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Abstract: In computer graphics, objects are often modeled as polygonal
meshes with flat facets, the reflection of light from facets is described by
the so-called bi-directional reflectance distribution function (BRDF). Along
with the intrinsic optical properties of the material, it captures the effects
due to surface microstructure, i.e. shape features smaller than the facet size
(and therefore not representable by the mesh model). If the typical facet
size changes, some structures may switch from the “responsibility domain”
of BRDFs to that of the geometric model, or vice versa. Therefore, for
sufficiently complex surfaces, BRDFs are inherently scale-dependent. If one
measures a BRDF at one scale, and applies at another, it must be adjusted
(“evolved”) according to the specific surface structure. In this report, we
derive explicit BRDF evolution equations and discuss their implications.

1 Introduction

The geometrical complexity of a model that describes an arbitrary surface (for
example, a desk) in general depends on the resolution of the chosen observation
method. If we sample surface points at a distance of a few centimeters from
each other, the resulting model will be rather smooth (e.g., the desk will appear
almost flat). If the distance between the samples is of the order of micrometers,
the model becomes extremely complex, with overlapping peaks and valleys. At
even smaller scales, the object is no longer a surface but a collection of bound
and free particles performing some complicated motions.

If we study the reflection of light from the model towards some detector (e.g., a
camera pixel), we may usually limit ourselves with the geometrical optics (i.e.
with scales much greater than the wavelength of light). To every scene and ev-
ery camera setup, we may also associate some effective observation scale µ. It
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is typically determined by the resolution of the surface model as desribed above
or by the size of the features resolved by the camera (whichever is greater). An
efficient practical approach to capture the response of such a scene is to represent
the “coarse” geometry (features of size larger than µ) by the mesh (re-deriving
it from the original model, if necessary), and incapsulate the microscopic ap-
pearance into bi-directional reflectance distribution functions (BRDFs) [Bas01],
associated with the flat facets of the mesh. BRDFs, therefore, provide an efficient
way to characterize materials: they may be derived or measured once and used
to render images of multiple objects under various conditions.

If the observation scale µ were fixed for all scenes and observation conditions,
one could create a universal library of BRDFs for various materials (as is typi-
cally done in the development of video games). However, in reality the effective
observation scale µ depends on the scene and the camera setup. At the same time,
the surface may have features at some “characteristic” scale µc that significantly
contribute to its optical appearance (consider, e.g., “orange-skin finish”, “rough-
ness”, or “polishing artefacts”). Depending on whether µ is greater or smaller
than µc, the BRDFs must significantly differ. One solution to this problem is to
measure BRDFs at multiple scales and interpolate between them [TLQ+02]. One
needs then a massive database of measurements. An alternative is to derive the
rules that govern the µ-related “evolution” of BRDFs, and generate them based
on the measurements defined at some scale µ0.

In this report, we formalize the notion of the scale-dependent evolution of BRDFs
and suggest a simple integral equation connecting them with the surface statis-
tics. For the simple case of isotropic (invariant with respect to rotations about
the surface normal vector) BRDFs on nearly-planar surfaces, we manage to in-
tegrate the BRDF evolution equation in closed form. For the more general case
of anisotropic surfaces, we demonstrate that upon a Fourier transform over the
group of rotations, the equation factorizes and can be efficiently integrated nu-
merically up to any finite frequency. Finally, we discuss the new exotic con-
tributions in BRDFs (“plus-distributions”) that may arise e.g. due to the scale
evolution over some specially micro-structured surfaces.

2 Notations

Let us consider a small surface element ε of area dS with some 3D orientation
Γ, illuminated with a parallel beam of light coming from the direction î. The in-
cident intensity of the illumination (radiation power per cross-section area, watts
per square meter) is Li (Fig. 2.1). Our goal is to measure the directional distribu-
tion of the reflected and scattered light. To that end, we place a detector very far
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Figure 2.1: Reflection of light from a small surface element.

away from ε so that the direction towards the detector is ô and its angular size as
seen from ε is dΩo. The BRDF β(̂i, ô,Γ) describes then the intensity Io of light
(power per unit of solid angle, watts per steradian) received by the detector:

Io = Li β(̂i, ô,Γ)
(
îT · n̂(Γ)

)
dΩ dS. (2.1)

The geometrical factor (̂iT · n̂(Γ)) equals the cosine of angle between the in-
coming light direction î and the surface normal vector n̂(Γ) and accounts for the
trivial change in the surface irradiation density as the surface incline changes. For
convenience, in what follows we absorb his factor into the definition of BRDFs
and define a function ρ as follows: ρ(̂i, ô,Γ) ≡ β(̂i, ô,Γ)

(
îT · n̂(Γ)

)
.

In a more detailed picture, ρ may further depend on the light wavelength λ, the
incoming and the reflected light polarizations, coherence length, etc. We will
focus here only on the dependence of ρ on the scale µ that separates “shape”
from the “material properties”, i.e. our primary object of interest will be the
function ρ(̂i, ô,Γ, µ).

The precise nature of the orientation Γ will be elaborated later. Here we only
note that for isotropic surfaces and BRDFs, the actual orientation parameter is
not Γ but the normal surface vector n̂(Γ). In particular, if the surface is an ideal
flat mirror, its BRDF is

ρmirror(̂i, ô, n̂) = Aδ
(
n̂− n̂s(̂i, ô)

)
, where n̂s(̂i, ô) =

î+ ô

‖̂i+ ô‖
,

and A is some normalization constant.
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3 General BRDF consistency equation

Let us now choose some macroscopic surface patchE, illuminated with a parallel
beam of light of uniform intensity Li coming from the direction î, and observe it
with an infinitely distant detector along the direction ô. There are two alternative
ways to describe the observed light intensity in the detector.

In the first case, we follow the picture above and consider the entire patch E
as a single element with its global orientation Γ∞ and the respective BRDF
ρ(̂i, ô,Γ,∞). The Eq. (2.1) then applies without modifications.

In the second case, we split E into many pieces of typical size µ, each re-
flecting the light according to Eq. (2.1) with the respective microscopic BRDF
ρ(̂i, ô,Γ, µ). The resulting detector response Io will then be a sum of contribu-
tions from all the elements, each having its specific orientation.

If we knew the complete micro-geometry of the surface, we could directly com-
pute this sum. More often, however, we deal with unknown geometries but know
the specific nature of the surface, such as wood, leather, polished metal, etc. The
geometry in this case may be characterized statistically in terms of some function
p(Γ∞,Γ, µ) that denotes the probability to find an element with orientation Γ in
the surface E given its global orientation Γ∞. In particular, p must be consistent
with the definition of the global orientation: p(Γ∞,Γ, µ)

µ→∞→ δ(Γ− Γ∞).

Regardless of our representation of the surface, the amount of light collected by
the detector should not change, which leads us to the following condition1:

ρ(̂i, ô,Γ∞,∞) =

∫
ρ(̂i, ô,Γ, µ) p(Γ∞,Γ, µ) dΓ. (3.1)

The left hand side of Eq. (3.1) is independent of the scale µ. We therefore arrive
at the basic consistency equation for BRDFs:

∂µ

∫
ρ(̂i, ô,Γ, µ) p(Γ∞,Γ, µ) dΓ = 0, (3.2)

where we define ∂µ ≡ ∂/∂µ and the integration runs over all distinct orientations
in the 3D space.

1This description can be compared to the microfacet BRDF model without the masking and shad-
ing effects, where some generic microscopic BRDF ρ(̂i, ô,Γ, µ) is used instead of the Fresnel re-
flectance. As such, it applies only to non-grazing angles for î and ô, and nearly-flat surfaces: if an
element has an incline that differs strongly from that of the global surface, the relevant probabilities
will be dependent on the directions î and ô via geometric factors.
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4 Evolution for isotropic surfaces

As noted above, isotropic BRDFs and the statistics of isotropic surfaces depend
only on the direction of the surface normal vector n̂ and not on the rotation about
n̂. The re-formulated consistency condition in this case is

∂µ

∫
ρ(̂i, ô, n̂, µ) p(n̂∞, n̂, µ) dn̂ = 0. (4.1)

In order to decouple the evolution of the BRDF from that of the surface statistics,
let us in addition assume that the surface only slightly deviates from a plane at
all scales. This approximation can be formalized as follows. Let us choose the
global vertical direction ẑ and re-define ρ and p in terms of vectors ~m replacing
the respective normal vectors n̂:

~m = (n̂T ẑ)−1n̂− ẑ.

In other words, mz ≡ 0 and (~m+ ẑ) is collinear with n̂. Instead of n̂∞, we now
use ~m∞, and instead of n̂, we use ~m, so that Eq. (4.1) becomes

∂µ

∫
ρ(̂i, ô, ~m, µ) p(~m∞, ~m, µ) dmxdmy = 0,

where the integration runs over the entire two-dimensional plane.

The condition that a surface is almost flat means that all relevant normal vec-
tors are only slightly deviating from the z-direction, i.e. ‖~m∞‖ � 1 and
p(~m∞, ~m, µ) = 0 for all ‖~m‖ > mmax with some mmax � 1. In this case,
the two-dimensional distribution of the normal vectors as a function of ~m will
have a peak centered at the point ~m∞ and in the first approximation will preserve
its shape as ~m∞ varies:

p(~m∞, ~m, µ) = q(~m∞ − ~m, µ).

The consistency equation now takes the form of a convolution:

∂µ

∫
ρ(̂i, ô, ~m, µ) q(~m∞ − ~m, µ) d~m = ∂µ ((ρ ? q)(~m∞)) = 0. (4.2)

If we denote the 2D Fourier images of the functions ρ(̂i, ô, ~m, µ) and q(~m, µ)

with respect to ~m as R(̂i, ô, ~W, µ), and Q( ~W, µ), respectively, then Eq. (4.2) is
equivalent to

∂µ

(
R(̂i, ô, ~W, µ)Q( ~W, µ)

)
= 0, or (4.3)

∂µ logR(̂i, ô, ~W, µ) = −∂µ logQ( ~W, µ).
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(A trivial technical requirement here is that neither R nor Q may vanish inside
the relevant domain of ~W ).

The solution of the Eq. (4.3) is trivial:

R(̂i, ô, ~W, µ) = R(̂i, ô, ~W, µ0)
Q( ~W, µ0)

Q( ~W, µ)
, (4.4)

where µ0 is some scale at which the BRDF is known. Using Eq. (4.4) and the
actual statistics of the surface, one may easily produce BRDFs at any scale µ.

5 Evolution for anisotropic BRDFs and surfaces

In order to solve Eq. (3.2) in a more general case, we need to choose some explicit
parameterization of orientations Γ in a three-dimensional space (in other words,
choose some representation of the Lie group SO(3) of 3D rotations). The most
well-known representation of SO(3) is the set of orthogonal 3× 3 matrices with
determinant +1. According to Euler, any 3D rotation may be represented as a
function of three angles α, β, and γ such that 0 ≤ α, γ < 2π, 0 ≤ β < π:

Γ(α, β, γ) = U(α) ·A(β) · U(γ) (5.1)

with

U(α) =

 cosα − sinα 0
sinα cosα 0

0 0 1

 and A(β) =

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

 . (5.2)

Now let us consider the distribution p(Γ∞,Γ, µ). It is clear that a simultaneous
rotation of the global orientation Γ∞ and the element orientation Γ by some
rotation matrix ∆ ∈ SO(3) is equivalent to a global rotation of space, and the
fraction of elements oriented at ∆ · Γ relative to ∆ · Γ∞ remains invariant. We
therefore have:

p(∆ · Γ∞,∆ · Γ, µ) = p(Γ∞,Γ, µ), or, equivalently,

p(Γ∞,Γ, µ) = q(Γ−1 · Γ∞, µ) for some function q.

The respective evolution equation

∂µ

∫
ρ(̂i, ô,Γ, µ) q(Γ−1 · Γ∞, µ) dΓ = ∂µ ((ρ ? q)(Γ∞)) = 0 (5.3)
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now contains the canonical convolution over the group SO(3). In order to trans-
form this convolution into a product, we need to briefly recall the properties of
the Fourier transform over the group of rotations (for more details, see [KR08]).

Any function f(α, β, γ) of the three angles α, β, and γ defined in Eqs. (5.1)
and (5.2) can be represented as an infinite sum:

f(α, β, γ) =

∞∑
J=0

J∑
M=−J

J∑
M ′=−J

fJMM ′ DJ
MM ′(α, β, γ), where

fJMM ′ = 〈f,DJ
MM ′〉 =

2J + 1

8π2
×

×
∫ 2π

0

dα

∫ π

0

sinβ dβ

∫ 2π

0

dγ f(α, β, γ)
(
DJ
MM ′(α, β, γ)

)∗
.

The basis functions here are the so-called Wigner D-functions:

DJ
MM ′(α, β, γ) = e−iMα e−iM

′γ dJMM ′(cosβ),

and

dJMM ′(t) = (−1)J−M
′

2−J

√
(J +M)!

(J +M ′)!(J −M ′)!(J −M)!

× (1− t)−(M−M
′)/2(1 + t)−(M+M ′)/2

× dJ−M

dtJ−M

[
(1− t)J−M

′
(1 + t)J+M

′
]
.

The Fourier transform of a convolution may be found as follows. If f(Γ) 7→
fJMM ′ , and g(Γ) 7→ gJMM ′ , then (f ? g)(Γ) 7→ hJMM ′ , where

hJMM” =

J∑
k=−J

fJMk g
J
kM ′ .

This equation can be interpreted as follows. The Fourier coefficients of any func-
tion f(Γ) can be arranged in the form of an (infinite) block-diagonal matrix,
where the J-th block has the dimensions (2J + 1) × (2J + 1) and contains
the coefficients fJMM ′ . The coefficients of the convolution of two functions are
simply obtained via the matrix multiplication of the original coefficient matrices.

Finally, if the coefficient matrices corresponding to the Fourier transform of func-
tions ρ(̂i, ô,Γ, µ) and q(Γ, µ) are R(̂i, ô, µ) and Q(µ), respectively, then the re-
lation Eq. (5.3) assumes the following form:(

∂µR(̂i, ô, µ)
)
·Q(µ) +R(̂i, ô, µ) · ∂µQ(µ) = 0. (5.4)
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For the J-th block of coefficients, Eq. (5.4) represents a closed system of
(2J + 1) × (2J + 1) linear differential equations on the same number of func-
tions of µ. The solution of such homogeneous linear differential equations are
straightforward and involve matrix exponentials. In other words, this system can
be solved numerically in each block, and we can solve it up to any fixed maxi-
mum cutoff frequency J .

6 Nearly-specular reflection

Let us consider the isotropic case and assume that each microfacet at the scale µ0

is a perfect mirror, and that the surface at the scale µ is completely flat:

ρ(̂i, ô, ~m, µ0) ∼ δ(~m− ~ms(̂i, ô)), and p(~m∞, ~m, µ) ∼ δ(~m− ~m∞).

Then Eq. (4.4) leads to the the following statement:

R(̂i, ô, ~W, µ) = Q( ~W, µ0)F (6.1)

with some phase factor F . Eq. (6.1) represents a well-known relation between the
metal surface roughness and its BRDF [Har86], but it also means, that starting
from a trivial BRDF, one may prepare arbitrary BRDFs using special micro-
structured surfaces.

In particular, let us imagine a surface whose normal vector distribution
p(~m∞, ~m, µ0) = h(‖~m∞ − ~m‖) is given by the following generalized function:

h(x) =

⌊
logn x

x

⌋
+

,

whose action on some probe function ψ(x) is given by

〈h, ψ〉 =

∫ ∞
0

logn x

x
(ψ(x)− ψ(0)) dx.

Such “plus-distributions” are well-known in particle physics, where they describe
scattering at small angles. Via Eq. (6.1), they may enter the BRDFs and give
rise to exotic “nearly-specular” kind of reflection, which is neither specular, nor
diffuse. The corresponding contributions for each exponent n may be measured
and characterized by the dedicated experiments, and used to improve the stability
of BRDF measurements2.

2It is possible that the surfaces exhibiting such “near-specular” reflection are relatively common,
but its contributions have always been confused with the specular or the diffuse components, leading
to non-reproducible results and poor agreement with theoretical expectations.
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So far, this “nearly-specular” reflection remains a theoretical prediction in a need
of further research.

7 Summary

In this report, we have demonstrated how the BRDFs may be adjusted to the
observation scale of a specific scene and detector setup, and derived a general
evolution equation. We have further demonstrated a closed-form solution of the
evolution equation in the isotropic case, and suggested a simple way to inte-
grate the anisotropic evolution up to any finite angular frequency. Finally, we
demonstrated a mechanism that may generate arbitrary contributions to BRDFs
via special surface micro-structures, and hypothesized the existence of the novel
“nearly-specular” type of reflection.

In the future, we plan to verify the presented equations with the real and simu-
lated experiments, and extend the evolution to a more general class of surfaces
(e.g., to those exhibiting significant microscopic masking and shading). We also
plan to implement the evolution-based tools for computer graphics and BRDF
measurements.
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