
Combined Workspace Monitoring and Collision
Avoidance for Mobile Manipulators

Angelika Zube
Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB, Karlsruhe, Germany

Email: angelika.zube@iosb.fraunhofer.de

Abstract—For safe human-robot interaction and co-existence,
collision avoidance is a fundamental prerequisite. Therefore, in
this contribution a Nonlinear Model Predictive Control approach
for fixed-base and mobile manipulators is presented that allows
for avoiding self-collisions and collisions with static and dynamic
obstacles while performing tasks defined in the Cartesian space.
The collision avoidance takes not only the end-effector but the
complete robot consisting of both platform and manipulator into
account and relies on a 3D obstacle representation obtained by
fusing information from multiple depth sensors. The obstacle
representation is applicable to all kinds of objects. It considers
occlusions behind the obstacles and the robot to make a con-
servative assumption on the obstacle size. In order to achieve
realtime reactions to obstacles, the obstacle information used
in one control step is restricted to the most relevant obstacles
determined by distance computation. The method is validated
by means of simulation and by application to an omnidirectional
mobile manipulator with 10 degrees of freedom.

I. INTRODUCTION

In contrast to current factory automation where humans and
robots are strictly separated, many applications could benefit
from shared human-robot workspaces. For example, mobile
manipulators can supply different work stations with parts
and perform standard assembly tasks, while human workers
perform more complex tasks in the same workspace. To
allow for such shared human-robot workspaces in cluttered
environments, robots have to be able to avoid collisions with
static and dynamic obstacles while they are executing their
original tasks. This involves both the monitoring of the robot
environment to detect obstacles and the motion control that has
to be able to avoid collisions while moving the robot along
reference trajectories determined in a high level planning layer
in order to fulfill the robot task.

Especially in large workspaces of mobile manipulators,
detecting obstacles near the robot is still challenging. All
relevant space around the robot has to be covered and the
monitoring has to be carried out in 3D. Due to safety needs,
occlusions behind the robot and behind obstacles have to be
considered. This is particularly important, when an object
is located between the robot and the observing sensor. To
reduce these occlusions and to enlarge the observed space,
information from multiple sensors has to be fused.

Furthermore, the robot has to react adequately to the de-
tected obstacles to avoid collisions and guarantee safety. An
obvious reaction to an upcoming collision is to stop the robot.

But this impedes an efficient task execution. Therefore, control
strategies are necessary that take current obstacle detections
into account to avoid collisions by evasive motions while
continuing to move the robot according to its task.

In this contribution, a Nonlinear Model Predictive Controller
that controls the end-effector pose of redundant fixed-base
and mobile manipulators according to Cartesian reference
trajectories is enhanced and combined with a 3D workspace
monitoring approach. As the controller input is a Cartesian tra-
jectory, the robot redundancy can be used for evasive motions
to avoid collisions. The obstacles in the robot environment are
detected online so that also dynamic obstacles can be handled.
Both monitoring and control are designed in order to meet the
realtime requirements.

A. Related Work

With regard to shared human-robot workspaces, an active
collision avoidance strategy is presented in [1]. The distance
between a robot manipulator and humans in its environment
is monitored. With decreasing distance the robot is slowed
down and then stopped, interrupting the task execution. If
the distance continues to decrease, the robot moves the end-
effector away from the human.

A common approach for collision avoidance without task
interruption is the artificial potential field method introduced
by Khatib [2]. The robot task is described by attractive forces
acting on the end-effector. Obstacles are transformed into
repulsive forces pushing the robot away from the obstacles.
These repulsive forces are converted into joint torques, which
are projected into the nullspace of the robot. The potential field
approach is applied to mobile manipulators in [3] and [4]. In
[3], collision avoidance is achieved for static obstacles con-
sidering the nonpoint geometry of the robot. To overcome the
issue that the computation of potential fields is in general very
time consuming [5], in [4] dynamic obstacles are considered
in a close range around the end-effector.

Similar to potential fields, a repulsive motion is computed
based on kinetostatic safety fields in [6]. The kinetostatic
safety field fuses information on the position, velocity, shape
and size of the possibly colliding objects. In order to generate
the kinetostatic safety field, a human model consisting of
boxes is fitted in the obstacle measurements of a depth
camera. Collision-free joint motions are obtained by nullspace
projection.978-1-4673-7929-8/15/$31.00 c© 2015 IEEE

In [7], a control algorithm for collision avoidance is pro-
posed that distinguishes between possible collisions with the
end-effector and with the robot body. Collisions with the end-
effector are avoided similar to the potential field method.
To avoid collisions with the robot body, the allowed joint
velocities are restricted depending on the minimum distances
between points on the robot and obstacles. The distance
computation is based on a single depth camera and is suitable
for fixed-base manipulators.

In [8], a collision avoidance method for a manipulator
mounted on a remote controlled mobile base is presented.
For detecting possible collisions, obstacle measurements and
manipulator points are projected onto a plane in front of the
robot. The mobile base is assumed to be moved on a collision-
free path by the teleoperator.

B. Approach

In contrast to the previously described work, this paper
presents a collision avoidance strategy based on Nonlinear
Model Predictive Control (NMPC) applicable to fixed-base
and mobile manipulators. As shown in [9], NMPC is a
suitable approach to control the end-effector pose of redundant
robots in Cartesian space. Compared to approaches based
on nullspace projection like artificial potential field methods,
NMPC has the advantage that both an objective function and
hard constraints (e.g., joint limits) may be directly considered.
Here, this control approach is extended and combined with a
3D workspace monitoring method [10], in order to avoid self-
collisions of the robot and collisions with static and dynamic
obstacles in parallel to the Cartesian task execution.

The obstacles and their occlusions are represented in a 3D
octree structure. The obstacles with closest distances to the
robot are regarded as the most relevant obstacles. Using in
each control step only these relevant obstacles for avoiding
collisions with all robot parts allows for fast reactions despite
the 3D representation incorporating obstacle and occlusion
information from multiple depth sensors.

Due to the prediction, the algorithm generates a foresightful
robot behavior that is especially useful for dynamic obstacles.
Not only the current relation of robot and obstacles is used, but
also future robot configurations are incorporated. So automat-
ically a different behavior between approaching an obstacle
and moving away from obstacles is achieved.

This paper is organized as follows: In Section II and Section
III, the underlying workspace monitoring and the Nonlinear
Model Predictive Cartesian Control approach are summarized.
Extensions in order to avoid self-collisions and to avoid
collisions with static and dynamic obstacles based on the 3D
obstacle representation are presented in Section IV. Collision
avoidance results obtained by means of simulation and on
a real 10 DoF mobile manipulator are shown in Section V.
Finally, conclusions are presented in Section VI.

II. WORKSPACE MONITORING

In order to allow for avoiding collisions in the presence of
humans or other obstacles, sensor-based monitoring of static

and dynamic obstacles in the robot’s environment is necessary.
The requirements for workspace monitoring described in Sec-
tion I are met by the obstacle representation method presented
in [10]. The method is summarized in the following for better
comprehensiveness of the paper.

The information about obstacles in the robot workspace is
obtained from multiple depth sensors (e.g., laser scanners,
Kinect sensors, depth cameras) mounted on the robot or in
the robot cell. First, the measured depth data of the individual
depth sensors is pre-processed. The sensor data is filtered to
distinguish between measurements belonging to the robot and
measurements of objects in the robot workspace. For this
purpose, the measurements are compared to the geometric
robot model using the Realtime URDF Filter [11]. Then
the data is transferred to point clouds and transformed to a
common coordinate frame, so that the following processing
steps become sensor independent. Additionally, the space that
is in the field of view of each sensor is computed.

Based on the pre-processed sensor data, the space that is
occupied or occluded by obstacle measurements and the space
that is occluded by the robot is computed by means of ray
tracing using an octree data structure [12]. The free space of
a sensor is then the space in the field of view of the sensor
without the space occupied or occluded by obstacles or by the
robot.

Finally, the information of all sensors is fused. All space
that is occupied or occluded by an obstacle and cannot be
guaranteed to be free by another sensor is interpreted as
obstacle. That means, for safety reasons the approach makes
a conservative assumption on the obstacle size, which is
illustrated in Fig. 1. In order to reduce the computational
load, the obstacle representation is restricted to the robot’s
close range that can be reached by at least one part of the
robot within a certain time span. The obstacle representation
is updated when new measurements are available so that it can
cope with dynamic obstacles as well.

Fig. 1. Workspace monitoring principle with two sensors: fusion of in-
formation about occupied and occluded space results in the final obstacle
representation O.

III. CARTESIAN CONTROL

For redundant fixed-base or mobile manipulators in shared
human-robot workspaces, control algorithms are necessary that
allow the robot to perform a task defined in the Cartesian
space and that simultaneously realize additionally desired
robot behaviors like avoiding collisions with humans or other
obstacles. Therefore, a Nonlinear Model Predictive Control
(NMPC) approach has been developed to move the end-
effector of a redundant robot along a reference trajectory yt(t)
containing the desired 3D end-effector position yt,p(t) and the
orientation yt,o(t). Due to the underlying general robot model,
the control algorithm is applicable to both fixed and mobile
manipulators. The control algorithm has been presented in [9]
and is summarized in the following.

A. Kinematic Robot Model

The (mobile) manipulator is modeled as a chain of rigid
links connected by n revolute or prismatic joints. The general
kinematic model disregarding accelerations is then given by

q̇ = v (1)
y = f(q) (2)

with the revolute or prismatic joint positions q ∈ Rn, the
joint velocities v ∈ Rn and the end-effector pose y ∈ Rm.
The end-effector pose consists of the 3D position yp and the
orientation yo represented by a unit quaternion (m = 7). The
direct kinematics function f(q) maps the joint configuration
q to the Cartesian end-effector pose y.

The direct kinematics are computed by assigning a coordi-
nate frame to each joint according to the Denavit-Hartenberg
convention and chaining the coordinate transforms of all joints
[13]. This is a common procedure for fixed-base manipulators.
In order to extend it to mobile manipulators, the mobile
platform is described by two prismatic joints for the trans-
lational motion and a revolute joint for the rotation about the
vertical axis. In the case of non-holomic platforms, additional
non-holomic constraints are defined, that can be handled by
the presented Nonlinear Model Predictive Controller as well.
Hence, a generic kinematic robot model is available that can
be applied to both fixed-base and mobile manipulators.

B. Cartesian Nonlinear Model Predictive Control

Based on the generic kinematic robot model presented in
the previous Section, a Nonlinear Model Predictive Control
(NMPC) approach is used to move the robot end-effector along
a given reference trajectory solving the redundant inverse
kinematics problem of the robot with respect to Cartesian
motions.

The controller computes optimal joint velocities and joint
positions for the next Np prediction steps

V ∗ = {v∗(0), . . . ,v∗(Np − 1)} (3)
Q∗ = {q∗(1), . . . , q∗(Np)} (4)

based on the currently measured joint positions q(0) = q0.
The optimal joint velocities v∗(0) are applied to the robot.

Then the optimization is repeated using the updated robot
measurements.

For following the desired Cartesian trajectory yt(k), the
objective function

Np−1∑
k=0

F (v(k), q(k + 1)) + E(q(Np)) (5)

is minimized subject to the equality constraints

q(k + 1) = q(k) + Tsv(k) (6)

and the inequality constraints

qmin ≤ q(k + 1) ≤ qmax (7)
vmin(k) ≤ v(k) ≤ vmax(k). (8)

for k = 0, . . . , Np − 1. The equality constraints (6) contain
the discretized robot model (1) with sampling time Ts. The
inequality constraints (7) guarantee that the joint position
limits are not exceeded. By choosing

vmin(k) = max(−vmax,v0 − k · Ts · amax) (9)
vmax(k) = min(vmax,v0 + k · Ts · amax) (10)

depending on the current joint velocity v0 and the maximum
absolute value of the joint acceleration amax, the inequality
constraint (8) secures that the joint velocity limits and in the
first step, that is applied to the robot, also the joint acceleration
limits are met. vmax is the maximum absolute value of the joint
velocity due to the joint limits.

The objective function contains the cost function

F (v, q) = v>Qvv + q>Qqq + e>t Qeet (11)

and the end-penalty

E(q) = q>Rqq + e>t Reet (12)

with the trajectory following error

et(k) = f(q(k))− yt(k), (13)

that gives the deviation of the resulting end-effector pose
(according to the direct kinematics) from the reference pose.
Qv , Qq , Qe, Rq and Re are positive semi-definite diagonal
matrices. The cost function F (v, q) penalizes high joint ve-
locities to reduce the input energy and oscillations, deviations
of the joint positions from the home position to keep the
joints away from their constraints and to achieve more natural
motions and the trajectory following error to complete the
Cartesian task. The end penalty E(q) is chosen similarly. It is
only applied to the last prediction step and is added to improve
stability.

The optimization is solved by nonlinear programming using
a primal-dual interior point algorithm from the optimization
library IPopt [14].

IV. COLLISION AVOIDANCE

The Cartesian Nonlinear Model Predictive Controller pre-
sented in the previous Section is now extended to self-collision
avoidance and prevention of collisions with static or dynamic
obstacles.

A. Cartesian Control with Self-Collision Avoidance

During the execution of the Cartesian task, the resulting
joint configurations must not lead to collisions of the robot
with itself. Therefore, the NMPC approach of Section III-B
is extended by further inequality constraints that prohibit self-
collisions.

The robot geometry is approximated by nR spheres. These
spheres are described by their centers pR,i(q) ∈ R3 and their
radii rR,i (i = 1, . . . , nR) and have to envelop all robot parts.
Then, the distance between the centers of two robot spheres
i and j that do not belong to the same link or to subsequent
links has to meet the constraint

d2R,i,j(q(k)) > d2R,i,j,min (14)

for k = 1, . . . , Np with

d2R,i,j(q) =
∥∥pR,i(q)− pR,j(q)

∥∥2 (15)

and
dR,i,j,min = rR,i + rR,j . (16)

Collisions between subsequent links are prevented by restrict-
ing the position range of the connecting joint or are generally
impossible due to the robot geometry.

B. Cartesian Control with Obstacle Avoidance

Additionally, the robot redundancy is exploited to avoid
collisions with obstacles based on the robot-obstacle distance.

The robot-obstacle collision avoidance uses the spherical ap-
proximation of the robot geometry introduced in Section IV-A
as well. In order to achieve smooth distance computations for
each optimization step, nO spherical obstacles are considered
with center pO,j ∈ R3 (j = 1, . . . , nO) and radius rO.

To avoid collisions, the squared distance between robot and
obstacle sphere centers

d2i,j(q) =
∥∥pR,i(q)− pO,j

∥∥2 (17)

has to be greater than the squared minimum distance d2i,min
with

di,min = rR,i + rO + ds (18)

where ds is a given safety distance that takes localization
and sensing uncertainties into account. This is guaranteed by
augmenting the inequality constraints (8), (7) and (14) with

d2i,j(q(k)) > d2i,min (19)

for k = 1, . . . , Np, i = 1, . . . , nR and j = 1, . . . , nO.
These constraints keep the safety distance between the robot

and the obstacles but allow the robot to move close to the
obstacles. In the case of dynamic obstacles like humans, how-
ever, it is desirable to maximize the distance to obstacles as
far as the Cartesian task execution is not impeded. Therefore,
the cost function (5) is extended by a term that increases with
decreasing distances between robot and obstacles,

Np−1∑
k=0

FO(q(k + 1)) + EO(q(Np)) (20)

with

FO(q) =

nR∑
i=1

nO∑
j=1

ci
d2i,j(q)− d2i,min

(21)

EO(q) = fOFO(q) . (22)

Due to this cost function extension, the robot is pushed away
from obstacles while at the same time the robot end-effector
follows the reference trajectory as close as possible.

C. Combined Obstacle Detection and Collision Avoidance

Using the 3D obstacle representation of Section II, each
octree node that is occupied or occluded by an obstacle is
considered as obstacle sphere where the sphere center corre-
sponds to the node center and the sphere radius is rO =

√
3
2 r

depending on the octree resolution r. But as considering all
obstacle nodes in the control algorithm would lead to a too
high computing effort, only the relevant obstacle spheres are
selected.

The most relevant obstacles are those close to the robot.
So two approaches are analyzed that use only obstacle points
close to the robot. The first approach computes for each robot
link the obstacle sphere with minimum distance to this link.
Only this obstacle is considered for all robot spheres that
belong to the corresponding link. In the second approach,
the obstacle sphere with minimum distance is computed for
each robot sphere separately. The controller uses then these
pairs of robot and obstacle spheres for collision avoidance.
Compared to the first approach, this approach is beneficial for
large robot links like the mobile base that may be affected
by several obstacle spheres. In contrast, the first approach is
able to compute exacter distances as not necessarily the same
robot description has to be used for distance computation and
control. Instead, the distance computation can use, e.g., a CAD
description or an approximation based on simple geometric
shapes as cylinders and cuboids.

A further reduction of the number of constraints can be
achieved by considering the minimum time that the robot
needs to reach an obstacle. In [15] a method has been proposed
to compute a reachability grid. The reachability grid contains
in each grid cell an approximation of the minimum time Tmin
that the robot needs to reach this cell with at least one robot
part based on the current joint configuration and the maximum
velocities. Using this information, it is determined for each
prediction step if a specific obstacle is reachable and therefore
can be in collision with the robot. Only obstacle spheres with
reachability time

TO,j,min ≤ k · Ts + Tsafety (23)

are considered in the inequality constraints (19) for prediction
step k, where Tsafety is a time interval, that considers the
computing time of the reachability analysis and is added
for safety reasons. Nevertheless, the non-reachable obstacle
spheres are still used in the cost function (20), to achieve
foresightful evasive motions.

V. RESULTS

A. Experimental Setup

The proposed algorithms are applied to an omnidirectional
mobile manipulator (KUKA OmniRob with LWR IV) with
10 degrees of freedom (DoF) that is shown in Fig. 2. The
actuating variables of the robot are the joint and platform
velocities. The joint positions of the arm are directly measured,
the platform position and heading angle are derived from the
platform odometry and a map-based localization framework.
The platform is controlled by commanding the translational
velocities vx and vy and the rotational velocity v3 with respect
to the current platform pose. The translational velocities vx
and vy are computed by transforming the velocities v1 and
v2 of the prismatic platform joints from the global frame to
the current robot base frame according to the current platform
rotation q3, [

vx
vy

]
=

[
cos(q3) sin(q3)
− sin(q3) cos(q3)

] [
v1
v2

]
. (24)

Fig. 2. Robot setup: KUKA OmniRob with LWR, equipped with two laser
scanners and two Kinect sensors.

For the control algorithm a sampling time of 0.1 s and a
prediction horizon of 1.0 s are used. The diagonal matrices of
the cost function (11) and the terminal penalty (12) are chosen
as follows:

Qv = diag(αv, αv, αv, αv, αv, αv, αv, αv, αv, αv), αv = 5

Qq = diag(0, 0, 0, αq, αq, αq, αq, αq, αq, αq), αq = 0.01

Qe = diag(αp, αp, αp, αo, αo, αo, αo), αp = 200, αo = 150

Rq = 0

Re = 100Qe

Note that elements of Qq belonging to the platform joints are
zero, as it is not intended to keep the platform at its start
position and orientation. In Qe and Re, all position weights
as well as all orientation weights are equal.

To avoid collisions, the cost function extension (21) is
applied with ci = 0.1 for all robot points i and fO is chosen to
be 20. The spherical approximation of the robot geometry for
collision avoidance is shown in Fig. 3. The spheres describing
the mobile base are significantly larger than the real robot
geometry in order to guarantee a safety distance around the
mobile base that is necessary due to the high mass and the
possible high velocities of the mobile base.

Fig. 3. Spherical approximation of the robot geometry for collision avoidance.

For monitoring the robot environment, the robot is equipped
with two laser scanners and two Kinect sensors (see Fig. 2).
The two laser scanners monitor a plane all around the platform
near the ground floor. The two Kinect sensors observe the
space around the manipulator.

The monitoring and control algorithms run on a 2.8GHz
Intel Core i7 processor. The robot filter [11] is GPU based.

The results are analyzed with regard to the Euclidean
distance between the resulting end-effector position and the
the reference position

∥∥yp − yt,p

∥∥ and the angle between the
resulting end-effector orientation and the reference orientation
arccos(2

〈
yo,yt,o

〉2 − 1), where the resulting end-effector
pose is computed based on the direct kinematics (2) and the
currently measured joint positions. 〈·, ·〉 denotes the scalar
product of two quaternions. Furthermore, the minimum dis-
tance between the robot surface and the obstacle representation
and the computing time needed per control step are analyzed.

B. Simulation Results
In order to compare the different possibilities how obstacles

are treated for collision avoidance, first a simulation with static
obstacles is shown. The simulated robot corresponds to the
omnidirectional mobile manipulator described in Section V-A.
The simulation scenario is shown in Fig. 4. During the
simulation, the robot end-effector follows the green refer-
ence trajectory, that lies between red obstacle spheres. The
computed minimum distance between the robot links and the
obstacles is visualized as yellow lines.

The resulting deviation of the end-effector position and ori-
entation from the reference trajectory, the resulting minimum
distance between the robot and the obstacles, as well as the
required computation time per control step are analyzed for
several test cases (Fig. 5):

Fig. 4. Simulation scenario of a mobile manipulator executing a trajectory
following task with obstacle avoidance. Trajectory: green line, obstacles: red
spheres, distances between robot and obstacles: yellow lines.

• Case 1: All obstacle spheres with minimum distance
to one of the robot links are considered for collision
avoidance with all robot spheres.

• Case 2: The same obstacle spheres are considered but
the number of optimization constraints due to obstacles
is reduced by taking into account, if an obstacle sphere
is reachable by the robot in a specific prediction step.

• Case 3: The number of considered obstacles per robot
sphere is reduced, by using for each robot point only the
obstacle sphere with closest distance to the corresponding
link. This affects both the number of constraints and the
cost function.

• Case 4: For each robot sphere, the obstacle with minimum
distance to the robot sphere is considered for collision
avoidance.

It can be seen, that in cases 3 and 4, the minimum robot
obstacle distance decreases compared to the first two cases
(Fig. 5(c)), as less obstacle points are used in the cost function.
Accordingly, the maximum position deviation is in the first
two cases higher (1.6 cm) than in the cases 3 and 4 where it
amounts to 1.1 cm (Fig. 5(a)). But the position deviation is in
both cases acceptable. The decisive factor is the computing
time per control step. With the reduced number of considered
obstacle spheres per robot sphere in cases 3 and 4, the
computing time decreases significantly and lies in a suitable
range for a sampling time of 0.1 s (Fig. 5(d)).

Taking the obstacle reachability into account in order to
reduce the number of optimization constraints has only a
small effect in case 2. Further experiments have shown, that
combining the reachability analysis with the reduced number
of obstacle spheres per robot point in test cases 3 and 4 does
not further reduce the computing time.

Comparing cases 3 and 4 shows, that the approach in
case 4, that considers for each robot sphere the obstacle sphere
with minimum distance, achieves slightly better results. The
deviation from the reference pose contains less oscillations
(Fig. 5(a) and 5(b)) and the distance to obstacles is equal to
or even larger than the distance in case 3 (Fig. 5(c)). The
reason is, that in the narrow passage between the left and right
group of obstacles the mobile base alternates in moving closer

(a) End-effector position deviation

(b) End-effector orientation deviation

(c) Minimum robot-obstacle distance

(d) Computing time for one control step

Fig. 5. Simulation results of a mobile manipulator executing a trajectory
following task with obstacle avoidance.

to the left and the right obstacle group if only one distance
is computed for the complete base. Therefore, the following
experiment is conducted with the configuration of case 4.

C. Experimental Results

The Cartesian Nonlinear Model Predictive Control approach
with collision avoidance is now applied to the real mobile
manipulator described in Section V-A. Fig. 7 shows snap-
shots of the experimental scenario including the obstacle
representation and the resulting robot motion. The mobile
manipulator has to follow the reference trajectory of the end-
effector pose shown as green line. During the task execution,
a human is walking near the robot and grasping into the robot
path.

Using the sensor data from the two laser scanners and
the two Kinect sensors, a 3D octree representation of the
obstacles in the close robot environment and their occlusions
are computed with a resolution of 10 cm with the method
presented in Section II. The octree nodes that contain obstacle
measurements are visualized red, the occluded nodes rose. The
octree nodes representing the human arm can be seen on the
left side of the robot in Fig. 7b-f. On the right side of the robot,
the representation of a wall detected by the laser scanners is
visible. The minimum distances between the robot spheres and
the obstacle octree are shown as yellow lines. For each robot
sphere, the octree node with minimum distance is considered.

Despite the moving obstacle that is actively approaching
the robot, the robot is able to follow the reference trajectory
without any collision due to the evasive motions performed
by the controller. The evasive motion can be seen for example
in the platform motion (Fig. 8): when the human approaches,
the platform moves backwards in order to allow the robot
manipulator to increase the distance to the human. As shown
in Fig. 6, the maximum deviation of the achieved end-effector
position from the reference position during the experiment
is 3.2 cm, the maximum orientation deviation is 3.1 ◦. The
maximum deviation occurs, when the human moves towards
the robot and the robot has to evade the human. Due to
the evasive motion, the minimum distance between the robot
and the obstacles never becomes smaller than 27 cm. The
computing time for one control step remains lower than 60ms
during the complete experiment, which is absolutely sufficient
for the sampling time of 100ms.

VI. CONCLUSIONS

In this work, a Cartesian Nonlinear Model Predictive Con-
troller for controlling the end-effector pose of fixed-base
and mobile manipulators has been extended by self-collision
avoidance and collision avoidance with static and dynamic
obstacles. The obstacles in the close robot environment are
detected by 3D workspace monitoring based on depth sensors
mounted on the robot. Realtime performance of the collision
avoidance extension has been achieved by considering in
each control step only the most relevant obstacles. Differ-
ent collision avoidance configurations have been compared
by means of simulation. The Cartesian controller with the

(a) End-effector position deviation

(b) End-effector orientation deviation

(c) Minimum robot-obstacle distance

(d) Computing time for one control step

Fig. 6. Experimental results of a mobile manipulator executing a trajectory
following task with dynamic obstacle avoidance.

Fig. 7. Snap-shot sequence of a mobile manipulator following a Cartesian reference trajectory (green line) with dynamic obstacle avoidance. Obstacles are
represented in an octree structure based on depth sensor measurements with occupied nodes as red cubes and occluded nodes as rose cubes. Yellow lines give
the distance between the robot points and the obstacles.

Fig. 8. Comparison of the platform position during the trajectory following
experiment with dynamic obstacle avoidance as shown in Fig. 6 and Fig. 7
and without dynamic obstacle.

most promising collision avoidance configuration has been
successfully applied to a real mobile manipulator with 10 DoF
avoiding a moving human.

ACKNOWLEDGMENT

This work has been funded by the European Commission’s
7th Framework Programme as part of the project SAPHARI
under grant agreement ICT-287513.

The author thanks her colleague Christian Frese for the
inspiring discussions and comments on the presented work.

REFERENCES

[1] Lihui Wang, Collaborations towards adaptive manufacturing, in IEEE
International Conference on Computer Supported Cooperative Work in
Design (CSCWD), pp. 14–21, 2012.

[2] O. Khatib, Real-time obstacle avoidance for manipulators and mobile
robots, in IEEE International Conference on Robotics and Automation,
pp. 500–505, 1985.

[3] H. G. Tanner, S. G. Loizou, and K. J. Kyriakopoulos, Nonholonomic
navigation and control of cooperating mobile manipulators, in IEEE
International Conference on Robotics and Automation, pp. 53–64, 2003.

[4] Pei-Wen Wu, Yu-Chi Lin, Chia-Ming Wang and Li-Chen Fu, Grasping
the object with collision avoidance of wheeled mobile manipulator
in dynamic environments, in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 5300–5305, 2013.

[5] Y. Kitamura, F. Kishino, T. Tanaka, and M. Yachida, Real-time path
planning in a dynamic 3-D environment, in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 925–931,
1996.

[6] M. P. Polverini, A. M. Zanchettin, and P. Rocco, Real-time collision
avoidance in human-robot interaction based on kinetostatic safety field,
in IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 4136–4141, 2014.

[7] F. Flacco, T. Kroger, A. De Luca, and O. Khatib, A depth space approach
to human-robot collision avoidance, in IEEE International Conference
on Robotics and Automation (ICRA), pp. 338–345, 2012.

[8] Huatao Zhang, Yunyi Jia, Ning Xi, and Aiguo Song, Obstacle avoidance
for mobile manipulation by real-time sensor-based redundancy resolu-
tion, in IEEE International Conference on Robotics and Biomimetics
(ROBIO), pp. 2369–2374, 2012.

[9] A. Zube, Cartesian Nonlinear Model Predictive Control of Redundant
Manipulators Considering Obstacles, in IEEE International Conference
on Industrial Technology (ICIT), 2015.

[10] A. Fetzner, C. Frese, and C. Frey, A 3D Representation of Obstacles
in the Robots Reachable Area Considering Occlusions, in International
Symposium on Robotics (ISR/Robotik), pp. 1–8, 2014.

[11] N. Blodow: Realtime URDF Filter. [Online]. Available:
https://github.com/blodow/realtime urdf filter.

[12] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss and W. Burgard:
OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on
Octrees, Autonomous Robots, 2013.

[13] B. Siciliano and O. Khatib, Springer Handbook of Robotics, Springer,
2008.

[14] A. Wächter and L. T. Biegler, On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,
Mathematical Programming, pp. 25–57, 2006.

[15] P. Anderson-Sprecher, and R. Simmons, Voxel-based motion bounding
and workspace estimation for robotic manipulators, in IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 2141–2146,
2012.

