particular� homogeneous quadratic regularizers will be considered�

Rq�reg���  

mX
i��

min
b�B

kxi � ��b�k� # �

�
kP����k�� ����	�

Here P is a regularization operator penalizing unsmooth functons ���� as de�ned in
section ���� In the present case this is a useful assumption� since all curves� which

can be transformed into each other by rotations� should be penalized equally�

�� In practice Kegl et al� use a constraint on the angles of a polygonal curve rather than
the actual length constraint to achieve sample complexity rates on the training time� For
the uniform convergence part� however� the length constraint is used�
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Using the results of chapter � regarding the connection between regularization

operators and kernels it appears suitable to choose a kernel expansion of ����
matching the regularization operator P � Hence one gets

��b�  �� #

MX
i��

�ik�bi
 b� with bi � B and �i � X� ����
�

for some previously chosen nodes b�
 � � � 
 bM �one takes as many as one may a
ord

in terms of computational cost�� Thus the regularization term can be written as

kP����k�  
MX

i�j��

h�i
 �jik�bi
 bj�� ������

A number of things will be shown in the following	

�� An EM type algorithm for e�ciently minimizing ������ is presented�

�� A special choice of a regularization operator� minimizing Rq�reg������ is equiva�
lent to minimizing the optimization problem posed in �K+egl et al�� ������

�� The connection to the GTM algorithm by Bishop et al� ������ is made explicit�

An Algorithm for minimizing Rq�reg������ No re�interpretation of the regular�
ized quantization error as some likelihood �with a suitable prior� of a class of gen�

erative models is done� Instead� the techniques of EM algorithms �Dempster et al��

����� are adapted to solve

min
f��������Mg�X

f��������mg�B

�
�� mX
i��

!!!!!!xi �
MX
j��

�jk��i
 bj�

!!!!!!
�

#
�

�

MX
i�j��

h�i
 �jik�bi
 bj�

�
 � ������

likewise in an iterative fashion� For this purpose one iterates over minimizing ������

with respect to f��
 � � � 
 �mg� equivalent to the projection step� and f��
 � � � 
 �Mg�
which corresponds to the expectation step� This is repeated until convergence� in

practice until the regularized quantization functional does not decrease signi�cantly

any further� One obtains	

Projection For each i � f�
 � � � 
mg choose �i such that
�i 	 argmin

��B
kxi � ����k�� ������

Clearly� for �xed �i� the so chosen �i minimize the term in ������� which in

turn is equal to Rq�reg��� for given �i and X �

Adaptation Now the parameters �i are �xed and �i is adapted such that Rq�reg���

decreases further� For �xed �i di
erentiation of ������ with respect to �i yields�
�

�
Kb #K	

� K�

�
�  K	

� X ������

where �Kb�ij 	 k�bi
 bj� is anM�M matrix and �K��ij 	 k��i
 bj� is m�M �
Moreover� with slight abuse of notation� �� and X denote the matrix of all

parameters� and samples� respectively� The term in ������ keeps on decreasing

until the algorithm converges to a �local� minimum� What remains is to �nd

good starting values�

Initialization Unless dealing� as assumed� with centered data� set �� to the sample

mean� i�e� ��  
�
m

Pm
i�� xi� Moreover� choose the coe�cients �i such that �

approximately points into the directions of the �rst D principal components

given by the matrix E 	 �e�
 � � � 
 eD�� This is done as follows� analogously to
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�

the initialization in the generative topographic map �Bishop et al�� ����� eq�

��������

min
f��������Mg�X

�
�� MX
i��

!!!!!!E�bi � b���
MX
j��

�jk�bi
 bj�

!!!!!!
�

#
�

�

MX
i�j��

h�i
 �jik�bi
 bj�

�
 � �

Thus � is determined as the solution of
�
�
��#Kb

�
�  E�B � B�� where B

denoted the matrix of bi� b� the mean of bi and B� the corresponding matrix�

The derivation of this algorithm was quite ad hoc�� however� one can show that

there exist similar precursors in the literature� First it is shown that minimizing

������ is equivalent to minimizing the quantization error subject to a length

constraint on the estimated curve�

Regularizers for Length Constraints By choosing P 	 �b� i�e� the di
erenti�

ation operator in the one�dimensional case� kPfk� becomes an integral over the
squared speed� of the curve��

Reparametrizing ���� to constant speed leaves the empirical quantization error un�
changed� whereas the regularization term is minimized� This can be seen as follows

� by construction
R
���� k�t��b�kdt does not depend on the �re�parametrization�

The integral over k�t��b�k�� however� is minimal for a constant function� Hence
k�t��b�k has to be constant over interval ��
 ��� Thus kP����k� equals the squared
length L� of the curve at the optimal solution�

Due to the reasoning in section ����� one can see that minimizing the empirical

quantization error plus a regularizer is equivalent to minimizing the empirical

quantization error for a �xed value of the regularization term �for � adjusted

suitably�� Hence the proposed algorithm is equivalent to �nding the optimal curve

subject to a length constraint� i�e� it is equivalent to the approach theoretically

postulated �not the implementation� though� by K+egl et al� �������� However� one

only �nds the length a posteriori �which is not a major restriction� cf� the reasoning

in section �������

The Connection to the GTM The basic aim of the Generative Topographic

Map was to provide a principled probabilistic replacement of more ad hoc methods

such as the Self Organizing Map �cf� e�g� �Kohonen� ������� In particular it attempts

to describe the data in terms of a generative� lower dimensional model plus additive

Gaussian noise� The prior over the space of manifolds is Gaussian� too� in each basis

function�

A closer look at the GTM �ignoring the Bayesian framework�� reveals that it

minimizes a rather similar quantity to Rq�reg���� It di
ers in its choice of B� which

is chosen to be a grid� identical with the points bi in our setting� and the di
erent

regularizer �called Gaussian prior in that case� which is of �� type� In other words

instead of using kP�k�  P
i�j �i�jk�xi
 xj� Bishop et al� ������ choose

P
i k�ik�

as a regularizer� Finally in the GTM several �i may take on responsibility� for

having generated a data�point xi �this follows naturally from the generative model

setting in the latter case��

Note that unlike in the GTM �cf� �Bishop et al�� ����� sec� ����� the number of nodes

�� Usually ��	� is parametrized to have �unit�speed� and B is adapted instead of �xing it
to 
�� ��� However this is not computationally convenient in the present case�
�� The reasoning only holds for an in�nite number of nodes� as otherwise ��	� cannot
be completely reparametrized to constant speed� being an expansion in terms of a �nite
number of nodes� However the basic properties still hold�
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�for the kernel expansion� is not a critical parameter� This is due to the fact that

there is a coupling between the single centers of the basis functions k�bi
 bj� via

the regularization operator� If needed� one could also see the proposed algorithm

in a Gaussian Process context �see Williams ������� � the data X then should be

interpreted as created by a homogeneous process mapping from B to X�

Finally the use of periodical kernels �cf� sec� �� allows one to model circular

structures in X� After solving the algorithmic issue one has to come up with good

uniform convergence bounds� which will be done in section ����

In analogy to section ��� one could also modify ������ to allow for a gradual

transition from PCA to regularized principal curves� For this purpose let

��b�  �� # ��b#

MX
i��

�ik�bi
 b� with bi � B
 ��
 �i � X
 and �� � XdimB� ������

For large �� the nonparametric term essentially vanishes �due to the corresponding

regularization�� and one recovers standard PCA� for decreasing � the curve adapts

more and more to the nonlinearity that might be inherent in the data� Thus in

hindsight� also the initialization of the parameters �i� as adopted from GTM can

be seen to be reasonable�

It is worth while noticing that the equations derived above do not make any

implicit assumption on the dimensionality of B� In fact� instead of regularized

principal curves one could also construct other possible manifolds�

Finally the use of periodical kernels as derived in chapter � allows one to model

circular structures �or more generally toroidal manifolds� in X� For tools to bound

the quantization error in terms of the empirical one and the model complexity �via

kP����k�� see section ����

��� Summing Up

This chapter brie�y reviewed the problem of unsupervised learning from two

di
erent viewpoints� Seeking reliable feature extractors� which can be done by

using suitable contrast functions in conjunction with regularization functionals�

This approach led to algorithms like Kernel PCA and more generally Kernel Feature

Analysis� Moreover one could see that Kernel PCA is optimal for extraction of

polynomial features� thus making it possible to work with spaces of polynomials

otherwise untractable to computation�

The second �data descriptive� approach led to an algorithm whose roots can

be found both in the GTM and Principal Curves� Due to the formulation of

the problem as minimizing the expected quantization error� an expression quite

similar to the classical risk functional of supervised learning� a number of methods

�such as regularization and kernels� could be applied to the case of unsupervised

learning� Moreover the paper of K+egl et al� ������ shows a way to compute uniform

convergence bounds in the latter case� The issue of preparing the tools to derive

practical bounds� however� is relegated to section ��� as it requires some concepts

from functional analysis�
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The proof requires basic notions from group theory� Denote O�d� the orthogonal

group on Rd � i�e� the group of d � d matrices with O	O  �� with the addi�

tional requirement detO  �� one obtains the special orthogonal group SO�d��

A representation � of SO�d� is a map that preserves the group structure� i�e�

��O�O��  ��O����O�� for all O�
 O� � SO�d��
Proof  �� Due to the de�nition of k�x
 y� 	 hx
 yip� it follows immediately
that k�Ox
Oy�  hx
O	Oyip  hx
 yip for any O � O�d��
� � Denote P �p
 d� to be the �feature� space given by the evaluation of all possible
monomials of order p on Rd � furnished with a Euclidean dot product� The map into

feature space� $ 	 Rd 	 P �p
 d�
 x 	 $�x�� induces a representation � of SO�d� on

P �p
 d� via $�Ox�  ��O�$�x�� This follows from �Vilenkin� ����� ch� IX���� Hence

h$�x�
$�y�i  hx
 yip  hOx
Oyip  h��O�$�x�
 ��O�$�y�i� ������

Moreover � is an orthogonal representation� i�e� ��O�	��O�  � for all O � SO�d��
This follows from h$�x�
$�y�i  h��O�$�x�
 ��O�$�y�i and span$�Rd �  P �p
 d��

Next one has to prove that any positive diagonal matrix D acting on P �d
N��

satisfying the invariance condition

hD �
�$�x�
 D

�
�$�y�i  hD �

� ��O�$�x�
 D
�
� ��O�$�y�i ������

for all O � SO�d�� is necessarily a multiple of the unit matrix� If that were not true�
then kD�x
 y� 	 hD �

�$�x�
 D
�
�$�y�i  kD�Ox
Oy� would be a di
erent kernel

invariant under SO�d�� Again� as span$�Rd�  P �p
 d�� one may rewrite ������ as

D  ��O�	D��O�
 i�e� D��O�  ��O�D� ������

In componentwise notation �in P �p
 d��� this reads

Di��O�ij  Dj��O�ij � ����	�

Therefore� one can show that Di  Dj for all i
 j by showing that there exist

su�ciently many nonzero ��O�ij � To this end� consider a rotation 'O mapping

x� 	 ��
 �
 � � � 
 �� into x� 	 
�p
N
��
 � � � 
 ��� Clearly� $�x��  ��
 �
 � � � 
 �� � P �p
 d��

whereas $�x��  $� 'Ox��  �� 'O�$�x�� contains only nonzero entries� Hence also

the �rst row of �� 'O� contains only nonzero entries� By ������� one concludes that

D�  Di for all i� and therefore D  ���

This completes the argument concerning the invariance of the polynomial kernel�

The transfer to the invariance of Kernel PCA� i�e� to the invariance for all test and

training sets� is straightforward�	

	� The above statement does not hold if D may be an arbitrary matrix of full rank� Via
Schur�s lemma 
Hamermesh� ����� one can show that the number of di�erent subspaces
that can be scaled separately equals the number of irreducible representations in ��
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Besides the experimental demonstrations that the extensions to the basic SV

algorithm are feasible� as done in the previous chapters� the present chapter is

devoted to two examples where SV methods yield state of the art performance�

This is done to give evidence that the performance of SV machines is not limited to

Optical Character Recognition �OCR� where world class results has been achieved

�cf� Sch�olkopf ��������

Roadmap

The �rst section contains an application of SVs to classi�cation of elementary

particle events� This is a large and very noisy dataset� Hence it is challenging

in terms of �nding a suitable optimization algorithm and also to see whether SV

machines are still competitive in the high noise regime�

Prediction of time series is the other extreme where relatively few samples were

available� especially when the data was segmented �rst by an adaptive clustering

algorithm in function space �M�uller et al�� ����� Pawelzik et al�� ������ Also in this

case� world class results were obtained using SV regression�

	�� Classi�cation of Elementary Particle Events

One of the reasons to deal with this classi�cation task �quite di
erent from the

rest of this thesis which is mainly concerned with regression� is that classi�cation

problems provide a simpli�ed testbed for optimization algorithms� Secondly� the

dataset is rather large ������� samples for training� ������ samples validation� and

������ samples test� and very noisy �typically more than ��" of the samples will

become SVs� which is a real challenge for optimization algorithms� Moreover it

is important to check that SV machines� which� until recently� have been mainly

tested on low noise data� also perform well on noisy data� A theoretical reason for

that can be found in the robustness result of Sch�olkopf et al� �����b�� where SV

machines and the trimmed mean estimator are connected�

����� Algorithmic Results

The algorithm chosen to solve the SV optimization problem was SMO �cf� section

����� mainly due to the reason that interior point codes are by far computationally

to expensive to use in the present case� They would need a quadratic amount of

memory and a cubic amount of computational time to converge� and that subset

selection codes �cf� section ���� are not always stable and stalled in our experiments

instead of converging to the optimal solution� SMO proved to be the most robust
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one�

Figure ��� shows the convergence properties of SMO� One may observe that the

feasibility gap decreases rapidly� The small plateau like structures in the primal

objective function are most likely due to the fact that SMO attempted to optimize

on the non�bound variables only �which is a good strategy under the assumption

that the �nal SV set has been found�� or that major changes in the con�guration

of the SV set were necessary before convergence could proceed�

The convergence properties can also be observed in �gure ���� It shows the number

of signi�cant �gures� i�e� the logarithm of the maximum deviation from the optimal

solution� depending on the number of dot product computations needed� The �rst

thing to notice is the approximately exponential convergence of the algorithm �at

least up to a precision of ������ Thus the number of signi�cant �gures appears to

be a good parametrization of the algorithm�

The small dents� are due to the fact that after convergence� i�e� after that a

precision of � signi�cant �gures was reached� the regularization parameter was

decreased by ���� the Lagrange multipliers were rescaled accordingly� and the

optimization was restarted for the new value of C �cf� sec� ������� One can see

that convergence to the new optimal solution occurs approximately �� times faster

�only � � ��� dot product evaluations� than when training from scratch �� � ���
dot product evaluations�� The kernels used were Gaussian rbfs with � set to ���

Cstart  �� and sample size �������
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for the SMO algorithm�

����� Classi�cation

As the dataset is very large and data is rather cheap� model selection can be done

by cross validation� Moreover� the OPAL collaboration that generated this dataset

by a Monte Carlo simulation� has been using a validation set of ������ samples�

which is su�ciently large�

Being synthetical data� the relative frequencies of occurence of the several classes

are di
erent from their counterparts in real data� Hence the classi�cation results

have to be corrected by the relative frequencies of occurence� Moreover� punting

�rejection of samples� is allowed� This means that only samples with high con�dence

need to be classi�ed� Overall one is interested in obtaining predictions for one class

�charm� with high purity� �i�e� the fraction of correctly classi�ed charm� events

in the class of events classi�ed as charm��� while having acceptable e�ciency�

�i�e� the fraction of correctly classi�ed charm� events anong all charm� events��

More formally this can be written as follows	

e�ciencyij  preselecti
number of events i� classi�ed as j�

total number of events i�
�����

where preselecti is a preselection coe�cient which depends on the physical setting

of the particle detector �i�e� a certain type of events cannot be detected well�� One

has preselectc  ��������� preselectb  ��������� and preselectuds  ���������

Moreover the purity of such a classi�cation is computed as

purityi  
pi � e�ciencyiiP
j pj � e�ciencyji

�����

with pb  ������ pc  ������ and puds  ������ In practice� one tries to achieve

highest purity for an e�ciency of approximately ��"� This is done by setting a

threshold value such that only patterns with classi�er output above this threshold
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will be accepted as charm� events� The threshold parameter is determined by a line

search �as the e�ciency is a monotonically decreasing function of the threshold��

As one can observe� the setting is rather robust to the choice of parameters and

achieves roughly ����" purity on the test set �cf� �gure ����� This may seem low�

but chance level would be pipreselecti��
P

j pjpreselectj�� i�e� ����" for charm�

events�

����� Reference Results

The results were compared to basic techniques� such as k nearest neighbour meth�

ods� as those constitute the base line performance� As one is allowed to reject

patterns the standard k�nn algorithm is modi�ed in the way that only patterns

with a �to be determined� minimum fraction of charm� events as neighbours will

be accepted� In other words� a pattern will be accepted if

nc
nc # nb # nuds

� t � �� �����

Here t denotes the threshold and nc
 nb
 nuds denote the number of charm�� bot�

tom�� or up�down�strange� events among the k nearest neighbours� As already

mentioned before� a problem arises from the fact that the relative frequencies of

occurence of the training set� and real data are not identical� In particular� one has

to reweight them by the probabilities given in the previous section� Hence a natural

modi�cation of ����� appears to be the following criterion	

pcnc
pcnc # pbnb # pudsnuds

� t � � �����

Both variants of the k�nn rule were tested on the dataset� In each case the

e�ciency� of the classi�er was required to achieve at least ��"� This was done by

adjusting the threshold on the validation set� Figure ��� shows the performance of

the classi�er for both ����� and ������ Note that the quality of the predictions is

best for large k� i�e� for averaging over large parts of the data space� Also note that

the di
erent probability weights did not seriously in�uence the performance� Both

may be considered as an indication that the data is extremely noisy�

What is even worse� performance is close to that achieved by SV classi�cation �o


by at most �" in terms of purity�� This could cast some serious doubt about the

performance of SV machines� However� comparing these results to those of Gaussian

rbf networks �with adaptively tuned centers and kernel widths� cf� �Moody and

Darken� ����� Bishop� ����� M�uller et al�� ����� R�atsch� ������ on the same dataset

show that this is due to the di�culty of the problem� The latter also achieve ����"

purity on the dataset� Hence not much can be gained from an advanced technique

if the dataset is very noisy�

Also a reweighting of the data according to its relative probability weights did

not change the overall classi�cation performance�
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	�� Time Series Prediction

The goal in time series prediction� is to learn the dynamic of a series of measure�

ments

T 	 ft�
 t�
 t�
 � � � 
 ti
 � � �g � Y
 �����

i�e� to estimate ti�� �or ti�n� given the sequence �t�
 � � � 
 ti�� One way to solve this

problem is to use an autoregressive model� i�e� to assume

ti��  f��ti����
 � � � 
 ti�� �����

where � � N is the embedding� Under quite mild assumptions it can be shown

�Takens� ����� that a chaotic attractor can be represented as a smooth mapping of

type ����� if the embedding � is chosen to be larger than twice the �fractal� box

counting dimension of the attractor�

Given �� the problem reduces to a regression setting� i�e� to �nd a mapping for the

pairs �xi
 yi� 	 ��xi�� 
 � � � 
 xi�
 xi���� In practice� not much further worry is spent
on the fact that this data is actually not iid �independently identically distributed��

i�e� that a permutation of the patterns would make a di
erence� Thus the standard

statistical techniques� which rely on the iid assumption� are not applicable� Only

recently a method was pointed out how to perform structural risk minimization

�which requires uniform convergence bounds� on time series data �Weyer� �����

Weyer et al�� ����� ����� Meir� ������

However� in the case discussed above� assumptions about certain mixing prop�

erties� or about the impulse response properties of the system have to be made�

hence the result is not completely distribution free�� Despite the aforementioned

problems and concerns� the data will be treated as if it had been generated by an

iid source and standard regression techniques �SV machines and RBF networks�

applied to it�

����� Techniques

The RBF nets� used in the experiments �to compare with� are based on the methods

of Moody and Darken ������ and M�uller et al� ������� However� not only the output

weights are adjusted by backpropagation �on squared loss with regularization�� but

also the RBF centers and variances� In this way� the networks �ne�tune themselves

to the data after the clustering step� yet of course over�tting has to be avoided �cf�

Bishop ������� M�uller et al� ������� R�atsch ��������

The following experimental setup is �xed for the comparison	 �a� RBF nets and

�b� SV machines are trained using a simple cross validation technique� Training of

the RBF networks is stopped at the minimum of the one step prediction error�

measured on a validation set� For SV machines the parameters ��
 �� are also

determined at the minimum of the one step prediction error on the validation set�

Other methods� e�g� bootstrap could also be used to assess � and �� Note� for SV

�� This section follows largely 
M�uller et al�� ������
�� The uniform convergence proofs of Vapnik 
��	�� for regression are not completely
distribution free� either� Here assumptions on the �niteness of some moments of the
distribution are made �which is also the case for the central limit theorem��
�� RBF results courtesy of Gunnar R�atsch�
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machines� a distinction is made between Huber�s loss function and the ��insensitive

loss �cf� chapter ��� Gaussian RBF kernels are used with ��  �����

In the following two experiments will be considered	 �i� a toy problem �Mackey

Glass time series� to understand and control the experimental set�up and �ii� a

benchmark problem from the Santa Fe Competition �Weigend and Gershenfeld�

����� dataset D��

����� Mackey Glass Timeseries

The �rst application is a high�dimensional chaotic system generated by the Mackey�

Glass delay di
erential equation

dx�t�

dt
 ����x�t� # ���x�t� td�

� # x�t� td���

 ���	�

with delay td  ��� Eq� ����� was originally introduced as a model of blood

cell regulation �Mackey and Glass� ����� and became quite common as arti�cial

forecasting benchmark� After integrating ������ noise was added to the time series�

From the time series training ����� patterns� and validation ���� patterns� sets

were obtained� using an embedding dimension �  � and a step size �  �� i�e�

xi  �xi
 xi�
 
 � � � 
 xi������
 �� ���
�

The test set ����� patterns� is noiseless to measure the true prediction error� Ex�

periments were conducted for di
erent signal to noise ratios �SNR�� using Gaussian

and uniform noise �Table ����� RBF networks and SVR achieve similar results for

normal noise� It is to be expected that the method using the proper loss function

�squared loss� wins for gaussian noise� so one would actually expect the RBF nets

to perform best followed by SVR trained with Huber loss� which is �depending on

the width parameter� close to the squared loss and �nally followed by SVR using

an ��insensitive loss� Table ��� con�rms this intuition largely� For uniform noise the

whole scenario should be reversed� since ��insensitive loss is the more appropriate

noise model� This is again con�rmed in the experiment�

The use of a validation set to assess the proper parameters � and �� however�

is suboptimal and so the low resolution with which the ��
 �� space is scanned is

partly responsible for table entries that do not match the above intuition�

noise normal uniform

SNR ����� ���� ��� ���� �	�� 

Rtest �S ���S �S ���S �S ���S �S ���S �S ���S

� iter ����	 ����� ����� ����� ����	 ����� ����� ����� ����� �����

� loss ����� ����	 ����� ����� ����� ����	 ����� ����� ����� �����

Huber ����� ����� ����� ����� ����	 ����� ����� ����� ����� �����

RBF ����	 ����� ����� ����� ����� ����� ����� ���	� ����	 ���	�

Table ��� �S denotes the ��step prediction error �RMS� on the test set� ���S is the

����step iterated autonomous prediction� level� is the ratio between the standard

deviation of the respective noise and the underlying time series�
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����� Data Set D from the Santa Fe Competition

Data set D from the Santa Fe competition is arti�cial data generated from a nine�

dimensional periodically driven dissipative dynamical system with an asymmetrical

four�well potential and a drift on the parameters �Weigend and Gershenfeld� ������

As embedding �� consecutive points were used� Since the time series is non�

stationary� it is �rst segmented into regimes of approximately stationary dynamics

with competing predictors �M�uller et al�� ����� Pawelzik et al�� ������ Only the

subset is used for training ���� patterns� which was tagged by the predictor

responsible for the data points at the end of the full training set� This allows one

to train the RBF networks and the SV machine on quasi stationary data and one

avoids to predict the average over all dynamical modes hidden in the full training

set �see also M�uller et al� ������� Pawelzik et al� ������ for further discussion��

however at the same time one is left with a rather small training set requiring

careful regularization� As in the previous section a validation set ��� patterns� is

used to determine the stopping point and ��
 �� respectively�

Table ��� shows that the �� step iterated prediction of the SV regression is

��" better than the one achieved by �Zhang and Hutchinson� ������ who assumed

a stationary model� It is still ��" better than the result of �Pawelzik et al��

����� that used the same preprocessing as above and simple RBF nets with non�

adaptive centers and variances� The results obtained from training on the full

�non�stationary� training set �without prior segmentation� are inferior� as expected�

however ��insensitive SVR is still better than the previous results on the full set�

experiment ��ins� Huber RBF Zhang and Hutchinson Pawelzik et al�

full set ������ ���	�� ������ ������ �

segmented set �����	 ������ ������ � ������

Table ��� Comparison of �� step iterated predictions �root mean squared errors�

on Data set D� �� denotes	 no prediction available� Full set� means� that the

full training set of set D was used� whereas segmented set� means that a prior

segmentation according to �Pawelzik et al�� ����� was done as preprocessing�

	�� Summing Up

The present chapter showed the applicability of SV machines to two rather di
erent

settings	 classi�cation on large and noisy datasets and regression in the small sample

size case�

The lesson to be learned from the �rst dataset is that it is not always worth while

to train SV machines or other advanced �and computationally expensive� methods

on large noisy databases� unless a slight increase in the performance �only �" in

the case discussed above� is essential �which it happens to be in the present case��

Base line methods like k nearest neighbours might very well be su�cient�

In the second case� the situation is quite di
erent� For data from the Mackey�

Glass equation one could observe that also for SVR it pays to choose the proper

loss function for the respective noise model� For the data set D benchmark excellent
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results were obtained for SVR � ��" above the best result achieved during the Santa

Fe competition Zhang and Hutchinson ������� Clearly� this remarkable di
erence is

mostly due to the segmentation used as preprocessing step to get stationary data�

nevertheless still ��" improvement remain compared to a previous result using the

same preprocessing step �Pawelzik et al�� ������ This underlines that one has to

consider possible non�stationarities or even mixings in the time series before the

actual prediction� for which we used SVR or RBF nets�

The experiments show that SV methods work particularly well if the data is

sparse �i�e� we have little data in a high dimensional space�� Moreover small sample

size and little noise make SV machines the method of choice� This is largely due to

their good inherent regularization properties�
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Figure ��� Purity for di
erent k nearest neighbour classi�ers for �� e�ciency

minimum �top	 equally weighted patterns� bottom	 patterns weighted by the relative

frequency of occurence��



II Bounds

The next chapters constitute the learning theory part of this thesis� They can be

read rather independently of the previous chapters on algorithms� Some of the

results of chapter �� however� will be needed�

So far� the main concern was to construct computationally feasible algorithms to

minimize some regularized risk functional� without too much worry� whether this

might be desirable from the point of bounding�minimizing the expected risk �the

quantity one ultimately wants to minimize� or not� Hence� what one would like to

have� either from theory or some additional experiments� is an expression of the

form
R�f � � Remp�f � # R�F
 X
 �� for all f � F

which holds with probability � � �� Here R�f
X
 �� is some term bounding the

deviation between generalization error and empirical error in terms of the chosen

model class F� the dataset X � and the degree of con�dence ��

In the following� several types of complexity bounds will be analyzed� with the

main emphasis on distribution free bounds of the Vapnik�Chervonenkis type� It

will become clear that scale sensitive quantities are needed to deal with estimation

problems in the SV context� This is due to the often in�nitely dimensional feature

spaces where calculations are carried out� After a brief review of existing bounds� a

new� functional analytic� approach is taken� This allows direct computation of the

entropy numbers of a class of functions� instead of taking the detour via the VC

dimension� This renders the latter obsolete in cases where the former is available�

For instance� for the �rst time ever� this will allow to state explicitly uniform

convergence bounds for SV regression �an implicit version already appeared in

�Anthony and Bartlett� ������� Moreover� these techniques will be readily applied

to the other types of regularization operators pointed out in part I� Thus� also

uniform convergence bounds� independent of the number of basis functions in the

expansion will be given for regularization networks� linear programming machines�

and regularized principal manifolds�
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Roadmap

Chapter � gives a brief overview over two methods of controlling capacity �i�e� model

selection� in statistical learning theory� First experimental means of estimating

the generalization performance are described� This is done� as they are some of

the most widespread ones in practice� Next� basic quantities like metrics and

covering numbers of sets and classes of functions are introduced� This� together

with Hoe
ding�s inequality� provides the basic toolset necessary for deriving uniform

convergence bounds� Several examples thereof are given� for cases of real and binary

valued functions� as they are essential for the things to follow in the next chapter�

For the sake of completeness� and also to be able to compare the new results with

already existing ones� the VC dimension and its scale sensitive counterparts are

de�ned� A brief remark on structural risk minimization concludes this chapter�

Now the scene has been set for the functional analytic approach in chapter �� It

contains the core results of part II� First� some basic properties of entropy numbers

�the functional inverse of covering numbers� are described� Next Mercer�s theorem

is exploited to obtain bounds on the shape of the feature space in kernel methods�

In particular� it is shown that entropy numbers can be stated in terms of the

eigenspectrum of an integral operator� de�ned via the kernel� Besides fully analytic

methods� also empirical ways of determining entropy numbers are presented� It

turns out that the famous bound of Guyon et al� ������ on the VC dimension of SV

classi�ers is a weak version of a special case of these considerations� A generalization

to more powerful empirical methods will become quite straightforward� thus taking

more properties of the data into account� The chapter concludes with an application

of the techniques to several kernels in one and higher dimensions� Tight asymptotic

rates on entropy numbers are given in this context�

The techniques are su�ciently general to be easily adapted to further schemes of

capacity control such as regularization networks� This is done in the last chapter�

Also convex combinations� both in terms of kernels and more general function

expansions� can be dealt with e�ciently� An interesting consequence is that p�

convex combinations should be only considered if p � �� In all other cases� under
quite standard assumptions� the capacity of the system may grow without bound�

Moreover� linear programming can be proven to control capacity more e�ciently

than one would initially think of� The last application of entropy numbers are

regularized principal manifolds� a new algorithm for unsupervised learning� Besides

uniform convergence bounds� also convergence rates are computed for kernels with

exponentially fast rate of decay in the eigenvalues� It turns out to be arbitrarily close

to optimal� giving another example of the power of functional analytic methods�
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The current chapter recalls the basic tools from statistical learning theory� It

contains few new results as its main purpose is to prepare the reader for the

subsequent chapters on entropy numbers� It is provided for greater self consistency

of the exposition� and to take a slightly modi�ed viewpoint on the quantities

involved in bounding the expected risk� Hence readers familiar with the subject

might want to skip this chapter entirely�

Roadmap

Empirical methods to estimate the expected risk �and to give maximum deviation

bounds� are widespread and popular� Thus� section ��� brie�y reviews some these

techniques and discusses their properties� A close look at crossvalidation �sec� ������

reveals some of the pitfalls inherent to this method� when used without care� ���

fold crossvalidation and other leave n out estimators are discussed in section ������

This is done� also to describe the experimental setup of many of the experiments

in the �rst part of the thesis�

Tools from statistical learning theory are introduced in section ���� After a brief

description of the connection between covering numbers� �level� fat shattering

dimensions and the VC dimension some de�nitions about metrics and norms

are stated in section ������ Covering numbers are introduced in sectin ������ and

Hoe
dings inequality with its implications is stated in section ������

A number of di
erent bounds for bounding the expected risk in terms of both

covering numbers and the empirical risk is stated in section ���� More than the

particular constants and exponents� the structure of such statements is important�

Two ways to exploit this structure are pointed out subsequently	 annealed entropy

and growth function are introduced� and methods for obtaining learning curves in

terms of dyadic entropy numbers are presented� Finally� section ����� shows how to

deal with a combination of base hypothesis classes and loss functions� as the latter

modify the e
ective resulting hypothesis class�

Section ��� introduces the concept of VC dimensions� including the di
erent

variants for binary and real valued functions� It is shown that the plain� VC

dimension may not always be the quantity one wants to deal with in SV machines� as

the former is unbounded in many cases� Therefore� also the scale sensitive variants

of the VC dimension are described and it is shown how to bound the covering

numbers �wrt� di
erent metrics� in terms of the �fat� VC dimensions�

An account on structural risk minimization �SRM� see sec� ���� concludes the

chapter� After describing the basic idea� its implications to SV machines are pointed

out� It is explained why in many cases SVMs induce data dependent hierarchies�

which makes it impossible to apply plain� SRM� The rationale is that only limited

statements on the shape of the mapped data in feature space S can be made� unless

one is willing to make assumptions about the domain of interest X�
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�� Empirical Methods

The �rst thing to mention are empirical methods� This is due to their simplicity

� these methods are straightforward to implement and one can make them work

rather well� even without a profound understanding of learning theory� The intuition

behind them can be understood rather easily� Therefore� they are methods of choice

for many practicioners� Also they serve as a sanity check for more involved bounds�

Finally one should note their relatively good performance in most cases �cf� e�g�

�Kearns et al�� �������

One of the goals of the error bounds is to provide a model selection criterion�

which can be used to determine quantities like the kernel width or regularization

parameters�

����� Crossvalidation

The basic idea is quite simple	 assume that an estimator )f depends on two di
erent

sets of variables � and �� i�e� )f  )f��
 ��� The qualitative di
erence between � and

� is that � may be many parameters� whose in�uence on the overall performance

may be rather benign� whereas � are structural parameters �e�g� polynomial degree�

kernel width� regularization� determining the shape of the model class� from which
)f is drawn� It is intuitively clear that one will want to estimate � quite well� as the

latter set of variables seriously a
ects the overall performance of the estimate�

The conventional wisdom is to split the training set X
Y into an actual training

set Xt
 Yt and a validation set Xv
 Yv� Moreover de�ne the training and validation

error as

Rtrain�f � 	 
�

mtrain

X
�xi�yi��fXt�Ytg

c�xi
 yi
 f�xi�� �	���

Rvalid�f � 	 
�

mvalid

X
�xi�yi��fXv�Yvg

c�xi
 yi
 f�xi��� �	���

Here c is a cost functions as de�ned in chapter �� The crossvalidation rule selects

the hypothesis )f��
 �� as follows

�  argmin
��

fRvalid�f����
��
 ����g �	���

where ����  argmin
��

fRtrain�f��
�
 ���g� �	���

At the same time� the term Rvalid�f � is assumed to be a good estimate of the

expected risk R�f ��� Recently� several attempts have been made to determine

how the split between training and validation set should be done �Amari et al��

����� Kearns� ����� Guyon et al�� ������ The �rst approach� due to Amari et al�

������ is based on asymptotic statistics� Unfortunately� the expansions of the error

terms obtained for the case of an in�nitely large number of samples only hold

approximately for the �nite sample size case� For instance the experiments of M�uller

et al� ������ show that while asymptotic expansions �as one could expect� describe

�� This assumption can be removed by splitting the training data into three sets � each
one for the parameters � and �� and �nally a third one to estimate the expected error
R
f �� The problem of a reliable estimate� however� remains� and even more� possibly very
expensive� training data remains unused for constructing the actual estimator�
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the typical error quite well in the limit case of many samples� they degrade in the

small sample size case �which is the more relevant in practice as training data tends

to be rare and expensive��

The other approach considers cases where the overall model complexity �in this

case the VC dimension� of the joint model f��
 �� is bounded �Kearns ������� Guyon

et al� ������� and makes use of the bounds� While this assumption is valid by itself�

it takes quite sophisticated models from learning theory to show this in practical

cases� Moreover in this case� one could use also use methods of VC type to bound

the expected risk� without sacri�cing a potentially large amount of data�

Another danger arises from the following situation� Imagine a set of variables �

that consists only of one scalar� whereas the variables � are of the order of magnitude

of the sample size� Not changing the proportion of training and validation set� one

might get quite good estimates of �� however the quality of the estimate of �� and

in particular of Rvalid�f � in comparison to R�f � might be rather bad� as one would

e
ectively be training on the validation set� Finally one might ask why not ��
 ��

could be found by joint minimization as

��
 ��  argmin
�������

fRemp�f��
�
 ����g �	���

which is quite similar to what the EM�algorithm does� thus exploiting the full

dataset more e
ectively to compute ��
 ��� Hence crossvalidation has to be used

with some care� Still� if one needs an easy to implement method to give an estimate

of the expected error �especially if � is of low dimensionality and well behaved���

it may be one of the methods of choice�

����� Leave n out Estimators

The leave n out estimator� and in particular methods like n�fold crossvalidation

try to �x one of the problems brought up by plain� crossvalidation� namely that

one part of the training data is used exclusively to determine � and the other part

exclusively for �� This is done as follows �assume the sample size m to be a multiple

integer of n�	

The dataset is split into m�n parts� each of which is used as validation set to

determine � once� whereas the rest is used to determine �� This means that m�n

estimators have to be trained instead of a single one� to determine the best value

of ��� Finally an estimate of � is obtained from the complete dataset for this

particular value ��� It is common practice to choose m�n  ��� which is also how

many experiments in this thesis were carried out� This method is often also referred

to as ���fold crossvalidation��

Unfortunately there are some serious problems with this method� too� Firstly it

is extremely computationally expensive and therefore unfeasible where the training

times for a single estimator are already in the order of days� Secondly� while being

a more reliable method to assess the expected risk� still the same pitfalls� like the

�lack of� reliability of the estimate of �� exist as for standard crossvalidation�

There is yet another viewpoint that can be taken� especially for n  �� i�e� for

the Leave � Out Estimator�� The latter has been proven to provide an unbiased

estimate of the expected risk �cf� e�g� Vapnik �������� Denote by )fi the estimate

obtained by estimating )f based on the dataset Xi 	 fx�
 � � � 
 xi��
 xi��
 xmg and
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Yi 	 fy�
 � � � 
 yi��
 yi��
 ymg� Then the following equality holds

E

�
�

m

mX
i��

c�xi
 yi
 )fi�xi��

�
 R�f �� �	���

Thus� the leave one out estimate is an unbiased estimator of the expected risk on

the dataset� But even worse than before� this method is extremely computationally

expensive� However� it provides a useful tool to assess whether a statistical method

is robust �Huber� ������ In particular� it can be seen as the discretized version of

Hampel�s in�uence function �Hampel et al�� ������ Consequently one can empirically

evaluate the robustness of the estimator on the dataset at hand�

After this quick and incomplete overview over empirical methods to bound the

expected risk� this chapter will solely focus on arguments of Vapnik�Chervonenkis

type to obtain distribution free bounds� Wherever possible� there will be no advo�

cacy for this speci�c ansatz� and why not other model selection criteria like Bayesian

Modelling �MacKay� ������ Minimum Description Length �Rissanen� ������ the AIC

�Akaike� ������ or the Network Information Criterion �Murata et al�� ����� are ap�

plied to derive error bounds� The only thing to note is that the bounds stated below

have been derived using only very few assumptions� The other techniques above are

very valuable and valid in situations� where their assumptions are satis�ed� This�

however� has to be checked before comparisons are made�


�� Tools from Statistical Learning Theory

Like in many other model selection strategies the aim of Statistical Learning theory

is twofold	 �rstly to give bounds on the expected risk for a particular estimate at

hand� and secondly to provide algorithms that generate estimates with low expected

risk� Or in other words � the aim is to provide good estimators with a warranty��

For this purpose a set of tools have been developed to quantify the deviation between

measured quantities and their expected values�

One of the best known ones is the Vapnik�Chervonenkis �VC� dimension which

has the elegant combinatorial interpretation of the maximum number of points that

can be shattered by the hypothesis class� In the past �� years signi�cant e
orts were

made to bound the VC dimension of all di
erent kinds of estimators� and assessing

the quality of the error bounds stated in terms of the VC dimension� The works of

Pollard ������� Cohn and Tesauro ������� Ji and Psaltis ������� Maass ������� Girosi

������� Karpinski and Macintyre ������� Hole ������ and the references therein are

examples of this large body of work�

However� the VC dimension enters only at the endpoint of a chain of inequalities

to bound the convergence properties of estimators� The consequence thereof is

that the bounds derived from the VC dimension �although �niteness of the latter

is a necessary and su�cient condition for uniform convergence� cf� Vapnik and

Chervonenkis ������� may be too lose for practical use�� Under this point of view�

much of the recent research �and also the contribution of the subsequent chapters�

can be seen as an attempt to shorten this sequence of inequalities and bound the

more fundamental quantities needed for uniform convergence bounds directly�

�� Burges 
���	b� reports that the bounds derived via a VC dimension argument may be
too conservative up to an order of magnitude in SV classi�cation�
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What follows is a brief sketch of the reasoning� which will be pointed out in more

detail in the subsequent sections� The fundamental quantity �at least so far� is the

expected covering number� i�e� roughly speaking the expectation of the number N of

functions f from a hypothesis class F that is needed to represent whole hypothesis

class F with � precision� What actually matters is the logarithm of the expectation

of N� To make things more accessible to practical calculations� this quantity is

upper bounded by the expectation of the logarithm of N� i�e� the annealed entropy�

Finally� to achieve distribution independence� the latter� again� is upper bounded

by the sup over all distributions� This is what is called the growth function �cf�

e�g� �Vapnik� ������� Only the last step is to bound the growth function by a term

depending on another quantity� the VC dimension��

A �rst step towards better bounds was to introduce a scale sensitive counterpart

of the VC dimension� dubbed the �level� fat shattering VC dimension� It was

introduced to statistical learning theory by Kearns and Schapire ������� the idea

of fat shattering itself� however� seems to have been proposed by Kolmogorov in

the late �����s �cf� �Tikhomirov� ����� pg� ����� in the context of approximation

theory� In a nutshell the idea is that one should analyze functions only at the

scale at which one is interested in obtaining convergence results� Applications to

classi�cation include �Guyon et al�� ����� Shawe�Taylor et al�� ����a�b�c� Schapire

et al�� ������ For the estimation of real valued functions see the work of Bartlett et al�

������� Lee ������� Alon et al� ������� These results are useful as the growth function

at a certain scale can be bounded using the �level� fat shattering dimension at a

similar scale� It is worth while noticing that the �level� fat shattering VC dimension

can be used to provide upper and lower bounds on the covering number for certain

metrics �Bartlett et al�� ������

Some special settings also allow computation of the annealed entropy �cf� �Opper�

������� and also bounds on the fat shattering VC dimension were obtained by using

the techniques of functional analysis by Gurvits ������ �which one ultimately still

has to convert back into covering numbers�� The contribution of the present work

is that the growth function will be bounded directly by functional analytic means�

and that speci�c properties of kernel functions will be exploited� Moreover it shows

a principled way to obtain these quantities in a rather straightforward fashion�

����� Metrics and Norms

Most of the following statements hold with respect to pseudometric spaces �X
 ���

However� unless stated otherwise� the considerations will focus on spaces with a

pseudo norm� i�e� �X
 k � k� �which clearly also induces a metric� simply by setting
��x
 y� 	 kx� yk�� This is mainly done for the ease of notation� The �dp norm �for
x � Rd� is de�ned as

for � � p �
 kxkdp 	 kxkp  
�

dP
j��

jxj jp
���p

for p  
 kxkd� 	 kxk�  max
j�������d

jxj j�
�	�	�

�� For a detailed description of the connections� including numerous bibliographical
references see 
Anthony� ����� Williamson� ���	� Vapnik� ���	��
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Note that in the following� unlike in some other texts �e�g� Talagrand ������� no

normalization over d is performed� Now suppose F is a class of functions on Rd �

The �mp norm with respect to Xm of f � F is de�ned as
kfkXm

p
	 k�f�x��
 � � � 
 f�xm��kp and �	�
�

kfkXm
�

	 max
i�������m

jf�xi�j� �	���

Besides this discrete measure �which induces a pseudometric� on F� one can also

think of continuous ones� such as the Lp��� norms	 Given a set X� a measure � on

X� some � � p � 
 and a function f 	X	 K � one can de�ne

kfkLp���X�K� 	 
�Z

X

jf�x�jpd��x�
���p

�	����

if the integral exists� and

kfkL��X�K� 	 ess sup
x�X

jf�x�j� �	����

This allows to introduce normed spaces � for � � p �
 let

Lp��
X
K � 	 ff 	 X	 K j kfkLp���X�K� �
g� �	����

In particular� one uses the shorthand Lp�X� for Lp��
X
R� with the uniform

measure on X�

����� Covering Numbers

One of the fundamental quantities needed in the following are covering numbers

of sets� They are useful insofar as they allow to replace a set of hypotheses with

possibly in�nite cardinality by a �nite set� as will be brie�y pointed out in sections

����� and ������

De	nition �� Covering Numbers of a Set

Denote by �X
 �� a pseudometric space� Br�x� the closed ball in X with radius r

around x� S a subset of X and � some positive constant� Then the outer covering

number N��
 S
 �� is de�ned as the minimum cardinality � number of elements� of

a set of points X � X such that

S �
%

xi�X
B��xi�
 �	����

i�e� such that the maximum di
erence of any element in S and the closest element in

X is less than or equal to �� Analogously the inner covering number� Ninner��
 S
 ��

is the maximum cardinality of a set X such that%
xi�X

B��xi� � S and B��xi� � B��xj�  � for all i � j� �	����

Thus it is the maximum number of balls of radius � that (�t� into S�

�� This is also referred to as the packing number� Also note that there exists the notion
of a maximal system� i�e� a set of elements with at least � distance from each other�



��� Tools from Statistical Learning Theory ��


One can show �cf� e�g� �Vidyasagar� ������ that inner and outer covering numbers

are related by

N���
 S
 �� � Ninner��
 S
 �� � N��
 S
 ��� �	����

In the following� the outer covering number will be referred to as the covering

number� Figure ��� gives an example of outer and inner covers of a set�

Figure ��� Left	 Inner cover of a set� Right	 Outer cover of a set� displayed are

the balls surrounding each of the covering points�

Next� one needs the covering number of a class of functions Fmapping from X to Y

with respect to a set X and a metric � on YX � It is de�ned as the covering number

of the image of X under all function values in F� In the case of an m�sample�

i�e� X  fx�
 � � � 
 xmg �sometimes also denoted as Xm� one writes N��
F
 �X
m

p ��

Moreover� in cases where it is clear to which set Xm one is referring to �or where

the maximum over all possible sets has been taken� the corresponding term is

dropped by writing N��
F
 �mp ��

Finally� the binary covering number 	�F
 Xm� is de�ned as the number of di
erent

classi�ers that can be generated from F when restricted to the set Xm� As in this

case the function values wrt� Xm are identical or di
er by at least � �class �� and
�� one de�nes�

	�F
 Xm� 	 N��
F
 �X
m

� �� �	����

����� Hoe�ding�s Inequality

Hoe
ding ������ established an inequality� itself a generalization of inequalities

derived by Cherno
 ������ and Okamoto ������� It is central to the issue of bounding

the expected risk in terms of both the model complexity and the empirical error as

it allows to bound the expected error of one hypothesis by its empirical error and

the sample size� It is stated in a form similar to �Devroye et al�� �������

�� For real valued functions the de�nition is analogous � one simply applies the sign
function to all elements of F which yields boolean functions� i�e� one considers the class
F� � �

f�F
sgn�f��

�� See 
Devroye et al�� ����� for the proof and a discussion of the result�
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Theorem �� Hoe�ding ������

Let ��
 � � � 
 �m be independent bounded random variables such that �i falls in the

interval �ai
 bi� with probability one� Denote their average by Sm  
�
m

P
i �i� Then

for any � � � one has

PrfSm �E�Sm� � �g � e
� �m���Pm

i��
�bi�ai�

�
and �	��	�

PrfE�Sm�� Sm � �g � e
� �m���Pm

i��
�bi�ai�

�
� �	��
�

Therefore� if card�F�  �� i�e� if there was only one function to choose from� it

would be very easy to bound the expected error� say in pattern recognition� by the

empirical error� Consider random variables

�i 	 ��� �f�xi��yi� with � � i � m� �	����

Clearly �i � ��
 �� with probability one �zero loss for correct classi�cation� � for
incorrect classi�cation�� Hence it follows for the empirical error Sm �de�ned as

above in theorem ���� that

PrfSm �E�Sm� � �g � e��m�� and also PrfSm �R�f � � �g � e��m�� �	����

This is the starting point for distribution free bounds of arbitrary function classes

�Vapnik� ����� Eq� ������ For this purpose F has to be replaced by a �nite discretiza�

tion of precision �� which is exactly the point where N and 	 enter�


�� Generalization Bounds via Uniform Convergence

What e
ectively happens is that in order to obtain uniform convergence bounds�

F is replaced by an � cover of F� and the probability of deviations larger than ��

over F is bounded by N times the probability of deviation for a single function� The

latter is often referred to as the union bound��

Several further technical hurdles have to be overcome �e�g� a symmetrization

step� to �nally achieve the desired goal� For a detailed explanation of the steps

in the proof see the review by Anthony ������� the books of Vapnik ������ �����

������ Pollard ������� Devroye et al� ������� Vidyasagar ������� or� if courageous�

the original works of Vapnik and Chervonenkis ������ ����� ����� ������ Next a few

practical examples of such bounds are given�

����� Bounds

Denote by Em�f � 	 
�
m

Pm
i�� f�xi� the empirical mean of f on the sample x�
 � � � 
 xm

drawn with respect to p� E�f � the expectation wrt� P � and E�N��
 �
 ��m� �� the

expectation of N wrt� a �m sample drawn iid from P �

Lemma �� Alon� Ben�David� Cesa�Bianchi� and Haussler �����

Let F be a class of functions from X into ��
 �� and let P be a distribution over X�

then� for all � � � and all m � �
	� �

Pr

�
sup
f�F

jEm�f ��E�f �j � �

�
� ��m �E �N � 	� 
F
 ��m� �	

e�	
�m��� �	����

where Pr denotes the probability wrt� the sample x�
 � � � 
 xm drawn iid from P �
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A similar result holds for classi�cation� Analogously to above denote by Em�f � the

average loss of f due to misclassi�cation on an m sample �i�e� the empirical mean��

E�f � the expectation wrt� P � and E�	��
 �m�� the expectation wrt� a �m sample

drawn iid form P �

Lemma �� Vapnik and Chervonenkis �����

Let F be a class of functions f 	 X	 f�� �g and be P a distribution over X� Then

Pr

�
sup
f�F

jEm�f �� E�f �j � �

�
� �E�	 �F
 �m��e�	��m���� �	����

Stronger results are available when the empirical error Remp�f �� for classi�cation�

i�e� in this case Em�f � vanishes for the function f chosen� The original result is due

to Vapnik and Chervonenkis ������� and stated below in a tightened version�

Lemma �� Devroye� Gy�or	� and Lugosi ������

Let F be a class of functions from X into f�� �g� be p a distribution over X and f
chosen such that Em�f�  �� Then

Pr fE�f � � �g � �E�	 �F
 �m��e�	m��� �	����

Note that the exponent only depends on � instead of ��� One could continue this

list of bounds �cf� e�g� Lee �������� however this is not the purpose of this section

� the aim is rather to give a brief overview of the basic structure of bounds of this

type� The reader interested in details �and proofs� may want to consider �Devroye

et al�� ����� Ch� ���� Summing up� most further uniform convergence result take

the form

Pr

�
sup
f�F

jEm�f ��E�f �j � �

�
� c��m�E

�
N��
F
 �mp �

	
e�	

�m�c� � �	����

As already seen before� even the exponent in ������ depends on the setting	 In

regression � can be set to �� however in agnostic learning �i�e� if the function

minimizing the expected risk is not in F� �Kearns et al�� ����� in general �  ��

except if the class is convex� in which case it can be set to � �Lee et al�� ������

����� Annealed Entropy and Growth Function

The bounds stated in the previous section depend on E�N��
 �
 �m��� which has to be
computed wrt� the �usually� unknown probability distribution P � Moreover� taking

the logarithm on both sides of ������� one may observe that it is not E�N��
 �
 �m��
but lnE�N��
 �
 �m�� that really matters to state con�dence intervals� However�
lnE�N� is quite hard to compute� Hence one bounds it by the annealed entropy

�cf� Vapnik �������

lnE�N�F
 �
m�� � E �lnN�F
 �
m��  	 H�F
 �
m�� �	����

Expectation and logarithm may be swapped as the latter is concave� However� in

many cases� this step is not su�cient yet � also H depends on the probability

distribution P � Thus the latter is upper bounded by the growth function G�F
 �
m�

by taking the sup over all m�samples in X� i�e�

H�F
 �
m� � sup
Xm�X

lnN�F
 �
m�� �	����

Analogous de�nitions exist for 	�F
m� in the case of classi�cation�
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����� How to use the Bounds

Often results of the type ������ are used by setting the right hand side equal to �

and solving for m  m��
 �� �which is called the sample complexity�� Another way

to use these results is as a learning curve bound *���
m� where

Pr

�
sup
f�F

jEm�f ��E�f �j � *���
m�
�
� �� �	��	�

Note here that the determination of *���
m� is quite convenient in terms of en� the

dyadic entropy number associated with the covering number N��
F
 �m�� in �������
Here en���F� is de�ned as the functional inverse of log�N��
F
 �

m
�� with respect to �

� the additional arguments like F�X� P and �m� have been dropped for compactness
of the notation �see the next section for further details�� Setting the right hand side

of ������ equal to �� yields

�  c��m�N��
F
 �
m
��e

�	�m�c�

� ln
�

�
c��m�


# 	�m

c� ln �
 lnN��
F
 �m��

�e
log�

�
�

c��m�

�
� ��m
c� ln �

��
 �� �	��
�

Thus *���
m�  f�	 ������ holdsg� The use of en� and later also of �n� the functional
inverse of N is in fact a convenient thing to do for �nding learning curves�

Also observe� as can be seen from ������ or the previous uniform convergence

theorems� that the bounds are only useful as long as lnN is smaller than the sample

size� Otherwise the richness� of the class of functions is too high�

����� Loss Function Induced Classes

After a close look at the bounds of lemma ���� ���� and ��� one may observe that

Em�f � � Remp�f �� Instead� the empirical risk� as de�ned in ������ depends not only

on f � but also on the cost function c and the observations xi
 yi �for the sake of

simplicity assume c�f�x�
 y
 x�  c�f�x� � y��� Thus one has to deal with a loss

function induced class of functions�

The following Lemma� which is an improved version of �Bartlett et al�� �����

Lemma ���� is useful in this regard�� It deals with loss functions satisfying a

Lipschitz condition in the estimate f �

Lemma �� Williamson� Smola� and Sch�olkopf �����b�

Denote by F a set of functions from X to �a
 b� � R and c 	 R 	 R
�
� a loss function�

Let Z 	 f�x�
 y��
 � � � 
 �xm
 ym�g� cf jZ 	 fc�f�x�� � y��
 � � � 
 c�f�xm� � ym�g�
cFjZ 	 fcf jZ 	 f � Fg and denote by N��
 cFjZ 
 �mp � the covering number induced
by c and F in terms of the �mp norm� Then the following two statements hold	

�� Suppose c satis�es the Lipschitz�condition

c���� c���� � Cj� � ��j for all �
 �� � �a� b
 b� a�� �	����

Then for all � � �

max
Z��X�a�b��m

N��
 cFjZ 
m� � max
X�Xm

N
�
	
C 
F
 �

Xm

�
�
and �	����

�� Anthony and Bartlett 
����� derived a similar result based on a Lipschitz condition�
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max
Z��X�a�b��m

N��
 cFjZ 
m� � max
X�Xm

N
�
	m
C 
F
 �X

m

�

�
� �	����

�� Suppose that for some C
 'C � �� c satis�es the approximate Lipschitz�

condition�

c���� c���� � max�Cj� � ��j
 'C� for all �
 �� � �a� b
 b� a� �	����

then for all � � 'C�C

max
Z��X�a�b��m

N��
 cFjZ 
m� � max
X�Xm

N
�
	
C 
F
 �

Xm

�
�
� �	����

Proof One has to show that� for any sequence Z of �x
 y� pairs in X��a
 b� and any
functions f and g� if the restrictions of f and g to x are close� then the restrictions

of lf and lg to Z are close� Thus� given a cover of FjXm one can construct a cover

of lFjZ that is no bigger� For part � one gets	

�
m

���Pm
j�� c�g�xj�� yj�� c�f�xj�� yj�

��� � �
m

Pm
j�� jc�g�xj�� yj�� c�f�xj�� yj�j

� �
m

Pm
j�� Cjg�xj�� f�xj�j

 C
mkg�xm�� f�xm�km� �	����

� Ckg�xm�� f�xm�km� � �	����

In the second case one proceeds similarly

�
m

���Pm
j�� c�g�xj�� yj�� c�f�xj�� yj�

��� � C
m

Pm
j��max�jg�xj�� f�xj�j
 'C�C�

� C� for � � 'C�C� �	����

The second case can be useful� when the exact form of the cost function is not

known� happens to be discontinuous� or is badly behaved in some other way�	 It

shows how down to a scale of 'C�C statements about the covering numbers of the

loss�function induced class can be made� Applying the result above to polynomial

loss leads to the following corollary	

Corollary � Polynomial Loss Functions

Let the assumptions be as above in lemma ���� Then for loss functions of type

c���  �
p�

p with p � � �	��	�

one has C  �b� a��p���� in particular C  �b� a� for p  � and therefore

max
Z��X�a�b��m

N��
 cjZ 
m� � max
X�Xm

N

�
��b� a���p
F
 �X

m

�


�	��
�

This allows one to give an example of an overall theorem for the generalization

error in terms of covering numbers of F�

Corollary �� Overall Generalization Bounds

Under the conditions as stated in lemma ��� and ��� one obtains

Pr

�
sup
f�F

jEm�f
 c��E�f
 c�j � �

�
� ��m � E �N � 	

�C 
F
 �
�m
�
�	
e�	

�m���� �	����

	� The two cases could be combined into one by writing the conditions in terms of the
modulus of continuity� For the sake of clarity� however� this was not done�
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For the special case of corollary ��� set C  �b� a�p���

One could combine the uniform convergence results with the other results quoted

above to get overall bounds on generalization performance� No further explicit

statement of such a result is made here since the particular uniform convergence

result needed depends on the exact set�up of the learning problem� The key novelty

of the next chapters� however� is the new way to compute these bounds�


�� VC Dimension�s�

In principle one could skip the discussion of the VC dimension completely and

proceed directly to the subsequent chapter� However� for the sake of completeness

�and for being able to compare the results derived in the following chapters with

the until now existing ones� some basic de�nitions and results on the VC dimension

are mentioned�

The reason for the popularity of the VC dimension is that until recently the

task of bounding N or 	 directly was considered too di�cult� Moreover Vapnik and

Chervonenkis ������ have shown that the VC dimension h� which has an elegant

combinatorial interpretation� is a fundamental quantity for bounding N and 	� Thus

there was essentially no other way than to use h when stating uniform convergence

bounds�

����� De�nitions

De	nition �� VC Dimension

The VC Dimension h of a class of binary valued functions F with respect to a set

S is de�ned as the maximum cardinality of a subset X � S that can be shattered

by F� More formally

h�F
 S�  max

�
card�X�

����� for any y � f��
 �g
card�X� there exists an

f � F with f�xi�  yi for all xi � X � S

�
�	����

A well known example is the VC dimension of Hyperplanes in Rd � i�e�

F  ff jf�x�  sgn �hw
 xi # b� with w � R
d 
 b � R

�
�	����

Its VC dimension is h�F
Rd�  n#� �cf� e�g� Vapnik �������� This is also one of the

few cases where the VC dimension can be determined exactly� Note that h  n for

the case of Hyperplanes passing through the origin� Moreover h linear independent

functions also have VC dimension h�� The generalization of the de�nition to real

valued functions basically works in three di
erent ways	

De	nition ��� VC Dimensions for Real Valued Functions

Like in the de�nition of 	�F
m
Xm� for real valued functions one could consider

sgn�f� instead of f for all f � F and compute the VC dimension of this modi�ed

�� This equality between the number of parameters �n and n��� and h sometimes led to
the erroneous conclusion that the number of free parameters is the decisive quantity when
computing uniform convergence bounds� However this is not the case as can be seen easily
from a counterexample in 
Vapnik� ����� � the family of functions sin�ax� has in�nite
VC dimension�
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x�

X

x�x�x�x�x�

y� y�

y�y�y�

y�

f�x�

�

��

Figure ��� A subset X of S that is shattered �i�e� separated� by some f � F for

some vector y � f��" �gcard�X��

class of functions� i�e�

hs�F
X� 	 max

�
card�X�

����� for any y � f��
 �g
card�X� there exists an

f � F with sgn�f�xi��  yi for all xi � X � X

�
�	����

Instead of thresholding f � F at �� an alternative de�nition of the VC dimension
for real valued functions is to allow any arbitrary threshold c and proceed as above	

hl�F
X� 	 max

����
���card�X�

��������
there exists a c � R such that for any

y � f��
 �gcard�X� there exists an f � F with
sgn�f�xi�� c�  yi for all xi � X � X

"��#
��$�	����

This de�nition is due to Vapnik and Chervonenkis ������� who proved that �nite

hl�F
X� is necessary and su�cient to obtain uniform convergence���

Finally� instead of allowing only a scalar c wrt� which a set X has to be shattered

one could also allow c � Rcard�X�� This yields

hp�F
X� 	 max

����
���card�X�

��������
there exists a c � Rcard�X� such that for any

y � f��
 �gcard�X� there exists an f � F with
sgn�f�xi�� ci�  yi for all xi � X � X

"��#
��$�	����

This is due to Pollard ������� and is sometimes dubbed the pseudo� or (Pollard�

dimension�

Figure ��� shows the di
erence between the three de�nitions� Clearly hp�F
X� �
hl�F
X� � hs�F
X� as the de�nitions include each other�

The following proposition shows that neither of the above de�nitions of the VC

dimension �i�e� hfs�l�pg� are useful quantities in SV regression� neither in the case
of ��� ��� nor feature space regularization�

��� Observe that uniform convergence is more than one actually needs in practice � the
interest is in bounding the maximum deviation by some positive constant�
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x� x�x�x�x�x�

x� x�x�x�x�x�

X

f�x�

X

f�x�

x�

X

x�x�x�x�x�

f�x�

Figure ��� A subset X of X that is shattered by some real valued f � F� For the

ease of presentation only three functions from the set are depicted �solid� dashed�

and dotted�� Points are classi�ed by the fact that the funcions lie above or below

the corresponding pairs �xi� ��� �xi� c�� �xi� ci�� Top to bottom � shattering occurs

according to the de�nitions of hs� hl� and hp� hence wrt� to � in the upper case �hs��

wrt� an arbitrary but �xed level in the middle case �hl�� and wrt� arbitrary levels

in the case on the bottom of the graph �hp��
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Proposition ��� Gaussian rbf�kernel with in	nite VC dimension

Denote by C � Rd a compact set� The class of functions

F 	 

��
�f

������f  
X
i

�ik�xi
 �� with xi � C

X
i�j

�i�jk�xi
 xj� � �
"#
$ �	����

has in�nite VC dimension�

Proof It su�ces to show that any arbitrary set Z  f�x�
 y�� � � � 
 �xm
 ym�g �
C � f��
 �g of size m can be shattered with a nonzero margin� Without loss of

generality require that Z contains no duplicate xi� It can be shown that there

exists a function 'f  
P

i '�ik�xi
 �� such that f�xi�  yi for all � � i � m as the

matrix k�xi
 xj� has full rank for Gaussian rbf�kernels �Micchelli� ������ Now set

r 	 
P

i�j '�i '�jk�xi
 xj� and f 	 r���� 'f �if r  � we already have f � F without
rescaling�� By construction f � F and f�xi�  r����yi� hence X is shattered by the

margin r����� As this holds for arbitrary m� F has unbounded VC dimension� even
though C is compact�

A similar proof can be made for
P

i j�ij  � and
P

i �
�
i  �� Consequently the

VC dimension is not the appropriate quantity in SV regression as the length of the

weight vector in feature space is exactly the quantity used in the SV approach�

Hence it is essential to use scale dependent quantities like the �level� fat VC

dimension� or more basic quantities like entropy and covering numbers� The latter

will be done in chapter � by applying functional analytic tools without taking the

detour via some combinatorial reasoning�

But �rst consider the fat�VC dimension� The basic idea is� that one may only

be interested in the behaviour of a function class up to a certain resolution ��

i�e� wiggles� below the scale � are not considered � di
erences have to occur

at least at a scale �� In analogy to de�nition ���� this leads to the so called fat

VC dimensions� It is a quantity that determines the complexity of the model class

much more precisely� in some cases even allowing lower bounds on the covering

numbers of model classes �cf� e�g� Bartlett et al� �������� Again one may think of

three variants�

De	nition ��� Fat VC Dimensions

With the same assumptions as in def� ���� one has for some positive scale constant

� the following cases	

fat�hl��
F
X� 	 max

����
���card�X�

��������
there exists a c � R such that for any

y � f��
 �gcard�X� there exists an f � F with
yi�f�xi�� c� � � for all xi � X � X

"��#
��$

This quantity is sometimes also called the level fat shattering dimension� See �gure

��� for a description of the situation���

What remains is a scales sensitive version of the pseudo dimension� sometimes

��� The straightforward extension with yif�xi�  � would lead to an analogous de�nition
of fat�hs�
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also referred to simply as the fat shattering dimension�

fat�hp��
F
X� 	 max

����
���card�X�

��������
there exists a c � Rcard�X� such that for any

y � f��
 �gcard�X� there exists an f � F with
yi�f�xi�� ci� � � for all xi � X � X

"��#
��$

x� x�x�x�x�x�

X

f�x�

Figure ��� A subset X of S is level fat shattered �i�e� separated� by some f � F for

some vector y � f��" �gcard�X� and a margin �indicated by the bars�� The functions

pass above or below the bars� Only three examples are shown �solid� dashed� dotted��

as the full number of functions ��	 � ��� would have obscured the situation�

By construction the functions fat�h��
F
X� are decreasing functions of � with

lim��� fat�h��
F
X�  h�F
X�� The fact that the fat VC dimension may be signif�

icantly smaller than its scale insensitive counterpart is exploited in the construction

of large margin classi�ers such as SV machines� Boosting and Arcing algorithms�

or Mathematical Programming�

In a nutshell the idea works as follows� Assume that a �large margin� classi�er

f � F can be found such that yif�xi� � � �the case of classi�cation with errors

can be dealt with in a similar manner�� Now one may replace F with an ��net

of precision �� The latter has N��� elements� Moreover there exists some f � in
the ��net with identical classi�cation error� i�e� f ��xi�yi � �� Finally N��� �or the
corresponding fat shattering dimension� can be used as the number of di
erent

functions contained in F� thus often signi�cantly improving the bounds� See e�g�

�Bartlett and Shawe�Taylor� ����� for more details on this subject�

����� Bounding the Covering Number by the VC dimension

One of the reasons for the study of VC dimension�s� h�F
X� can be found in the

following theorem���

Theorem ��� Vapnik and Chervonenkis� Sauer� Shelah

The binary covering number of a class F can be bounded by its VC dimension �if

�nite� as follows

	�F
m
X� �
h�F�X�X
i��

�
m

i

�
� �m

h�F�X�

h�F
X�-
�
�

em

h�F
X�

�h�F�X�

�	����

��� This result is often referred to as Sauer�s lemma in Computational Learning Theory�
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This is a very useful result� as it allows to state uniform convergence bounds in

terms of the VC dimension� Many error bounds for classi�cation� e�g� those stated

in �Vapnik� ������ are derived in this manner� In the case of real valued functions

similar results can be obtained� For instance for the L���� metric �where � is an

arbitrary probability measure on X� i�e� ��X�  �� one has the following result	

Theorem ��� Vidyasagar �����

For a class of functions F taking on values only in the interval ��
 �� with �nite

hp�F
X� � � the covering number wrt� the L���� metric can be bounded as follows

N��
F
 L����
X� � �
�
�e

�
ln
�e

�

�hp�F�X�

�	��	�

In particular� for a discrete measure �  �
m

Pm
i�� �xi one obtains �

m
� covering

numbers� and subsequently� via the norm equivalence property in �nite dimensional

spaces� also bounds on the ��m covering numbers�

What is more interesting for practical purposes� however� are bounds in terms of

the scale sensitive dimensions fat�hl�p��
F
X�� Firstly� one needs a rule to convert

fat�hl into fat�hp currency�� and vice versa� Secondly� a bound of N in terms

of fat�hl�p is needed to apply the uniform convergence bounds� The following two

results were obtained by Alon et al� ������ �Lemma ��� and �����

Lemma ��� Alon� Ben�David� Cesa�Bianchi� and Haussler �����

For any class F of ��
 �� valued functions and for all � � �

fat�hl��
F
X� � fat�hp��
F
X� �
�
�

&
�

��

'
� �

�
fat�hl

�
�
� 
F
X

�
�	��
�

Lemma ��� Alon� Ben�David� Cesa�Bianchi� and Haussler �����

For any class F of ��
 �� valued functions and for all � � �

N��
F
 �m�� � �
�
�m

�

�fat�hp� �� �F�X� log� �em
fat�hp� �� �F�X��

�
�	����

The key thing to note is that N grows essentially like � �	 �
c�fat�hp

� The level fat

shattering dimension fat�hl��
F
X� can also be used to give lower bounds on the

covering number� At least in the case of a L���� metric �with ��X�  �� the following

theorem holds�

Theorem �� Bartlett� Kulkarni� and Posner �����

There are constants c� and c� such that� for any permissible�� class F of ��
 �� valued

functions de�ned on X

fat�hl���
F
X�

��
� max

�
log�N��
F
 L����� � c�fat�hl�c��
F
X��log� ��

�� �	����

This means that there exist situations where scale sensitive VC dimensions can be

used to give tight bounds on the covering numbers� So in many cases one could

restrict onseself to studying h��
F
X�� However� the direct analysis of covering

number is a valid goal in its own right as� possibly due to the fewer number of

inequalities involved� one may be able to obtain better constants in the bounds�

and the functional analytic reasoning may be technically much simpler than a

combinatorial approach �however the taste may vary��

��� This is a measurability condition� cf� e�g� Pollard 
��	���
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Before �nishing the discourse on VC dimensions� a small technical result is needed

in the case of additive combinations of model classes� This is useful when dealing

with function classes plus an o
set term �such as in standard SV machines�� or a

parametric family of models �as in semiparametric SV regression��

Corollary ��� Combination of Model Classes

Denote by F�
F� model classes with a corresponding metric and the induced

covering numbers N� Then the covering number of the joint model class is given by

N��
F� � F�� � N ���
F��N ���� ���
F�� for all � � ��
 ��� �	����

The proof follows from the de�nition of N and the triangle inequality�


�� Structural Risk Minimization

The previous sections set the scene for a technique called Structural Risk Minimiza�

tion �SRM� developed by Vapnik ������ ������ The results obtained above can be

utilized to bound the expected risk R�f � for some �xed class of models F� Hence�

given a particular estimator and a particular dataset X one is able to determine

how well the estimate will perform� based on minimal empirical error and the bound

on the generalization error�

����� The Basic Idea

What one� however� would like to do is to choose some Fi from a set of hypothesis

classes F 	 fFig such that
R�f � � min

f�Fi
Remp�f
X � # R�Fi
 X
 �� �	����

is minimized� where R�Fi
 X
 ��� as already described in the introduction to part

II� is a bound on the deviation between empirical and expected risk� obtained by

the equations of section ���� which holds with probability �� �� Fi is then chosen

such that rhs of ������ is minimized� Note that the arrangement of sets Fi has to

be chosen a priori to make this argument work�

A particularly useful choice �cf� �gure ���� is to de�ne F such that

F� � F� � � � � � Fi � Fi�� � � � � �	����

By construction the empirical risk is monotonically decreasing in this case	

min
f�Fi

Remp�f
X � � min
f�Fj

Remp�f
X � for i � j� �	����

Conversely� also by construction� the bound on the generalization error keeps on

increasing as the class of functions becomes richer and richer� Thus there exists

some i�� where the minimum of the overall bound on the expected risk is obtained

and the minimizer of Remp in Fi� is chosen as the overall �nal hypothesis�

����� A Note on �Data Dependent Hierarchies� and SV machines

The problem with the structure F is that it has to be chosen before the actual data

comes into play� This� however� may constitute a problem � one has to guess a
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F	
F


F�

F�

F�
F�

Figure ��� A structure de�ned by a nested subset of hypothesis classes F��F�� � � ��

good structure beforehand using common sense���

One may show that from a capacity point of view� it does not make much

di
erence whether the regularization operator P �of chapter �� for translation

invariant functions is centered at �  �� or at some other particular frequency

��� In other words � there is no immediate reason why functions with frequency �

should be the simplest ones instead of some others� Only the intuition that smooth

functions might be best behaved can be referred to as a guideline�

This is probably one of the reasons why Bayesian methods work well in many

cases	 these have means of largely adjusting the class of hypotheses Fi according

to the data� It is achieved by what is called multiple hyperparameters �MacKay�

������ which signi�cantly modify the shape of the function classes Fi� Automatic

Relevance Detection �ARD� �cf� �Bishop� ������� i�e� automatic rescaling of the

inputs� thus modifying the width of the kernels� is an example thereof�

But also for bounds of VC type Shawe�Taylor et al� �����b� ����� introduced

a framework to deal with data dependent structures� which allows more �exible

hypothesis classes� Basically one has to pay an extra price �i�e� the con�dence is

decreased� for the additional �exibility of F in terms of some model control pa�

rameters� This works quite well if only a few additional data dependent parameters

exist� What is still missing� however� is a principled way to deal with this additional

�exibility of the now partially ordered set of hypothesis classes �instead of having a

simple inclusive structure as proposed by Vapnik �������� This would play the role�

covering numbers take within a �xed hypothesis class F�

This discourse may seem quite unrelated to practical problems� but it is not�

It is �still� a heated topic of discussions in what respect SV machines need data

dependent techniques to derive bounds� There are three cases where this might

occur�

Many bounds on N are expressed in terms of the length of the weight vector kwk��
For �xed C  �

� this depends on the data� indeed� However �xing C was just done

by for computational convenience � considering the argument in section ����� one

may devise an equivalent algorithm where kwk� is chosen beforehand� Thus one
can transform the estimates such that F does not depend on X via w�

Next� the expansion of f in terms of kernel functions depends on the training set

X � However� also this point can be ruled out by considering functions in feature

��� In the Bayesian approach this is often referred to as choosing a suitable prior�
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space� In this view it is just a coincidence �described by theorem ������ that f � being

the optimal solution of linear functions in feature space� depends on the particular

datapoints in X �

Unfortunately the third reason cannot be come by so easily� Most current bounds

on the capacity of SV machines �Guyon et al�� ����� Vapnik� ����� make use of

the fact that the data� mapped into feature space� is contained in some region �a

ball or a box�� Williamson et al� �����b� and also chapter � state conditions under

which the region in feature space can be related to a corresponding region in input

space� whereas in the former works it is just assumed that the data lie inside a ball

of radius r� Unfortunately r is a data dependent quantity� thus the corresponding

tools have to be used�

Finally� if one applies a strati�cation of the hypotheses in terms of the margin�

i�e� if one formulates structural risk minimization over the hierarchies in terms of

the margin on the data points� then clearly the hierarchy is data dependent and

corresponding tools �Shawe�Taylor et al�� ����a�b�c� have to be used�


�	 Summing Up

This chapter provided a brief overview over some empirical methods to assess

the quality of an estimate f and precautions necessary when using them� The

subsequent exposition served the purpose of clarifying some notions from statistical

learning theory which will be needed in the following when deriving new capacity

bounds for SV machines� It is one of the simplest quantities from the toolset of

statistical learning theory� the covering numbers �or more precisely their functional

inverse� the entropy numbers� that will be upper bounded in the following�

It was pointed out in which way covering numbers enter uniform convergence

bounds� This will prove useful in later calculations� Moreover it was shown that

due to the multitude of di
erent bounds� depending on the particular setting one is

analyzing� it is probably not best to state overall bounds for certain function classes

but keep the two parts	 bounds on entropy numbers� and bounds based on entropy

numbers separate and make use of the combination only in the very last step�

Finally� VC dimensions and several variants thereof were introduced� This was

done for several reasons� First� as they provided� until recently �besides few excep�

tions� the only way to upper bound the entropy numbers� Secondly due to their

large popularity� and �nally due to their simple combinatorial interpretation�

The latter is their advantage but also their weakness� Combinatorial reasonings

for continuous classes of functions may require a serious amount of advanced

technical tools and are di�cult to formalize such that they could be used as a

straightforward technique �of course� this may be a personal preference�� What

will be shown in the following is that continuous quantities derived by functional

analytic tools may o
er a way out of this dilemma� as there the reasoning can be

reduced to graph drawing� �as will be seen in chapter �� and thus formalized in a

simple way� An ulterior reason to use entropy numbers directly is that they involve

one bounding step less than VC dimensions� hence one may hope to obtain tighter

bounds�

It is up to future research to �nd simpler methods relying on more basic quantities

such as the expected covering numbers� that would lead to even better statements�
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The present chapter presents a novel technique in bounding the covering �and en�

tropy� numbers of kernel based expansions�� It is important to note that the main

focus is not to obtain yet another theorem on the generalization error of kernel

machines� but rather to provide building blocks which serve to improve the multi�

tude of generalization bounds that are already presently available� SV machines are

used as the model of choice to demonstrate the reasoning � statements for other

settings like a restatement for regularization networks �Girosi et al�� ������ convex

combinations �Bennett� ����� Weston et al�� ������ kernel PCA �Sch�olkopf et al��

����a� �see also section ����� or a modi�ed principal curves algorithm �Hastie and

Stuetzle� ����� K+egl et al�� ����� �see also section ���� are deferred to chapter ��

��� Introduction

In chapter � a qualitative analysis of regularization properties in terms of kernels

was given �such as the correspondence between their frequency �ltering charac�

teristic and the degree of smoothness of functions�� This provides insight into the

regularization properties of SV kernels� However� it does not completely settle the

issue of how to select a kernel for a given learning problem� and how using a spe�

ci�c kernel might in�uence the performance of a SV machine� Here� the very same

methods will be exploited to make statements about the capacity of the estimators�

In particular it is shown that properties of the spectrum of the kernel can be used

to make statements about the generalization error of the associated class of learning

machines� Unlike in previous SV learning studies� the kernel is no longer merely a

means of broadening the class of functions used� e�g� by making a nonseparable

dataset separable in a feature space nonlinearly related to input space� Rather� it

can be viewed as a constructive handle to control the generalization error�

A key feature is the manner in which the covering numbers can be bounded

directly� It is achieved by viewing the relevant class of functions as the image of a

unit ball under a particular compact operator� In contrast to that� the classical�

approach uses a combinatorial quantity�like the �fat�shattering� VC�dimension� and

subsequent application of a general result relating the latter to covering numbers�

Roadmap

The chapter is organized as follows� Entropy numbers of sets and operators are

introduced in section ���� and their connection to covering numbes is recalled�

Section ��� contains the main idea how to obtain bounds on the entropy numbers

�� This chapter follows largely 
Williamson et al�� ���	b� with some minor rearrangements�
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via functional analytic tools� For this purpose� bounds on the shape of feature

space are obtained� based on Mercer�s theorem �Th� ����� The connection is the

decay property of the eigenvalues of integral operators corresponding to SV kernels

k� These results are used to construct operators generating the class of functions

common in SV machines as mappings from feature space into the class of real

valued functions on X� The proof proceeds by a factorization argument and the

use of Maurey�s theorem� Finally� examples of asymptotic rates �with the exact

constants computed in the appendix� for entropy numbers are given in the case of

given rates of decay of the eigenvalues of kernels�

Section ��� uses the bounds established before� however with a di
erent approach

to describe the shape of data mapped into feature space� Empirical methods� based

on Kernel PCA are pointed out� and the connection to the bound of Guyon et al�

������ is made by showing that the latter is a special case of the new methods�

The purpose of the next two sections �sec� ��� and sec� ���� is to state bounds on

the rate of decay of eigenvalues in �translation invariant� integral operators� and

to obtain bounds for these rates of decay� This resolves the problem when dealing

with kernels such as k�x�  e�x
�

which do not have a discrete spectrum�

Finally� section ��� extends the results to several dimensions� i�e� to vector valued

inputs� For this purpose� some auxiliary results for degenerate systems have to be

proven� The connection to the problem of sphere packing is pointed out� For the

sake of concreteness� bounds for rbf kernels in multidimensional input settings are

given� A summary �sec� ���� and an appendix with proofs concludes the chapter�

����� No Master Generalization Theorem

No single master generalization error theorem is presented for several reasons	

The main focus of this chapter lies in the computation of covering numbers

themselves�

The particular statistical result one needs to use depends on the speci�c problem

situation �e�g� agnostic learning��

Many of the results obtained are in a form which� whilst quite amenable to ready

computation on a computer� do not provide much direct insight by merely looking

at them� except perhaps in the asymptotic sense�

Some applications �such as classi�cation� where further quantities �e�g� margins�

are estimated in a data dependent way need an additional luckiness argument

�Shawe�Taylor et al�� ����� Shawe�Taylor and Williamson� ������

Thus� although the goal has been theorems� one is ultimately forced to resort to

a computer to make use of the results �at least if one is not willing to sacri�ce

part of the tightness of the bounds�� This is not necessarily a disadvantage � it is

a both a strength and a weakness of Structural Risk Minimization �Vapnik� �����

that a good generalization error bound is both necessary and su�cient to make the

method work well�

The expectation is that the re�ned �and signi�cantly more tight� bound on cover�

ing numbers� obtainable by the methods presented in this chapter will be exploitable

in SRM algorithms � they could be used for example for model selection� If one

is running a computer program anyway� there is little point in expending a large

e
ort to make the generalization error bounds directly consumable �but probably

less tight� in a pencil and paper sense�
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��� Entropy Numbers

Let L�E
F � be the set of all bounded linear operators T between the normed spaces

�E
 k � kE� and �F
 k � kF �� i�e� operators such that the image of the �closed� unit
ball UE 	 fx � E	 kxkE � �g is bounded� The smallest such bound is called the
operator norm�

kTk 	 sup
x�UE

kTxkF � �
���

The nth entropy number of a set M � E� for n � N� is

�n�M� 	 inf

�
� � �

����� there exists an ��cover for M in E

containing n or fewer points

�
�
���

Thus it is the functional inverse of the covering number N��� de�ned in the previous

chapter�

The entropy numbers of an operator T � L�E
F � are de�ned as
�n�T � 	 �n�T �UE��� �
���

Note that ���T �  kTk� and that �n�T � certainly is well de�ned for all n � N if T

is a compact operator� i�e� if T �UE� is precompact��

The dyadic entropy numbers of an operator are de�ned by

en�T � 	 ��n���T �
 with n � N� �
���

Similarly� the dyadic entropy numbers of a set are de�ned from its entropy numbers�

The ��covering number of F with respect to the metric d denoted N��
F
 d� is the

smallest number of elements of an ��cover of F using the metric d�

In this chapter� E and F will always be Banach spaces� i�e� complete normed

spaces �for instance �dp spaces�� In some cases� they will be Hilbert spaces H �

i�e� Banach spaces endowed with a dot product h�
 �iH giving rise to its norm via

kxkH  
phx
 xiH �

��� Entropy Numbers via Functional Analysis

This section focuses on functional analytic methods to compute entropy numbers�

i�e� by studying the properties of precompact operators� In particular machines�

where the mapping into feature space is de�ned by Mercer kernels k�x
 y� are

studied� as they are easier to deal with� Moreover the tools are introduced to

construct such bounds� Section ��� then� in turn� will analyze with empirical

methods to achieve the same goal�

����� The Shape of Feature Space

To analyze the shape of the image of $��� one can use Mercer�s theorem as stated in
chapter �� From theorem ���� statement � it follows that there exists some constant

�� Hence� for any � � � there exists a �nite cover of X � TUE with no covering element
larger than ��
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Ck � R� depending on k��
 �� such that�

j�j�x�j � Ck for all j � N and x � X� �
���

Moreover from statement � it follows that k�x
 y� corresponds to a dot product in

�� i�e� k�x
 y�  h$�x�
$�y�i� with
$ 	 X 	 ��

$ 	 x �	 �j�x��j 	 �
p
�j�j�x��j

�
���

for all x � X� In the following �without loss of generality� assume the sequence

of ��j�j be sorted in nonincreasing order �this is always possible due to the ��
summability of ��j�j�� From the argument above one can see that $�X� lives not

only in �� but in an axis parallel parallelepiped with lengths �Ck
p
�j �

It will be useful to consider maps $�X� into balls of some radius R centered

at the origin� The following proposition shows that the class of all these maps is

determined by elements of �� and the sequence of eigenvalues ��j�j �

Proposition ��� Mapping $�x� into ��
Let S be the diagonal map �in sequence space�

S 	 RN 	 RN

S 	 �xj�j �	 S�xj�j  �sjxj�j with sj � R�
�
�	�

Then S maps $�X� into a ball of �nite radius RS centered at the origin if and only

if �
p
�jsj�j � ���

Proof

��� Suppose �sj
p
�j�j � �� and let R

�
S 	 C�

kk�sj
p
�j�jk�� �
� For any x � X�

kS$�x�k��  
X
j�N

s�j�j j�j�x�j� �
X
j�N

s�j�jC
�
k  R�

S � �
�
�

Hence S$�X� � �� and in particular S$�X� � RSU� �

��� Suppose �sj
p
�j�j is not in ��� Hence the sequence �An�n with An 	 

nP
j��

s�j�j

is unbounded� Now de�ne

an�x� 	 

nX
j��

s�j�j j�j�x�j�� �
���

Then kan���kL��X�  An due to the normalization condition on �j � However� as

��X� �
 there exists a set 'X of nonzero measure such that

an�x� � An

��X�
for all x � 'X� �
����

Combining the left side of ����� with ����� one obtains kS$�x�k�� � an�x� for all

n � N and all x � X� Since an�x� is unbounded for a set 'X with nonzero measure in
X� one can see that S$�X� �� �� as there exists no ball with �nite radius containing

S$�X��

�� If k is continuous and X is compact� then the eigenfunctions of the integral operator
Tf ��

R
X
k�x� y�f�y�dy are also continuous� See e�g� 
Ash� ����� for a proof� Hence we may

require the bounds to hold for all x � X instead of ignoring sets of measure zero�
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Finally� one can show that no other orthonormal basis could give better rates

of decay for the sidelengths of a parallelepiped than the basis chosen from the

eigenfunctions of k� This can be seen by contradiction� Assume that there exists

another orthonormal basis fe��
 e��
 � � �g and nonnegative constants ci such that
jh$�x�
 e�iij � ci for all i � N and x � X� �
����

Moreover assume that

lim
i��

cip
�i
 �
 �
����

i�e� that the new constraints decay more rapidly than those obtained from the

previous proposition� It follows from ������ that

c�i �
�

��X�

Z
X

h$�x�
 e�ii�dx  e�i
	
�

�

��X�

Z
X

$�x�$�x�	d��x�
�
e�i� �
����

Recalling the de�nition of the empirical covariance matrix in feature space ����� one

can see that integral in ������ is the expected covariance operator obtained from

the normalized uniform measure on X� and thus ������ itself the projection of the

covariance operator onto the direction i� As e
�
i forms an orthonormal basis� ������

combined with ������ mean that the eigenvalues of the corresponding covariance

matrix decay at least as fast as c�i and thus faster than the eigenvalues of the

inducing kernel k� This is impossible� Repeating the reasoning in section ���� one can

see that the eigenvalues of the continuous covariance matrix� are the eigenvalues

of the integral operator Tk as de�ned in theorem ���� scaled by
�

��X� � As these are
�i

��X� � they cannot decay faster than �i�

The consequence of this reasoning is that there exists no axis parallel ellipsoid

E not completely containing the �also� axis parallel parallelepiped B of sidelength

��Ck
p
�j�j � such that E would contain $�X��

ψ

ψ
2

1
ψ

ψ
2

1
ψ

ψ
2

1

Figure ��� Left	 mapped X in feature space S which is contained inside a box�

which again is contained inside an ellipsoid� Note that X �lls the corners of the

box� Middle and Right	 observe that the mapped data in S does not simply �ll

some corners such that a new coordinate system instead of �i would yield tighter

boxes� In other words � the situation depicted on the right never occurs� Instead� the

coordinate system by the eigenfunctions of the kernel is optimal up to a constant

scaling factor� However� note that for actual datasets the above situation may still

occur�

Hence $�X� contains a set of nonzero measure of elements near the corners of

the parallelepiped�� This situation is described in �gure ���� Note that the �gure

�� This might be a way to improve the bounds derived in the following� one would have
to compute entropy numbers of the boxes instead of the ellipsiods containing the box�
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is only a crude approximation of the situation as the important property is that

the radius has to be bounded for an in�nite dimensional parallelepiped� Once it is

known that $�X� �lls� the parallelepiped described above one can use this result

to construct a mapping )A from the unit ball U� in �� to an ellipsoid E such that

$�X� � E as in the following diagram�

X
� �� $�X� � ��

�A�� ��
T U� � ��

�A

��� � � � �
� � � � �

� � � �

�� � E

�
����

The operator )A will be useful for computing the entropy numbers of concatenations

of operators� �Knowing the inverse will allow to compute the forward operator� and

the latter can be used to bound the covering numbers of the class of functions� as

shown in the next subsection�� One thus seeks an operator )A 	 �� 	 �� such that

)A��$�X� � U� � �
����

This means that E 	 AU� will be such that $�X� � E� The latter can be ensured

by constructing )A such that

)A	 �xj�j �	 �R �A � aj � xj�j with R �A
 aj � R
� �
����

where Ck and aj are chosen with respect to a speci�c kernel and where R �A 	 

Ckk�
p
�j�aj�jk� � From Proposition ��� it follows that all operators )A with R �A �


 satisfy ������� In the following� such scaling operators will be called admissible�

����� Functional Analysis Tools

The next step is to compute the entropy numbers of the operator A and use this to

obtain bounds on the entropy numbers for kernel machines like SV machines� The

following theorem due to Gordon� K�onig and Sch�utt �Gordon et al�� ����� p� ����

�stated in the present form in �Carl and Stephani� ����� p� ���� is useful in this

regard�

Theorem ��� Gordon� K�onig� and Sch�utt �����

Let �� � �� � � � � � �j � � � � � � with �i � R� be a non�increasing sequence of

non�negative numbers and denote

Dx  ���x�
 ��x�
 � � � 
 �jxj 
 � � �� �
��	�

for x  �x�
 x�
 � � � 
 xj 
 � � �� � �p the diagonal operator from �p into itself� generated

by the sequence ��j�j � where � � p �
� Then for all n � N�

sup
j�N

n�
�
j ����� � � ��j� �j � �n�D� � � sup

j�N
n�

�
j ����� � � ��j� �j � �
��
�

One can exploit the freedom in choosing )A to minimize an entropy number as the

following corollary shows� This will be a key ingredient of the calculation of the

covering numbers for SV classes� as shown below��

�� Guo et al� 
����� show that for Mercer kernels the minimization as required in �	����
is well de�ned� i�e� there exists some operator A such that the in�mum of �n� #A� over all
#A is obtained�
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Corollary ��� Entropy numbers for $�X�

Let k	X � X 	 R be a Mercer kernel and let )A be de�ned by ������� Then there

exists an operator A such that for all n � N

�n�A	 �� 	 ��� � inf
�as�s�

�p
	s
as

�
s

��
sup
j�N

�Ck

!!!!
�p

�s
as

�
s

!!!!
�

n�
�
j �a�a� � � � aj�

�
j � �
����

This result follows immediately by identifying D and A and exploiting the freedom

in choosing a particular operator A among the class of admissible ones� With some

abuse of notation we will assume that A is the operator where ������ attains its inf�

As already described section ��� and � the hypotheses that a SV machine

generates can be written as hw
 xi # b where both w and x are de�ned in feature

space S  span�$�X�� and b � R� The #b� term can be dealt with by using

corollary ���� and treating b as a separate model class� for now consider the class

F	 	 ffw 	 S	 R with fw�x�  hw
 xi
 w � S
 kwk � !g � R
S � �
����

Note that F	 depends implicitly on k since S does� What one seeks are the �m�
covering numbers for the class F	 induced by the kernel in terms of the parameter

! which is the inverse of the size of the margin in feature space� or equivalently� the

size of the weight vector in feature space as de�ned by the dot product in S �see

�Vapnik and Chervonenkis� ����� Vapnik� ����� for details�� In the following� such

hypothesis classes with length constraint on the weight vectors in feature space will

be called SV classes� Denote T the operator T  Sxm! where ! � R� and the

operator Sxm is de�ned by

Sxm 	 �� 	 �m�
Sxm 	 w �	 �hx�
 wi
 � � � 
 hxm
 wi� �

�
����

with xj � $�X� for all j� The following theorem is useful when computing entropy
numbers in terms of T and A� Originally due to Maurey ������� it was extended by

Carl �������

Theorem ��� �Carl and Stephani� ����� p� ����

Denote by H a Hilbert space� L�H
 �m�� the space of linear operators mapping from
H to �m�� and let S � L�H
 �m��� Then there exists a constant c � � such that for
all m � N

en�S� � ckSk
�
n�� log

�
� #

m

n

���
� �
����

An alternative proof of this result� given in Williamson et al� �����a�� provides a

small explicit value for the constant	 c � ���� However there is reason to believe

that c should be ����� the constant obtainable for identity maps from �� into �
m
���

The restatement of Theorem ��� in terms of ��n��  en will be useful in the

following� Under the assumptions above one has

�n�S� � ckSk
�
�logn# ���� log

�
� #

m

logn# �

�����

� �
����

�� Observe that �	���� is just one of three terms to be considered when bounding en�S��
However� the other two terms are merely improvements of �	���� for the case of small n
�since en�S� � kSk by de�nition� and for n in the order of m or larger� This leads to
rates decaying exponentially� i�e� en � O���n�m�� however this case is not interesting for
learning theoretical studies� since it corresponds to overly complex models�
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Theorem ��� allows to combine the bounds on entropy numbers of A and S��x�m

to obtain bounds for SV classes� For this the following lemma is useful�

Lemma ��� �Carl and Stephani� ����� p� ���

Let E
F
G be Banach spaces� R � L�F
G�� and S � L�E
F �� Then� for n
 t � N�

�nt�RS� � �n�R��t�S� �
����

�n�RS� � �n�R�kSk �
����

�n�RS� � �n�S�kRk� �
����

Note that the latter two inequalities follow directly from ������ and the fact that

���R�  kRk for all R � L�F
G��
Theorem ��� Bounds for SV classes

Let k be a Mercer kernel� let $ be induced via ����� and let T 	 S��xm�! where

S��xm� is given by ������ and ! � R� � Let A be de�ned as in corollary ��� and

suppose xj  $�xj� for j  �
 � � � 
m� Then the entropy numbers of T satisfy the

following inequalities	

�n�T � � ckAk! log���� n log���
�
� # m

logn


�
��	�

�n�T � � !�n�A� �
��
�

�nt�T � � c! log���� n log���
�
� # m

logn


�t�A� �
����

where c is de�ned as in theorem ����

This result o
ers several options for bounding �n�T �� Examples later will show that

the best inequality to use depends on the rate of decay of the eigenvalues of k� The

result gives e
ective bounds on Nm��
F	� since

�n�T 	 �� 	 �m�� � �� � Nm���
F	� � n� �
����

Proof Consider the following factorization of T 	

U� � ��
T ��

	

��

�m�

!U� � ��

S��xm�

�����������������������
A �� !E � ��

S�A����xm��

�� �
����

The top arrow in the diagram describes the action of T � the left and diagonal part

follow immediately from its de�nition as T  S��xm�!� Finally the remainder can

be seen as follows	 For any x � X
hw
$�x�i  hw
AA��$�x�i  hAw
A��$�x�i� �
����

The lower left triangle commutes as� since A is diagonal� it is self�adjoint and

so ������ holds� Summing up� instead of computing the entropy number of T  

S��xm�! directly� which is di�cult or wasteful� as the bound on S��xm� does not

take into account that x � E but just makes the assumption of $�x� � �U� for

some � � �� T will be represented as S�A����xm��A!� This is more e�cient� as A is

constructed in such a way that A��$�X� � U� �lls a larger proportion of the ball

than just �
�$�X��

By construction of A and the Cauchy�Schwarz inequality one has kSA����xm�k  
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�� Thus applying lemma ��� to the factorization of T and using Theorem ��� proves

the theorem�

As shall be seen in Section ���� one can give asymptotic rates of decay in n for �n�A��

�In fact these rates on �n�A� are non�asymptotic results with explicitly evaluable

constants� The computation of the latter is relegated to the appendix�� It is thus

of some interest to give overall asymptotic rates of decay of �n�T � in terms of the

order of �n�A��

Lemma �� Rate bounds on �n
Let k be a Mercer kernel and suppose A is the scaling operator associated with it

as de�ned by �������

�� If �n�A�  O�log�� n� for some � � � then

�n�T �  O�log������ n�� �
����

�� If log �n�A�  O�log�� n� for some � � � then

log �n�T �  O�log�� n�� �
����

This lemma shows that in the �rst case� Maurey�s result �theorem ���� allows an

improvement in the exponent of the entropy number of T � whereas in the second�

it a
ords none �since the entropy numbers decay so fast anyway��� The Maurey

result may still help in that case� though� for nonasymptotic n�

Proof From theorem ��� one knows that	 �n�S�  O�log���� n�� Now use �������
splitting the index n in the following way �ignoring n � N�	

n  n
n���
� with � � ��
 ��� �
����

For the �rst case this yields

�n�T �  O�log���� n
 �O�log�� n
���

 �������� ����O�log�������� n�  O�log������ n�� �
����

In the second case one gets

log �n�T �  log
�
�����O�log�� n�

�
# ��� ����O�log�� n�  O�log�� n�� �
��	�

and thus no improvement in the overall rate�

In a nutshell� one can always obtain rates of convergence better than those due to

Maurey�s theorem because one is not dealing with arbitrary mappings into in�nite

dimensional spaces� In fact� for a logarithmic dependency of �n�T � on n� the e
ect

of the kernel is so strong that it completely dominates the ���� behaviour for

arbitrary Hilbert spaces� An example of such a kernel is k�x
 y�  exp���x � y����

see Proposition ���� and also Sec� ��� for the discretization question�

�� This result is due to the factorization of T � T�T�� Note that here T� maps from 	�
into 	m� whereas T� � 	� � 	�� This is acceptable as the concatenation T � 	� � 	m��
	� We will use f�x� � O�g�x�� and f�x� � $�g�x� in the following way� there exist
constants cO� c
 � R

� such that jf�x�j � cOg�x� and likewise jf�x�  c
g�x� for any x�
Note the modulus in the expressions�
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��� Entropy Numbers via Empirical Methods

Instead of theoretically determining the shape of $�X� a priori one could use the

training and�or test data to empirically estimate its shape and use this quantity

to compute an operator Bemp in analogy to )A ������� This section sketches some

possible approaches � the full development of these ideas will require considerable

further work�

While functional analytic tools can be used to give theoretical guarantees for

convergence properties of the algorithm independent of the data� empirical methods

are a means to take advantage of �possibly� well behaved data� thus to state tighter

bounds in a data dependent� i�e� problem speci�c� fashion�

����� On a Bound of Vapnik

Vapnik ������ suggested the following bound �stated in its tighter form as proven

by Bartlett and Shawe�Taylor ������� on the fat shattering dimension fat�hl��� of

SV machines�

fat�hl��
F
X� � R�kwk�
��

�
��
�

Here R is the radius of a ball containing the data in feature space� w is the weight

vector in feature space� and � the margin with respect to the classi�er output�

Ignoring the fact that ������ has been stated for fat�hl instead of fat�hp �thus

a weaker statement� and combining ������ with ������ one obtains a bound on the

corresponding covering number N��

lnN��
F
 �m�� � ln � # ln
�
�m
	

� � ��R�kwk�
	� log

�
�em	

R�kwk�


�
����

Thus lnN can be bounded by an expression essentially of the order O���� log ���
This is as good as it gets with existing combinatorial reasonings� However one

can do better with functional analytic tools� From theorem ���� ������ one obtains

directly

�n�F
X� � cR! log���� n log���
�
� # m

logn


where kwk � ! �
����

A quick calculation shows that for the relevant range of interest �i�e� logn � m�

N can be bounded by a term of order O������ thus yields much better scaling
behaviour in terms of �� The important thing to note is that this improved result

has been obtained by applying the simplest of all cases of functional analytic tools�

This gives an idea of the things to come� Before moving on to more elaborate

methods a brief note seems to be in order�

The bounds on the entropy numbers like ������ rely on the assumption that the

image of all data that may eventually be fed into the estimator is contained in

a ball of radius R� If this is not the case� additional precautions like a luckiness

argument �Shawe�Taylor et al�� ����� have to be taken to give reliable bounds� This

issue� although being critical� is sometimes neglected in capacity calculations�

Regarding the algorithmic part how the radius R can be found� consider

�Sch�olkopf et al�� ����� Burges� ����b� and the references therein� Basically one

�� Gurvits 
����� proves a result stating that the bound of Guyon et al� 
����� actually
can be used to bound hp instead of hl�
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may formulate a quadratic programming problem whose solution yields both the

radius of an enclosing sphere and the points on the shell�

����� Multiple Radii

The obvious step �in hindsight� to improve the bound of section ����� is to take

into account that $�X� may be contained inside some ellipsoid of which the �rst j

radii r�
 � � � 
 rj are known��� They are assumed to be in nonincreasing order� More

formally denote by fe�
 � � � 
 ej��g � �� a set of orthogonal vectors pointing in the

directions given by the radii and Pj the projector onto �spanfe�
 � � � 
 ej��g�� Due
to the ellipsoid condition the following inequality holds for all xs	

j��X
t��

het
$�xs�i�
r�t

� � �
����

and moreover kPt$�xs�k� � rt for all � � t � j� Hence for a scaling operator

Bemp
�� scaling the �rst j � � directions e�
 � � � 
 ej�� by r��t � and the rest by r��j �

Bemp
��$�x� would still be enclosed in

p
�U� 	 the �rst j � � rescaled directions

are enclosed in a sphere of radius � by construction� so does the rest �this was

the initial assumption�� Moreover the two subspaces are orthogonal� therefore the

overall radius can be bounded by
p
�� Hence the situation is quite similar to the

case where all eigenvalues have been computed analytically in an explicit fashion�

Setting rt 	 rj for t � j and applying corollary ��� leads to the following upper

bound on the entropy of Bemp

�n�Bemp� � �
p
� sup
��t�j

n�
�
t �r�r� � � � rt� �t �
����

The aim is now to �nd that particular value of n for which one may make most

usage of all radius estimates� i�e� for which the sup is attained at t  j �for one has

the liberty of distributing the covering numbers arbitrarily between the shrinkage

operator Bemp and the actual evaluation operator Sxm as shown in section ����� In

other words� one is looking for that particular value of j where supj is taken on

for the smallest radius estimated� Ignoring the fact that n � N for a moment one

arrives at	

n�
�
j �r�r� � � � rj� �j  n�

�
j�� �r�r� � � � rj � rj� �

j�� �
����

Solving for n yields and taking n � N into account yields

nj  

(
r�r� � � � rj

rjj

)
with �nj �Bemp� � �

p
�rj �
����

This calculation is valid as nj is a nondecreasing function of j	
nj��
nj

�
�

rj
rj��

j
� If

this assumption failed to hold one would have to rede�ne Bemp to scale only the

�rst 'j directions for which this happened to hold � it gains one little to scale in

directions where the decay rate is too slow� Thus one can apply ������ of theorem

��� The problem with �tting an ellipsoid around all patterns is that this approach is
very susceptible to long tailed distributions �sometimes also called outliers�� This means
that the di�erence between the growth function computed from all datapoints may be
signi�cantly larger than the annealed entropy �or the log of the expectation of the covering
numbers��
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��� accordingly to get

�n�T � � �
p
�c!rj log

���� dn�nje log���
�
� # m

logdn�nje

with kwk � ! �
����

where nj is de�ned in ������� Essentially the di
erence between ������ and ������

lies in the fact that the term kwkR has been replaced by kwkrj at the expense
that instead of n one has to use n�nj � See Sch�olkopf et al� �����a� for a detailed

reasoning and experimental results�

����� How to Estimate Multiple Radii

Unfortunately the same problems as already discussed in section ����� occur � one

has to compute or estimate the radii ri� and provide a statistical argument why

this can be done reliably� For the latter see �Shawe�Taylor and Williamson� ������

There� a bound on the covering numbers of a �m sample in terms of the m sample

is derived and applied to the problem of empirically computing covering numbers�

The question of reliability of the estimate can be avoided in the following case�

Assume one has both training data and �unlabelled� test data at hand� Then the

radii of the enclosing ellipsoid can be computed from both datasets� thus giving a

reliable upper bound�

The next option is that one may have additional �unlabelled� data� drawn from

the same probability distribution� at hand� however not from the test set� Then this

also can be used to give better estimates� however now only with some probability

���� Finally� if real data is scarce� but� say� one knows that it is contained in some

compact set C� one might use this information to arti�cially generate additional

data in a Monte�Carlo like fashion� and get upper bounds on the radii by doing so�

This is also useful when no analytic expansion in terms of eigenvalues of the

operator can be obtained� or where it would be too tedious to obtain explicitly� In

cases with a su�cient amount of computational power available this may even be a

more practical and faster way than computing the spectrum given by k analytically�

The latter� at least in order to obtain optimal bounds� would have to be done for

each learning problem anew� The method proposed here thus would obviate the

need for such detailed theoretical calculations which may be impractical to carry

out in some instances� Hence the problem boils down to numerically computing

�bounding� the eigenvalues of an integral operator de�ned by a SV kernel� Existing

methods in this domain could �and should� be leveraged�

But now back to the case of an m�sample of datapoints x 	 fx�
 � � � 
 xmg � X�

not necessarily only from the training� A possible algorithm based on properties of

Kernel�PCA �cf� Sch�olkopf et al� �����a� and section ���� is sketched in the following�

The crucial thing to observe is that one just needs a rough estimate of the directions

e�
 � � � 
 ej�� �bad estimates simply will yield too large ri but not lead to wrong
results�� These can be given by considering the �rst j principal directions obtained

from Kernel�PCA� While the latter only makes statements on the second order

moments of the distribution of the images of X in feature space� a rapid decrease

of eigenvalues �which was noticed quite often� means that also the maximum

projections onto ej have to decrease rapidly �this follows directly from the norm

equivalence property in Rm �� as they are the rescaled entries of the eigenvectors in

coe�cient space� Thus� possibly after some ordering�
p
�i � ri  

p
�imaxj j�ij j�

Finally� another fact worth while noticing is that e
ectively one only needs to

estimate the quantities �r�r� � � � rj��rjj and rj � but not all single radii separately�
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��� Discrete Spectra of Convolution Operators

The results presented in the previous two sections show that� knowing the eigenvalue

sequence ��i�i of a compact operator� one can bound its entropy numbers� Whilst

it is usually possible to assume that the data fed into a SV machine have bounded

support� the same can not be said of the kernel k��
 ��� a commonly used kernel
is k�x
 y�  exp���x � y���� which has noncompact support� The induced integral

operator

�Tkf��x�  

Z �

��
k�x
 y�f�y�dy �
����

then has a continuous spectrum and thus Tk is not compact �Ash� ����� p������ The

question arises	 can one make use of such kernels in SV machines and still obtain

generalization error bounds of the form developed above/ A further motivation

stems from the fact that by a theorem of Widom ������� the eigenvalue decay of

any convolution operator de�ned on a a compact set via a kernel having compact

support can decay no faster than �j  O�e�j
�

�� Thus if one seeks very rapid decay of

eigenvalues �with concomitantly small entropy numbers�� one must use convolution

kernels with noncompact support�

These issues are resolved in the present section� Before doing so� �rst consider the

case that supp k � ��a
 a� for some a �
� Suppose further that the data points xj
satisfy xj � ��b
 b� for all j� If k��
 �� is a convolution kernel �i�e� k�x
 y�  k�x�y
 ��

which allows us to write with some abuse of notation k�x� y� 	 k�x� y
 ���� then

the SV hypothesis hk��� can be written

hk�x� 	 

mX
j��

�jk�x
 xj�  

mX
j��

�jkv�x
 xj �  	 hkv�x� �
��	�

for v � ��a # b� where kv��� is the v�periodic extension of k��� �analogously
kv�x � y� 	 kv�x� y
 ���	

kv�x� 	 

�X
j���

k�x� jv�� �
��
�

Now one may relate the eigenvalues of Tkv to the Fourier transform of k���� This is
done for d  � � the general case will be stated later�

Lemma ���

Let k	R 	 R be a symmetric convolution kernel� let K���  F �k�x����� denote the

Fourier transform of k��� �see ������� and kv denote the v�periodical kernel derived
from k �also assume that kv exists�� Then kv has a representation as a Fourier series

with �� 	 
��
v and

kv�x � y�  

�X
j���

p
�	

v
K�j���e

ij��x �
����

 

p
�	

v
K��� #

�X
j��

�

v

p
�	K�j��� cos�j���x� y���

Moreover �j  
p
�	K�j��� for j � Z and Ck  

q
�
v �

The consequence of this result is that for �periodical� translation invariant kernels

with corresponding rate of decay in the Fourier spectrum one gets the same rates
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for the integral operator de�ned on a compact domain� This is the link that will be

exploited when dealing with the discrete spectrum induced by kernels�

Proof Clearly the Fourier series coe�cients Kj of kv exist �as kv exists� with

Kj 	 
�p
v

Z v��

v��

e�ij��xkv�x�dx �
����

and therefore by the de�nition of kv and the existence of K��� one concludes

Kj  
�p
v

Z v��

v��

�X
b���

e�ij��xk�x� bv�

 
�p
v

�X
b���

Z v��

v��

e�ij��xk�x� bv�  

r
�	

v
K�j���� �
����

This� and the fact that fx �	 v����eij��x	 j � Zg forms an orthogonal basis in
L���� v

� 

v
� �
 C � proves ������� Furthermore� one is interested in real valued basis

functions for k�x� y�� The functions

���x� 	 �p
v

�j�x� 	 
q

�
v cos�j��x� for all j � N

��j�x� 	 
q

�
v sin�j��x� for all j � N

�
����

form an eigensystem of the integral operator de�ned by kv with the corresponding

eigenvalues
p
�	K�j���� Finally one can see that Ck  

q
�
v by computing the max

over j � N and x � ��v��
 v����
Thus even though Tk may not be compact� Tkv may be �for instance if

�K�j����j�N � ���� The above lemma can be applied whenever one can form kv���
from k���� Clearly k�x�  O�x����	�� for � � � su�ces to ensure that the sum in

������ converges�

Now consider how to choose v� Note that the Riemann�Lebesgue lemma implies

that for integrable k��� of bounded variation �surely any kernel one would use would
satisfy that assumption�� one has K���  O������ There is an tradeo
 in choosing

v in that for large enough �� K��� is a decreasing function of � �at least as fast

as ���� and thus by Lemma ���� �j  
p
�	K��	j�v� is an increasing function of

v� This suggests one should choose a small value of v� But a small v will lead to

high empirical error �as the kernel wraps around� and its localization properties

are lost� and large Ck �

Remark ���

The above Lemma can be readily extended to d dimensions� Assume k�x� is v�

periodic in each direction �x  �x�
 � � � 
 xd��� Moreover denote j a multi index� i�e�

j  �j�
 � � � jd�� One gets

�j  ��	�
d
�K���j�  ��	�

d
�K���kjk� �
����

for radially symmetric k and �nally for the eigenfunctions Ck  ���v�
d
� �

Note how the choice of a di
erent bandwidth of the kernel� i�e� letting k����x� 	 

�dk��x�� a
ects the eigenspectrum of the corresponding operator� K������  

K������ hence scaling a kernel by � means more densely spaced eigenvalues in

the spectrum of the integral operator Tk��� �
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��	 Entropy Numbers for Given Decay Rates

After that most of the tools have been prepared it is now time to obtain some

concrete results for speci�c rates of decay �and kernels�� In particular in this section

it will become clear how the asymptotic behaviour of �n�A	 �� 	 ���� where A is

the scaling operator introduced before� depends on the eigenvalues of Tk�

A similar analysis has been carried out by Prosser ������� in order to compute the

entropy numbers of integral operators� However� all of his operators mapped into

L��X
 C �� Furthermore� whilst the present propositions are stated as asympotic

results as his were� the proofs actually give non�asympototic information with

explicit constants �see the appendix for details��

Note that one needs to sort the eigenvalues in a nonincreasing manner because

of the requirements in corollary ���� If the eigenvalues were unsorted one could

obtain far too small numbers in the geometrical mean of ��
 � � � 
 �j � Many one�

dimensional kernels have nondegenerate systems of eigenvalues in which case it is

straightforward to explicitly compute the geometrical means of the eigenvalues as

will be shown below� Note that whilst all of the examples below are for convolution

kernels� i�e� k�x
 y�  k�x � y�� there is nothing in the formulations of the propo�

sitions themselves that requires this� When considering the d�dimensional case it

will become clear that with rotationally invariant kernels� degenerate systems of

eigenvalues are generic� Section ����� deals with that case in a systematic way�

Consider the special case where ��j�j decays asymptotically with some polyno�

mial or exponential degree� In this case one can choose a sequence �aj�j for which

one may evaluate ������ explicitly� In this context it is understood that when re�

ferring to the eigenvalues of a kernel k� it is the eigenvalues of the induced integral

operator Tk that are being referred to�

Proposition ���� Polynomial Decay

Let k be a Mercer kernel with eigenvalues �j  O�j������� for some � � �� Then

for any � � ��
 ���� we have
�n�A	 �� 	 ���  O�ln�

�
��� n�� �
����

The rate obtained is tight within logarithmic factors and can be bounded from

below by &�ln�
�
� n��

An example of such a kernel is k�x�  e�x� The proof can be found in the appendix�
The next theorem covers a wide range of practically used kernels� namely those

with exponential polynomial decay in their eigenvalues� For instance the Gaussian

kernel k�x�  e�x
�

has exponential quadratic decay in �i� The damped harmonic

oscillator� kernel k�x�  �
��x� is another example� this time with just exponential

decay in its eigenvalues�

Proposition ���� Exponential�Polynomial Decay

Suppose k is a Mercer kernel with �j  O�e��j
p

� for some �
 p � �� Then

ln ���n �A	 �� 	 ���  O�ln
p

p�� n�� �
����

The rate is tight�

See the appendix for a proof� Whilst this theorem gives the guarantees on the

learning rates of estimators using such types of kernels �which is theoretically

pleasing and leads to desirable sample complexity rates�� it may not always be
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wise to use the theoretically obtained bounds� Instead� one should take advantage

of the estimates based on an analysis of the distribution of the training data since

the rates obtained by the latter may turn out to be far superior wrt� the theoretical

predictions� �Recall the remarks at the beginning of Section ��� and �Sch�olkopf

et al�� ����a���

��
 Higher Dimensions

����� Degenerate Systems

Computing the Fourier transform for a given kernel k yields the continuous spec�

trum� As pointed out in Sec� ���� the interesting quantity is the discrete spectrum

of integral kernels de�ned on X� This means that the eigenvalues are de�ned on

the grid ��Z
d with ��  �	�v� Assuming k�x� is rotationally invariant� so is K���

and therefore also the eigenvalues �j  ��	�
d
�K�j��� as shown in Lemma ���� Con�

sequently this leads to degeneracies in the point spectrum of the integral operator

given by k �or kv respectively� as all j�� with equal length will have the same eigen�

value� In order to deal with this case e�ciently one has to modify slightly theorem

���� The following theorem allows proper account to be taken of the multiplicity

of eigenvalues� and thus allows the straightforward calculation of the sought for

entropy numbers�

Theorem ����

Let �st�t � NN� be an increasing sequence with s�  � and ��j�j � RN be a non�

increasing sequence of non�negative numbers with

�sj � �s�
 for j � *� and �j  �st for st�� � j � st �
����

and let

Dx  ���x�
 ��x�
 � � � 
 �jxj 
 � � �� �
��	�

for x  �x�
 x�
 � � � 
 xj 
 � � �� � �p be the diagonal operator from �p into itself�

generated by the sequence ��j�j � where � � p � 
� Then for all n � N�

sup
t�N

n�
�
st ����� � � ��st�

�
st � �n�D� � � sup

t�N
n�

�
st ����� � � ��st �

�
st � �
��
�

See the appendix for a proof� This theorem allows to obtain a similar result to

corollary ����

Corollary ���� Entropy Numbers for Degenerate Systems

Let k	X � X 	 R be a Mercer kernel and let A be de�ned by ������ with the

additional restriction that the coe�cients aj match the degeneracy of �j � i�e�

asj � as�
 for j � *� and aj  ast for st�� � j � st� Then

�n�A	 �� 	 ��� �
inf

�aj�j ��
p
�j�aj�

j
�� supt�N �Ck

!!!�p�j�aj
�
j

!!!
�
n�

�
st �a�a� � � � ast�

�
st

�
����

This result by itself may not appear too useful� However� this is exactly what one

needs for the degenerate case �it is slightly tighter than the original statement� as

the sup e
ectively has to be carried out only over a subset of N�� Finally one has

to compute the degree of multiplicity that occurs for di
erent indices j� For this
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purpose consider shells of radius r in Rd centered at the origin� i�e� rSd��� which
contain a nonzero number of elements of Zd� Denote the corresponding radii by rj
and let n�rj 
 d� be the number of elements on these shells� Observe that n�r
 d� � �
only when r� � N� Thus

n�r
 d� 	 jZd� rSd��j
N�r
 d� 	 

P
f����r����Ng

n��
 d�� �
����

The determination of n�r
 d� is a classical problem which is completely solved by

the use of the ��series� �see e�g� Grosswald �������	

Theorem ���� Occupation Numbers of Shells

Let the formal power series ��x� be de�ned by

��x� 	 

�X
j���

xj
�

 � # �

�X
j��

xj
�

� �
����

Then ���x��d  
P�

j�� n�
p
j
 d�xj �

This theorem allows one to readily compute n�r
 d� exactly� see �Williamson et al��

����b� for some Maple code to do so��� Now one can construct an index of the

eigenvalues which satis�es the required ordering �at least for nonincreasing functions

K���� and one obtains the following result	

Corollary ���� Radially Symmetric Systems on a Lattice

Let k	X�X	 R be a Mercer kernel with eigenvalues given by a radially symmetric

nonincreasing function on a lattice� i�e� �j  ��kjk� with j � Zd and let A be de�ned

by ������ with the additional restriction that the coe�cients ai have to match the

degeneracy of �j� i�e� aj  ast for st�� � j � st� Then��

�n�A	 �� 	 ��� �

inf
�aj�j�

�p
	j
aj

�
j

����d
sup
t�N

�Ck

!!!!!
�p

�j

aj

�
j

!!!!!
���d

n�
�

N�rt�d�

�Qt
q�� a�rq�

n�rq�d�
 �
N�rt�d�

� �
����

Note that this result� although it may seem straightforward� cannot be obtained

from corollary ��� directly� as there the sup would have to be carried out over N

instead of �N�rt
 d��t� The di
erent formulation allows one to compute bounds on

the entropy numbers more easily�

����� Bounds for Kernels in Rd

Recall the Fourier transforms of kernels in Rd as derived in section ���� determining

the eigenvalue sequences for kernels typically used in SV machines� These can then

be used to evaluate the right hand side in corollary �����

In particular by using Theorem ����� Corollary ���� and Remark ��� one may

compute the entropy numbers numerically for a particular kernel and a particular

set of parameters� This may seem unsatisfactory from a theoretician�s point of view�

��� Note that whilst there do exist closed form asymptotic approximate formulae for
n�r� d� 
Grosswald� ��	�� p� ����� they are inordinately complicated and of little use for
the purpose of bounding entropy numbers�
��� See Guo et al� 
����� for a proof that �	���� is well de�ned for kernels of trace class�
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However� as the ultimate goal is to use the obtained bounds for model selection� it

is desirable to obtain as tight bounds �also in the constants� as possible� Hence if

much more precise bounds can be obtained by some not too expensive numerical

calculation it is de�nitely worth while to use those instead of a theoretically nice

but not su�ciently tight upper bound� The computational e
ort to calculate these

quantities is typically negligible in comparison to training the actual learning

machine�

Notwithstanding the above� in order to give a feeling for the e
ect of the decay of

the Fourier transform of the kernel on the entropy numbers of the A operator� the

exposition on entropy numbers for SV kernel machines concludes with the following

general result� the proof of which is relegated to the appendix�

Proposition ���� Polynomial Exponential Decay in R
d

For kernels k��
 �� in Rd � R
d with ����  O�e��k�k

p

� with �
 p � � the following

bound on the entropy number of the corresponding scaling operator holds�

ln ���n �A	 �� 	 ���  O�ln
p

p�d n� �
����

��� Summing Up

The reasoning of this chapter provides tools to compute tighter generalization

bounds of learning machines by improving the bounds on covering numbers� For

this purpose methods from functional analysis and theory of Banach spaces were

exploited� As an example SV kernels have been used� In particular the present

approach relied on the fact that the mapping into feature spaceS� or more precisely

the shape of the mapped domain� exhibits certain decay properties to ensure rapid

convergence and a constraint on the size of the weight vector in feature space� It

means that the corresponding algorithms have to restrict exactly this quantity to

ensure good generalization performance� Exactly this is done in SV machines�

The actual application of the results� perhaps for model selection using structural

risk minimization� is somewhat involved� Below several possible paths are lined

out� As said before� the functional analytic viewpoint in this chapter is new� A

codi�cation into a single master generalization theorem would have obscured the

conceptually new part� and might become obsolete once tighter bounds on the

entropy numbers are obtained� Applications to other algorithms from supervised

and unsupervised learning will be looked at in the next chapter� This will show

the �exibility of the feature space mathematics�� as one might call the new set of

methods� From the practical viewpoint� �nally� the results of this chapter could be

used in the following ways	

Possible Procedures to use the Results of this Chapter

Choose k and � The kernel k may be chosen for several reasons� about which

nothing additional will be said here� The choice of �� i�e� the width of rbf kernels�

should take account of the discussion in Sec� ���� i�e� that larger � will lead to faster

decaying eigenvalues of Tk but also to a closer spacing of the eigenvalues� since the

the domain of interest is larger as well�

Choose the period v of the kernel One suggested procedure is outlined in

Sec� ���� Speci�c results for periodical functions can be obtained in this context�
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Bound �n�A� This can be done using Corollary ��� �for the case d  �� or

Corollary ���� or ���� for the case d � �� Some examples of this sort of calculation

are given in Sec� ����

Bound �n�T � Using Theorem ���� i�e� by combination of the bounds on �n�A� and

of the evaluation operator itself�

Take account of the loss function Using Lemma ��� for instance� or possibly

by modifying the above reasoning for other covering numbers than those with

respect to the �m� metric�

Plug into a uniform convergence result See chapter � and the pointers to

the literature therein� To obtain good bounds� it is equally crucial to take most

advantage of the overall learning situation �e�g� regression vs� agnostic learning�

convex function classes� zero loss� etc���
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��� Appendix� Proofs

��	�� Proof of Proposition ����

Proof The proof uses Corollary ���� Since �j  O�j���� there exists some
� � R# with �j � ��j����� In this case all sequences �aj�j  �j�

�
� �j with

� � � � � lead to an admissible scaling property� One has!!!!!
�p

�j
aj

�
j

!!!!!
�

 �

!!!!�j ������


j

!!!!
�

 �
p
���� � # �� �
����

where ���� is Riemann�s zeta function� Moreover one can bound ���� by
x# � � �

�
� # �

x

� � x# � �
����

where � is Euler�s constant� The next step is to evaluate the expression

�a�a� � � � aj� �j  
�

jY
s��

s�
�
�

� �
j

 �j-��
�
�j  ,�j # ���

�
� �
����

The Gamma function ,�x� can be bounded as follows

ln j � � � �

j
ln ,�j # �� � ln j� �
��	�

Hence one may bound �n�A�

�n�A� � Ck� inf

������

sup
j�N

n�
�
j

�
�

��
 # �
 �
�

j�
�
� �
��
�

�n�A� � �Ck� inf

������

sup
j�N

n�
�
j

�
�

��
 # �
 �
�

e
�
� j�

�
� �
����

In order to avoid unneeded technicalities we will replace supj�N by supj������

This is no problem when computing the upper bound� but this is an issue for the

lower bound� However� j�
�
� on ��

� is within a constant factor of �� �

� of its

corresponding values on the integer domain N� the biggest discrepancy being at

��
 ����� Thus we may safely ignore the concern� Next we compute

sup
j�����

n�
�
j j�

�
�  sup

j�����
e
��
j lnn� 


� ln j  
�
�e lnn



�� �
� � �
�	��

The maximum of the argument is obtained for j  � lnn

 � hence ������ holds for all

lnn � 

� � which is �ne since we want to compute bounds on �n�A� as n 	
� For

the lower bounds on �n�A� we obtain

�n�A� � Ck���e�
� �

� inf

������

�
�

��
 # �
 �
� � � lnn




�� �
�

� Ck���e��
� �

� inf

������

�
�

��
 # �
 �
�

inf

������

�
� lnn



�� �
�

 Ck���e��
� �

�

�
�
� # �

� �
�
�
� lnn
�

���
� � �
�	��

��� One may show 
Sch�olkopf et al�� ����a� that aj��� � supj�Nn
� �
j �a�� � � � � aj�

�
j � aj�

for that particular j� where supj�N is actually obtained� Hence the maximum quotient

aj���aj � which in the present case is �
� �
� � determines the value by which the bound has

to be lowered in order to obtain a true lower bound�
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This shows that �n�A� is always bounded from below by &
�
ln�

�
� n


� Computation

of the upper bound is slightly more e
ort� since one has to evaluate

�n�A� � �Ck� inf

������

�
�

��
 # �
 �
� � � lnn




�� �
� � �
�	��

Clearly for any �xed � � ��
 �� we are able to obtain a rate of �n�A�  O
�
ln�

�
� n

�

thus the theorem follows� For practical purposes a good approximation of the inf

can be found as �
��
  ln�� lnn� by computing the derivative of the argument in

������ wrt� � and dropping all terms independent of � and n� However� numerical

minimization of ������ is more advisable when small values of �n�A� are crucial�

��	�� Proof of Proposition ����

For the proof one needs the following Lemma in order to bound summations by the

corresponding integrals�

Lemma ��� Summation and Integration in R�

Suppose f 	 R 	 R is a nonincreasing integrable function� Then the following

inequality holds for any a � ZZ �

a

f�x�dx �
�X
n�a

f�n� �
Z �

a��
f�x�dx� �
�	��

Proof The proof relies on the fact that

f�n� �
Z n��

n

f�n�dn � f�n# �� �
�	��

due to the monotonicity of f and a decomposition of the integral
�R
�

 
�P
n��

n��R
n

� The

lemma is a direct consequence thereof�

Proof� Theorem ����� Since �j  O�e��j
p

� there exists some � � R# with

�j � ��e��j
p

� Similarly to before we now use a series �aj�j  e�
��j
p

� Then one

can bound by applying lemma ���� we have that for any � � ��
 ���!!!!!
�p

�j
aj

�
j

!!!!!
�

 �

*
+ �X
j��

e�
���j
p

,
A

�
�
��
� � �

q
� # ����p�

p���
���p

� �
q

����p�
p���
���p

�
�	��

Next we have to apply a similar bound to the product of the �rst j diagonal entries

of the scaling operator A�

�a�a� � � � aj�
�
j  e

� �
�j 


jP
s��

sp
�
� e�

�
��p���

jp

� e�
�

��p���
jp� �

�j�p��� � e�
�

��p���
jp� �

��p���
�
�	��

The last inequality holds since j � N� Next we have to compute

supj�N n
� �
j e�

�
��p���

jp  supj�N e
� �
j lnn� �

��p���
jp � Di
erentiation of the exponent

wrt� j leads to

j�� lnn� 
p
��p���j

p��  �� j�� lnn  
p
��p��� j

p �
�		�

and thus

sup
j�����

n�
�
j e�

�
��p���

jp  e
�� 
� �

���p���
�
p��
p lnn

� p
p��

� �
�	
�
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Replacing the domain from supj�N to supj����� is not a problem when it comes

to computing upper bounds on �n�A�� As for the lower bounds� again� a similar

reasoning like in the previous proof would have to be applied��� However� it is left

out for the sake of clarity� Thus �n�A� can be bounded from below as follows

�n�A� � Ck� inf

������

q
����p�

p���
���p e
�� 
� �

���p���
�
p��
p lnn

� p
p��

� Ck� inf

������

q
����p�

p���
���p inf

������

e
�� 
� �

���p���
�
p��
p lnn

� p
p��

 Ck�
q

����p�
p���p

e
���� �

���p���
�
p��
p lnn

� p
p��

�
�	��

Thus a lower bound on the rate of log �n is O�log
p

p�� n�� Moreover� for the upper

bound we obtain

�n�A� � �Ck� inf

������

q
� # ����p�

p���
���p e
�� 
� �

���p���
�
p��
p lnn

� p
p��

�



�j�p��� �
�
��

Whilst evaulation of ������ is best carried out numerically for practical applications�

one can see that for any �xed � � ��
 �� the rate of log �n�A� can be bounded by
O�log

p
p�� n�� which shows that the obtained rates are tight�

��	�� Proof of Theorem ����

Proof The �rst part of the inequality follows directly from theorem ��� as it is

a weaker statement than the original one� The second part is proven by closely

mimicking the proof in �Carl and Stephani� ����� p� ���� De�ne

��n� 	 � sup
t�N

n�
�
st ����� � � ��st �

�
st �
�
��

Next one has to show that for all n there is an index sj with �sj�� � ��n�
� � For this

purpose choose an index r such that n � �sj�� and thus � � �n����sj���� Moreover
one has

�sj�� � ����� � � ��sj���
�

sj�� �
�
��

because of the monotonicity of ��j�j and �nally

�sj�� � �n����sj�������� � � ��sj���
�

sj�� � �
�
��

Using the de�nition of ��n� one thus can conclude �sj�� � ��n���� If this happens

to be the case for �� one immediately obtains �n�D� � �� which proves the theorem�

If this is not the case there exists an index sj such that �sj�� � ��n��� � �sj �

Hence the corresponding sectional operator

Dsj 	 �p 	 �p with

Dsj �x�
 x�
 � � � 
 xsj 
 xsj��
 � � ��  ���x�
 ��x�
 � � � 
 �sjxsj 
 �
 �
 � � ��
�
�
��

��� As in the previous theorem� the problem reduces to bounding the quotient aj����aj�

where j� is the variable for which supj�N is obtained� However� here the quotient can only

be bounded by e�
�p
�
jp�� � Fortunately this is of lower order than the remaining terms�

hence it will not change the rate of the lower bounds�
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is of rank sj and the image Dsj �Up� of the closed unit ball Up of �p is isometric to

the subset D�sj��U
�sj �
p � of �

sj
p � In any case Dsj �Up� is a precompact subset of �p� So

let y�
 y�
 � � � 
 yN be a maximal system of elements in Dsj �Up� with

kyj � y
�k � ��n��� for j � *�� �
�
��

The maximality of this system guarantees that

Dsj �Up� �
N%
j��

-
yj #

��n�

�
Up

.
�
�
��

and thus �N �Dsj � � ��n���� In order to get an estimate for �N �D� split the operator

D into two parts D  �D �Dsj � #Dsj which allows one to bound

�N�D� � kD �Dsjk# �N �Dsj �� �
�
	�

Using kD �Dsjk  �sj�� � ��n��� and the bound on �N �Dsj � one arrives at

�N�D� � �

�
��n�� �
�

�

The �nal step is to show that N � n as then by substituting in the de�nition of

��n� into ������ yields the result� This is again achieved by a comparison of volumes�

Consider the sets fyj # ���n����Usj
p g as subsets of the space �sjp which is possible

since yj � Dsj �Up� and Dsj �Up�  D�sj��U
sj
p �� These sets are obviously pairwise

disjoint� On the other hand one has

N%
j��

-
yj #

��n�

�
Usj
p

.
� D�sj ��Usj

p � #
��n�
� U

sj
p � � �D�sj��U

sj
p � �
�
��

as ��n��� � ��� Now a comparison of the d�dimensional Euclidean volumes vol d
provides

N

�
��n�

�

�sj

vol sj �U
sj
p � � �sj���� � � ��sjvol sj �Usj

p � �
����

and therefore N � �����n��sj���� � � ��sj � Using the de�nition of ��n� this yields
N � n�

��	�� Proof of Proposition ����

Proof sketch only� In the following completely ignore the fact that we are

actually dealing with a countable set of eigenvalues on a lattice and replace all

summations by integrals without further worry��� Of course this is not accurate

but still will yield the correct rates for the entropy numbers�

Denote ��! 	 ��	�v�
d
� the size of a unit cell� i�e� !  �v���	��

d
� the density

of lattice points in frequency space as given in section ���� Then one obtains for

in�nitesimal volumes dV and numbers of points dN in frequency space

dV  Sd��rd��dr and therefore dN  !Sd��rd��dr �
����

�here Sd�� denotes the volume of the d� � dimensional unit sphere� leading to

N�r
 d�  
�

d
!Sd��rd� �
����

��� This is the reason why the current reasoning can only be considered as a sketch�
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Next introduce a scaling operator whose eigenvalues decay like a���  e�
�
� k�kp for

� � ��
 ��� It is straightforward to check that all these values lead to both useful and
admissible scaling operators� Moreover one may now estimate the separate factors

in �������!!!!
�p

�i

ai

�
i

!!!!�
�

�
Z

dN���
����

a����
 Sd��!

Z �

�

rd����e����
�k�k
p

 Sd��!����� ���
d
p �
�
d
p


p�� �
����

Next one has ln
�
n�

�
N�r�d�


 � d

	Sd��rd�
lnn and

ln
�
a� � a� � � �aN�r�d�

� �
N�r�d�  � d

!Sd��rd�

N�r�d�X
j��

ln aj

� dr�d
Z r

�

�d�� ln a���d� �
����

 �dr�d
Z r

�

�d��
�

�
�pd�  ��

�

d

d# p
rp� �
����

This leads to

�n � �Ck�

r
Sd��	�� dp �

p �
inf
�������� ���

d
�p supr�R� exp

�
� d

	Sd��rd
lnn� 


�
d

d�pr
p

�

�
����

Computing the supr�R� yields r  
�

�

	Sd��

�d�p�d
p lnn

 �
d�p

and therefore

�n � �Ck�

r
Sd��	�� dp �

p �

inf
�������� ���
d
�p exp

�
� � 
� � d

d�p

�
�d�p�d

p
lnn

	Sd��

 p
d�p

�
�

�
��	�

Already from this expression one can observe the rate bounds on �n� What remains

to be done is to compute the inf
 � This can be done by di
erentiating ������ w�r�t�

� � De�ne

Tn 	 

�
�d# p�d

p

lnn

!Sd��

� p
d�p

�
��
�

which leads to the optimality condition on �

��� ����
p

d�p  
d# p

�Tnp
�

d
d�p with � � ��
 ��� �
����

This can be solved numerically�



	 Applications of Covering Numbers

The functional analytic tools presented in the previous chapter are not only

restricted to SV kernels� The following sections contain examples how these methods

may be applied to regularization networks� convex combinations of hypotheses� and

principal curves type algorithms�

Roadmap

The extension to regularization networks� as done in section ��� is quite straightfor�

ward� The only modi�cation is that weight vectors in feature space S now become

functions in a reproducing kernel Hilbert space �rkhs�� Besides that� most results

carry over directly� In particular� it allows to apply a result of Makovoz ������ to

state strong convergence rates for the approximation of functions in the rkhs� This

is astonishing as the initial reason for dealing with covering numbers was to obtain

convergence bounds� The practical implication of this result is that it allows to give

approximation properties for reduced set algorithm �cf� Burges ������� Burges and

Sch�olkopf ������� Osuna and Girosi ������� Sch�olkopf et al� �����b���

A second application is presented in section ���� There functional analytic tools

are applied to �p regularization operators� Beyond bounds for general smoothness

constraints �sec� ������� which are only slightly better than existing ones� much

stronger results are obtained by making explicit use of the properties of the proper�

ties of kernel expansions� In particular� these results �sec� ������ are at least as good�

in terms of asymptotic rates� as those obtained for SV regularization �i�e� regular�

ization in feature space�� Finally� a brief remark on traditional weight decay shows

that p�convex combinations are only recommendable for p � �� Otherwise� under
quite generic circumstances� the function classes may be unbounded �provided� one

is willing to allow an in�nite number of basis functions��

Finally� the new tools are used to state uniform convergence proofs for the reg�

ularized principal manifold algorithm �sec� ����� introduced in section ���� This

reasoning is interesting in two respects	 �rst it deals with multidimensional output

data� secondly� it is an unsupervised learning algorithm� Whilst using basic tech�

niques of �K+egl et al�� ������ one may obtain better uniform convergence bounds

due to the properties of the kernel� In particular� for kernels with exponentially

fast decaying eigenvalues� learning rates� optimal within log factors compared to

supervised learning �cf� �Amari et al�� ������ are obtained�



�� Applications of Covering Numbers

��� Regularization Networks

One of the immediate applications of capacity control via entropy numbers is

the treatment of regularization networks� For function expansions in terms of the

Green�s functions one can directly apply the equivalence as described in section �

without further ado�

	���� Entropy Numbers for Regularization Networks

If this does not happen to be the case� one has to establish a connection between

the length of w in feature space� the value of kPfk� and the entropy number of the
latter for functions expanded not in terms of the Green�s functions of P �P � Assume
an arbitrary expansion

f�x�  
X
i

�ifi�x�� �����

In this case

kPfk�  
X
i�j

�i�jhPfi
 P fji� �����

All one has to show is that under some assumptions on the basis functions fj and

the regularization operator P there exists an equivalent expansion in terms of a

kernel function k being the Green�s function of P � such that the reasoning of SV

kernels can be applied�

A property of reproducing kernel Hilbert spaces H �cf� de�nition ����� is that all

f � H can be expanded in terms of kernel functions k� This holds as the latter span

H � In fact one can identify H with S� This is the key property � the strategy for

converting ����� into a kernel expansion now works as follows	 Assume fi � H for

all i� Now each fi can be expressed in terms of a kernel expansion� thus also linear

combination thereof� i�e� f � This brings one back to the initial setting of expansions

in terms of kernel functions and one may apply the tools of chapter � directly�

A cautionary note is necessary for the case of fi �� H � There two things may

happen	 either the expression hfi
 fiiH is unbounded� which has the consequence

that the corresponding bounds become useless �this for instance is the case when

using the Yuille and Grzywacz ������ operator with Gaussian rbf�functions with

kernel width � chosen too small��

The other situation contains a more serious problem� Assume that P �P contains
a nontrivial null space� i�e� functions f � � with f � L��X� but hPf
 Pfi  
hf
 fiH  �� A simple example of such an operator is the gradient operator �

constant functions will yield hf
 fiH  �� If some of the basis functions fi happen
to have nonvanishing projections onto the null space of H � the concept of feature

space breaks down and the uniform convergence results cannot be applied any more�

	���� An Application of a Result of Makovoz

The new function analytic viewpoint can also be used to give stronger statements

on the approximation properties of kernel expansions� There the basic question

is� how many basis functions� say k�xi
 �� are needed in order to approximate an
arbitrary function f with � precision� The following theorem� itself a generalization

of a result of Barron ������ �he proved a similar result with ��n�G� replaced by




�� Regularization Networks �


��� makes the connection between approximation properties and entropy numbers

explicit�

Recall a convex combination of G 	 fgigi is an element of

co n�G� 	 

�
nX
i��

�igij�i � �
 gi � G for all � � i � n and
nX
i��

�i  �

�
� �����

Moreover denote co �G�  n�Nco n�G�� co �G� the closure of co �G� andH a Hilbert

space with corresponding ��norm�

Theorem ��� Makovoz ������

Suppose for all g � G� kgk � �� and G � H � Let f� � co �G�� Then for every n � ��

there exists fn � co n�G� such that

kf� � fnk � ��n�G�p
n

�����

In order to apply the theorem one has to translate it into the language of kernel

expansions and feature spaces� An arbitrary element f� of an RKHS can be
expanded in terms of kernel functions� thus is an element of co �G� for a suitably

chosen G� The latter consists of a scaled version of $�X�� as the images of the input

data mapped into feature space S span the feature space� �or in other words the

RKHS�� Once� the scaling factors are �xed �this depends on f��� one may apply
the theorem above�

Now recall from section ����� that $�X� can be viewed as contained in the image

of the �� unit ball U� under some operator A� Thus G � c$�X� � cAU� for some

positive constant� and consequently �n�G� � c�n�A��

The last step is to plug in the asymptotic rates on �n for di
erent kernels� to

obtain� e�g� for one dimensional kernels with eigenvalues decaying polynomially

with an exponent of n���� a rate of n�
�
� for �n �cf� prop� ������ Thus the overall

rate would be n�
���
� in that case� or in other words n�

m
� � where m indicates the

degree of di
erentiability� This is signi�cantly better than the rates of Corradi and

White ������� who obtain n�
�m

�m�� �

Another consequence is that for reduced set algorithms� where one wants to

approximate the solution found by a SV algorithm with a smaller number of

basis functions from the same RKHS� one thus can determine minimal rates of

convergence for given precisions� The only problem� however� is� that �nding this

function expansion is a hard nonlinear optimization problem with many local

minima� What remains to be done is to �nd a greedy algorithm� like the one of

Jones ������ to actually achieve the rates which are theoretically possible�

A possible solution for kernel expansions consists of generating an approximation

using the algorithm of Jones ������� and then truncating the expansion subsequently

to achieve the rate of theorem ���� The latter is possible since the discrete set

of kernel functions can be covered at least as e�ciently as the whole class of

functions F� thus the corresponding design matrix will have very rapidly decaying

corresponding eigenvalues� which will �nally allow the elimination of a subset of

basis functions while conserving a large part of the approximation quality�

After the application of the functional analytic tools to quadratic regularizers it

is interesting to see whether the techniques can be adapted to other regularization

terms like �p norms� to bound the entropy numbers of the corresponding class of

functions�



��� Applications of Covering Numbers

��� Convex Combinations

Recently new methods have been proposed �Bennett� ����� Weston et al�� �����

Bradley and Mangasarian� ����� Frie� and Harrison� ����� to compute SV like

expansions using linear programming algorithms�� Moreover boosting algorithms

�Schapire et al�� ����� also deal with function spaces which are convex combinations

of some basis functions� Thus it seems interesting to consider function classes of

the type

Fp 	 

��
�f

������f�x�  
X
j

�jk�xj 
 x� with
X
j

j�j jp � �
"#
$ �����

and the entropy�covering numbers thereof� Naively� one could� at least in the case of

SV kernel expansions� try to use bounds for SV machines �cf� chapter �� for model

selection purposes in this case� but this would be very wasteful since the shape of the

hypothesis class is quite di
erent �one is dealing with scaled convex combinations

of base hypotheses represented by the kernels k�xi
 x��� Furthermore� the kernels

may not even satisfy Mercer�s condition� in which case the standard reasoning fails

completely� Nevertheless� this new class of algorithms has been reported to yield

competitive generalization performance which creates the need for an explanation

of this e
ect and for some new model selection rules�

There are essentially two cases to distinguish� First� one might only be able to

assume a general smoothness constraint �the case which will be discussed below�� It

will become clear in the following that not much can be gained beyond the bounds

determined by Theorem ���� Conversely� if speci�c properties of the kernel function

k are exploited� the advantage may be signi�cant� leading to bounds on entropy

numbers with even faster rates of decay in n than for the SV regularization�

In the following assume p  �� i�e� only classes of type F 	 F� will be considered�

as the entropy numbers for classes with p � � may be unbounded� The reason for

this will be made explicit in section ������

	���� More Functional Analytic Tools

More functional analytic tools to bound entropy numbers of convex hulls in terms

of the entropy numbers of the base model class are necessary� One can use a special

case of �Carl et al�� ����� Proposition ���� to obtain

Proposition ��� Entropy Numbers for Convex Hulls

For all Banach spaces X and all precompact subsets A � X satisfying the bound

�n�A� � cn�
�
d with c
 d � � there exists a constant ��d� such that for the convex

hull of A � co �A�� the following inequality holds

��n�co �A�� � c��d�n�
�
d � �����

The following proposition gives bound on entropy numbers of compact sets in �nite

dimensional spaces� It follows directly from volume considerations�

�� This section is an extended version of Smola et al� 
���	f��
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Proposition ��� Entropy numbers of compact sets

Given a d�dimensional Banach spaceX and a compact set C there exists a constant

c�C
X� � � such that the entropy number is bounded as follows�

�n�C� � c�C
X�vol
�
d �C�n�

�
d ���	�

The constants depend on geometrical properties� e�g� whether C is a box or a ball�

	���� General Smoothness Constraint

The strategy of proof is as follows� For kernels satisfying a Lipschitz condition the

covering number of a compact set in index space can be used to determine a covering

number of the set of kernel functions� Next one applies proposition ��� to obtain

bounds on the entropy numbers of the convex combinations of kernel functions�

Now for the Lipschitz condition	 the overall result will be formulated in terms of

the Lipschitz constant cL�k
 C� of a class of kernels

cL�k
 C� 	 inf fcLjd�k�x�
 y�
 k�x�
 y�� � cLd�x�
 x�� for x�
 x� � C
 y � Xg � ���
�

Here d��
 �� represents the metric on the index set C and the image of k respectively�
All commonly used translation invariant SV kernels �e�g� k�x
 y�  exp��kx �
yk��� satisfy this property� A more general formulation in terms of the modulus

of continuity ��k
 �
 C� is straightforward but has been omitted for the sake of

simplicity� The above considerations lead to the following proposition�

Proposition ��� Entropy Numbers in L� Spaces

Let X be a d�dimensional Banach space� C � X a compact index set� k��
 �� a kernel
function de�ned on C�X with �nite cL�k
 C� and k�x
 y� � � for all x � C� y � X �

There exists a positive constant c�C
 d
X� � � such that

��n�F�
 L�� � c�C
 d
X�cL�k
 C�n
� �
d � �����

Hence for kernels satisfying a Lipschitz condition� the entropy numbers of the kernel

induced class F� scale like the logarithm of the entropy numbers of their index set�

Proof The �rst step is to compute an upper bound on �n�K�  �n�K
 L�� where

K 	 fk�x
 ��jx � Cg ������

in terms of the entropy numbers of C� By de�nition one has

kk�xi
 ��� k�xj 
 ��kL� � cL�k
 C�d�xi
 xj� for xi
 xj � C ������

and therefore

�n�K� � cL�k
 C��n�C�� ������

As one is interested in the absolute convex combination� i�e� F  co �K  �K� one
has to take into account that the set of base hypotheses is at most twice as large

as K� From proposition ��� one may derive a bound on �n�C� to obtain

��n�K  �K� � cL�k
 C�c�C
X�vol
�
d �C�n�

�
d ������

Now apply proposition ��� to obtain

��n�co �K  �K�� � ��d��
�
d c�C
X�vol

�
d �C�cL�k
 C�n

� �
d � ������

Collecting the constants into c�C
 d
X� gives the desired result�
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Next one has to bound �n on an arbitrary m�sample X
m 	 fx�
 � � � xmg � X � in

the �m� metric for !F� i�e� F scaled by the constant !� This is done in a way much

similar to ������� Analogously to section ����� introduce the evaluation operator

SXm as

SXm 	 L��X� 	 �m�
SXm 	 f �	 �f�x��
 � � � 
 f�xm��

������

Note that SXm is linear and has norm � due to the L� norm� Hence one can apply

������ of lemma ��� and theorem ��� to bound �n�SXm!K� by �n��SXm��n��!K�

with n�n� � n� This is formalized in the following proposition�

Proposition ���

The entropy number of the hypothesis class !K evaluated at m arbitrary points

fx�
 � � � 
 xmg � X in the �m� metric is bounded by

�n�SXm�!K�� � !'c�C
 d
X�cL�k
 C� inf
n��n��N�n��n�n

�
n��� log

�
� # m

n�

 �
�

n
� �
d

� ������

for some constant 'c�C
 d
X� � �� Hence the rate in �n is of order O�n
� �

�� �
d � as can

be checked by carrying out the inf or by applying lemma ����

SinceXm was arbitrary� one can thus again use the bounds on �n to bound N
m��
F��

Although it is certainly not explicitly obvious here� it turns out that the bounds

obtained here are tighter than those in �Gurvits� ����� Bartlett� ������ derived using

the fat�shattering dimension and a version of Maurey�s theorem� A comparision of

the bounds could be done via a reasoning similar to that in section ������

The reason why no excessive care has been spent on obtaining good constants in

the present case is that� as shall become clear subsequently� one can do much better

by exploiting properties of kernels in a more explicit way� Still� for methods other

than kernel expansions �say boosting� proposition ��� may constitute a signi�cant

improvement of the bounds� But before doing so� it is useful to see why p�convex

combinations with p � � can be ruled out�

	���� A Remark on Traditional Weight Decay

One might conjecture that a similar result could be established for p�convex

combinations with p � �� i�e� for any Fp� Training large neural networks with weight

decay �p  �� is such a setting� However� under the assumption of an arbitrarily

large number of basis functions� this conjecture is wrong� It is su�cient to show

that Fp is unbounded in L�� Consider an in�nite index set I � C for which� for

some other set M of nonzero measure and some constant � � �

k�xi
 x� � � for all xi � I
 x �M� ����	�

An example is k�x
 y�  e��x�y�
�

� Any compact sets I
M satisfy �������

f�x� 	 
X
j

�jk�xi
 x� � �
X
j

�j ����
�

for �j � �
 xi � I
 x �M � Now let

fn��� 	 
nX
j��

n���pk�xi
 �� � Fp� ������
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By construction� the �np norm of the coe�cients equals �� however fn�x� � �n����p

for all x �M � Thus

lim
n��

kfnkL�  
 ������

and therefore Fp contains unbounded elements for p � �� which leads to in�nitely

large covering numbers for Fp� Hence Fp with p � � is not a suitable choice as a

hypothesis class �in the absence of further regularization�� In other words � one

should avoid using traditional weight decay �p  ��� if the number of basis functions

may grow without bound�

This leads to the question why� despite the previous reasoning� weight decay has

been found to work in practice� One reason is that in standard neural networks

setttings the number of basis functions is limited �either by construction� via some

penalty term� etc��� thus the above described situation might not occur�

Secondly� e�g� in rbf�networks� a clustering step for �nding the centers is inserted

before training the �nal weights� This means that the basis functions are su�ciently

di
erent from each other � observe that the similarity of some basis functions was

explicitly exploited in the counterexample above�

Finally� also by the distance of the basis functions� penalization with a diagonal

matrix is not too di
erent from penalization via a kernel matrix �provided the

widths of the basis functions is equal� and not signi�cantly larger than the distance

between the centers� � the main diagonal elements will be � and the o
 diagonal

elements small� hence can be approximated well by a unit matrix�

There exists� however� a case where this reasoning might go wrong in practice�

Assume one wants to modify a boosting algorithm in such a way that instead of

convex combinations one would like to have p�convex combinations with p � ��

After iterating a su�ciently long time the situation described above might occur

as the number of basis functions �i�e� weak learners� keeps on increasing with the

iterations�

	���� The Kernel Advantage

To get better bounds one has to take a completely di
erent view of the kernels�

The strategy is to view the hypothesis class as contained in the image of a linear

operator �as in the SV case�� however with possibly di
erent constraints� It will

become clear that the statements about the image of the data in feature space can

be kept� The weight vector instead is not constrained any more to a ball of some

�xed radius ! but to a convex set� identical in shape to the images of the data� i�e�

a box with rapidly decaying sidelengths�

In addition to the previous assumptions require that k is symmetric� bounded�

and that the kernel expansion consists only of functions with k�xi
 �� where xi � X�
If one requires that the training data be constrained to some compact set C � X

one can �nd an expansion of k in terms of its eigenfunctions by

k�x
 y�  
X
i

�ii�x�i�y� ������

similar to the expansion in theorem ��� � the assumption of positive symmetric

kernel is losened to a solely symmetric kernel �and corresponding integral operator��

Thus positivity of the eigenvalues cannot be ensured any more� However the restric�

tions on i�x� still apply� Without loss of generality� assume that the coe�cients

�i have been ordered in decreasing order of their absolute value�
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w

Phi(x)Phi(x)

w

Figure 	�� Left	 In the SV case the weight vector w is contained in a ball of some

�given� radius and the data lies inside some hyperellipsoid� Right	 In the convex

combination algorithms the weight vector is contained in a scaled version of the

convex hull of the data� i�e� a hyperellipsoid of identical shape but di
erent size�

Positivity of the kernel is a central condition in the SV approach but irrelevant

in the Linear Programming setting �cf� �������� The only thing one cannot assume

in the general case any more is that the bilinear form has positive signature� But

this is not a major restriction as this e
ect could be taken care of by a rede�nition

of the weight vector� The advantage is� that nearly any symmetric function k�x
 y�

can be brought into this form� For instance Bq�splines of even order which do not

satisfy Mercer�s condition can be employed in linear programming type learning

algorithms�

In any case functions f � F can be viewed as dot products in feature space by
transforming

f�x�  

X
i��

�ik�xi
 x�  

X
i��

�i
X
j

�jj�xi�j�x�  hw
$�x�i� ������

Here w and $�x� are de�ned as follows �for SV kernels this de�nition coincides with

the one of the chapters � and ��	

$�x� 	 
�p

j��j��x�

p
j��j��x�
 � � �


������

w 	 

�p
j��j sign ����

X
i��

�i��xi�

p
j��j sign ����

X
i��

�i��xi�
 � � �

�
������

Moreover one can reuse the reasonings of section ����� to infer that that $�C� 
�$�C� is contained in some hyperellipsoid E in feature space� The exact shape of
E depends on the kernel k at hand� This is exactly the property one has to take

advantage of to derive good bounds� In particular� one can construct an operator

A analogous to ������ mapping the unit ball in �� to E� i�e� E  AU� � Also note

that the absolute convex combination� i�e� co �$�C�  �$�C�� � E as E is convex�

and the weight vector w is contained in a scaled version of the hyperellipsoid� i�e�

w � !E with !  P
i�� j�ij by construction�

Hence the situation �see Fig� ���� is quite similar to the SV case of chapter �� The

mapped data is contained inside some hyperellipsoid� The weight vector� however�

is constrained to a ball in the SV case and to a hyperellipsoid of the same shape as

the original data in the LP case� This means that while in SV machines capacity

is allocated equally in all directions� in the convex combination algorithms much

capacity is allocated in those directions where the data is spread out a lot and

little capacity where there is little spread� Before doing the exact calculations one

has to de�ne an appropriate sampling operator like in ������ or ������ SXm � Be
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$�Xm� 	 f$�x��
 � � � 
$�xm�g � E� Then S��Xm� can be de�ned as follows	

S��Xm�	U� 	 �m�
S��Xm�	w �	 �hw
$�x��i
 � � � 
 hw
$�xm�i�

������

This de�nition looks identical to ������� however the maps $ and the vector w are

de�ned di
erently� The present considerations lead to the following theorem for

Linear Programming capacity control in analogy to theorem ����

Theorem ��� Bounds for Linear Programming Machines

Let k be a symmetric bounded kernel� let $ be induced via ������ and let T 	 

S��Xm�! where S��Xm� is given by ������ and ! � R� � Let A be de�ned by �������

Then the entropy numbers of T �and hence the entropy numbers of !F�� satisfy

the following inequalities	

�n�T � � ckAk�! log���� n log���
�
� # m

log n


������

�n�T � � �!�n�A�� ����	�

�nt�T � � �c! log���� n log���
�
� # m

log n


�t�A

�� ����
�

where c is a constant de�ned in theorem ����

This result is quite similar to theorem ���� just that the weight vector is constrained

to a di
erent set� thus the double appearance of the operator A�

Proof The proof proceeds quite similarly to the one of theorem ���� Equation

������ indicates line of reasoning which shall be followed in bounding �n�T 	 �� 	
�m���

U� � ��
T ��

	

��

�m�

!U� � ��
A �� !E  !AU� � ��

S��Xm�

���������������������������
A �� !A�U� � ��

SA����Xm�

�� ������

In order to bound �m� entropy numbers of the hypothesis class evaluated on an m�

sample test setXm� one has to bound �n�S��Xm��!co �$�C��$�C����� Evaluating
the diagram in ������ one has to make one more pass �namely to the lower right�

than in ������� Thus the diagram yields

SXm�!co �$�C�  �$�C��� � SXm�!E�

 SXm�!AU��

 SA��Xm�!AAU���

������

where for the last step the equality SXmAx  SA��Xmx was used� which holds due

to the representation of f as a linear functional in some feature space� Using ������

and proposition ��� one obtains

�n�S��Xm�!co �$�C�  �$�C��� � �n�T �

� !�n�SA����Xm�A
��

� inf
n��n��N�n�n�n

�n��SA��Xm��n��A
���

������

Combining the factorization properties obtained above with lemma ��� yields
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the desired results	 by construction� due to the Cauchy�Schwartz inequality

kSA����Xm�k  �� Since SA����Xm� is an operator mapping from a Hilbert space

�� into an m�dimensional Banach space �m� one can use Maurey�s theorem �see

theorem ��� for the special case p  ���

This allows one to leverage the results from chapter �� obtained on the properties of

E and consequently also A� for speci�c kernels� In particular one gets the following

two propositions which follow immediately from their counterparts �propositions

���� and ����� for the case of SV regularization�

Proposition �� Polynomial Decay

Let k be a symmetric kernel with eigenvalues �j  O�j�������� for some � � � and

be � � ��
 ��� Then
�n�A

�	 �� 	 ���   O�ln���� n�� ������

This result can be seen as follows� As A is a diagonal scaling operator� the

scaling factors of A� are simply those of A squared� i�e� decaying twice as fast�

Comparing the result with the one of proposition ���� shows that the condition on

the eigenvalues was changed from j�������� into j��������� The conclusions and
the method of proving this� however� remain unchanged� A similar result can be

stated for exponentially decaying eigenvalues of k�

Proposition ��� Polynomial Exponential Decay in R
d

For translation invariant kernels k�x
 x��  k�x � x�� in Rd � Rd with Fourier

transform satisfying F �k����  O�e��k�k
p

� with �
 p � � and corresponding

operator A one has

ln ���n �A
�	 �� 	 ���  O�ln

p
p�d n� ������

Analogous results hold for the other propositions obtained in the previous chapter�

Note that whereas in the �rst case an improvement of the rates in n was achievable�

in the latter case no such thing happened � this is due to the fact that in the latter

case one is dealing with bounds on the rate of ln �n instead of �n� It is worth while

noticing that the constants� however� do change and thus make the overall bounds

behave signi�cantly better than before�

It might look like as if� due to the considerations above� linear programming

machines should be preferred to Support Vector regularization machines� This need

not necessarily be the case � the rate bounds only tell how well�behaved� a certain

class of models is� not how small the empirical error for a comparable bound of the

generalization error might be�

What is happening is that the capacity is distributed di�erently among the class

of kernel expandable functions� i�e� a di
erent structure F is chosen� More emphasis

is put on the �rst eigenfunctions of the kernel� If one has experimental evidence

that this might be useful �say� e�g� from compression experiments �Sch�olkopf et al��

����c��� one should consider using such a regularizer�
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��� Regularized Principal Manifolds and Principal Curves

Another application of the concept of covering numbers can be found in bounding

the expected quantization error in principal curves type algorithms�� The current

reasoning relies heavily on the work of K+egl et al� ������ � in fact it just provides

a drop in� replacement of some of their results whilst keeping the main thread of

their approach�

The strategy is as follows	 �rstly one needs uniform convergence statements for

the expected quantization error in terms of its empirical counterpart and some

covering number of the class of admissible functions� In the current case� similarly

to �K+egl et al�� ������ L���d�� bracket covers will be used� These are determined
by functional analytic methods� The novelty in the case of regularized principal

manifolds is that one has to deal with vector valued functions� which requires a

slight change of the methods� Finally� the combination of the previous two steps

allows to state rate results for unsupervised learning of vector valued functions�

	���� Basic Tools

To avoid several technicalities �like boundedness of some moments of the distri�

bution P �x� �Vapnik� ������� assume that there exists a ball of radius r such that

Prfkxk � rg  � for all x� K+egl et al� ������ showed that under these assumptions
also the prinicipal manifold � is contained in the ball Br��� of radius r� hence the

quantization error will be no larger than ��r�� for all x� The following bounds will

be stated in terms of the L���d�� metric on F� This is de�ned by

k�kL��d��
	 sup

b�B
k��b�kd� ������

Here k � kd� denotes the Euclidean norm in d dimensions�
The next proposition is similar in its form and strategy of proof to the bounds

obtained in K+egl et al� ������� however slightly streamlined� as it is independent

of some technical conditions on the class of functions F needed in �K+egl et al��

������ It serves the purpose of providing uniform convergence bounds �as in section

������� however for the case of unsupervised learning� i�e� regularized quantization

functionals�

Proposition ��� Smola� Williamson� Mika� and Sch�olkopf ������

Denote by F a class of functions from B into X � Br� be P a distribution over X�

�
 ��
 ��emp � F� �� the overall optimizer of the quantization functional and ��emp

the empirical counterpart� and m the sample size� Then� for all � � �
 � � ��
 ����

Pr

�
sup
��F

jRq�emp����Rq���j � �

�
� �N � 	

�r 
F
 L���
d
��
�
e�

m�����

�r� ������

Pr

�
sup
��F

��Rq��
�
emp��Rq��

��
�� � �

�
� � �N � 	

�r 
F
 L���
d
��
�
# �

�
e�

m�����

r� ������

For a proof see �Smola et al�� ������ The �rst bound ������ is relevant in practice�

as one wants to bound the expected quantization error in terms of the empirically

measured one� The second bound ������ is more useful for theoretical statements

�� See 
Smola et al�� ����� for an extended version of the results of this section�
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� it allows to assess the proximity of an empirically found solution to the optimal

solution �provided the empirical quantization functional is minimized��

	���� Bounds on L���d�� covers

Before going into details it is convenient to review brie�y what already exists in

terms of bounds on the covering number N for L���d�� metrics� Kegl et al� show	

Lemma ���� K�egl� Krzy�zak� Linder� and Zeger ������

For any � � � there exists a �nite collection of polygonal curves ���� of length L

with M nodes in a sphere Ur of radius r in X such that

sup
x�Ur

j%�x
 ���%�x
 ���j � � ����	�

and the number of such curves N� is bounded as

N� � � �Lr� �Sd�
M��

�
�r�

p
d

�
#
p
d

�d�
�rL

p
d

M�
# �

p
d

�Md

� ����
�

Here %�x
 �� is de�ned as the minimum distance between a curve ���� and x � Ur�

Hence essentially lemma ���� means that logN��
F�  O� �� �� By using tools from

chapter � one can� depending on the kernel expansion� obtain stronger results� which

then� in turn� can replace lemma ���� to obtain better bounds on the expected

quantization error�

First the distance measure of ������ is replaced by an L���d�� norm as de�ned in
������� It follows immediately from the de�nition that k� � ��kL��d��

� � implies

������� Moreover this generates a Banach space of parametrized curves�manifolds

mapping B	 X�

What one has to do in the following is to bound the entropy�covering number

of parametrized curves in L���d�� satisfying the constraint kP����k� � !� i�e� the
hypothesis class F	� Recall the results of section ���� As one is dealing with the multi

output case� it handy to view ���� as generated by a linear d  dimX dimensional
operator in feature space� i�e�

��b�  W$�b�  �hw�
$�b�i
 � � � 
 hwd
$�b�i� ������

with kWk� 	 Pd
i�� kwk�� Moreover assume the coordinate system induced by

k��
 ��� Again� the evaluation operator S �cf� ������� plays a crucial role� One has to
adapt it in the following way�

S��B� 	 ����
d 	 L���d��

S��B� 	W �	 �hw�
$�B�i
 � � � 
 hwd
$�B�i� �
������

By a technical argument one can see that it is possible to replace ����
d by �� without

further worry � simply reindex the coe�cients by

Id 	 ����
d 	 ��

Id 	
��w��
 w��
 � � ��
 �w��
 w��
 � � ��
 � � � 
 �wd�
 wd�
 � � ��� 	
�w��
 w��
 � � � 
 wd�
 w��
 w��
 � � � 
 wd�
 w��
 � � ��

������

By construction IdU���d  U� and vice versa� thus also kIdk  kI��d k  �� Before
proceeding to the actual theorem one has to de�ne a scaling operator Ad for the
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multi output case in analogy to ������� It is the d times tensor product of A� i�e�

Ad 	 ����
d 	 ����

d

Ad 	 A�A� � � ��A/ 0z 1
d�times

������

Theorem ���� Bounds for Principal Curves Classes

Let k be a Mercer kernel� let $ be induced via ����� and let T 	 S��B�! where

S��B� is given by ������ and ! � R� � Let A be de�ned by ������ and Ad by �������

Then the entropy numbers of T satisfy

�n�T � � !�n�Ad�� ������

Proof Again one has to use a factorization argument just like in theorems ���

and ���� In particular one uses the following property�

U� � ��
T ��

I��d

��

L���d��

U���d � ����d 	
�� !U���d � ����d

S��B�

������������������������
Ad �� !Ed � ����d

S�A����B��

��
������

In other words one exploits

�n
�
S��B�

�
!U���d

��
 �n

�
S�A����B��Ad!I

��
d

�
������

� !!�A��$�B��!! �n�Ad�!
!!I��d

!! ������

� !�n�Ad� ����	�

which proves the theorem�

Note that the price to pay for the multi output case �i�e� vector valued functions�

is a degeneracy in the eigenvalues of Ad � scaling factors appear d times� instead

of only once in the single output situation� From Theorem ���� one immediately

obtains the following corollary to bound en�Ad��

Corollary ���� Entropy numbers for $�B� � The Multi Output Case

Let k	B�B	 R be a Mercer kernel� let Ad be de�ned by ������ and Ad by �������

Then there exists an operator Ad such that

�n�Ad	 �� 	 ��� � inf
�as�s�

�p
	s
as

�
s

��
sup
j�N

�Ck
p
d

!!!!
�p

�s
as

�
s

!!!!
�

n�
�
j�d �a�a� � � � aj� �j � ����
�

The proof exploits the fact that the radius of the sphere corresponding to Ad� as

determined by k�Ck
p
��s�a

�
s�sk� is

p
d times the radius of the corresponding sphere

for A �due to the �d� norm�� The supj��N�d is replaced by supj�N and j�  jd�

Substitution of the variables� also in the geometric norm� yields the desired result�

Note that the dimensionality of B does not a
ect these considerations imme�

diately� however it has to be taken into account implicitly by the decay of the

eigenvalues of the integral operator induced by k� However d appears twice � once

due to the increased operator norm �the
p
d term� for the scaling operator Ad� and

secondly due to the slower decay properties �each scaling factor ai appears d times��
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The same techniques that led to the propositions ����� ����� and ���� can be

applied here� too� As that would be mainly technical� only one example of such a

bound is given below�

Proposition ���� Exponential�Polynomial Decay

Suppose k is a Mercer kernel with �j  O�e��j
p

� for some �
 p � �� Then

ln ���n �Ad	 �� 	 ���  O�ln
p

p�� n� ������

Proof Since �j  O�e��j
p

� there exist some � � R# such that �j � ��e��j
p

�

Now assume that the coe�cients ai are described by �aj�j  e�
��j
p

� As in the

proof of theorem ���� we bound

p
d

!!!!!
�p

�j
aj

�
j

!!!!!
�

 
p
d�

*
+ �X

j��

e�
���j
p

,
A

�
�
��
� � p

d�
q
� # ����p�

p���
���p

� p
d�
q

����p�
p���
���p

������

and

�a�a� � � � aj�
�
j  e

� �
�j 


jP
s��

sp
�
� e�

�
��p���

jp

� e�
�

��p���
jp� �

�j�p��� � e�
�

��p���
jp� �

��p���
������

For the purpose of �nding an upper bound� supj�N can be replaced by supj������

In particular the latter is obtained for

j  
�
��p��� ln dn


p

 �
p��

������

Resubstitution yields the claimed rate of convergence for any � � ��
 �� which

proves the theorem� Again� as in theorem ����� one could show that the obtained

rate is tight�

Observe that one may obtain bounds with the same asymptotic rate for �n as in

����� for the case of kernels like Gaussian radial basis functions�

	���� Rates of Convergence

It is of theoretical interest how well Principal Manifolds can be learned� The

O�m����� result of K+egl et al� ������ is improved and it is shown that� depending
on the kernel �i�e� regularization operator used�� the learning rate can be bounded

by O�m� �
������ � for polynomial rates of decay �� # � is the rate of decay�� or

O�m������� for exponential rates of decay �� is an arbitrary positive constant��
The latter is nearly optimal� as supervised learning rates are bounded by O�m������

Proposition ���� Learning Rates for Principal Manifolds

For any �xed F	 the learning rate of principal manifolds can be lower bounded by

O�m������� where � is an arbitrary positive constant� i�e�

Rq��
�
emp��Rq��

�� � O�m������� for ��emp
 �
� � F	 ������

�� Note that in proposition 	��� d is the dimension of the input space� i�e� one has to use
dimB instead�
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if the eigenvalues of k decay exponentially� Moreover the learning rate can be lower

bounded by O�m
�

������ � in the case of polynomially decaying eigenvalues�

Rq��
�
emp��Rq��

�� � O�m
�

������ � for ��emp
 �
� � F	 ������

where �# � is the rate of decay�

Proof The proof exploits a clever trick from �K+egl et al�� ������ however without

the di�culty of also having to bound the approximation error� Proposition ��� will

be useful�

Rq��
�
emp��Rq��

��  
Z �

�

Pr


Rq��

�
emp��Rq��

�� � �
�
d� ������

� u# �# ��N����r� # ��

Z �

u��

e�
m�����

r� d� ������

� u# �#
�r�

um
�N����r� # ��e�

mu�

r� ����	�

�
r
�r� ln�N����r� # ��

m
# �#

s
�r�

m ln�N����r� # ��
����
�

Here ������ was obtained by bounding
R�
x exp��t����dt by exp��x�����x� and

������ by substituting u�  �r�

m log�N����r�#��� Finally set �  
p
��m and exploit

proposition ���� to obtain

Rq��
�
emp��Rq��

��  O

�q
ln

p��
p m�m

�
#O�m� �

� �� ������

As ln
p��
p m can be bounded by any c�m

� for suitably large c� and � � � one

obtains the desired result� For polynomially decaying eigenvalues one obtains from

proposition ���� that for a su�ciently large constant c

lnN
�
	
	 
F	
 L���

d
��
� � c��

�
� � ������

Substituting ������ into ������ yields

Rq��
�
emp��Rq��

�� �
s
���

�
� r��

�
� c

m
��

�
� # ��#O�m� �

� �� ������

The minimum is obtained for

�  c�m� �
������ ������

for some c� � �� Hence m� �
� ��

�
� is of order O�m� �

������ �� which proves the

theorem�

Interestingly the above result is slightly weaker than the result in K+egl et al� ������

for the case of length constraints� as the latter corresponds to the di
erentiation

operator� thus polynomial eigenvalue decay of order �� i�e� �  � and therefore to a

rate �
������  

�
� �K+egl et al� K+egl et al� ������ obtain

�
� �� It is unclear� whether this

is due to a �possibly� not optimal bound on the entropy numbers induced by k� or

the fact that our results were stated in terms of the �stronger� L���d�� metric� This
yet to be fully understood weakness should not detract from the fact that we can

get better rates by using stronger regularizers� and our algorithm can utilize such

regularizers�
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��� Summing Up

It should have become clear by now that the functional analytic tools are a very

powerful means of directly bounding the entropy numbers of function classes�

In particular� the results obtained for the case of SV regularization can be directly

ported to the setting of regularization networks thus making it possible to provide

a drop in� replacement for uniform convergence bounds in the case of existing

algorithms� Moreover� the new viewpoint allows to give good rates of approximation

in reproducing kernel Hilbert spaces� signi�cantly improving on previous results

�e�g� �Corradi and White� �������

Carrying the idea of a drop�in� replacement further� one can see that linear

programming machines and similar approaches requiring sparsity of the expansion

via a suitable �� regularizer can readily be analyzed in terms of the functional ana�

lytic framework stated in this thesis� Viewing the hypothesis of linear programming

machines as a bilinear form in some feature space allowed the translation� of the

results obtained for SV machines into statements about convex combinations of

hypotheses� Astonishingly� the resulting hypothesis classes seem to be even better

behaved �in terms of their entropy numbers� than the SV counterparts� Whilst the

technical innovation� in this case may not be too important by itself� the results

are very useful� They allow� for the �rst time ever� to control the capacity of convex

combinations of kernels in a systematic way�

The last application of the new techniques was devoted to regularized princi�

pal manifolds� an example of unsupervised learning of vector valued functions�

It was shown� how much easier it is �and more straightforward� too�� to use en�

tropy�covering numbers� Without the functional analytic tools one would have had

to apply a combinatorial reasoning to bound the VC dimension for vector valued

functions � a goal that is not easily achieved�

Still much work remains to be done to derive good bounds capacity bounds for

unsupervised learning� an area still lacking some fundamental uniform convergence

results of the type given for supervised learning� One of the �rst steps in this

direction was taken by Buhmann ������� See his work for a detailed discussion of

the issues in this type of problems�



Summing Up

Learning with Kernels� as proposed in this thesis� has been shown to be a �exible

and e
ective way� to tackle problems of statistical learning theory� Whilst the

foundations have been laid in the ���s with groundbreaking work on classi�cation�

clustering� capacity control� and feature space methods� it took thirty years until

su�cient computational resources were available� to exploit these advances in

practice� Much of the recent success of methods like Support Vector Machines�

Gaussian Processes� Kernel Principal Component Analysis� or similar feature space

methods can be explained in this way�

The main contribution of this thesis can be found in two aspects� The part on

Algorithms shows how the rather closely knit initial Support Vector algorithm�

as devised by Boser� Cortes� Guyon� and Vapnik� can be decomposed into its basic

building blocks� This allows both a deeper understanding of the separate functional

elements� and the construction of new algorithms�

One module is the choice of the cost function� While softmargin or ��insensitive

loss functions may be advantageous for many cases� there exist quite a few situations

where these standard settings are not optimal� It has been pointed out� how this

restriction can be overcome� thus o
ering a closer match of what might be desired

by the user� This additional liberty leads to the imminent question� how it should be

exploited in the most e
ective way� A principled answer to this problem was found�

provided some basic properties of the noise model are known� A slight modi�cation

of the algorithm� �nally� allows an automatic choice of the parameters� thus making

the algorithm asymptotically optimal for a given parametric class of noise models�

The second module in Support Vector machines are kernels and regularization�

This thesis builds the connection between the former and the latter� using the

theory of reproducing kernel Hilbert spaces and Green�s functions� This allows to

understand the good performance of SV machines from a regularization theoretic

point of view� thus resolving the problem why SVMs seemed to defy the curse

of dimensionality� although operating in very high dimensional spaces� The reg�

ularization theoretic viewpoint allowed to use methods from interpolation theory

to signi�cantly increase the number of admissible kernel functions� Moreover� the

problem of having to eliminate a subspace of functions from the kernel expansion

led in a straightforward way to semiparametric modelling� thus further increase of

the �exibility of SV machines�

One might ask why these two building blocks were not integrated into one

big picture� The reason is simply that the combinatorial multitude of di
erent

algorithms arising from the combination of all these di
erent extensions would have

seriously confused the reader� rather than making the fundamental mechanisms of

SVMs clear and thus controllable�

Being concerned about algorithms� one has to provide the basic strategies for

solving the optimization problems posed in SV learning� A set of three di
erent

methods is provided for this purpose� Interior point algorithms� which provide



��� Summing Up

reliable fast strategies for solving medium sized problems� are the most �exible ones

in this regard� For large sample sizes� however� iterative approximation methods

have to be devised� A detailed description of working set methods and sequential

minimal optimization �SMO� is given� including pseudocode� to allow further

proliferation of the proposed techniques� The use of concepts from interior point

programming allows a deeper understanding �and control� of these approaches�

Having presented the building blocks� one may attempt to apply the new tech�

niques to new problems like unsupervised learning� It is shown how principal com�

ponent analysis can be extended in two directions	 extraction of reliable features� or

construction of reliable descriptions of the underlying density �without modelling

the latter itself�� For both approaches algorithms are presented� Crucial to this

advance was the concept of regularized risk functionals and hence the idea of regu�

larization via kernel methods� Practical applications of the algorithms to real world

problems �regression and classi�cation� show the versatility of kernel methods�

Whilst the �rst part was concerned about how to construct algorithms� the second

part of the thesis aims at assessing the quality of these algorithms� i�e� to derive

Bounds on the latter� Whilst conventional reasoning of statistical learning theory

is mainly focused on the VC dimension and its extensions or modi�cations� this

part takes a more radical approach�

The attempt to compute tight bounds on a more basic quantity� the covering

numbers of a class of functions� is successful� due to the use of special properties

of kernel expansions and tools from the theory of Banach spaces� This gives both

a theoretical and an empirical handle on deriving uniform convergence bounds�

Several methods are proposed for this purpose� and explicit rates and constants

for bounding entropy numbers are provided in the SV case� In particular� the

results obtained are signi�cantly better than most previous bounds� in some cases

improving the statements from a polynomial to an exponential rate�

The last chapter shows that these new methods are not only restricted to SVMs

but can be applied to a wide range of similar learning problems� A �rst example is

given with regularization networks� proving signi�cantly tighter rates of approxima�

tion than previous results� Next capacity bounds for linear programming machines

are given� There it is shown how much can be gained by using kernel expansions in

comparison to general smoothness constraints� Finally� also unsupervised learning

can be successfully dealt with� stating nearly optimal rates of convergence�

Summing up� new algorithms have been presented� together with new methods

how to control them� A �nal integration was omitted� as it is the new techniques

and the possibility of combining them quite freely� that is the main contribution of

this thesis and will prove useful in the future�
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