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Abstract

EN
The goal of this PhD is to improve various aspects of meshfree Generalized Finite Dif-
ference Methods (GFDMs). In this thesis, different meshfree GFDMs are compared,
and their potential to solve over-determined problems is presented. A new method is
presented that introduces conservation of fluxes in a meshfree setting, which reduces
the problem of lack of conservation that has plagued meshfree methods. Special at-
tention is paid on the application of meshfree GFDMs to simulate fluid flow modeled
by the incompressible Navier–Stokes equations. A new meshfree GFDM scheme for
the same is presented which improves local accuracy, and shows better approximations
to the mass conservation condition. Further, different aspects of meshfree Lagrangian
frameworks are studied, and new methods to improve accuracy in the Lagrangian
movement process are also presented.

DE
Das Ziel dieser Dissertation ist die Verbesserung einiger Aspekte gitterfreier ver-
allgemeinerter Finite Differenzen Methoden (engl. GFDM). In dieser Arbeit wer-
den verschiedene solcher gitterfreier GFDMs verglichen und deren Potenzial zur Lö-
sung überbestimmter Probleme herausgestellt. Es wird eine neue Methode präsen-
tiert, welche die Erhaltung von Flüssen in den gitterfreien Kontext überträgt und
somit das für gitterfreie Methoden typische Problem mangelnder Erhaltung reduziert.
Besonderes Augenmerk wird auf die Anwendung gitterfreier GFDMs zur Simulation
von Fluid Strömungen, welche durch die inkompressiblen Navier–Stokes Gleichungen
beschrieben werden können, gelegt. Hierfür wird ein neues gitterfreies GDFM Ver-
fahren vorgestellt, das die lokale Genauigkeit und die Approximation an die Bedin-
gung der Massenerhaltung verbessert. Darüber hinaus werden verschiedene Aspekte
des Lagrange-Formalismus im gitterfreien Kontext untersucht und neue Methoden zu
Verbesserung der Genauigkeit im Lagrange’schen Bewegungsprozess präsentiert.
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Chapter 1

Introduction

Most numerical methods for solving partial differential equations require the genera-
tion of a mesh over the computational domain. Despite advances in mesh generation
technology and computer hardware, the generation and management of meshes is of-
ten the most difficult and time consuming part of the simulation procedure. This is
further compounded for complex, time-dependent geometries. In many practical sce-
narios, the simulation domain changes with time. In such situations, there may arise
the need to remesh the domain repeatedly during the simulation. This causes a fur-
ther bottleneck in numerical simulations. The quality of numerical solutions depends
directly on the quality of the mesh. Thus, the efficiency of mesh generation limits the
overall accuracy, robustness and speed of the numerical simulation process. Moreover,
mesh generation can not always be entirely automated, and often requires a lot of man
hours. In fact, in the simulation industry, there exist jobs called ‘meshers’ whose work
is solely the creation of 3D meshes for simulation domains.
To avoid the task of meshing and remeshing, several classes of meshfree or meshless

methods have been developed. These gridfree methods use the numerical basis of a set
of nodes to cover the computational domain. Nodes need not be regularly distributed,
and usually are arbitrarily spaced. These nodes are usually referred to either as points
or particles, and are broadly of two types. A node could either be a mass-carrying
entity, or simply a location where approximations are performed. For each node, the
only geometrical information required is a local set of neighbouring nodes over which
approximations are carried out. No additional connectivity information is needed.
The generation of the set of nodes across the entire simulation domain, referred to as
a point cloud, is much easier than mesh generation. Point cloud generation can be
automated to a great extent, thus significantly reducing the necessary man hours to
set up a simulation. For simulation domains that move or change with time, meshfree
methods have the further advantage of local adaptivity. Modifying a point cloud is
much easier than remeshing the entire domain. Due to these advantages, meshfree
methods are becoming increasingly popular in industrial simulation applications. One
of the biggest fields of application of meshfree methods is fluid flow problems, which
often have an open free surface which rapidly changes with time.
Of course, these advantages of meshfree methods come with their own set of chal-

lenges. The lack of available mathematical rigour has driven several mathematicians
away from meshfree methods. A further issue is the lack of global conservation. In
meshed methods, the global mesh ensures that accurate local approximations provide
a good global solution. The absence of such a mesh in most meshfree methods means

1



Chapter 1 Introduction

that there is often no direct relation between local accuracy and global solution qual-
ity. This lack of global conservation, and thus accuracy, in the numerical solution has
been a big reason for the aversion to meshfree methods in many communities. The
aim of this thesis is to address this issue. We try to improve conservation properties,
and accuracy, both local and global, of a certain class of meshfree methods. This is
done with a strong emphasis on (fully) Lagrangian meshfree methods for fluid flow,
where the point cloud moves with the fluid velocity.

1.1 Thesis Outline
This thesis is organized as follows.

• In the remainder of this chapter, we introduce a few different meshfree methods,
and talk about point cloud generation and neighbour search algorithms which
are essential in all meshfree methods.
• Chapter 2 goes into details about meshfree Generalized Finite Difference Meth-

ods (GFDMs) which are the central topic of this thesis. Their advantages and
disadvantages are discussed, along with a comparison with other strong form
meshfree methods. Different variations of meshfree GFDMs are presented, with
numerical comparisons between them. The unexplored potential of extending
meshfree GFDMs to solve over-determined problems is brought to light, and a
few numerical examples of the same are also performed.
• Chapter 3 introduces the topic of conservation in relation with meshfree GFDMs.

Existing work to improve conservation is presented, and a new method to gener-
alize the same is also developed. The inherent drawbacks of both these methods
are discussed, which poses the need for more work in conservation with meshfree
GFDMs.
• Chapter 4 presents a novel method to introduce approximate conservation in

meshfree GFDMs. This method is significantly more efficient than the existing
work on the same which was discussed in the previous chapter. An idea to intro-
duce local balances of numerical fluxes in meshfree methods is presented. This
flux balance is done within the usual moving least squares framework. Unlike
Finite Volume Methods, it is done on locally defined control cells, rather than
a globally defined mesh. Applications of this method to an advection-diffusion
equation and the Navier–Stokes equations are shown. Numerical simulations are
presented to compare this new method to classical GFDMs, and the new method
is shown to be superior.
• Chapter 5 talks about meshfree GFDM schemes to solve fluid flow. Drawbacks

specific to meshfree methods are brought to light, and a new scheme is presented
which reduces those drawbacks. The new monolithic scheme presented improves
accuracy of the mass conservation condition, while avoiding the difficult saddle
point structure of linear systems arising in most monolithic schemes. In contrast
with the previous chapter which aimed to improve global conservation (and ac-
curacy), the work presented here aims to improve local accuracy of the solution.
• Chapter 6 deals with the Lagrangian nature of meshfree methods. Different

methods to move the point cloud with the fluid velocity are discussed. Inaccu-

2



1.2 Different Meshfree Methods

racies in existing methods are highlighted, and new methods are presented for
the same. A new method to approximate streamlines in a meshfree setting is
presented. Point cloud movement along these approximate streamlines is shown
to be more accurate than traditional methods for steady flows. A further new
method is presented which moves points along pathlines which are computed
by determining the change in the approximated streamlines between time steps.
Numerical examples show this method to be the most accurate for rapidly chang-
ing flow profiles. Unlike the previous chapters, the work presented here applies
to all Lagrangian meshfree methods, and not just meshfree GFDMs.
• Chapter 7 presents an outlook about the work of this thesis, and talks about the

potential to extend the different ideas presented.

• Appendix A presents some details about the construction of numerical differential
operators for meshfree GFDM. This forms an extension of Chapters 2 and 3.
• Appendix B gives a short note on the over-determined systems which are referred

to in Chapters 2 and 5.
• Appendix C shows the construction of local control cells which are used for local

balances of fluxes in Chapter 4.

1.2 Different Meshfree Methods
Meshfree methods can be broadly classified into two classes based on the formulation
of the partial differential equations being solved.

1.2.1 Weak Form Meshfree Methods
A wide variety of weak-form meshfree methods have been developed. Some important
examples of the same are

• Element-Free Galerkin (EFG) [9]
• Meshless Local Petrov-Galerkin (MLPG) [5]
• Reproducing Kernel Particle Methods (RKPM) [70]
• Diffuse Element Method [81]
• Finite Volume Particle Method (FVPM) [38]

Some of these methods, such as the EFG, are based on global weak forms and
perform integrations based on a global background mesh. Others, such as the MLPG,
are based on local weak forms and integrations are performed only on local background
meshes. Some methods, such as the MLPG arise from generalizing finite element and
galerkin methods, while others such as the FVPM stem from generalizing finite volume
methods.
Since this thesis focuses on strong form meshfree methods, we do not go into de-

tails about the advantages and disadvantages of meshfree weak form methods. The
interested readers are referred to the book by Liu and Gu [65] and the habilitation of
Schweitzer [95] for the same.

3



Chapter 1 Introduction

1.2.2 Strong Form Meshfree Methods

Several strong-form meshfree methods have been developed over the years. Below, we
introduce three major classes of strong form meshfree methods.

Smoothed Particle Hydrodynamics (SPH)

SPH [66] is one of the first and most widely used meshless methods. In SPH, spatial
discretizations are based on an integral representation of functions. The integral rep-
resentation of a function f is motivated by the dirac-delta integral identity, and its
value at point ~x is given as

f(~x) ≈
∫

Ω
f(~x ′)W (~x− ~x ′, h) d~x ′ , (1.1)

where W is the so-called kernel function or smoothing function, and h is the spatial
discretization parameter, referred to as the smoothing length. W is chosen such that
it approaches the dirac-delta function as h → 0. Derivatives are also approximated
by integral operators. For example, if f in Eq. (1.1) is some derivative of a function
g, the derivative is transferred to the known function W by performing an integration
by parts, similar to that done in many weak-form methods. The final integral is then
discretized at the particle locations.
SPH is a Lagrangian meshfree method which was originally developed for astro-

physical applications in the late 1970s [34]. It has also been used a lot for fluid flow
applications in the past two decades. The origins in astrophysical problems with no
solid boundaries meant that SPH does not have a natural way to prescribe bound-
ary conditions. As a result, one of the biggest drawbacks of SPH is the difficulty in
enforcing boundary conditions [60, 68, 90]. While a lot of work has been done to
address this issue, the SPH formulation still does not naturally include treatment of
most boundary conditions and extra effort is needed to enforce them.
Another major drawback of SPH in its classical formulation is the so-called particle

inconsistency issue which results in the absence of a valid approximation order. The
original SPH does not even have C0 particle consistency for irregularly distributed
particles and boundary particles. Attempts to solve this problem include the ker-
nel renormalization [16] which comes at the price of the loss of certain conservation
properties for momentum and energy.
In SPH, the computational domain is discretized by particles which carry mass.

Thus, mass conservation is directly guaranteed1. However, this means that particles
can not be easily added or deleted. This results in clustering of particles and un-
balanced or distorted particle distribution, which is related to the so-called tensile
instability problem.

1While mass conservation is seemingly guaranteed in SPH, volume conservation is not. This is
discussed in detail in Chapter 6. For incompressible flows, a constant density means that an error
in volume conservation corresponds directly to an error in mass conservation.

4



1.3 Point Cloud Generation

Radial Basis Functions (RBF)

Radial functions are functions whose values only depend on the distance from a fixed
point. Thus, a radial function φ centered at ~c satisfies

φ(~x,~c) = φ(‖~x− ~c‖) . (1.2)

Meshless methods based on RBFs stem from the use of radial functions in scattered
data interpolation. In these methods, a function is approximated by a linear combi-
nation of a single radial function translated at different points

f(~x) =
N∑
i=1

ciφ(‖~x− ~xi‖) , (1.3)

where the coefficients ci are found by inverting a global matrix. Derivatives are defined
based on Eq. (1.3) by considering the derivatives of the radial functions. For example,

∇f(~x) =
N∑
i=1

ci∇φ(‖~x− ~xi‖) . (1.4)

To avoid the poor conditioning of the global systems and the high computational costs
involved in inverting them, many meshless methods based on RBFs have started using
local approximations [94], making RBFs resemble other meshless methods. One way
of doing this is by replacing the summation in Eq. (1.3) by a local one depending only
on the nodes in the support domain of the central node.
A drawback of meshfree RBF-based methods is that the choice of the basis function

φ and the related shape parameters significantly affect the accuracy and stability of
the method [79]. While a lot of has been done to determine the optimal choice for
the same (for example, [28]), this choice remains application-specific and ad-hoc in
nature. Depending on the choice of the parameter, extra stabilization techniques may
be required, which are usually extremely expensive [30].

Meshfree Generalized Finite Difference Methods (GFDM)

As the name suggests, meshfree GFDMs generalize traditional finite difference meth-
ods to arbitrary point distributions. They are based on weighted least squares ap-
proximations. Derivatives are given by linear combinations of the function values on
neighbouring points. Meshfree GFDMs are the central theme of this thesis, and a
detailed introduction to them is given in Chapter 2.

1.3 Point Cloud Generation
An important aspect of meshfree methods is the generation of the initial set of nodes.
A common misconception is that point cloud generation can be as tough as mesh
generation. This stems from the fact that many meshfree communities initially used
the nodes of a mesh as the point cloud. Some meshfree methods have also used
randomly scattered nodal distributions, which further promotes the misconception.
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Chapter 1 Introduction

A commonly used easy way to set up the initial point cloud is to start with adding
points on the domain boundary with a certain spacing. These boundary points are
used as a source to generate a first layer of interior points, which in turn act as a source
for the next layer of interior points. This procedure is continued till the entire domain
is filled. This process can be easily automated, and can even be used to generate
point clouds on extremely complex geometries. A more detailed description of this
procedure can be found in Drumm et al. [24]. Similar setup procedures have been
commonly referred to as the advancing front technique [71].

1.4 Neighbour Search
Efficient neighbour searching is integral to the efficiency of meshfree methods. For
each node, its neighbouring nodes are usually determined as the nodes within a cer-
tain distance h from it. The naive approach to neighbour searching would thus involve
computing distances between every pair of nodes in the computational domain. How-
ever, this procedure is exorbitantly expensive. To avoid excessive distance computa-
tions, the domain is usually split into multiple regions referred to as boxes or cells.
Using such a decomposition, for each node, distances only need to be computed with
other nodes within the same box (or possibly also adjacent boxes). Several different
data structures have been used to this end. One of the ways to do the same is to
use quadtree or octree type searching algorithms. Efficient methods for neighbour
searching have been studied in, for example, [22, 85].
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Chapter 2

Meshfree Generalized Finite
Difference Methods
Moving Least Squares (MLS) approximations used in data fitting have widely been
used as a basis for many meshfree methods [8]. In MLS approximations, a function u,
given only on a set of points, is approximated by a smooth function

v(~x) =
m∑
k=1

pk(~x)ak(~x) , (2.1)

where pk(~x) are basis functions, usually monomial or singular functions, ak(~x) are their
coefficients, andm is the number of basis functions. The coefficients ak(~x) are obtained
such that v(~x) provides the best approximation to u (and possibly its derivatives), in
the least squares sense. This results in the minimization of the quadratic form

J =
∑
~x∈S

W (~x)(v(~x)− u(~x))2 , (2.2)

where S is the set of points about which the approximation is being carried out, and
W (~x) is a weighting function. The derivatives of u are approximated by the derivatives
of v. Similar methods have also been reffered to as Weighted Least Squares (WLS or
WLSQ) methods. Such least squares procedures have been used in a wide variety
of meshfree methods including those based on both weak forms and strong forms.
A comparison between different least squares procedures commonly used in meshfree
methods has been done by several authors. For example, Oñate et al. [83] present
an overview of several point data-interpolation based procedures used in meshfree
methods, while Seibold [96] provides a more formal classification between the “local”
and “moving” varieties, and the “interpolating” and “approximating” varieties of least
squares approaches. Most of these details are skipped in this thesis, and we focus on
the use of such procedures in meshfree GFDMs.
Meshfree GFDMs are one such class of meshfree methods based on MLS or WLS

procedures. They have been widely used (for example, [32, 48, 89, 105, 121]) and are re-
ferred under various names, including FPM, which stands for both the Finite Pointset
Method [111] and the Finite Point Method [83], the Kinetic Meshless Method (KMM)
[89], and the Least Squares Kinetic Upwind Method (LSKUM) [33].
There are two variations of meshfree GFDMs that we consider in this thesis, both

of which are based on MLS approximations. The first is the widely used approach
based on the work of Liszka and Orkisz [63], which we refer to as the classical GFDM.

7



Chapter 2 Meshfree Generalized Finite Difference Methods

This method very closely resembles traditional finite differences, and is carried out
by minimizing errors obtained from Taylor expansions. Most meshfree GFDMs fall
under this class. The second approach is a modification of the classical GFDM based
on the work of Tiwari and Kuhnert [111] in which the error in the PDE considered is
minimized simultaneously with the errors obtained from Taylor expansions. We refer
to this method as the direct GFDM. In both variations, we consider Taylor expansions
up to second order terms. Higher order accuracy can be attained in both formulations
and have been considered, for example, by Milewski [76].

2.1 Finite Pointset Method
The Finite Pointset Method (FPM) [47, 57, 110, 112] is one type of meshfree GFDM,
and is used as the basic meshfree framework in this thesis. FPM is a fully Lagrangian
meshfree method that evolved out of SPH while addressing the issues of boundary con-
ditions, particle inconsistencies, and tensile instabilities [55]. Both meshfree GFDMs
formulations considered in this thesis have been referred to under the name of FPM.
The FPM has been shown to be a robust method with many practical applications

[24, 47, 110, 116]. The FPM is also used as the numerical basis of two commercially
used meshfree simulation tools: NOGRID [77] and the meshfree module of VPS-
PAMCRASH [113]. Further, it is also the numerical basis of the upcoming simulation
software MESHFREE1.
It must be noted that in the meshfree context, the acronym FPM is often a confusing

one. It is used to represent not only the aforementioned Finite Pointset Method, but
also the Finite Particle Method [69] and the Finite Point Method [83]. The confusion
is compounded by the fact that each of these three methods are well established in
different communities and have been around for well over a decade. Further, in the
early days of meshfree methods, FPM was also used to denote the Free Points Method
[25]. Thus, we henceforth drop the acronym FPM and refer to the Finite Pointset
Method under the umbrella term of GFDM.

2.2 Comparison with Other Meshfree Methods
• In many meshfree particle methods like SPH, mass-carrying particles are used

to discretize the computational domain. In contrast, meshfree GFDMs use nu-
merical points which are simply locations where approximations are carried out.
These numerical points do not have a mass2, and thus points can easily be added
or removed during a simulation [47]. This is especially relevant in Lagrangian
frameworks where points move with a fluid velocity. This movement could cause
clustering of points in one region, or the development of ‘holes’ with insufficient
number of points. Points can easily be deleted in the first situation, and added
in the second, to prevent instabilities from developing. Such addition and dele-
tion is not as easy in the mass-particle based methods like SPH which suffer
from the so-called tensile instability problem and distorted point clouds. Thus,

1https://www.meshfree.eu/
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2.3 Notation

meshfree GFDMs are more adaptive (in terms of the spatial discretization) than
many other meshfree methods. The fact that point clouds can easily be modified
locally is also a major advantage of meshfree GFDMs over mesh-based methods,
where remeshing would often require a global re-computation. Details about this
addition and deletion of points in meshfree GFDMs are given in Section 2.4.

• Since meshfree GFDMs are based on Taylor expansions (or polynomials, as ex-
plained later in this chapter), an order of accuracy at the discrete level can be
easily prescribed, which is not the case for many meshfree methods such as SPH.

• Meshfree GFDMs provide a framework to naturally incorporate boundary con-
ditions, without any extra effort, which has been a major issue in many particle-
based meshfree methods such as SPH. Details about enforcing boundary condi-
tions in meshfree GFDMs are given in Sections 2.5.4 and 2.6.2.

• In RBF generated finite differences (RBF-FD), the desired function derivatives
depend on the derivative of the radial function being used as a basis. The choice
of the basis function (and the related shape parameters) play a big role in overall
accuracy and stability of the method [28, 31, 79]. Similarly, derivatives in SPH
also depend on the derivatives of the chosen kernel function, and thus the choice
of the kernel function once again plays a major role. In contrast to these other
strong form meshfree methods, derivatives in meshfree GFDMs are taken as
linear combinations of function values in a support domain, and do not directly
depend on the derivatives of any kernel function. The weighting function only
plays a role in norm minimization. It does not affect the approximation order
and it can be argued that its shape does not significantly affect accuracy and
stability of the method3.

2.3 Notation
For meshfree GFDMs, the computational domain Ω, with boundary ∂Ω, is discretized
using a cloud of N numerical points with positions ~xi, i = 1, . . . , N . This includes
points both in the interior and on the boundary of the domain. The points are usually
irregularly spaced. Each numerical point carries the necessary numerical data of the
problem. Each point i has a set of neighbouring points Si which contains n = n(i)
points, including itself. The neighbourhood or support Si is determined by spatial
proximity

Si = {~xj : ‖~xj − ~xi‖ ≤ βh} , (2.3)
where h = h(~x, t) is the radius of the support, referred to as smoothing length or
interaction radius; and β ≤ 1 is a positive constant. The spatial distribution of

2Points do not have a mass prescribed directly. However, in many applications, each point would
have a prescribed density. Each point is associated with a volume for post-processing reasons,
and thus, the density and volume combination indirectly specify a mass.

3The weight function has to provide a reasonable weight to the neighbouring points. It must be
noted that a weight function that fails to do so (for example, a very narrow Gaussian that will
effectively reduce the size of the neighbourhood) could lead to poor conditioning of the local least
squares matrix.
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Chapter 2 Meshfree Generalized Finite Difference Methods

points is described by three parameters: h, rmin and rmax. It is ensured that no
two points are closer than rminh and there exists at least one point in every possible
sphere of radius rmaxh in the computational domain. Thus, the smoothing length h
also determines the spatial discretization size. rmin and rmax usually have values of
approximately 0.2 and 0.45 respectively. β affects the size of neighbourhoods, and a
discussion on its value is done in Chapter 4. For all the simulation results presented
in this thesis, each fully interior point4 has a neighbourhood that contains about
45 − 50 points in 3D, and 15 − 20 points in 2D. These numbers are slightly lesser at
and near the domain boundaries. We note that many meshfree methods use smaller
neighbourhoods. However, these often impose strict conditions on the regularity of
the point distributions to maintain stability of the simulation.
For a central point i, the subscript ij is used to denote a quantity defined with

relation to neighbouring point j. For example, the weight W of point j ∈ Si while
performing the approximations at point i is denoted byWij. The subscript ij can have
two different interpretations, depending on context, which are used interchangeably.
The value of j in the subscript ij could be the point number based on a global indexing
of all points j ∈ Si ⊂ (1, 2, . . . , N). Alternatively, it could also be based on a local
indexing of all points in the support domain j ∈ (1, 2, . . . , n(i)). Further, the same
interpretations also hold for function values. uj can be used to denote the value of the
function u at point j, j ∈ [1, . . . , N ] (globally indexed), while u1, u2, . . . , un can also
be used to denote the function values in the neighbourhood of some central point i.

2.4 Adding and Removing Points
As noted earlier, the ease of adding and deleting points locally during the simulation
of a fluid in the Lagrangian framework poses an important advantage of meshfree
GFDMs over other meshfree methods.
Points are added in the point cloud to ensure that every possible sphere of radius

rmaxh has at least one point in it. The first aspect of this is the identification of ‘holes’
or spheres of radius rmaxh which contain no points. A possible way to do the same
locally is to consider the local Delaunay tessellation of points in each support domain.
Any triangle (in 2D) or tetrahedron (in 3D) with circumradius larger than rmaxh
represents a hole, at the center of which a point needs to be added. After the addition
of the new point, all field properties carried by each point need to be approximated at
this new location. A possible way to do the same is to use the smoothing operators
defined in the coming sections.
Points are deleted in the point cloud to ensure that no two points are closer than

rminh. These points can be identified by a distance calculation in each neighbourhood.
Rather than deleting one of the two points, an alternative is to merge the two at a
central location. This would then require interpolation of all field properties at this
new location. This could be done either as done in the point addition case explained
above, or it could be based solely on the two points being merged.
Further details about the addition and deletion/merging of points in meshfree

GFDMs can be found in, for example, Drumm et al. [24].
4A fully interior point here refers to an interior point with no boundary neighbours.
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2.5 Classic GFDM Differential Operators

“Correct” point cloud management in these aspects is essential for the stability of a
wide range of problems. Considerations to this end in meshfree GFDMs have been done
by Seibold [96], among other authors. Similar work has also been done in the context
of other meshfree methods by Iske [44], among other authors. However, despite these
contributions, existing literature on meshfree methods does not fully address accuracy
issues with respect to point cloud management, and the required interpolation therein.
These considerations of accuracy in Lagrangian meshfree GFDMs are not looked into
in this thesis.

2.5 Classic GFDM Differential Operators
As the name suggests, in meshfree GFDMs, numerical derivatives are computed with
a generalized finite difference approach. For a function u defined at each numerical
point i = 1, 2, . . . , N , its derivatives are approximated as

∂∗u(~xi) ≈ ∂̃∗i u =
∑
j∈Si

c∗ijuj , (2.4)

where ∗ = x, y, xx,∆, etc. represents the differential operator being approximated, ∂∗
represents the continuous ∗-derivative, and ∂̃∗i represents the discrete derivative at
point i. For each point i, the stencil coefficients c∗ij are found using a weighted least
squares approach. Two equivalent formulations can be used for the same and are
explained below. In both formulations, and in the direct GFDM operators presented
later, the operators can be found locally at each point by solving a small linear system,
independently of the operators at the rest of the point cloud.

2.5.1 Taylor Expansions
For a point i, consider Taylor expansions around it at each neighbouring point j ∈ Si

eij + u(~xj) = u(~xi) +∇u · (~xj − ~xi) + 1
2(~xj − ~xi)TD(~xj − ~xi) . (2.5)

The unknown coefficients of ∇u and D are computed by a weighted least squares
method, by minimizing

min Ji =
∑
j∈Si

W 2
ije

2
ij , (2.6)

whereW is a weighting function used to make sure that the points closer to the central
point i have a larger impact than the points farther away. We note that the square
of the weighting function is used only for notational convenience, the benefit of which
will be made evident later. The weighting function is usually taken as a Gaussian
distribution

Wij = exp
(
−αW

‖~xj − ~xi‖2

h2
i + h2

j

)
, (2.7)

where αW is a positive constant usually taken in the range of (2, 8). Note that the
weighting function is only defined on the local support Si consisting of n(i) points.
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Chapter 2 Meshfree Generalized Finite Difference Methods

For the sake of brevity, we present only the case of one spatial dimension. Eq. (2.5)
leads to the following system which is solved at each point i = 1, . . . , N

ei1
...
ein


︸ ︷︷ ︸

~Ei

=


δxi1

1
2δx

2
i1

... ...
δxin

1
2δx

2
in


︸ ︷︷ ︸

Mi

(
(ux)i
(uxx)i

)
︸ ︷︷ ︸

~ai

−


u1 − ui

...
un − ui


︸ ︷︷ ︸

~bi

. (2.8)

where δxij = xj − xi. Or, in short form ~Ei = Mi~ai −~bi. The minimization Eq. (2.6)
can be rewritten as

min Ji = ~E T
i W

2
i
~Ei , (2.9)

= (Mi~ai −~bi)TW 2
i (Mi~ai −~bi) , (2.10)

where Wi is a diagonal matrix with entries Wi1, . . . ,Win. A formal minimization leads
to

~ai = [(MT
i W

2
i Mi)−1MT

i W
2
i ]~bi . (2.11)

Appendix A.3 shows a proof of the same. This leads to the differential operator stencils

(ux)i =
∑
j∈Si

cxij(uj − ui) , (2.12)

(uxx)i =
∑
j∈Si

cxxij (uj − ui) , (2.13)

where cxij and cxxij represent the values in the first and second row respectively of the
matrix [(MT

i W
2
i Mi)−1MT

i W
2
i ] in Eq. (2.11). A more efficient method to compute the

stencil coefficients is shown in Appendix A.2. These stencil coefficients are then used to
obtain the spatial discretization of the PDE being solved. For example, if we consider
the PDE

au+ bux + cuxx = d . (2.14)
The derivative approximations Eq. (2.12), Eq. (2.13) are substituted into the PDE to
obtain

aui + b
∑
j∈Si

cxij(uj − ui) + c
∑
j∈Si

cxxij (uj − ui) = d, i = 1, . . . , N , (2.15)

which forms a large sparse implicit system which is solved with an iterative method.
Alternatively, Eq. (2.8) can be rewritten as

ei1
...
ein

 =


1 δxi1

1
2δx

2
i1

... ... ...
1 δxin

1
2δx

2
in


 (u0)i

(ux)i
(uxx)i

−

u1
...
un

 . (2.16)

Carrying out a minimisation procedure as above leads to the derivative stencils

(ux)i =
∑
j∈Si

cxijuj , (2.17)

(uxx)i =
∑
j∈Si

cxxij uj . (2.18)
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In addition, the minimization also leads to stencils for function smoothing

(u0)i =
∑
j∈Si

c0
ijuj . (2.19)

For reasons that will be made clear later, we refer to such function smoothing stencils
as function approximation stencils. Further (u0)i is referred to as ui in shorthand.
The formulation in Eq. (2.16) and the stencils that follow are the ones we will use
throughout this thesis.

2.5.2 Polynomial Method
An alternate, but equivalent, way to arrive at the stencil coefficients in Eq. (2.17) –
Eq. (2.19) is to ensure that the derivatives of monomials m ∈ M, up to the order of
accuracy desired (usually 2), are exactly reproduced.∑

j∈Si

c∗ijmj = ∂∗im, ∀m ∈M , (2.20)

min Ji =
∑
j∈Si

(
c∗ij
Wij

)2

. (2.21)

where ∗ = x, y, xx,∆, etc.. An efficient method to compute the differential operators
stencils in this formulation is presented in Appendix A.2.

2.5.3 Equivalence of the Two Formulations
To illustrate the equivalence of the two formulations mentioned above, we start with
the Taylor expansions around point i at the location of point j ∈ Si. In one spatial
dimension,

eij + uj = ui + δxij(ux)i + 1
2δx

2
ij(uxx)i . (2.22)

Multiplying Eq. (2.22) with c∗ij, and summing over all j ∈ Si, we get

∑
j∈Si

c∗ijuj ≈
∑
j∈Si

c∗ijui +
∑
j∈Si

c∗ijδxij(ux)i +
∑
j∈Si

c∗ij
1
2δx

2
ij(uxx)i , (2.23)

=
∑
j∈Si

c∗ij

ui +
∑
j∈Si

c∗ijδxij

 (ux)i +
∑
j∈Si

c∗ij
1
2δx

2
ij

 (uxx)i . (2.24)

Note that the error term of O(h3) has been dropped for convenience. Thus, for the
first derivative, ∗ = x, comparing the definition Eq. (2.4) with Eq. (2.24) leads to∑

j∈Si

cxij = 0 , (2.25)
∑
j∈Si

cxijδxij = 1 , (2.26)
∑
j∈Si

cxijδx
2
ij = 0 . (2.27)
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Similarly for the second derivative, we get∑
j∈Si

cxxij = 0 , (2.28)
∑
j∈Si

cxxij δxij = 0 , (2.29)
∑
j∈Si

cxxij δx
2
ij = 2 . (2.30)

And for the function approximation stencil, we get∑
j∈Si

c0
ij = 1 , (2.31)

∑
j∈Si

c0
ijδxij = 0 , (2.32)

∑
j∈Si

c0
ijδx

2
ij = 0 . (2.33)

The three above systems are the same as Eq. (2.20) and thus the stencils in the two
formulations satisfy the same consistency conditions. Further, if the same weighting
function is used in Eq. (2.6) and Eq. (2.21), the weighted minimizations also lead to
the same stencils in both formulations, upto numerical round off errors. A proof of
this is shown in Appendix A.3.
In terms of modifying the classical meshfree GFDM to different ends, both formu-

lations mentioned above come with their own advantages and disadvantages. This
forms a major part of the present thesis. An existing extension of the Taylor expan-
sion formulation is presented in Section 2.6. Those ideas are then extended to solve a
wider range of problems in Section 2.6.1, and then later used to design improved fluid
flow solvers in Chapter 5. Extensions to the polynomial formulation are discussed
in Chapter 4 with the aim of introducing an approximate notion of conservation in
meshfree GFDMs, and in Section 2.5.5.

2.5.4 Boundary Conditions
The ease of enforcement of boundary conditions is one of the biggest advantages of
meshfree GFDMs over other meshfree methods. Consider a 2D PDE in 1 variable

au+ bux + cuy + duxx + euyy + fuxy = g . (2.34)

An implicit discretization of this PDE, as described earlier, would lead to the following
sparse linear system

aui + b
∑
j∈Si

cxijuj + c
∑
j∈Si

cyijuj + d
∑
j∈Si

cxxij uj + e
∑
j∈Si

cyyij uj + f
∑
j∈Si

cxyij uj = g ,

i = 1, 2, . . . , N .
(2.35)

Similar to traditional finite differences, boundary conditions in the classical meshfree
GFDMs are enforced by simply replacing the relevant rows in Eq. (2.35) by the dis-
cretized boundary condition. For Dirichlet boundary conditions u = gD at a boundary
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point i, the discretized boundary condition is given by simply adding the following row
in the sparse system

ui = gD . (2.36)
For a Neumann boundary condition ~n · ∇u = gN , the following row is added∑

j∈Si

cnijuj = gN , (2.37)

where cnij can be defined in one of two ways. The first way is to get the stencil for
the derivative in the normal direction by using the stencils for the derivatives (in 2D)
in the x and y directions: cnij = nxi c

x
ij + nyi c

y
ij, where ~ni = (nxi , n

y
i ). Alternatively, it

is sometimes desirable to compute derivative stencils in the normal direction directly
by a minimization procedure similar to that explained earlier. In the polynomial
formulation, this would require the following minimization∑

j∈Si

cnijmj = ~n · ∇m, ∀m ∈M , (2.38)

min Ji =
∑
j∈Si

(
cnij
Wij

)2

. (2.39)

The advantage of this is that a diagonal dominance procedure, as explained in the
next section, can be carried out to improve the convergence of iterative solvers for
the sparse linear system. If the stencils for the derivatives in the normal direction
are computed using this method, the regular gradient stencils need to be modified to
ensure the consistency cnij = nxi c

x
ij + nyi c

y
ij. The procedure for the same is shown in

Appendix A.5. For all numerical examples in this thesis, we use this method for each
Neumann boundary condition in the classical GFDM framework.
An important boundary condition in fluid flow applications is the one imposed on

the free surface. We do this by equating the stresses at the free surface in the normal
and tangential direction(s). In 2D, this is given by

~tT · S · ~n = 0 , (2.40)
~nT · S · ~n = p− p0 − σκ , (2.41)

where ~t is a unit vector in the tangential direction to the free surface, p is the pressure,
p0 is the atmospheric pressure, S = S(~v) is the stress tensor for velocity ~v, σ is
the surface tension, and κ is the local free surface curvature which is determined
geometrically. This can be simplified to obtain

(2nxtx)∂u
∂x

+ (nxty + nytx)∂u
∂y

+ (nxty + nytx)∂v
∂x

+ (2nyty)∂v
∂y

= 0 , (2.42)

(2(nx)2)∂u
∂x

+ (2nxny)∂u
∂y

+ (2nxny)∂v
∂y

+ (2(ny)2)∂v
∂y

= p− p0 − σκ . (2.43)

This can be discretized as done in Eq. (2.35). A similar procedure is done for the stress
evaluation in slip boundary conditions, and for the 3D case.
Note that the use of ghost nodes outside the domain boundary or any similar pro-

cedure is not needed in the enforcement of boundary conditions.
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2.5.5 Diagonal Dominance
It is often desirable to have the central stencil value c∗ii to be much larger in absolute
value than the others c∗ij, i 6= j ∈ Si. For the Laplace operator, this significantly im-
proves stability for Poisson problems and heat equations. More specifically, positivity
is desired in the Laplace stencil: the central stencil value should be negative, and the
neighbouring values should be positive. Seibold [97] provides a detailed account of
the need of positivity and the resultant M-character of the matrices in linear systems.
He goes on to show how to achieve the same by selecting neighbouring points by a
minimization approach, rather than the circular proximity-based neighbourhoods used
here. In this section, we present a method to improve stability for Poisson problems
while maintaining circular neighbourhoods.
An advantage of writing the differential operators in the polynomial formulation

is that it can easily be extended to add a control over the central stencil value. In
addition to the monomial test functions, a Kronecker-delta function is added to the
consistency conditions. The Laplace operator can then be determined as∑

j∈Si

c∆
ijmj = ∂∆

i m, ∀m ∈M , (2.44)

c∆
ii = Ac , (2.45)

min Ji =
∑
j∈Si

(
c∆
ij

Wij

)2

, (2.46)

where Ac < 0 is the desired central stencil value. The optimal choice of Ac would be
situation specific, and thus explicitly setting the central stencil value is not a desirable
way to achieve positivity or diagonal dominance. However, this can be used to get a
more general method to achieve the same. The key point to note is that the entire
stencil changes as Ac changes. Using this, one way to achieve most possible diagonal
dominance (for a given neighbourhood configuration) is to minimize the functional

g∆ =
∑
j∈Si

(
c∆
ij

)2

(
c∆
ii

)2 = 〈~c
∆
i ,~c

∆
i 〉(

c∆
ii

)2 , (2.47)

where ~c∆
i = (c∆

i1, · · · , c∆
in) is the vector formed by the stencil coefficients at each neigh-

bouring point of i, and 〈·, ·〉 represents the scalar product. Since the minimization is
done with respect to a varying central stencil value, we wish to set

∂g∆

∂c∆
ii

= 0 . (2.48)

Analytically, it can be seen that

∂g∆

∂c∆
ii

= 2(
c∆
ii

)2 〈~c
∆
i ,

∂~c∆
i

∂c∆
ii

〉 − 2(
c∆
ii

)3 〈~c
∆
i ,~c

∆
i 〉 . (2.49)

Thus, Eq. (2.48) leads to

〈~c∆
i ,

~d∆
i 〉c∆

ii − 〈~c∆
i ,~c

∆
i 〉 = 0 , (2.50)
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where
~d∆
i = ∂~c∆

i

∂c∆
ii

. (2.51)

It can be proven that ~d∆
i as defined above is the same as that defined by the following

minimization ∑
j∈Si

d∆
ijmj = 0 , ∀m ∈M , (2.52)

d∆
ii = 1 , (2.53)

min Ji =
∑
j∈Si

(
d∆
ij

Wij

)2

. (2.54)

The proof of this relies on the formulation of derivative stencils computed by the
QR-decomposition as shown in Appendix A and A.2. The actual proof is given in
Appendix A.4.
Now, using ~d∆

i , the Laplacian stencil is split into two parts, one of which is used
to satisfy the monomial consistency conditions, and the other is used to change the
central stencil values.

~c∆
i = ~σ∆

i + α∆~d∆
i (2.55)

where α∆ ∈ R is determined by the minimization of the functional g∆, as in Eq. (2.50).
~σ∆
i is an approximate guess for the Laplacian stencil. It satisfies the monomial con-

sistency conditions, while ~d∆
i as given in Eq. (2.52) – Eq. (2.54) lies in their null space.

~σ∆
i is given by ∑

j∈Si

σ∆
ijmj = ∂∆

i m, ∀m ∈M , (2.56)

σ∆
ii = Ãc , (2.57)

min Ji =
∑
j∈Si

(
σ∆
ij

Wij

)2

. (2.58)

where Ãc /∈ {0, 1} is some fixed central stencil value for ~σ∆
i . Clearly, the Laplace

stencil defined by Eq. (2.55) satisfies the monomial consistency conditions for every
value of α∆.
Now, plugging Eq. (2.55) into Eq. (2.50) leads to

α∆ = 〈~σ
∆
i ,

~d∆
i 〉σ∆

ii − 〈~σ∆
i , ~σ

∆
i 〉

〈~σ∆
i , ~d

∆
i 〉 − 〈~d∆

i , ~d
∆
i 〉σ∆

ii

. (2.59)

~σ∆
i and ~d∆

i can be computed as explained above, and thus Eq. (2.59) gives the Lapla-
cian stencil according to Eq. (2.55).
We note that ~σ∆

i and ~d∆
i can be computed by one minimization with different right

hand side vectors as shown in Appendix A.2, and thus, performing this procedure does
not increase the computation time significantly.
We further note that this procedure does not guarantee diagonal dominance of the

matrices in the resultant linear systems or positivity of the Laplace stencil. In fact,
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positivity is not always possible on circular proximity-based neighbourhoods. How-
ever, empirically this method has shown to significantly improve stability in Poisson
problems and heat equations. The usefulness of the outlined procedure to obtain most
possible diagonal dominance is illustrated with a simple diffusion example. Consider
the heat equation on the domain [0, 1]× [0, 1]

∂φ

∂t
= ∆φ . (2.60)

Initial conditions are taken as

φ(~x, 0) = 5 sin(πx) sin(πy) . (2.61)

Dirichlet 0 boundary conditions are applied on all boundaries. The resulting solutions
with classical GFDM differential operators without any imposed diagonal dominance,
and those with approximate diagonal dominance as explained in this section are shown
in Figure 2.1 at various times. The figure illustrates the instabilities that often develop
when diagonal dominance is not used. Such instabilities have often been the reason
that many meshfree communities avoid meshfree GFDMs. However, as shown here,
these instabilities can be easily avoided. In the remainder of this thesis, this outlined
procedure for most possible diagonal dominance is always used when the Laplace
operator is considered in the classical GFDM framework.
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Figure 2.1: Heat equation results for h = 0.05, N = 2521 and ∆t = 0.01. With-
out diagonal dominance (left column) and with diagonal dominance (right
column). t = 0.35 (first row), t = 0.7 (middle row) and t = 2 (bottom
row).
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2.6 Direct GFDM Differential Operators
The function approximation stencil Eq. (2.19) leads to the question : ‘would it be pos-
sible to arrive at function approximation stencils that also incorporate a minimization
of errors in the underlying PDEs being solved?’. This would lead to a situation in
which computing a function that satisfies the function approximation stencil at each
point would directly give a solution to the PDEs being considered. This question
was answered by Tiwari and Kuhnert [111]. Here, we refer to their method as the
direct GFDM. In our earlier work, the same has also been referred to as Tiwari’s ap-
proach. This method extends the Taylor expansion formulation of GFDM differential
operators. Derivative and function approximation stencils in this approach are given
by

∂∗u(~xi) ≈ ∂̃∗i u =
∑
j∈Si

α∗ijuj +
p∑
r=1

ζ∗irgr , (2.62)

where p is the number of PDEs in the system being solved, gr are dependent on each
PDE, and α∗ij and ζ∗ir are the coefficients computed in the local minimization. While
the stencil coefficients in classical GFDM differential operators were dependent only on
the local geometry of the point cloud, the stencil coefficients in this approach depend
on both the local geometry and the PDE being discretized. The process of determining
the unknown coefficients is explained below.
In this method, stencil coefficients are found that include the PDE being solved as

a local constraint. Then a function is found that satisfies the conditions on all the
stencils computed. The least squares procedure for minimizing the errors includes not
just the Taylor expansions, but also the error in solving the PDE itself. Consider the
PDE Eq. (2.14) used in the previous section. The system Eq. (2.16) and Eq. (2.6) gets
extended to 

ei1
...
ein
ePDE

 =


1 δxi1

1
2δx

2
i1

... ... ...
1 δxin

1
2δx

2
in

a b c


 ui

(ux)i
(uxx)i

−

u1
...
un
d

 , (2.63)

min Ji =
∑
j∈Si

W 2
ije

2
ij +W 2

PDEe
2
PDE , (2.64)

which is solved at each point i = 1, . . . , N . The stencils to the function approximation
of u are the only ones of interest. Proceeding in the same way as done in Section 2.5
leads to a system similar to that obtained in Eq. (2.11). The first row of this system
gives the function approximation stencils5

ui =
∑
j∈Si

α0
ijuj + ζ0

i d . (2.65)

We then find a function u that satisfies all these stencils by solving a large sparse
implicit system with an iterative method.

(1− α0
ii)ui −

∑
j∈Si
j 6=i

α0
ijuj = ζ0

i d . i = 1, . . . , N. (2.66)

5Once again, the O(h3) terms have been dropped for convenience.
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We refer to this method as the direct GFDM because functions are computed di-
rectly with function approximation stencils, as in Eq. (2.66), without the need for the
derivative stencils.
It is empirically observed that this results in a (‘close’ to) diagonally dominant

system, and that no extra procedure needs to be performed for stability as was neces-
sitated in the classical GFDM case. One of the advantages of this direct approach over
the classical GFDM one is that it can be used to solve algebraically over-determined,
but well-posed, systems. i.e. systems with more PDEs than variables. An impor-
tant use of this is to solve PDE systems on boundary points along with the imposed
boundary conditions, which is not possible by the classical GFDM. Tiwari and Kuhn-
ert [111] used this framework for pressure-Poisson equations in Navier–Stokes solvers.
There, an over-determined system was solved on boundary points, consisting of both
the boundary conditions and the pressure-Poisson equation itself. The same idea was
later extended for imposing free surface boundary conditions [112], for compressible
flows [56], and recently for heat transfer boundary conditions by Reséndiz and Saucedo
[91], among other applications. A similar idea of adding the PDE on boundaries was
also done in context of the meshfree Radial Basis Functions (RBF), by using an addi-
tional set of nodes adjacent to the boundary [29], which was shown to increase accuracy
over standard RBF. Using the direct GFDM, a similar increase in accuracy is obtained
in meshfree GFDMs and can be done without the addition of extra nodes.
However, other than solving a PDE along with the boundary condition at boundary

points, to the best of our knowledge, this framework has not been used to solve over-
determined problems (where an over-determined system is solved across all points in
the computational domain). A basic comparison in one spatial dimension between
the classical GFDM and the direct approach of this section has been done by Illiev
and Tiwari [43]. However, a more detailed comparison on multi-dimensional problems
has not been done. Further, the advantage of the direct framework for non-trivial
simulation domains and over-determined problems has not been explored. This lack
of a detailed comparison between the two formulations has resulted in them being
occasionally misunderstood to be more similar than they are. One of the goals of this
thesis is to fill these gaps. Further in this chapter, we show the versatility of this
direct method and also present its advantages over classical GFDMs with a series of
numerical examples. In Chapter 5, we show how this framework can be used to devise
new algorithms which reduce some problems with existing meshfree GFDM solvers for
the incompressible Navier–Stokes equations by solving an over-determined problem
across the entire computational domain.

2.6.1 Over-Determined Problems

This framework can be extended to solve over-determined problems6 and problems
with multiple variables as shown below. Consider the following one-dimensional system
with two unknowns u and v, and p linear PDEs, which are assumed to form a well
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posed system. .

aru+ brux + cruxx + drv + ervx + frvxx = gr , r = 1, · · · , p . (2.67)

Locally, errors in Taylor expansions in both variables are minimized along with the
errors in each PDE. The system Eq. (2.63) and Eq. (2.64) gets extended to

eui1
...
euin
evi1
...
evin

ePDE,1
...

ePDE,p


︸ ︷︷ ︸

~Ei

=



1 δxi1
1
2δx

2
i1

... ... ...
1 δxin

1
2δx

2
in

1 δxi1
1
2δx

2
i1

... ... ...
1 δxin

1
2δx

2
in

a1 b1 c1 d1 e1 f1
... ... ... ... ... ...
ap bp cp dp ep fp


︸ ︷︷ ︸

Mi



ui
(ux)i
(uxx)i
vi

(vx)i
(vxx)i


︸ ︷︷ ︸

~ai

−



u1
...
un
v1
...
vn
g1
...
gp


︸ ︷︷ ︸

~bi

, (2.68)

min Ji =
∑
j∈Si

W 2
ij(euij)2 +

∑
j∈Si

W 2
ij(evij)2 +

p∑
k=1

W 2
PDE,k(ePDE,k)2 , (2.69)

where the superscript in the errors eij represent the variable for which the Taylor
expansion is being performed. The weights for the Taylor expansion error terms are
taken as the same for each variable, and according to a Gaussian kernel as described
earlier in Eq. (2.7). Weights for the PDE errors can be chosen flexibly. Throughout this
thesis, we use W 2

PDE,k = 2, which is double that of the central value of the Gaussian
weighting kernel W 2

ii = 1. The question about optimal weights for the same is an
interesting problem, but is not addressed in this thesis. Extension to higher spatial
dimensions are straightforward, and an example of the same is provided in Chapter 5.
The above minimization leads to the unknowns ~ai = [(MT

i W
2
i Mi)−1MT

i W
2
i ]~bi. Once

again, only the function approximation stencils are of interest to us, i.e. the rows
corresponding to u and v (the first and fourth rows of the system). The resultant
function approximation stencils obtained can be written as

ui =
∑
j∈Si

αuijuj +
∑
j∈Si

βuijvj +
p∑
r=1

ζuirgr , (2.70)

vi =
∑
j∈Si

αvijuj +
∑
j∈Si

βvijvj +
p∑
r=1

ζvirgr , (2.71)

where the coefficients α, β and ζ represent the values in the relevant rows of the
matrix [(MT

i W
2
i Mi)−1MT

i W
2
i ]. A numerically more efficient method to obtain these

stencils, as compared to computing this matrix product and inverse, is shown in Ap-
pendix A.3.1.

6The term ‘over-determined problem’ is used to refer to a system with more PDEs than variables.
For more details on the same, see Appendix B.
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We note that the resultant sparse linear systems can be solved by both explicit and
implicit methods. If explicit integration methods or iterative procedures like Gauss-
Seidel methods are being used, the system Eq. (2.70) and Eq. (2.71) can be solved
as

u
[s+1]
i =

∑
j∈Si

αuiju
[s]
j +

∑
j∈Si

βuijv
[s]
j +

p∑
r=1

ζuirg
[s]
r , (2.72)

v
[s+1]
i =

∑
j∈Si

αviju
[s]
j +

∑
j∈Si

βvijv
[s]
j +

p∑
r=1

ζvirg
[s]
r , (2.73)

where the bracketed superscripts s and s + 1 denote the iteration number. On the
other hand, if implicit integration methods are being used, the system Eq. (2.70) and
Eq. (2.71) can be solved as

(1− αuii)u
[s+1]
i −

∑
j∈Si
j 6=i

αuiju
[s+1]
j −

∑
j∈Si

βuijv
[s+1]
j =

p∑
r=1

ζuirg
[s]
r , (2.74)

−
∑
j∈Si

αviju
[s+1]
j + (1− βvii)v

[s+1]
i −

∑
j∈Si
j 6=i

βvijv
[s+1]
j =

p∑
r=1

ζvirg
[s]
r . (2.75)

As mentioned earlier, the system Eq. (2.74) and Eq. (2.75) is emperically observed
to provide well conditioned linear systems that can easily be solved with standard
iterative solvers.

2.6.2 Boundary Conditions
Similar to the classical meshfree GFDM case explained in Section 2.5.4, enforcement
of boundary conditions in the direct GFDM framework is also quite straightforward.
Consider the 2D PDE in 1 variable used earlier

au+ bux + cuy + duxx + euyy + fuxy = g . (2.76)

An implicit discretization of this PDE, as described earlier in Eq. (2.63) – Eq. (2.66),
would lead to the following sparse linear system

(1− αii)ui −
∑
j∈Si
j 6=i

αijuj = ζig . i = 1, . . . , N. (2.77)

Similar to the classical GFDM case, here the boundary conditions are enforced by re-
placing each relevant function approximation row in Eq. (2.77) by one for the boundary
condition. For a Dirichlet boundary condition u = gD, the first way to do the same, as
done in existing literature, is to simply replace the relevant row in the sparse system
with

ui = gD , (2.78)
which was also the same procedure followed in the classical GFDM case. An alternative
way to enforce dirichlet boundary conditions is by adding the respective boundary
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condition in the least squares system, similar to that done in Eq. (2.68). Thus, the
following system has to be solved



ei1
...
ein
ePDE
eBC

 =



1 δxi1 δyi1
1
2δx

2
i1

1
2δy

2
i1 δxi1δyi1

... ...
1 δxin δyin

1
2δx

2
in

1
2δy

2
in δxinδyin

a b c d e f
1 0 0 0 0 0





ui
(ux)i
(uy)i
(uxx)i
(uyy)i
(uxy)i


−



u1
...
un
g
gD

 ,

(2.79)
where the last row in the system is for the Dirichlet boundary condition, and the one
above that is for the PDE itself. This system is solved with a minimization procedure as
explained earlier. Clearly, this method only enforces the Dirichlet boundary condition
in a least squares sense. Enforcing the PDE on Dirichlet boundaries, as done above, can
be useful in several circumstances. For example, for enforcing the velocity divergence-
free condition at no-slip walls for incompressible fluid flow simulations.
The ease of switching between the two ways to enforce Dirichlet boundary conditions

also illustrates the fact that the two GFDM formulations presented here can be mixed
very easily. Some points in the domain could be solved with one formulation, with the
remaining points in the other.
Neumann boundary conditions ~n · ∇u = gN can be enforced either in the way done

in the classical GFDM case in Section 2.5.4, or could be done directly in a least squares
sense by solving the following system



ei1
...
ein
ePDE
eBC

 =



1 δxi1 δyi1
1
2δx

2
i1

1
2δy

2
i1 δxi1δyi1

... ...
1 δxin δyin

1
2δx

2
in

1
2δy

2
in δxinδyin

a b c d e f
0 nxi nyi 0 0 0





ui
(ux)i
(uy)i
(uxx)i
(uyy)i
(uxy)i


−



u1
...
un
g
gN

 ,

(2.80)
where the addition of the PDE is optional. Free surface and other boundary conditions
can be imposed in a similar way by adding the respective PDE(s) into the least squares
system from which the function approximation stencil is obtained. Throughout this
thesis, unless mentioned otherwise, we always use the least squares implementation of
boundary conditions in this framework.
Of course, this least squares implementation of boundary conditions forms a less

strict notion of enforcement of boundary conditions. An interesting similarity to note
is that less strict notions of boundary conditions have also been becoming increasingly
popular in meshed methods in the last decade, in the form of weak-form enforcement
of boundary conditions [6, 92].

2.6.3 Consistency Conditions
We consider the 1D PDE used earlier in Eq. (2.14). Derivative stencils are computed
by solving the minimization problem of Eq. (2.63) and Eq. (2.64). In the direct GFDM
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framework, the resultant function approximation and derivative stencils can be given
by

ui =
∑
j∈Si

α0
ijuj + ζ0

i d , (2.81)

(ux)i =
∑
j∈Si

αxijuj + ζxi d , (2.82)

(uxx)i =
∑
j∈Si

αxxij uj + ζxxi d . (2.83)

Note that in this direct method, we only use the function approximation stencils of
Eq. (2.81). The derivative stencils of Eq. (2.82) and Eq. (2.83) are never actually used.
However, the following procedure involving the derivative stencils gives an important
insight into this method.
We proceed in a way similar to that done in Section 2.5.3. Multiplying the Taylor

expansions with α∗ij and summing over all j ∈ Si leads to

∑
j∈Si

α∗ijuj =
∑
j∈Si

α∗ij

ui +
∑
j∈Si

α∗ijδxij

 (ux)i +
∑
j∈Si

α∗ij
1
2δx

2
ij

 (uxx)i , (2.84)

with the error terms neglected. Multiplying the PDE, Eq. (2.14) with ζ∗i and adding
the result to Eq. (2.84) leads to∑

j∈Si

α∗ijuj + ζ∗i d =
∑
j∈Si

α∗ij + ζ∗i a

ui +
∑
j∈Si

α∗ijδxij + ζ∗i b

 (ux)i +
∑
j∈Si

α∗ij
1
2δx

2
ij + ζ∗i c

 (uxx)i .

(2.85)

Comparing this with the stencils Eq. (2.81) – Eq. (2.83) leads to the following∑
j∈Si

α0
ij + ζ0

i a = 1 , (2.86)
∑
j∈Si

α0
ijδxij + ζ0

i b = 0 , (2.87)

∑
j∈Si

α0
ij

1
2δx

2
ij + ζ0

i c = 0 . (2.88)

Similarly for the first derivative, we get∑
j∈Si

αxij + ζxi a = 0 , (2.89)
∑
j∈Si

αxijδxij + ζxi b = 1 , (2.90)

∑
j∈Si

αxij
1
2δx

2
ij + ζxi c = 0 . (2.91)

25



Chapter 2 Meshfree Generalized Finite Difference Methods

Similarly for the second derivative, we get

∑
j∈Si

αxxij + ζxxi a = 0 , (2.92)
∑
j∈Si

αxxij δxij + ζxxi b = 0 , (2.93)

∑
j∈Si

αxxij
1
2δx

2
ij + ζxxi c = 1 . (2.94)

Now, from Eq. (2.82), it is obvious that the derivative of a linear field x at point i is
given by ∑j∈Si

αxijxj + ζxi d. Using the result of Eq. (2.90) and then Eq. (2.89) on this
leads to

∂̃ xi x =
∑
j∈Si

αxijxj + ζxi d , (2.95)

=
∑
j∈Si

αxijδxij +
∑
j∈Si

αxijxi + ζxi d , (2.96)

= 1− ζxi b+
∑
j∈Si

αxij

xi + ζxi d , (2.97)

= 1− ζxi b− ζxi axi + ζxi d . (2.98)

Accuracy of gradient reconstruction thus seems to depend on the PDE being consid-
ered, and the resultant stencil values. Thus, it appears that even for the second order
accurate Taylor expansions considered here, first and second order monomials need
not be differentiated exactly.
It must be emphasized here that the stencils are computed with respect to a partic-

ular system of PDEs. It is thus not entirely reasonable to expect them to have general
approximation properties up to a certain consistency order. Supposed errors according
to Eq. (2.98) are not actually representative of the introduced error in the solutions in
the direct GFDM framework.
When derivatives of known functions need to be computed directly, these derivative

stencils are never actually used for the reasons explained above. In fact, numerically,
they are never even computed. In all numerical examples later in this chapter and in
Chapter 5, derivatives of known functions are computed using the classical GFDM dif-
ferential operators. Thus, in such situations, both the function approximation stencil
satisfying the PDE, and classical GFDM differential operator stencils need to be com-
puted. This results in a higher clock time requirement to solve the local least squares
systems. However, as the time comparisons in Chapter 5 suggest, this increased local
cost is often offset by better conditioning of the global sparse linear systems, which
results in faster convergence of the iterative solvers.

An interesting comparison between the different GFDM methods can be obtained
by comparing the terms being minimized. For a 1 variable case, the minimizations
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can be written as

Classical GFDM: min Ji =
∑
j∈Si

W 2
ije

2
ij , (2.99)

Direct GFDM: min Ji =
∑
j∈Si

W 2
ije

2
ij +

p∑
k=1

W 2
PDE,k(ePDE,k)2 , (2.100)

where p is the number of PDEs being solved. Comparing the functional ∑j∈Si
W 2
ije

2
ij,

which represents the errors in the Taylor expansions, for both cases (after the solution
has been computed) would be a possible way to compare the basic approximations in
the two methods. An error comparison in this regard is shown in Section 2.7, and later
in Section 5.4.4. These numerical results suggest that the additional error introduced
in the Taylor expansions in the direct GFDM framework is small, and often worth the
price to obtain improved accuracy in some other aspect.

2.7 Numerical Comparisons
The first two examples in this chapter were carried out in MATLAB R2015b on an
Intel Core i7-4770 CPU rated at 3.40GHz, while the last one was done in Fortran and
was run on an Intel XeonE5-2670 CPU rated at 2.60GHz.

2.7.1 Laplace Problem on a Simple Domain
We begin by solving a basic Laplace equation on a rectangular domain [−20, 20] ×
[−2, 2]. The domain is discretized with an irregularly distributed point cloud.

∆φ = 0 , (2.101)
φ = φl , ~x ∈ ∂Ωleft , (2.102)
φ = φr , ~x ∈ ∂Ωright , (2.103)

~n · ∇φ = 0 , ~x ∈ ∂Ωwall , (2.104)

with φl > φr. ∂Ωleft and ∂Ωright are the boundaries at x = −20 and x = 20 respec-
tively; and ∂Ωwall consists of the boundaries at y = −2 and y = 2. For φl = 1 and
φr = 0, the obtained analytical solution is

φe = − 1
40x+ 1

2 . (2.105)

The error in the numerical solution, φ, is measured as

ε∞ = ‖φ− φe‖∞
‖φe‖∞

. (2.106)

In the classical GFDM, we solve the Laplace equation on interior points and the
respective boundary condition on boundary points. In the direct approach, we solve
only the Laplace equation on interior points, and both the Laplace equation and the
respective boundary condition on boundary points.
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We consider a coarse point cloud of h = 2.0 and N = 333 points, which is shown in
Figure 2.2. The errors obtained for classical and direct cases are ε∞ = 2.1× 10−14 and
ε∞ = 3.0 × 10−14 respectively. Thus, both methods accurately capture the solution,
even for a very coarse spatial discretization. This also illustrates the stability of the
direct GFDM without the need of an additional procdure to attain diagonal dominance
as is done in the classical GFDM.

-20 0 20
-2

0

2

Figure 2.2: Point cloud for the simple domain of the Laplace Problem.

We now do the comparison mentioned in Section 2.6.3. After the implicit system
arising in each method has been solved for the solution, the errors in Taylor expansions
are compared for the computed solutions.

Ji =
∑
j∈Si

W 2
ije

2
ij . (2.107)

The mean value of this error over all points for the domain considered is Jmean = 6.987×
10−4 for the classical GFDM case, and Jmean = 6.995×10−4 for the direct GFDM case,
which suggests that the extra term in the minimization does not significantly affect
the errors in the Taylor expansions in the direct GFDM.
We further extend this example to a case where the analytical solution is not dif-

ferentiated exactly by the numerical differential operators. While the linear exact
solution case considered above only showed that both methods produce results with
close to machine precision, the following case is more appropriate to compare the ap-
proximation errors. Consider the Laplace equation ∆φ = 0 on the rectangular domain
mentioned above with the exact solution

φe = exp(y) sin(x) , (2.108)

with Dirichlet boundary conditions on all boundaries. Errors in the numerical solution
are measured as in Eq. (2.106) and as follows

ε2 = ‖φ− φe‖2

‖φe‖2
. (2.109)

The convergence of the two errors are shown in Figure 2.3 which illustrates that
both methods produce similar results and convergence rates. The direct GFDM case
produces marginally more accurate results because the Laplace equation is also solved
on boundary points in addition to the Dirichlet boundary condition.

28



2.7 Numerical Comparisons

0.25 0.5 1 2
h

10 -4

10 -3

10 -2

10 -1

0 2

classical GFDM
direct GFDM
second order

0.25 0.5 1 2
h

10 -4

10 -3

10 -2

10 -1

0 1

classical GFDM
direct GFDM
second order

Figure 2.3: Errors in the laplace equation on a rectangular domain with exact solution
φe = exp(y) sin(x) : ε2 (left) and ε∞ (right).

2.7.2 Laplace Problem on a Non-Trivial Domain
The difference between the two aforementioned methods becomes more pronounced
for more complex simulation domains. We now solve the basic Laplace equation on
a domain with two equal rectangular sections connected by a narrow channel, as
shown in Figure 2.4, with the same overall dimensions as the previous example. The
dimensions of the narrow channel are [−0.5, 0.5]× [−0.2, 0.2].

Figure 2.4: Non-trivial domain of Laplace problem.

In this case, the boundaries ∂Ωleft and ∂Ωright are the left-most and right-most verti-
cal boundaries in Figure 2.4 respectively, and ∂Ωwall is the remainder of the boundary.
The solution can be studied analytically by considering the Lapalce equation as the
steady state of a diffusion equation φt = ∆φ with the same boundary conditions. For
the steady state, the flux should be constant throughout the domain

A
∂φ

∂x
= constant, (2.110)

where A = A(x) is the cross-sectional area, which is the vertical height in the two
dimensional case of Figure 2.4. Further, the total gradient in the horizontal x direction
should be the same as the total change in φ across the two ends, from left to right

∫
Ω

∂φ

∂x
dx = φl − φr. (2.111)

Assuming the gradient of φ in the x direction is constant in each of the three regions of
the domain, the exact solution, φe, can be obtained using Eq. (2.110) and Eq. (2.111),
and is shown in Figure 2.5.
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Chapter 2 Meshfree Generalized Finite Difference Methods

Once again, in the classical GFDM case, we solve the Laplace equation on interior
points and the respective boundary condition on boundary points. In the direct GFDM
approach, we solve only the Laplace equation on interior points, and both the Laplace
equation and the respective boundary condition on boundary points. Figures 2.6 –
2.8 show the change of the result φ in the x direction, for both methods with φl = 1,
φr = 0. The y direction, in which the results are constant, is perpendicular to the
plane of the paper. The smoothing length h is taken to be constant throughout the
domain. Figures 2.6 and 2.7 illustrate that the classical GFDM produces incorrect
results for coarse point clouds. This is due to an insufficient number of points in the
narrow channel. On the other hand, the direct approach gives much better results
in these cases as the Laplace equation is also solved on the boundary points. Both
methods produce similar results for fine point clouds, as shown in Figure 2.8. Clearly,
to obtain similar accuracy, the classical GFDM requires more points than the direct
GFDM, which results in higher clock times.
Further, we compare errors in Taylor expansions as explained in the previous exam-

ple. This is done for the h = 0.1 case shown in Figure 2.8, since the classical GFDM
produces incorrect results for the coarser point clouds considered. In contrast to the
previous section, the mean value of this error is calculated separately for interior and
boundary points. The difference between the two methods is minimal for interior
points, Jmean = 1.102 × 10−6 for the classical GFDM case, and Jmean = 1.113 × 10−6

for the direct GFDM case. On the other hand, a slightly larger difference is no-
ticed for boundary points, Jmean = 9.036 × 10−6 for the classical GFDM case, and
Jmean = 9.315 × 10−6 for the direct GFDM case. This once again illustrates that
the errors in the Taylor expansions are not significantly increased by the additional
term(s) in the local least squares minimization. This same comparison is also done for
a more complex over-determined system in Section 5.4.4, which gives similar results.
This example illustrates the point that solving the governing PDE on boundary

points along with the relevant boundary conditions can become essential when there
are very few interior points in a region of the domain. Apart from the academic exam-
ples considered here, such situations also often occur practically in fully Lagrangian
simulations of fluid flows. If a free surface is present, it is possible that the movement
of the fluid results in a small number of points breaking away from the main point
cloud, resulting in very few interior points in that region. A similar situation occurs
when a thin layer of fluid develops during a simulation. In both these cases, the direct
GFDM produces more accurate results than the classical GFDM due to the addition
of the PDE in the local least squares system at boundary points.

2.7.3 General “Elliptic” Over-Determined Problems

In Section 2.6.1, we showed how the direct GFDM can be used to solve over-determined
problems. An explanation of the types of problems being referred to here is given in
Appendix B. In this section, we give an example of the same. Consider the domain of
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Figure 2.5: Laplace equation: exact solution from two viewpoints.
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Figure 2.6: Laplace equation results, h = 0.7 , N = 2 248. Classical GFDM (left):
ε∞ = 1.4343. Direct GFDM (right): ε∞ = 0.1032.
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Figure 2.7: Laplace equation results, h = 0.6 , N = 2 960. Classical GFDM (left):
ε∞ = 0.7557. Direct GFDM (right): ε∞ = 0.0982.
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Figure 2.8: Laplace equation results, h = 0.1 , N = 91 693. Classical GFDM (left):
ε∞ = 0.08. Direct GFDM (right): ε∞ = 0.053.
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[0, 1]× [0, 1] and the following first order system of PDEs in unknowns T and φ

−T + φx = x , (2.112)
Tx = −1 , (2.113)
φy = 0 . (2.114)

A discussion on the ellipticity of similar first order systems has been done by Krupchyk
et al. [54]. In the direct GFDM, this system (with appropriate boundary conditions)
can be solved by adding the three equations to the least squares systems. If this
system is to be solved by the classical GFDM, where a square system7 is preferable,
two options arise. The first is to consider a weighted linear combination of two of
the equations in the system to reduce the number of equations. The second strategy
would be to observe that any solution of the above first order system also satisfies the
independent Laplace equations

∆T = 0 , (2.115)
∆φ = 0 . (2.116)

Solving this Laplace system numerically has the disadvantage that a solution to the
Laplace system need not always be a solution to the first order system above. An
example of this is when the following boundary conditions are used

~n · ∇T = 1 , φ = 0 , if x = 0 , (2.117)
−~n · ∇T = 1 , ~n · ∇φ = 1 , if x = 1 , (2.118)
~n · ∇T = 0 , ~n · ∇φ = 0 , on remaining boundaries , (2.119)

where ~n is the outward pointing unit normal. The first order system with these
boundary conditions has the unique solution T = 1 − x and φ = x. Using the
direct GFDM to solve the first order systems leads to very accurate results. For a
coarse point cloud with h = 0.1 and N = 709 points, the relative errors obtained are
ε∞ = 2.74×10−8 and ε∞ = 8.03×10−8 for T and φ respectively. On the other hand, the
Laplace system with these boundary conditions does not have a unique solution for T .
Of course, the boundary conditions can be modified for the Laplace system to include,
for example, T = 1 at x = 0 to ensure that the two systems are equivalent. However,
the required modification is not always trivial to ascertain. Moreover, even if the two
systems were to be equivalent theoretically (putting aside the difference in required
regularity of the solution), it could still sometimes be beneficial to solve the first
order over-determined system numerically. A major reason for this is that in meshfree
GFDMs, and several other meshfree methods too, the first and second derivatives are
not consistent with each other. In the sense that ∆ 6= ∇·∇ at the discrete level. Thus,
solving the Laplace system of Eq. (2.115) and Eq. (2.116) introduces an extra error in
the system Eq. (2.112) – Eq. (2.114) due to this inconsistency. Resulting inaccuracies
due to such errors in the specific case of fluid flow are explained in Chapter 5.

7By square system, we mean a system with the same number of PDEs and variables.
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Chapter 3

Conservation for Meshfree GFDMs
Consider a conservation law

∂φ

∂t
+∇ · J = 0 , (3.1)

with J = J(φ). For sufficiently smooth φ and J, integrating Eq. (3.1) over the entire
domain, and an application of the divergence theorem leads to the integral form of the
conservation law,

d

dt

∫
Ω
φ dV = −

∫
∂Ω
~n · J dA . (3.2)

Physically, Eq. (3.2) can be stated as: the rate of change of energy within the domain
should be the same as the energy flux across its boundary, when no energy source or
sink is present.
Finite volume methods (FVMs) [26] use a local balance on each discretization cell

or control volume. FVMs solve Eq. (3.1) by directly enforcing a local, discrete version
of Eq. (3.2). Meshfree GFDMs, on the other hand, usually directly solve the strong
form of Eq. (3.1). The lack of a discrete divergence theorem causes the absence of
a discrete form of Eq. (3.2). This combined with the local nature of the differential
operators, Eq. (2.4), results in conservation not being ensured at a discrete level. Since
this problem is inherent due to the purely local nature of approximations, it also affects
most other meshfree methods.
Conservative and mimetic1 properties of finite difference methods on different mesh

structures has been a topic of extensive study (see, for example, [4, 15, 61, 102]).
These include both uniform and non-uniform mesh spacing. However, most of these
methods use structured, orthogonal grids; though these ideas have even been gen-
eralized to finite differences on polyhedral meshes [62]. A key point to note is that
all these methods rely on the underlying grid structure to obtain conservation and
mimetic properties in numerical differential operators. Occasionally, such finite dif-
ference methods have also been referred to as GFDMs. We emphasize the distinction
between such mesh-based so-called GFDMs and meshfree GFDMs. In contrast to
the mesh-based methods, meshfree GFDMs use arbitrarily spaced point clouds with-
out any underlying grid defining the connectivity. The absence of an underlying grid
means that ideas behind mesh-based conservative finite differences that rely on the grid
can not be generalized easily to meshfree GFDMs. Conservation for meshfree GFDMs
has been an elusive goal, and it does not feature widely in meshfree literature.

1Mimetic properties of a numerical method refer to those which mimic or imitate some quality of
the continuum.
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Chapter 3 Conservation for Meshfree GFDMs

In this chapter, we present the need for conservation, and show the requirements
for conservation in meshfree GFDMs. We further present the method of Chiu et al.
[58, 59] who introduced a procedure to get conservative first derivatives in a meshfree
GFDM setting. We then present a novel generalization of that work that removes the
requirement of symmetry on stencil coefficients. Further, we show how the procedure
used in this generalization can also be applied to obtain conservative higher derivatives,
which is not possible for the method of Chiu et al.. We then explain why both
these methods are very inefficient for most practical problems. In Chapter 4, we
present a new efficient method to introduce approximate conservation in meshfree
GFDMs. In both this chapter and the next, we focus on conservation with regard to
the classical meshfree GFDM. However, the work can also be extended to the direct
GFDM framework presented in Section 2.6.

3.1 Discrete Divergence Theorem

3.1.1 Conservative First Derivatives
Consider the divergence theorem∫

Ω
∇ · ~g dV =

∫
∂Ω
~n · ~g dA , (3.3)

for sufficiently smooth ~g and ∂Ω. ~n = (nx, ny, nz) is the outward pointing unit normal.
Setting ~g to be (f, 0, 0), (0, f, 0) and (0, 0, f) alternatingly, a scalar version of Eq. (3.3)
can be obtained as ∫

Ω
∂kf dV =

∫
∂Ω
fnk dA . (3.4)

Throughout this thesis, the superscript k = x, y, z denotes the spatial dimension cor-
responding to which the derivative is being taken. Note that while the superscript
∗ for the differential operators used earlier represents any differential operator, the
superscript k is used to only denote first derivatives.
We wish to find discrete differential operators of the form Eq. (2.4) satisfying the

following discrete version of Eq. (3.4)

N∑
i=1

Vi∂̃
k
i f =

∑
i∈∂Ω

fin
k
i Ai , (3.5)

where Vi is a volume associated with point i, Ai is the portion of area of the boundary
associated with boundary point i, and nki is the k component of the outward pointing
unit normal at boundary point i.
In addition to obtaining global conservation, a further advantage of differential

operators satisfying a discrete divergence theorem is that it results in some more
general mimetic properties. We now show that such a conservative solution satisfies a
discrete version of integration by parts∫

Ω
g∂kf dΩ =

∫
∂Ω
fg nk dA−

∫
Ω
f∂kg dΩ . (3.6)

34



3.1 Discrete Divergence Theorem

Theorem 3.1.1 (Summation by parts). If the discrete divergence theorem for the first
derivatives, Eq. (3.5), holds, then the following discrete version of Eq. (3.6) also holds

N∑
i=1

Vigi∂̃
k
i f =

∑
i∈∂Ω

figin
k
i Ai −

N∑
i=1

Vifi∂̃
k
i g . (3.7)

Proof. By expanding the term ∂̃∗i [(f − fi)(g− gi)] , it is easy to see that the following
“product rule” holds.

∂̃∗i fg = fi∂̃
∗
i g + gi∂̃

∗
i f + ∂̃∗i [(f − fi)(g − gi)] . (3.8)

Now, starting from Eq. (3.8), and applying the discrete divergence theorem Eq. (3.5)
to (f − fi)(g − gi) and then fg, we get

∂̃ki fg − fi∂̃ki g − gi∂̃ki f = ∂̃ki [(f − fi)(g − gi)] , (3.9)
N∑
i=1

Vi
(
∂̃ki fg − fi∂̃ki g − gi∂̃ki f

)
=

N∑
i=1

Vi∂̃
k
i [(f − fi)(g − gi)] , (3.10)

=
∑
i∈∂Ω

(fi − fi)(gi − gi)nki Ai , (3.11)

= 0 , (3.12)
N∑
i=1

Vi
(
fi∂̃

k
i g + gi∂̃

k
i f
)

=
N∑
i=1

Vi∂̃
k
i fg , (3.13)

=
∑
i∈∂Ω

figin
k
i Ai . (3.14)

which leads to Eq. (3.7).

Note that setting g ≡ 1 leads to the special case of the discrete divergence theorem,
Eq. (3.5).

3.1.2 Conservative Laplace Operators
In a similar manner to that done above, the conservative criteria for higher order
derivatives can also be derived. Setting ~g = ∇φ in Eq. (3.3) for some scalar valued
function φ, we get ∫

Ω
∆φ dV =

∫
∂Ω
~n · ∇φ dA . (3.15)

We wish to find a discrete Laplace operator satisfying the following discrete version of
Eq. (3.15)

N∑
i=1

Vi∂̃
∆
i φ =

∑
i∈∂Ω

~ni · ∂̃∇i φAi , (3.16)

where ∂̃∇i =
(
∂̃xi , ∂̃

y
i , ∂̃

z
i

)T
. Like in first derivatives case, it can be shown that satisfying

this conservation criteria leads to additional mimetic properties of the discrete Laplace
operator.
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Chapter 3 Conservation for Meshfree GFDMs

3.2 Globally Defined Conservative Differential
Operators

3.2.1 Symmetric Conservative Differential Operators
A first attempt at conservation for first derivatives in meshfree GFDMs was made
by Chiu et al. [58, 59]. They enforce a volume weighted symmetry condition on the
differential operator stencil coefficients

Vic
k
ij = −Vjckji , ∀i 6= j , (3.17)

in addition to an explicit control on the central stencil value

ckii =
{ 0, if i /∈ ∂Ω ,

nk
i Ai

2Vi
, if j ∈ ∂Ω .

(3.18)

They go on to show that Eq. (3.17) and Eq. (3.18) lead to a discrete version of the
divergence theorem, similar to Eq. (3.5). We show a different proof of the same in the
next section. Chiu et al. further establish that a necessary condition for the existence
of conservative differential operator stencils satisfying Eq. (3.17) and Eq. (3.18), in
addition to the usual consistency conditions of Eq. (2.20), is that the monomial test
functions should satisfy the discrete divergence theorem.

N∑
i=1

Vi∂̃
k
im =

∑
i∈∂Ω

min
k
i Ai , ∀m ∈M . (3.19)

While this condition was not proved to be sufficient, they state that empirically it
was observed to be sufficient. Eq. (3.17), Eq. (3.18) and the monomial consistency
conditions lead to the following global system for the differential operators∑

j∈Si

ckijmj = ∂kim, ∀m ∈M , ∀i , (3.20)

Vic
k
ij = −Vjckji , ∀i 6= j , (3.21)

ckii =
{ 0, if i /∈ ∂Ω ,

nk
i Ai

2Vi
, if j ∈ ∂Ω ,

(3.22)

which is an under-determined system solved with a norm minimization procedure.
While Eq. (3.20) and Eq. (3.22) are local and only depend on the support of each point
i, the symmetry condition Eq. (3.21) couples all the local systems together. Thus, a
very large sparse system needs to be solved to obtain the differential operators. On
the other hand, in classical GFDMs, only small local systems need to be solved at
each point. Thus, this method is very inefficient and can not be used for large point
clouds or for moving point clouds in a Lagrangian framework where the differential
operators need to be recomputed at every time step. We note that the use of global
approximations, similar to this one, to achieve the goal of conservation in a meshfree
method, have also been suggested in the unpublished work of Diyankov [21].
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3.2 Globally Defined Conservative Differential Operators

A further disadvantage of this method is that the symmetric assumption in Eq. (3.17)
is not always a fair one. While it makes sense for symmetric rectilinear grids, the same
can not be said for arbitrary point locations. Neighbourhoods Si and Sj usually have
different spatial distribution of points, and could even contain a different number of
points. In such scenarios, the symmetric coefficients assumption has no basis. This
problem is further compounded for applications in which the spatial density of points
is not constant, or when one sided stencils are desired.
A further drawback of this framework is that it can not be generalized to higher

derivatives. Extending this procedure to the discrete Laplace operator would require
setting the central stencil value c∆

ii = 0 for all points i which do not have any boundary
neighbour. This leads to an unstable operator, as discussed in Section 2.5.5.

3.2.2 Non-Symmetric Conservative Differential Operators
In this section, we present a method to generalize the conservative differential operators
of Chiu et al. [58, 59] presented in the previous section. The symmetry requirement
of Eq. (3.17) is avoided by directly enforcing the discrete divergence theorem Eq. (3.5).
Substituting the differential operator definitions Eq. (2.4) in Eq. (3.5) leads to

N∑
i=1

∑
j∈Si

Vic
k
ijfj =

∑
i∈∂Ω

fin
k
i Ai . (3.23)

To simplify notation, we introduce

c̄ij =
{
cij, if j ∈ Si ,
0, if j /∈ Si .

(3.24)

Using this, Eq. (3.23) can be rewritten as

N∑
i=1

N∑
j=1

Vic̄
k
ijfj =

∑
i∈∂Ω

fin
k
i Ai . (3.25)

Considering a basis for f in Eq. (3.25) consisting of Kronecker delta functions leads to

N∑
i=1

Vic̄
k
ij =

{
0, if j /∈ ∂Ω ,
nkjAj, if j ∈ ∂Ω ,

(3.26)

which should hold for each j = 1, 2, . . . , N . Thus, the problem of enforcing a discrete
divergence theorem for the first derivatives can be reduced to enforcing the “column
sums” of Eq. (3.26).

Theorem 3.2.1 (Generalization of symmetric conservative differential operators).
The symmetric conservative differential operators, Eq. (3.17) and Eq. (3.18), of Chiu
et al. form a specific case of Eq. (3.26).
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Proof. Starting from the LHS of Eq. (3.26) and using Eq. (3.17)

N∑
i=1

Vic̄
k
ij = Vj c̄

k
jj −

N∑
i=1
i 6=j

Vj c̄
k
ji , (3.27)

= 2Vj c̄ kjj − Vj
N∑
i=1

c̄ kji , (3.28)

= 2Vj c̄ kjj − Vj
∑
i∈Sj

c kji , (3.29)

= 2Vj c̄ kjj . (3.30)

Now, using Eq. (3.18) directly leads to the RHS of Eq. (3.26).

Thus, Eq. (3.26) generalizes the symmetric conservative differential operators, and
removes the symmetry restriction. These non-symmetric conservative differential op-
erators thus satisfy

∑
j∈Si

ckijmj = ∂kim, ∀m ∈M ,∀i , (3.31)

N∑
j=1

Vj c̄
k
ji =

{
0, if i /∈ ∂Ω ,
nkiAi, if i ∈ ∂Ω .

(3.32)

The subscript ij in Eq. (3.26) has been swapped to ji to make the following evident.
For a central point i, Eq. (3.31) is the usual monomial consistency condition or the “row
sums” condition which elaborates how each neighbour j ∈ Si affects the differential
operator stencil ~c ki . On the other hand, Eq. (3.32) is the conservation or “column
sums” condition which elaborates how the central point i affects the stencils of each of
its neighbours ~c kj ∀j ∈ Si, j 6= i. Thus, similar to the symmetric differential operators
of the previous section, these operators also need to be computed by solving a global
system. Like before, Eq. (3.31) and Eq. (3.32) represent an under-determined system,
which needs to be solved with a global norm minimization procedure, an example of
which is explained in Appendix A.6.
Since these differential operators satisfy the discrete divergence theorem Eq. (3.5)

for an arbitrary function, clearly they should also satisfy the same for the monomial
test functions. Thus, a necessary condition for the existence of such conservative
differential operators is the same as that shown in the previous section in Eq. (3.19).
Besides the similarities of the global norm minimization and the necessary condition,
this generalization has several advantages over the symmetric conservative differential
operators of the previous section.

• This method removes the unrealistic symmetry requirement on the differential
operators.
• Conservative first derivative operators found in this method are empirically ob-

served to have lesser norms than the symmetric method, which results in im-
proved stability.
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3.2 Globally Defined Conservative Differential Operators

• This procedure results in a sparse linear system which has a singly bordered
block diagonal structure. This structure can be exploited to obtain more efficient
solvers, which is not possible in the symmetric procedure. More details about
the same are given in Appendix A.6.
• Unlike the symmetric method, the procedure laid out in this generalization can

also be used to obtain conservative higher derivatives. Taking Kronecker delta
basis functions as before, Eq. (3.16) gives

N∑
i=1

Vic
∆
ij =

∑
i∈∂Ω

cnijAi , ∀j , (3.33)

where cnij = cxijn
x
i + cyijn

y
i + czijn

z
i . Note that the RHS of Eq. (3.33) is 0 for

all points j which have no boundary neighbours. Since this method does not
directly enforce a constraint on the central stencil value, diagonal dominance can
be achieved in a way similar to that explained in Section 2.5.5.

The necessary condition for the existence of a solution in both these methods,
Eq. (3.19), imposes a condition on the geometric attributes of the point cloud: the
volume Vi associated with each point, the area Ai associated with each boundary
point, and the outward pointing unit normal ~ni for each boundary point. Chiu et al.
enforce these conditions by solving a global optimisation problem. In the next chap-
ter, we show that the same can be enforced locally in many cases, without the need
to solve an additional global optimisation problem for the geometric attributes of the
point cloud.
However, the major drawback in both these methods remains the need to solve for

the differential operators globally. The extent of the same can be put into perspective
by the following. Consider a point cloud with N points, with nmean being the average
number of neighbours per point. Let the number of test functions in the monomial
setM be |M|. The largest portion of time taken in meshfree GFDMs is for solving
the large implicit system. For one variable, this consists of N unknowns, while the
sparse system has a maximum of Nnmean non-zero values. In addition to this, small
local systems of size approximately |M| × nmean are being solved at each point. For
the globally defined differential operators, these small local systems are replaced with
one large global system. In the non-symmetric case presented above, this represents
a system of Nnmean unknowns with a maximum of (|M|+ 1)Nnmean non-zero values
in the sparse linear system. In 3D, typical values used are nmean ≈ 50 and |M| =
10. Thus, the global system to solve the differential operators has 50 times as many
unknowns, and storing the linear system takes 11 times the amount of memory of that
needed in the usual implicit system to obtain the solution. Clearly, these methods
are unfeasible for large point clouds, or moving point clouds for which the differential
operators need to be recomputed at every time step.
Since exact conservation with meshfree GFDMs remains extremely hard to achieve in

an efficient way, this motivates the need to introduce less strict notions of conservation.
Rather than trying to achieve a general discrete divergence theorem for every possible
discrete field, in the next chapter, we introduce a method that tries to achieve the
same only for the discrete fields of interest in the problem. i.e. We make sure that,
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for example, the velocity field satisfies Eq. (3.5). This is done by conserving numerical
fluxes across locally defined control cells.
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Chapter 4

A Flux Conserving Meshfree Method
Lack of conservation has been the biggest drawback in meshfree GFDMs. In the last
chapter, we showed that getting exact conservation is very inefficient for most point
clouds, and we motivated the need to introduce less strict notions of conservation for
meshfree GFDMs. In this chapter, we present a novel modification of classical mesh-
free GFDMs to include local balances which produce an approximate conservation of
numerical fluxes. This is done by enforcing a local discrete divergence theorem within
the usual moving least squares framework. This results in an approximate discrete
form of global conservation, Eq. (3.2). Unlike Finite Volume Methods, the local bal-
ances are based on locally defined control cells, rather than a globally defined mesh.
We present the application of this method to an advection diffusion equation and the
incompressible Navier–Stokes equations. Our simulations show that the introduction
of this flux conservation significantly reduces the errors in conservation in meshfree
GFDMs.

4.1 Introduction
As explained in Chapter 2, in meshfree GFDMs numerical differential operators are
found by solving an under-determined system. These systems are closed with a
weighted norm minimization criterion. However, additional properties could also be
enforced on the derivative stencils before the minimization procedure is carried out.
In this chapter, we use this idea to enforce approximate conservation.
Despite the name, most meshfree methods are not completely devoid of meshes.

While meshfree methods lack the use of a predefined mesh for domain discretization,
many meshfree methods use an easily generable mesh such that the solution is not
too heavily dependent on the quality of that mesh (see [64] for details). Several
methods, which solve partial differential equations in their weak formulation, use a so-
called background mesh for numerical integration of the weak-forms. The element-free
Galerkin method (EFG) [9] uses a global background mesh, while the meshless local
Petrov-Galerkin method (MLPG) [5] requires only local background cells. Meshfree
particle methods, such as SPH, use a predefinition of mass particles, which often
requires some kind of a mesh. One of the methods to solve the problem of particle
distortion in SPH is by regularization, which requires a re-meshing [114]. Several
methods in the family of point interpolation methods (PIM) [67] use tessellations or
background cells in so-called T-schemes for the selection of support domains. Point-
based meshfree GFDMs are often referred to as “truly meshfree”. However, they too
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use some notion of a mesh. They often use local triangulations for accurate post-
processing operations or for the identification of points on the free surface of fluid flow
simulations. In each of these cases, the meshes used are a lot easier to generate and do
not impose the restrictions that meshes in classical meshed methods do. A question
that then arises is that if such meshes are being defined anyway, why not use them to
improve the solution quality in some way?
Finite Volume Methods (FVMs) have the feature of local conservation of numerical

fluxes from one control volume to its neighbouring one [26]. In this chapter, we aim
to use local control cells, in a manner similar to FVMs, in a meshfree framework to
introduce an approximate conservation of numerical fluxes. A local control cell at a
point is formed by the Delaunay tessellation of points in its support domain. The
differential operators are computed using an MLS approach which guarantees usual
monomial consistency coupled with a conservation of numerical fluxes for specific fields.
For modeling fluid flow, we use a fully Lagrangian framework. Since point clouds can
be modified locally, and the control cells are also defined locally, this method does
not face the problem of cell distortion present in Lagrangian moving mesh methods.
It must be noted that the idea of generalizing control volumes used by FVMs in
the context of meshfree methods is not a novel one. The Finite-Volume Particle
Method (FVPM) [37, 38] generalizes control volumes to include those which need
not be disjoint. In FVPM, grid generation is replaced by an expensive integration
of partition of unity functions. The Meshless-Finite Volume Method (MFVM) [39]
generalizes Voronoi-based moving mesh methods. MFVM uses a volume partitioning
that amounts to a Voronoi tessellation with edges smoothed. Unlike both the FVPM
and MFVM, the method presented here is a strong-form method.

4.2 A Meshfree Control Cell

For each point i, we consider the Delaunay tessellation of the n(i) points in its support
domain Si. The Voronoi diagram forms the dual graph to the Delaunay tessellation.
Among the tessellations, the Voronoi cell containing point i is the only one of interest,
and could be used as the control cell over which the flux balance is carried out. The
Voronoi dual to the Delaunay tessellation is formed by connecting the circumcenters of
the Delaunay simplexes (triangles in 2D or tetrahedrons in 3D). Instead of a traditional
Voronoi dual, we use the central cell from a centroidal dual as the local control cell over
which flux balances are carried out. This centroidal dual is formed by connecting the
centroids of simplexes, instead of their circumcenters. This poses several advantages
over the Voronoi dual. These advantages, along with the details about the construction
of the cell numerically are detailed in Appendix C. While a centroidal dual is used to
construct the local control cells, we use the term ‘Voronoi cell’ for notational simplicity.
Figure 4.1 shows such a cell within the support domain. Each point i is associated
with a volume Vi, taken to be the volume of this cell. Vi is also used for accurate
post-processing. The local tessellations are also used in the computation of geometric
parameters of the point cloud, such as the identification of free surface points in flows
with open boundaries.
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4.2 A Meshfree Control Cell

Figure 4.1: Control cell within a local support. Center point is marked with a cross.
Nearest neighbours l ∈ Ii are marked with circles. Interior point (left) and
boundary point (right).

Using the local tessellation for the support Si, we obtain a set of nearest neighbours
Ii, in the Delaunay sense. For l ∈ Ii, we let ĩl denote the dual edge (in 2D) or face (in
3D) of the Delaunay edge il. Further, we let Ail denote the area of ĩl and ~nil denote
the unit normal of ĩl, pointing away from i. Exact details about the construction
of ĩl numerically, and the computation of Ail and ~nil are given in Appendix C. For
boundary points, the geometric area Ai and outward pointing unit normal ~ni are used
to truncate and close the semi-infinite Voronoi cell, as shown in Figure 4.1. To simplify
notation, we define the closure Īi of Ii to include the point i itself, if i is a boundary
point. Further, we let ~nii = ~ni and Aii = Ai.
We note that since the Voronoi cells are defined locally on the support domain of

each point, and not globally, they need not stitch together to form a global tiling of the
computational domain. The uniqueness property of Delaunay tessellations suggests
that the Voronoi cells should stitch together perfectly. However, that only holds for
sufficiently large support domains. For small support domains, it is possible that an
insufficient number of points in each neighbourhood leads to unsymmetric Voronoi
cells. Under such situations, symmetry of the interface values, Aij and Aji; ~nij and
~nji, is violated. Figure 4.2 shows such an example of adjacent non-symmetric cells.
We measure the extent of stitching together to form a consistent global mesh by the
error

εmesh =
∑N
i=1

∑
l∈Ii
‖~nilAil + ~nliAli‖

2∑N
i=1 Vi

. (4.1)

If i /∈ Il, we set ~nli = ~0 and Ali = 0. If the cells are based on a global tessellation,
~nilAil = −~nliAli ∀i, l, which leads to εmesh = 0. Table 4.1 shows the extent of stitching
together of locally defined Voronoi cells for different support sizes β (see Eq. (2.3)),
and the corresponding average number of points in each support domain, on a sample
3D point cloud. Table 4.1 illustrates that for large enough support domains, which
correspond to high values of β, the intersection of local Voronoi cells is minimum.
Throughout this thesis, we use support sizes in the range of β ∈ [0.75, 1]. This
results in approximately 45− 55 points in the support domain of each point in three
dimensions, and about 20 points in two dimensions.

43



Chapter 4 A Flux Conserving Meshfree Method

Figure 4.2: A 2D example of non-symmetric locally defined Voronoi cells (left), and
the same point configuration with symmetric locally defined Voronoi
cells (right). The non-symmetric cases occur when the support domains
are not sufficiently large. The size of the support domains considered are
β = 0.6, mean(ni) = 11 (left) and β = 0.7, mean(ni) = 18 (right).

Table 4.1: Errors in formation of a global tiling by stitching together locally obtained
Voronoi cells (in 3D). The domain considered is a unit sphere with h = 0.5,
N = 1400.

β εmesh mean(ni)
0.5 3.31 16
0.55 1.08 21
0.6 0.33 27
0.65 9 × 10−3 35
0.7 6 × 10−15 41

Several meshfree methods, such as EFG [9] and PFEM [84], use a globally defined
background mesh for a variety of purposes. Such a global background mesh could
be used for the control cells, but defining cells based on local tessellations on a small
number of points is significantly faster, especially when done in parallel. The concept of
shapeless meshfree volumes for each point have also been proposed by several authors
[58, 59, 48, 49], but their use presents several problems in the present context. Most
importantly, the proposed meshless volumes are not closed, which, as we shall show
later, is necessary for the construction of our flux conserving differential operators.

4.3 Flux Conserving Differential Operators
For the definition of our new numerical first derivative operators, we start by writing
a local version of Eq. (3.4). This discrete, local version of the scalar form of the
divergence theorem on the control cells can be written as follows

Vi∂̃
k
i f =

∑
l∈Īi

Fil(f) , (4.2)

where the superscript k = x, y, z denotes the spatial dimension, Fil(f) is a numerical
flux function which depends on ~nil, Ail, fi and fl, and possibly their derivatives. One
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possibility for F , to achieve a local discrete divergence theorem, can be

Fil(f) =

finkiAi if i ∈ ∂Ω and l = i ,

filn
k
ilAil elsewhere ,

(4.3)

with fil = fi+fl

2 . Further, ~nil and Ail are determined locally based on the control cell as
mentioned in Section 4.2. Throughout this chapter, we consider only simple symmetric
flux functions similar to Eq. (4.3). However, more sophisticated flux functions can
also be used and can also be coupled with flux functions in Eq. (2.4). The use of flux
functions in the definition of the differential operators, Eq. (2.4), have been considered
by Chiu et al. [58, 59]; and those specific to the Finite Pointset Method have been
studied by Seifarth [98, 99].
For time-dependent problems, stencil coefficients for numerical differential operators

are found such that they satisfy Eq. (4.2) for conservation of fluxes at the previous time
level, in addition to the monomial consistency conditions, Eq. (2.20). Thus, if a field
φ needs to be conserved, when proceeding from time step tn to tn+1, the discrete
first-derivatives are found by the following minimization∑

j∈Si

ckijmj = ∂kim, ∀m ∈M , (4.4)

∑
j∈Si

ckijφ
(n)
j = 1

Vi

∑
l∈Īi

Fil(φ(n)) , (4.5)

min Ji =
∑
j∈Si

(
ckij
Wij

)2

, (4.6)

where the bracketed superscript denotes the time-level and k = x, y, z. We empha-
size once again that the superscript k in Eq. (4.4) – Eq. (4.6) is used to denote only
the first order derivatives in different directions, x, y, z, whereas the superscript ∗ in
Eq. (2.4) denotes any arbitrary differential operator. Eq. (4.4) – Eq. (4.6) constitute
an enhancement of the classical GFDM differential operators by the conservation con-
dition Eq. (4.5). If the monomials m ∈ M are taken up to second order, Eq. (4.4)
represents 10 conditions in 3D and 6 conditions in 2D. Whereas the number of un-
known ckij values (for a particular k) is the same as the number of points in each
support domain, which is typically around 50 and 20, in 3D and 2D respectively, for
the support sizes being used. Thus, there is plenty of numerical freedom to impose
the additional flux conservation condition, Eq. (4.5), without affecting the accuracy
of gradient reconstructions, Eq. (4.4). Clearly, the stencil coefficients ckij can be found
locally at each point i, without the need for the global systems used by the previous
conservative meshfree GFDMs presented in the previous chapter.
For each point i = 1, 2, . . . , N , Eq. (4.4) represents the usual monomial consistency

conditions as described by Eq. (2.20), which is dependent on all points in the support
domain Si. On the other hand, Eq. (4.5) represents the conservation of numerical
fluxes at the previous time-level, where the fluxes are defined solely on the locally
defined control cell, which depends only on the nearest neighbours Īi. This difference
is illustrated in Figure 4.1.
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In explicit time-integration schemes where spatial derivatives are computed only
at the previous time level, the differential operators defined by Eq. (4.4) – Eq. (4.6)
degenerate to ones based solely on the locally defined control cell, making the scheme
resemble Voronoi-based FVMs. When the derivative stencils are being used for explicit
time-integration, they would only be applied to φ(n). As a result, the spatial derivatives
can be completely described by Eq. (4.5), which makes Eq. (4.4) irrelevant. Thus, the
inclusion of Eq. (4.5) is only done with implicit time-integration schemes, which are
used throughout this thesis.
The additional time taken due to the addition of Eq. (4.5) is not significant. As

mentioned earlier, tessellations are usually performed in classical GFDMs for pre-
scribing volumes to points, areas to boundary points and the detection of free surfaces.
Thus, no extra tessellations need to be performed to determine the local control cells.
Secondly, the size of the systems being solved is changed by a very small amount.
For example, in 3D, for second order-accurate differential operators, classical GFDMs
solve a system of 10 equations and about 50 unknowns at each point. The addition of
Eq. (4.5) changes that to a system of 11 equations and 50 unknowns. Further, when
the differential operators are defined locally as done in this chapter, the largest portion
of time of meshfree GFDM simulations is taken by the iterative solvers for the large
sparse linear systems obtained by the discretization of the PDEs. The computation
of the differential operators takes up a much smaller portion of the simulation time.
Thus, the addition of the flux conservation constraint, Eq. (4.5), has a minimal effect
on the overall time taken by the entire simulation. This is shown in the numerical
examples in Section 4.5.3.
Henceforth, for the sake of brevity, we denote this variant of classical GFDMs, in

which the differential operators conserves fluxes of specific numerical fields, as FC-
GFDM, where the FC stands for flux conserving. We note that Eq. (4.5) does not
ensure the conservation of numerical fluxes of the field determined at level n+ 1 with
respect to the given differential operator stencils. Thus, even with respect to the field
φ, the use of differential operators defined by Eq. (4.4) – Eq. (4.6) would only form an
approximately conservative method.
It should be ensured that the choice of the flux function F is done such that Eq. (4.4)

and Eq. (4.5) are consistent with each other when φ in the neighbourhood of i is linearly
dependent on the monomials m ∈ M. For F defined as in Eq. (4.3), this is ensured
by the fact that the Voronoi cell is closed and not self-intersecting by definition. This
guarantees that geometric fluxes are conserved. For 0 order, the cell is closed,∑

l∈Īi

~nilAil = 0 . (4.7)

Similarly, first order geometric conservation ensures

∑
l∈Īi

nkilx
k′

ilAil =

0 if k 6= k′ ,

Vi if k = k′ ,
(4.8)

where k, k′ = x, y, z denote the spatial dimension, ~xil is the geometric center of the
edge or face ĩl for l 6= i, given by ~xil = ~xi+~xl

2 ; and ~xii = ~xi. Eq. (4.8) is also used
to determine the volume of the cell. We note that the geometric flux conservation
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described above is the same as the necessary conditions for the existence of the globally
defined conservative operators defined in the previous chapter in Eq. (3.19).

4.3.1 Higher Order Derivatives
The same procedure used above can be extended to compute numerical differential
operators for higher order derivatives. This is illustrated with a diffusion operator.
Consider the diffusion operator D such that Dφ = ∇·(α∇φ). The divergence theorem
applied to the vector field α∇φ leads to∫

Ω
∇ · (α∇φ) dV =

∫
∂Ω
~n · (α∇φ) dA . (4.9)

A discrete local version of Eq. (4.9) on the control cells can be written as

Vi∂̃
D
i φ =

∑
l∈Īi

Gil(φ, α) , (4.10)

where G is a numerical flux function. Throughout this chapter, G is taken to be
symmetric, similar to Eq. (4.3).

Gil(φ, α) =

αi~ni · ∂̃∇i φAi if i ∈ ∂Ω and l = i ,

αil~nil · ∂̃∇il φAil elsewhere ,
(4.11)

where αil = αi+αl

2 , ∂̃∇i = (∂̃xi ; ∂̃yi ; ∂̃zi )T in 3D, and ~nil · ∂̃∇il is an approximation of the
first order derivative in the direction of ~nil and is given by

~nil · ∂̃∇il φ = φl − φi
‖~xl − ~xi‖

. (4.12)

Once again, this method can easily be extended to use more sophisticated flux func-
tions and less diffusive approximations than Eq. (4.12). Using Eq. (4.10), when pro-
ceeding from time step tn to tn+1, the discrete diffusion operator is found by the
following minimization ∑

j∈Si

cDijmj = ∂Di m, ∀m ∈M , (4.13)

∑
j∈Si

cDijφ
(n)
j = 1

Vi

∑
l∈Īi

Gil(φ(n), α) , (4.14)

min Ji =
∑
j∈Si

(
cDij
Wij

)2

. (4.15)

The FC-GFDM differential operators can be used on both fixed and moving point
clouds. However, their use on fixed point clouds has the disadvantage of needing
differential operators to be recomputed at every time step. On the other hand, since
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the traditional GFDM differential operators depend only on point locations, they can
be computed in a single pre-processing step. This disadvantage is not present for
moving point clouds, since changing point locations means that differential operators
always need to be recomputed. We thus restrict the numerical study in the following
sections to moving point clouds and Lagrangian frame of references.
While using the ideas developed in this chapter in a Lagrangian framework, we

reconstruct the local dual cells at each time step. Thus, the control cells are not
advected with the Lagrangian point cloud movement. An important point to note
that using irregularly spaced point clouds and a Lagrangian framework, which requires
the addition and deletion of points and interpolation for the same (see Section 2.4),
can lower experimental convergence orders, and can cause deviations from expected
convergence trends.
We further note that if a fixed Eulerian frame of reference is being used, it might

be worth the cost to solve the global system for the non-symmetric conservative dif-
ferential operators introduced in Section 3.2.2 in the pre-processing step.

4.4 Numerical Results: Advection Diffusion Equation
Consider the advection-diffusion equation in the Lagrangian formulation on a fixed
domain Ω ⊂ R2

D~x

Dt
= ~v , (4.16)

Dφ

Dt
= ∇ · (α∇φ) , (4.17)

where φ is the concentration or temperature, α is the diffusivity, and ~v is the advection
velocity which is assumed to be divergence-free. Energy conservation, Eq. (3.2), leads
to

d

dt

∫
Ω
φ dV =

∫
∂Ω
~n · (α∇φ− ~vφ) dA , (4.18)

For the FC-GFDM, the numerical diffusion operator is computed as done in Eq. (4.13)
– Eq. (4.15). The spatial discretization of Eq. (4.17) is obtained as

Dφi
Dt

= ∂̃Di φ =
∑
j∈Si

cDijφj . (4.19)

In the first step, movement of the point cloud is done in accordance with Eq. (4.16),

~x
(n+1)
i = ~x

(n)
i + ~v

(n)
i ∆t+ ~v

(n)
i − ~v (n−1)

i

∆t (∆t)2 , (4.20)

for each point i = 1, 2, . . . , N . An in-depth discussion about this movement process is
done in Chapter 6. The explicit time-integration for the movement of points results
in a CFL-like condition on the time step size [66, Section 4.4.9]

∆t = C∆t

(
h

‖~v‖

)
min

. (4.21)
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Figure 4.3: Convergence of error for the Advection Diffusion equation.

For the advection diffusion test case being considered, we use a coefficient of C∆t =
0.01. The movement is followed by an implicit Euler time-integration of Eq. (4.17)

φ
(n+1)
i − φ(n)

i

∆t =
∑
j∈Si

cDijφ
(n+1)
j , (4.22)

The implicit system resulting from Eq. (4.22) can be solved using an iterative solver.
In the results below, we use the BiCGSTAB solver [117]. Homogeneous Neumann
boundary conditions are applied for φ. Given these boundary conditions, error in
energy conservation can be measured by

εE =

∣∣∣∫Ω φ(end) dV −
∫

Ω φ
(0) dV +

∫ tend
0 [

∫
∂Ω ~n · ~vφ dA] dt

∣∣∣∫
Ω φ

(0) dV
, (4.23)

where the bracketed superscript end denotes the values at the end of simulation, t =
tend, and the bracketed superscript 0 denotes the initial condition. The computational
domain Ω is taken to be [−2, 2] × [−2, 2], and simulation is done till tend = 2π. A
uniform diffusion coefficient α = 0.4 and advection field ~v = (−y, x) are used. Initial
conditions are taken to be

φ(~x, 0) =

500 , if ‖~x− (1, 0)‖2 < 0.1 ,
0 , elsewhere .

(4.24)

The convergence of the error in energy conservation with a varying smoothing length
is shown in Figure 4.3. The figure illustrates that the new flux conserving method
produces much smaller errors. Both methods take similar simulation times. For an
error ε and consecutive smoothing lengths h1 and h2, the rate of convergence of the
solution with changing smoothing length is measured as

r =
log

(
ε(h2)
ε(h1)

)
log

(
h2
h1

) . (4.25)

The errors in energy conservation and the numerical orders of convergence of the errors
are tabulated in Table 4.2.
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Table 4.2: Errors and experimental convergence rates for the advection diffusion test
case. h is the smoothing length, N is the number of points in the entire
domain at the initial state, εE is the error in energy conservation, and r is
the order of convergence of εE.

GFDM FC-GFDM
h N εE r εE r

0.4 752 2.28 × 10−3 − 1.24 × 10−3 −
0.2 2 778 9.66 × 10−4 1.24 4.05 × 10−4 1.61
0.1 10 565 4.76 × 10−4 1.02 1.61 × 10−4 1.33
0.05 36 224 2.89 × 10−4 0.72 6.73 × 10−5 1.26

4.5 Numerical Results: Incompressible Navier–Stokes
Equations

Consider fluid flow modeled by the incompressible Navier–Stokes equations in La-
grangian form

D~x

Dt
= ~v , (4.26)

∇ · ~v = 0 , (4.27)
D~v

Dt
= η

ρ
∆~v − 1

ρ
∇p+ ~g , (4.28)

where ~v is the fluid velocity, ρ is the density, η is the dynamic viscosity and ~g includes
both gravitational acceleration and body forces. We consider conservation with respect
to the velocity field, which leads to∫

Ω
∇ · ~v dV =

∫
∂Ω
~n · ~v dA , (4.29)∫

Ω
∇ · (~v ⊗ ~v) dV =

∫
∂Ω
~n · (~v ⊗ ~v) dA , (4.30)∫

Ω
∆~v dV =

∫
∂Ω
~n · ∇~v dA . (4.31)

For the FC-GFDM, the numerical Laplace operator is computed in a way similar to
the numerical diffusion operator in Section 4.3.1.∑

j∈Si

c∆
ijmj = ∂∆

i m, ∀m ∈M , (4.32)

∑
j∈Si

c∆
ijv

k,(n)
j = 1

Vi

∑
l∈Īi

Gil(vk,(n), 1) , k = x, y, z , (4.33)

min Ji =
∑
j∈Si

(
c∆
ij

Wij

)2

, (4.34)

where the flux function G is as defined earlier and vk,(n)
j denotes the k-component of

the velocity at point j and time-level n. The numerical first derivative approximations
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are computed as ∑
j∈Si

ckijmj = ∂kim, ∀m ∈M , (4.35)

∑
j∈Si

ckijv
k,(n)
j = 1

Vi

∑
l∈Īi

Fil(vk,(n)) , (4.36)

∑
j∈Si

ckijv
k,(n)
j v

k′,(n)
j = 1

Vi

∑
l∈Īi

Fil(vk,(n)vk
′,(n)) , k′ = x, y, z , (4.37)

min Ji =
∑
j∈Si

(
ckij
Wij

)2

, (4.38)

where the flux function F is as defined earlier. While Eq. (4.36) adds one extra con-
straint to the discrete differential operator definitions, Eq. (4.37) adds two or three,
depending on the spatial dimension.
Using the above defined numerical differential operators, Eq. (4.26) - Eq. (4.28) are

solved with a meshfree projection method, similar to that of Chorin [17]. In the first
step, the point cloud is moved by solving Eq. (4.26) according to Eq. (4.20). The
projection method begins with the computation of an intermediate velocity ~v∗ by
solving the conservation of momentum equation, Eq. (4.28),

~v ∗ − ~v (n)

∆t = η

ρ
∆~v ∗ − 1

ρ
∇p∗ + ~g , (4.39)

where p∗ is a pressure guess found by updating the hydrostatic pressure, which is
independent of the velocity [57], and depends only on gravitational acceleration and
body forces. ~v ∗ is then corrected by projecting it to a divergence-free space with the
help of a correction pressure,

~v (n+1) = ~v ∗ − ∆t
ρ
∇pcorr . (4.40)

pcorr is found by applying the divergence operator to Eq. (4.40) to obtain the pressure-
Poisson equation

∆t
ρ

∆pcorr = ∇ · ~v ∗ . (4.41)

The final pressure is then updated

p(n+1) = p∗ + pcorr . (4.42)

Such meshfree projection methods have been widely used [47, 57, 110, 112]. Improve-
ments in accuracy in such schemes for the incompressible Navier–Stokes equations
are considered in Chapter 5. The spatial discretization of Eq. (4.39) – Eq. (4.41)
are done using the differential operators defined earlier in this section, Eq. (4.32) –
Eq. (4.34), and Eq. (4.35) – Eq. (4.38). The implicit systems obtained from Eq. (4.39)
and Eq. (4.41) are solved using the BiCGSTAB iterative solver [117] without the use
of any preconditioner.
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Figure 4.4: Errors for the decaying shear flow test case.

4.5.1 Decaying Shear Flow
For a validation case, we consider the case of decaying shear flow as reported in [35].
For unit density, ρ = 1kg/m3, the analytical solution is given by

uexact = 1 , (4.43)
vexact = cos(x− t) exp(−ηt) , (4.44)
pexact = p(t) , (4.45)

~g = 0 , (4.46)

where ~vexact = (uexact, vexact) is the analytical solution for the velocity, and pexact is the
analytical solution for the pressure. The pressure is taken as p(t) = 3.0+0.01 sin(20πt),
as done in [35]. Initial and boundary conditions are set in accordance with the an-
alytical solution. The computational domain is taken to be [0, 1] × [0, 1]. The time
step is determined according to Eq. (4.21) with a small coefficient of C∆t = 0.005. The
relative errors of the numerical solution are measured as

ε2 =
[∑ ‖~vnum − ~vexact‖2∑ ‖~vexact‖2

] 1
2

, (4.47)

where ~vnum is the numerically obtained velocity. For η = 1Pa s, The errors in the
solutions at t = 1s with and without the addition of the flux conservation condition are
shown in Figure 4.4. The figure illustrates that both methods show very similar results,
with FC-GFDM being slightly more accurate. The errors are also tabulated, along
with numerical convergence orders according to Eq. (4.25), in Table 4.3. Experimental
orders of convergence are slightly higher for the new FC-GFDM.
For “simple” domains and Dirichlet boundary conditions on all boundaries, the FC-

GFDM shows only minor improvements over the classical GFDM. However, as the
results in the coming sections show, FC-GFDM makes significant improvements for
more complex simulation domains and boundary conditions.
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Table 4.3: Errors and experimental convergence rates for the decaying shear flow test
case. h is the smoothing length, N is the number of points in the entire
domain at the initial state, ε2 is the error in energy conservation, and r is
the order of convergence of ε2.

GFDM FC-GFDM
h N ε2 r ε2 r

0.25 161 3.65 × 10−4 − 3.11 × 10−4 −
0.125 493 1.15 × 10−4 1.67 8.80 × 10−5 1.82
0.0625 1 704 3.41 × 10−5 1.75 2.46 × 10−5 1.84
0.03125 6 293 1.04 × 10−5 1.71 7.36 × 10−6 1.74

4.5.2 Flow Past a Square Cylinder
We consider the flow past a square cylinder in two spatial dimensions as illustrated in
Figure 4.5, which has been a widely studied problem (see, for example, [93, 100]).

Figure 4.5: Flow past a square cylinder. Velocity profile in an inverted color scale for
Re = 10000. t = 23s (left) and t = 34s (right).

The parameters of the simulations are ρ = 1kg/m3 and tend = 50s. The viscosity is
given by

η = ‖~vin‖L
Re

, (4.48)

where ~vin = (2, 0)m/s is the constant inflow velocity which is also used as the initial
condition, L = 30m is the length of the channel and Re is the Reynolds number
of the flow. The height of the channel is 10m. Homogeneous Neumann boundary
conditions for the velocity are used at the outflow and no-slip conditions on the walls.
The pressure is kept constant at atmospheric pressure at the outflow and Neumann
boundary conditions are considered elsewhere for the pressure. A varying time step is
used according to Eq. (4.21) with C∆t = 0.3, which results in larger time steps than
those considered in the earlier examples. The error in mass conservation is measured
as the difference between the total volume of fluid flowing in and that flowing out,
throughout the entire simulation, and is given by

εmass =

∣∣∣∣∣∣
∫ tend

0

[∫
∂Ωin

~n · ~v dA
]
dt+

∫ tend
0

[∫
∂Ωout

~n · ~v dA
]
dt∫ tend

0

[∫
∂Ωin

~n · ~v dA
]
dt

∣∣∣∣∣∣ . (4.49)

The error in a global discrete divergence theorem at the new time level is given by

εDDT =
∑

k=x,y,z

∣∣∣∫Ω ∂kvk,(n+1) dV −
∫
∂Ω n

kvk,(n+1) dA
∣∣∣∫

Ω dV
. (4.50)
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Table 4.4: h vs. N for flow past square cylinder.
Smoothing Length h Total number of initial Points N

0.6 3 611
0.5 5 090
0.4 7 822
0.3 13 661

For a Reynolds number of Re = 104, the convergence with respect to the smoothing
length h of εDDT averaged over all time steps and εmass for the two methods are shown
in Figure 4.6. The errors in the global discrete divergence theorem for the new FC-
GFDM are lower by one order of magnitude when compared to that in the case of
GFDM. Correspondingly, the errors in mass conservation are also lower by one order of
magnitude in the case of FC-GFDM. The total number of points in the computational
domain at t = 0s for the different smoothing lengths considered are shown in Table 4.4.
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Figure 4.6: Flow past square cylinder: convergence of errors with smoothing length
h on log-log plots. Error in discrete divergence theorem (left) and error
in mass conservation (right). The total number of points in the computa-
tional domain for the different smoothing lengths considered are shown in
Table 4.4.

A similar trend is also observed for lower Reynolds numbers of 103 and 500, but
the errors are smaller for smaller Reynolds flow. The time evolution of the errors for
h = 0.4 is shown in Figure 4.7. This also includes a measure for the mean velocity
divergence in the domain

D(~v) =
∫

Ω |∇ · ~v| dV∫
Ω dV

. (4.51)

Figure 4.7 illustrates that the FC-GFDM does not significantly affect the velocity
divergence values, and thus, the improvement in mass conservation is solely due to
smaller errors in a global discrete divergence theorem.
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Figure 4.7: Flow past square cylinder Re = 10000, h = 0.4: Time evolution of mean
velocity divergence (top left), error in discrete divergence theorem (top
right) and error in mass conservation (bottom). 1 in every 40 time steps is
plotted in the divergence figure, whereas all time steps are plotted in the
other two figures.

4.5.3 3D Obstructed Channel Flow
The example considered in the previous section is extended to three dimensions, with
multiple obstructions in the channel including both convex and concave ones. The
domain considered is shown in Figure 4.8. For the simulations, we consider ρ =
103kg/m3, η = 105Pa s, and tend = 1s. The velocity at the inflow, on the left of the
tube, is kept constant at ~vin = (0, 0, 2)m/s. The remaining boundary conditions are set
up exactly as done in the 2D case mentioned earlier. The length of the channel is 6m
which results in a Reynolds number in the order of magnitude of 10−1. Measurement
of errors are also done as in the previous section.
The convergence of εDDT averaged over all time steps and εmass for the two methods

are shown with respect to a constant time step ∆t in Figure 4.9. A smoothing length
of h = 0.3 is used, which corresponds to an initial number of points N = 20 043 in
the entire domain. The same convergence with respect to the smoothing length h
is shown in Figure 4.10. A varying time step is used according to Eq. (4.21) with
C∆t = 0.3. Table 4.5 shows the total number of initial points in the entire domain for
the different smoothing lengths considered. Figures 4.9 and 4.10 illustrate that for a
fixed h and ∆t, the results produced by the new FC-GFDM exhibit a much smaller
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Figure 4.8: 3D Channel with multiple obstructions. Fluid inflow is on the left, and
outflow on the right
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Figure 4.9: 3D obstructed channel: convergence of solution with time step ∆t. Error
in discrete divergence theorem (left) and error in mass conservation (right).

error in a global divergence theorem. That, in turn, results in significantly smaller
errors in mass conservation. Similar to the 2D case presented earlier, the errors in
FC-GFDM are lower by an order of magnitude.
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Figure 4.10: 3D obstructed channel: convergence of solution with smoothing length
h. Error in discrete divergence theorem (left) and error in mass conser-
vation (right). The total number of points in the computational domain
for the different smoothing lengths considered are shown in Table 4.5.
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Figure 4.11: 3D obstructed channel: clock time.

Table 4.5: h vs. N for 3D channel.
Smoothing Length h Total number of initial Points N

0.4 9 707
0.35 13 680
0.3 20 043
0.25 30 796

The time taken for the simulation of both methods are shown in Figure 4.11. The
values of time taken shown in the figure represent the total time taken by each sim-
ulation, including the setup of the initial point cloud, the computation of differential
operators and the solving of the large sparse linear systems at each time step, and the
post-processing integrations. The simulations were carried out using Fortran and were
run serially on an Intel XeonE5-2670 CPU rated at 2.60GHz. Time comparisons were
done under the exact same conditions. With the exception of the differential operators,
both methods use the same subroutines; while the differential operators of both GFDM
and FC-GFDM use the same implementation of a QR-decomposition. Figure 4.11 il-
lustrates that, for the same h and ∆t, both methods take a similar amount of time.
For almost no additional computational effort, the FC-GFDM produces much smaller
errors in mass conservation. Further, Figures 4.9 – 4.11 show that the FC-GFDM
takes significantly lesser time to achieve a certain tolerance of mass conservation. The
addition of the flux conservation condition results in a slightly larger computation
time for the differential operators of the FC-GFDM compared to those of the classical
GFDM. However, as stated earlier, the effect of this on the overall simulation time is
not significant. In fact, occasionally, the overall simulation time can be slightly lesser
for the FC-GFDM, as illustrated in Figure 4.11. This can be explained by a possible
faster convergence of the large sparse linear systems in the FC-GFDM case.

4.5.4 Sloshing
To illustrate the use of the new FC-GFDM differential operators on moving domains
and problems with free surfaces, we consider the three dimensional sloshing of water
in a rectangular box as shown in Figure 4.12. The dimensions of the box are 1.2m×
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Figure 4.12: Sloshing. t = 0s (top left), t = 0.75s (top right), t = 2.0s (bottom left)
and t = 3.2s (bottom right).

0.6m × 0.2m. At the initial state, water occupies a cuboidal shape of dimensions
1.2m× 0.12m× 0.2m.
The initial state is taken to be at rest. Slip boundary conditions are used at the walls

for the velocity. Free surface boundary conditions are applied at the free boundaries, as
described in Section 2.5.4, without surface tension. Neumann boundary conditions are
used for the pressure at the walls. A varying time step is used according to Eq. (4.21)
with C∆t = 0.3. The movement of the box is represented in the gravitational and
body forces term by setting ~g = (4 cos(7t),−10, 0). The simulation parameters are set
as ρ = 103kg/m3, η = 10−3Pa s, and tend = 4s. This results in a Reynolds number
of the order of magnitude of 107. The error in mass conservation is measured by the
change in total volume occupied by all points, since the density ρ is fixed and constant
throughout the domain

εV =
|
∫

Ω0
dV −

∫
Ω dV |∫

Ω0
dV

, (4.52)

where Ω0 is the initial domain and Ω is the domain at the time when the error is
measured. For an initial number of points N = 3584, the evolution of the error in a
global divergence theorem and an error in mass conservation is shown in Figure 4.13.
Similar to the earlier cases, FC-GFDM shows significantly smaller errors in a global
divergence theorem. That translates to smaller errors in mass conservation which is
measured using the change in total volume.
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Figure 4.13: 3D Sloshing: Time evolution of error in divergence theorem (left) and
error in mass/volume conservation (right).
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4.6 Conclusion
We presented a novel method that combines classical moving least squares approaches
to meshfree differential operators and finite-volume like flux conservation over local
control cells. Implicit time-integration schemes are used to discretize the PDEs, cou-
pled with a conservation of numerical fluxes for specific fields at the previous time-level.
The locally defined control cells are easy to create automatically, and do not impose
any further restrictions on the quality of the point cloud. Thus, they do not introduce
the drawbacks of globally defined meshes used in mesh-based methods such as finite
elements and finite volumes.
Our simulations show that the flux conserving differential operators significantly

improve conservation properties of meshfree GFDMs. For the same space and time
discretization, classical GFDM and the new FC-GFDM take similar simulation times,
but the FC-GFDM produces smaller conservation errors.
This method can easily be extended to incorporate sophisticated flux functions. A

drawback of the method is that each numerical field that needs to be conserved has to
be considered individually, which can become cumbersome for large systems of PDEs.
The problem of getting general conservation, in an efficient manner, via a true discrete
divergence theorem for meshfree GFDMs remains open.
From a larger perspective, the ideas presented in this chapter also illustrate the

potential of adding additional constraints to GFDM stencils. While this chapter pre-
sented the possibility to extend the polynomial consistency formulation of GFDM
differential operators (Section 2.5.2), the next chapter presents a way to extend the
direct GFDM of Section 2.6 which is based on the Taylor expansion formulation (Sec-
tion 2.5.1).
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Chapter 5

Meshfree GFDM and Accuracy for the
Incompressible Navier–Stokes
Equations
Meshfree solution schemes for the incompressible Navier–Stokes equations are usually
based on algorithms commonly used in finite volume methods, such as projection
methods, SIMPLE and PISO algorithms. However, drawbacks of these algorithms
that are specific to meshfree methods have often been overlooked. In this chapter, we
study the drawbacks of conventionally used meshfree GFDM schemes for Lagrangian
incompressible Navier–Stokes equations. This includes both operator splitting schemes
and monolithic schemes. The major drawback of most of these schemes is inaccurate
local approximations to the mass conservation condition. Further, we propose a new
modification of a commonly used monolithic scheme that overcomes these problems
and shows a better approximation for the velocity divergence condition. We then
perform a numerical comparison which shows the new monolithic scheme to be more
accurate than existing schemes.

5.1 Introduction
Several mesh-based algorithms to solve the incompressible Navier–Stokes equations
have been extended to meshfree methods. These include operator splitting methods
such as the projection method [17], SIMPLE [88] and PISO [46]. However, drawbacks
of these algorithms that are specific to meshfree methods have often been overlooked.
One important example of such a drawback is that the discrete Laplace operator is not
the same as the discrete divergence of the discrete gradient operator. This results in
inaccurate approximations to the mass conservation equation. While this problem has
been solved in the context of Finite Volume Methods (FVMs) with staggered grids,
this problem persists in meshfree methods and introduces errors in most operator
splitting algorithms.
In this chapter, we present a few commonly used meshfree solvers for the incompress-

ible Navier–Stokes equations and study the drawbacks of these algorithms specific to
meshfree GFDMs. We then propose a new monolithic solver which attempts to over-
come these drawbacks. This is done by solving an over-determined problem with the
direct GFDM framework presented in Section 2.6. The mass and momentum con-
servation equations are solved together, and simultaneously with a pressure-Poisson
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equation which is needed to improve stability. All the methods considered are spa-
tially second order accurate and use first order time integrations. However, the new
monolithic method proposed here is numerically shown to be much more accurate than
existing methods. This is as a consequence of the new method providing better local
approximations to the mass conservation condition.
In the last chapter, we presented a method to improve global conservative prop-

erties in meshfree GFDMs, with an application to the incompressible Navier–Stokes
equations. That was done by introducing an approximate discrete divergence theo-
rem, without changing the local accuracy of the conservation equations. The example
in Section 4.5.2 illustrated that improvement in global conservation properties came
without improving local accuracy. In contrast, in this chapter, we present a method
to improve the local accuracy of the mass conservation equation.

5.2 Existing Meshfree GFDM Algorithms for the
Incompressible Navier–Stokes Equations

We consider the incompressible Navier–Stokes equations in Lagrangian form.

D~x

Dt
= ~v , (5.1)

∇ · ~v = 0 , (5.2)
D~v

Dt
= η

ρ
∆~v − 1

ρ
∇p+ ~g , (5.3)

where ~v is the fluid velocity, p is the pressure, ρ is the density, η is the dynamic viscosity
and ~g includes both gravitational acceleration and body forces. All the algorithms
considered below start with an update of point locations by solving Eq. (5.1) according
to

~x
(n+1)
i = ~x

(n)
i + ~v

(n)
i ∆t+ ~v

(n)
i − ~v (n−1)

i

∆t (∆t)2 , (5.4)

for each point i = 1, . . . , N , where the bracketed superscript refers to the time level.
An in-depth discussion about this movement process is done in Chapter 6. Following
the movement of points, mass conservation Eq. (5.2) and momentum conservation
Eq. (5.3) are solved according to one the methods mentioned below.
Two broad classes of algorithms are used to solve the incompressible Navier–Stokes

equations. Namely, operator splitting methods, and monolithic methods. In opera-
tor splitting methods, also referred to as fractional step methods (FSM), partitioned
methods, or pressure-segregation methods, the momentum conservation and mass con-
servation equations are solved in two separate steps. In monolithic methods, also re-
ferred to as coupled velocity-pressure methods, the mass conservation and momentum
conservation equations are solved together in one large system. In the remainder of
this section, we present existing meshfree methods in both these classes and study
their drawbacks. In the next section, we present a new monolithic meshfree scheme
which helps reduce these problems in existing solvers.
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5.2.1 Operator Splitting Methods
Projection methods are a type of operator splitting methods, based on the Helmholtz-
Hodge decomposition [11], which have been widely used for approximating incompress-
ible and weakly compressible fluid flows in Finite Volume Methods [1, 13]. These meth-
ods have also been commonly used in meshfree contexts (see, for example, [112, 119]).
They consist of two steps. In the first step, an intermediate velocity is computed
by solving the momentum conservation equation. This intermediate velocity is then
projected to a divergence-free field with the help of a correction pressure to obtain the
final velocity. The intermediate velocity ~v ∗ is obtained by solving

~v ∗ − ~v (n)

∆t = η

ρ
∆~v ∗ − 1

ρ
∇p∗ + ~g , (5.5)

where p∗ is a pressure guess. In the original projection method of Chorin [17], the
pressure guess is taken to be zero. Non-zero values of this pressure guess have been
shown to produce more accurate results [13]. Throughout this thesis, we take the
pressure guess to be the pressure at the previous time step p∗ = p(n). The step of
computation of the intermediate velocity is often done explicitly, by replacing the
∆~v ∗ term in Eq. (5.5) with ∆~v (n) [112]. However, the implicit way used in Eq. (5.5)
produces more accurate, and often more stable, results. Further, the explicit treatment
of the intermediate velocity would result in a CFL-condition limiting the time step by
∆t < C̃∆th

2. i.e. the time step size is controlled by h2 if Eq. (5.5) were to be done
explicitly, while the Lagrangian movement process only controls the time step size
with h.
In the second step, the velocity is corrected by projecting it to a divergence free

space by
~v (n+1) = ~v ∗ − ∆t

ρ
∇pcorr . (5.6)

The pressure correction pcorr is computed by a pressure-Poisson equation obtained by
applying the divergence operator to Eq. (5.6) and setting ∇ · ~v (n+1) = 0

∆t
ρ

∆pcorr = ∇ · ~v ∗ . (5.7)

Finally the pressure is updated by

p(n+1) = p∗ + pcorr . (5.8)

Different variations of such projection methods including higher order time integration
have been studied, for example, by Brown et al. [13]. A variety of boundary conditions
have been used in these methods. A discussion on boundary conditions for projection
methods in the mesh-based context can be found in Denaro [74]. In meshfree projection
methods, a common approach is to obtain the boundary condition by projecting the
underlying equation solved at interior points on the outward facing unit normal. Such
approaches and the required stabilization can be found in Fang and Parriaux [27] and
Boroomand et al. [12]. In this thesis, we use boundary conditions dependent on the
physics of the underlying problem as done in Seibold [96]. Further, for the spatial
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discretization of Eq. (5.5) and Eq. (5.7) we use the classical meshfree GFDM presented
in Section 2.5, as done, for example, by Drumm et al. [24]. We now consider a few
drawbacks of such projection methods in the meshfree context.

Consistency of numerical differential operators:

While applying the divergence operator to Eq. (5.6) to obtain Eq. (5.7), an assump-
tion is made that the Laplace operator is the same as the divergence of the gradient
operator. Specifically,

∇ · ∇pcorr = ∆pcorr . (5.9)

While this is certainly true for continuous operators, it does not hold for discrete
differential operators. This leads to an error in the approximation of the numerical
divergence of the new velocity. Thus, mass conservation is violated at the local level.
Unlike the truncation error due to the order of spatial approximation, this error does
not converge to zero with a decreasing spatial discretization.
In the context of Finite Volume Methods, this problem has been known for several

decades. One proposed solution was to replace the classical discrete Laplace opera-
tor with wider stencils by taking the convolution of the divergence operator and the
gradient operators, i.e. setting ∆ := ∇ · ∇ at the discrete level [7]. Another, more
widely used approach to overcome this problem is to use staggered grids in which the
pressure and velocity fields are defined at different locations [36]. The staggered grid
approach can not be generalized to meshfree methods since all properties, both scalars
or vectors, are prescribed on the same nodes. Using the first approach of setting the
numerical Laplace operator to be equal to the numerical divergence of the numeri-
cal gradient causes several issues in the meshfree context. Firstly, this would lead
to different support sizes for the first and second derivatives. The second derivatives
would be defined on a support double the size of that of the first derivative, which
more than doubles the number of points in each support domain. Moreover, there
is no control over the center stencil values, which makes diagonal dominance hard to
achieve (see Section 2.5.5). As a result, convergence of the large linear systems can be
troublesome. Thus, this problem still persists in meshfree projection methods. Not
only for meshfree GFDMs, but also in various other meshfree approximation methods
including SPH [19, 119].
Other operator splitting algorithms such as the PISO algorithm [46], SIMPLE algo-

rithms [88] and their derivatives also rely on pressure-Poisson equations. The difference
being that the Poisson equations are derived by applying the divergence operator to
the momentum conservation equation. Their meshfree equivalents possess the same
drawback of ∆ 6= ∇ · ∇ at the discrete level, which leads to the same inaccuracies in
the approximation of the mass conservation condition.

Compressible boundary layer:

When using the classical GFDM approach of Section 2.5 the pressure-Poisson equation
Eq. (5.7) is solved at interior points with appropriate boundary conditions on the
boundary points. The divergence of the velocity at boundary points depends on the
pressure-Poisson equation at boundary points which is not solved at all. This results
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in the formation of a numerical boundary layer of compressible fluid, with non-zero
divergence of velocity, during the simulation of incompressible fluids. This problem
has been alleviated by the direct GFDM presented in Section 2.6, by solving an over-
determined system at boundary points, which considers both the relevant boundary
conditions and the pressure-Poisson equation. This problem of numerical boundary
layers is also avoided by several solvers that solve the pressure-Poisson system before
the implicit velocity system [122]. More recently, alternate solutions to this same
problem were also considered by Idelsohn and Oñate [42], but specific to free surface
boundaries. However, the earlier issue of ∆ 6= ∇ · ∇ at the discrete level is present
even at the boundaries, and is often a larger source of error than the compressible
boundary layer.

Poor accuracy at low Reynolds flow:

Projection methods usually suffer from low accuracy, and often instability, for fluid
flows at low Reynolds numbers (Re� 1). This problem is reduced, but not overcome,
by the implicit nature of Eq. (5.5). As a result, projection methods do not provide good
approximations for fluids with very high viscosity such as molten glass [77]. This can
be seen upon a closer look at the projection scheme. Adding Eq. (5.5) and Eq. (5.6),
and then using Eq. (5.8) to gather the pressure terms, we get

~v (n+1) − ~v (n)

∆t = η

ρ
∆~v ∗ − 1

ρ
∇p(n+1) + ~g . (5.10)

On the other hand, a first order discretization of the momentum equation, which is
desired here, would result in a ∆~v (n+1) term on the RHS. The additional error term
in this regard, η

ρ
‖~v ∗ − ~v (n+1)‖ scales with 1

Re
.

5.2.2 Monolithic Methods
Coupled velocity-pressure solvers usually have the advantage of being more stable, es-
pecially for larger time step sizes, but often come at the disadvantage of ill-conditioned
systems. To avoid the problem of ill-conditioned systems, Kuhnert [57] developed a
penalty formulation based on the classical GFDM approach of Section 2.5. In two
spatial dimensions, for ~v = (u, v) and ~g = (gx, gy), it can be written in matrix form as

I − ∆t

ρ
ηC∆ ∆t

ρ
Cx

I − ∆t
ρ
ηC∆ ∆t

ρ
Cy

Cx Cy −A∆t
ρ

C∆



~U (n+1)

~V (n+1)

~Pcorr

 =


~U (n) − ∆t

ρ
Cx ~P ∗ + ∆t ~Gx

~V (n) − ∆t
ρ

Cy ~P ∗ + ∆t ~Gy

0

 ,

(5.11)
where Cx is the matrix formed by the stencil coefficients for the numerical differential
operators for the x derivative, cxij (see Eq. (2.11) and Eq. (2.17)). Similarly for Cy

and C∆. The vector ~U (n+1) is formed by u(n+1) at all points in the computational
domain, ~U (n+1) = (u(n+1)

1 , . . . , u
(n+1)
N )T and similarly for the other upper case vectors.

Thus, the first two blocks of rows in Eq. (5.11) represents the momentum conservation
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equation at all points. The last block of rows in Eq. (5.11) is a penalty formulation
for the conservation of mass equation

∇ · ~v (n+1) − A∆t
ρ

∆pcorr = 0 . (5.12)

Rows corresponding to boundary points in Eq. (5.11) are replaced with the appropriate
problem specific boundary conditions. The ideal scenario would be to set A = 0, to
get an exact conservation of mass. However, that leads to an ill-conditioned system.
Further, typical iterative solvers do not converge for such a system due to a complete
lack of diagonal dominance in the last block of rows in Eq. (5.11). While specialized
solvers for saddle-point problems [10, 75], could possibly be used to obtain solutions
to these sparse linear systems, simulations are still usually unstable when A = 0.
Thus, non-zero values of A need to be used. Kuhnert [57] takes this parameter to
be in the range of A ∈ (0, 0.3). Lower values of A are preferred for greater accuracy,
however, higher values are needed for better conditioning and faster convergence of
the resulting linear system. We note that using A = 1 would result in an implicit
and coupled projection method, with an additional velocity correction step, Eq. (5.6),
required. The final pressure is given as done before p(n+1) = p∗ + pcorr.

This penalty approach has been shown to be more stable than the meshfree pro-
jection method [47, 57], especially at low Reynolds flows. However, setting A 6= 0
in Eq. (5.12) leads to an artificial compressibility that is numerically observed to be
similar to that introduced by the inconsistency between the ∆ and the ∇ ·∇ discrete
operators in operator splitting methods. Further, this approach has the same issue of a
compressible boundary layer as that in classical operator splitting methods explained
earlier.

This penalty approach coupled solver and the meshfree projection method have
both been widely used and have shown to be robust methods with a wide variety of
applications. Under the name of the Finite Pointset Method (FPM), they have also
been used as the numerical basis of two commercially used meshfree simulation tools:
NOGRID [77] and the meshfree module of VPS-PAMCRASH [113].

Other approaches to coupled solvers include solving the momentum conservation as
in the first two blocks of rows in Eq. (5.11), with a pressure-Poisson equation replacing
the third block of rows in Eq. (5.11). Like most fractional step methods, this solves
the mass conservation indirectly, and introduces the same error as mentioned earlier
of ∆ 6= ∇ · ∇ at the discrete level. In mesh-based contexts, especially for Finite
Element Methods, the equivalent systems of Eq. (5.11) with A = 0 are often solved
by algebraically decomposing the system which is essentially equivalent to a fractional
step method [104]; or with the help of stability conditions [2] which introduce errors
similar to that in the method described in this section.
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5.3 A New Monolithic Solver
We wish to solve the momentum and mass conservation equations as

~v (n+1) − ~v (n)

∆t = η

ρ
∆~v (n+1) − 1

ρ
∇p∗ − 1

ρ
∇pcorr + ~g , (5.13)

∇ · ~v (n+1) = 0 . (5.14)

We emphasize that the desire is to solve the mass conservation directly as in Eq. (5.14)
and not indirectly via a pressure-Poisson equation. Directly solving Eq. (5.14) ensures
that errors arising from the inconsistency of the discrete Laplace operator and the dis-
crete divergence of the discrete gradient do not affect the mass conservation condition.
Using the classical GFDM approach of Section 2.5, Eq. (5.13) and Eq. (5.14) lead

to Eq. (5.11) with A = 0. As mentioned earlier, this results in an ill-conditioned
system that is very hard to solve with typical iterative procedures. This problem
of ill-conditioned systems can be avoided by using the direct GFDM presented in
Section 2.6. For the same, we start by rewriting Eq. (5.13) and Eq. (5.14), in two
spatial dimensions, to obtain

e1 + u(n+1) − η∆t
ρ

∆u(n+1) + ∆t
ρ
∂xpcorr = u(n) − ∆t

ρ
∂xp∗ + ∆tgx , (5.15)

e2 + v(n+1) − η∆t
ρ

∆v(n+1) + ∆t
ρ
∂ypcorr = v(n) − ∆t

ρ
∂yp∗ + ∆tgy , (5.16)

e3 +∇ · ~v (n+1) = 0 , (5.17)

where e1, e2 and e3 are the errors in the discretizations of the respective PDEs. A
quadratic minimization of e1, e2 and e3, along with the errors from the Taylor ex-
pansions in all three variables, u, v and pcorr can be done, similar to that done in
Section 2.6. This results in a system of equations similar to Eq. (2.66) and provides
better conditioned systems than Eq. (5.11) with A = 0. However, resulting simulations
are mostly unstable, as the simulation blows up within a couple of time steps. Thus,
such an approach of using the direct GFDM framework of discretization to coupled
solvers has not been used successfully in the past.
A possible explanation of the instability is the lack of information about the pres-

sure correction pcorr. To correct this and to introduce a further coupling condition
between the velocity and pressure, we make use of the fact that this direct GFDM
framework can be used to solve algebraically over-determined problems, as presented
in Section 2.6.1. The system of Eq. (5.15) – Eq. (5.17) are augmented with a pressure-
Poisson equation to form an over-determined system. The Poisson equation is obtained
in a manner similar to that done by SIMPLE and PISO methods, by applying the di-
vergence operator to the conservation of momentum equation Eq. (5.3). However, a
slight variation is used as follows. Taking the divergence of the continuous momentum
equation gives

∇ ·
[
D~v

Dt

]
= ∇ ·

[
η

ρ
∆~v − 1

ρ
∇p+ ~g

]
, (5.18)

= η

ρ
∆∇ · ~v − 1

ρ
∆p+∇ · ~g . (5.19)
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To discretize the LHS, we do the following

∇ ·
(
D~v

Dt

)
= ∇ ·

(
D~v

Dt

)
− D

Dt
(∇ · ~v) + D

Dt
(∇ · ~v) ,

=
[
∇ ·

(
∂~v

∂t
+ (~v · ∇)~v

)]
−
[
∂

∂t
(∇ · ~v) + (~v · ∇) (∇ · ~v)

]
+ D

Dt
(∇ · ~v) ,

= ∇ · [(~v · ∇)~v]− (~v · ∇) (∇ · ~v) + D

Dt
(∇ · ~v) . (5.20)

Using this, Eq. (5.19) is discretized as follows

∇ ·
[(
~v(n) · ∇

)
~v(n+1)

]
−
(
~v(n+1) · ∇

) (
∇ · ~v(n+1)

)
+ (∇ · ~v)(n+1) − (∇ · ~v)(n)

∆t
= η

ρ
∆∇ · ~v (n+1) − 1

ρ
∆p(n+1) +∇ · ~g . (5.21)

Splitting the pressure, setting ∇ · ~v(n+1) = 0 and rearranging leads to the pressure-
Poisson equation which will be used

e4 + ∆pcorr + ρ∇ ·
[(
~v (n) · ∇

)
~v (n+1)

]
= ρ

∆t (∇ · ~v) (n) −∆p∗ + ρ∇ · ~g . (5.22)

Note that (∇ · ~v) (n) is not the discrete divergence operator applied to ~v (n). It is the
divergence operator of the previous time step applied to ~v (n). Since the numerical
divergence operator of the previous time step is not available on the present point
cloud, the value of (∇ · ~v) (n) needs to be stored. The formulation of the pressure
Poisson equation used here has the advantage that it penalizes incorrect values of
velocity divergence from the previous time level.
In the overall scheme, Eq. (5.15) – Eq. (5.17) and Eq. (5.22) are solved at all interior

points. Note that the mass conservation condition is solved directly in Eq. (5.17) and
indirectly in Eq. (5.22). The introduction of the pressure-Poisson equation brings in
the problem of ∆ 6= ∇·∇ at the discrete level, as mentioned earlier. However, directly
solving for the conservation of mass in Eq. (5.17) ensures that these errors do not affect
the numerical accuracy of the zero divergence of velocity condition.
At boundary points, the mass conservation condition Eq. (5.17) is solved in addition

to the relevant boundary conditions, once again leading to more PDEs than variables.
The errors in each of these PDEs or boundary conditions are minimized simultaneously
with the errors in the Taylor expansions for each velocity component and the pressure.

min Ji =
∑
j∈Si

W 2
ij(euij)2 +

∑
j∈Si

W 2
ij(evij)2 +

∑
j∈Si

W 2
ij(e

p
ij)2 +

4∑
k=1

W 2
PDE,k(ek)2 , (5.23)

where euij, evij and epij are the errors in the Taylor expansions around point i of u, v
and pcorr respectively. For all simulations to follow, Wij are taken as in Eq. (2.7), and
W 2

PDE,k = 2. Thus, the following least squares system is solved at each interior point
to obtain the function approximation stencil coefficients : ~Ei = Mi~ai −~bi with

~Ei = (eui1, . . . euin, evi1, . . . evin, e
p
i1, . . . e

p
in, e1, . . . , e4)T , (5.24)

~ai = (u, ux, uy, uxx, uyy, uxy, v, vx, vy, vxx, vyy, vxy, p, px, py, pxx, pyy, pxy)T , (5.25)
~bi = (u1, . . . un, v1, . . . vn, p1, . . . pn, r1, . . . r4)T , (5.26)
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where p is used as shorthand for pcorr, and rk are the right hand sides of equations
Eq. (5.15) – Eq. (5.17) and Eq. (5.22), and each value of ~ai is at point i. Further,

Mi =


MT

MT

MT

MP1 MP2 MP3

 , (5.27)

with MT being the parts coming from the Taylor expansions

MT =


1 δxi1 δyi1

1
2δx

2
i1

1
2δy

2
i1 δxi1δyi1

... ...
1 δxin δyin

1
2δx

2
in

1
2δy

2
in δxinδyin

 , (5.28)

and the part coming from the PDEs is given by

(
MP1 MP2 MP3

)
=

1 0 0 −η∆t
ρ
−η∆t

ρ
0 0 0 0 0 0 0 0 ∆t

ρ
0 0 0 0

0 0 0 0 0 0 1 0 0 −η∆t
ρ
−η∆t

ρ
0 0 0 ∆t

ρ
0 0 0

0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 ρu(n)

x ρv(n)
x 0 0 0 0 ρu(n)

y ρv(n)
y 0 0 0 0 0 0 1 1 0

 .

(5.29)

The first two rows in Eq. (5.29) represent the momentum conservation in x and y
directions respectively, the third row represents the mass conservation equation, and
the last row represents the pressure-Poisson equation. Similar systems are obtained
for boundary points, with the relevant rows in Eq. (5.29) replaced with the boundary
conditions, as explained in Section 2.6.2. As done earlier, a formal minimization leads
to ~ai = [(MT

i W
2
i Mi)−1MT

i W
2
i ]~bi. Only the function approximation stencils are of

interest to us, i.e. the rows of u, v and pcorr. They can be written as

ui =
∑
j∈Si

αuijuj +
∑
j∈Si

βuijvj +
∑
j∈Si

γuij(pcorr)j +
4∑

k=1
ζuikrk , (5.30)

vi =
∑
j∈Si

αvijuj +
∑
j∈Si

βvijvj +
∑
j∈Si

γvij(pcorr)j +
4∑

k=1
ζvikrk , (5.31)

(pcorr)i =
∑
j∈Si

αpijuj +
∑
j∈Si

βpijvj +
∑
j∈Si

γpij(pcorr)j +
4∑

k=1
ζpikrk , (5.32)

for i = 1, . . . , N . The coefficients α, β, γ and ζ represent the values in the relevant row
of the matrix [(MT

i W
2
i Mi)−1MT

i W
2
i ]. These can be rearranged to obtain the sparse
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linear system

(1− αuii)ui −
∑
j∈Si
j 6=i

αuijuj −
∑
j∈Si

βuijvj −
∑
j∈Si

γuij(pcorr)j =
4∑

k=1
ζuikrk , (5.33)

−
∑
j∈Si

αvijuj + (1− βvii)vi −
∑
j∈Si
j 6=i

βvijvj −
∑
j∈Si

γvij(pcorr)j =
4∑

k=1
ζvikrk , (5.34)

−
∑
j∈Si

αpijuj −
∑
j∈Si

βpijvj + (1− γpii)(pcorr)i −
∑
j∈Si
j 6=i

γpij(pcorr)j =
4∑

k=1
ζpikrk . (5.35)

This resulting sparse linear system is solved using an iterative solver. Eq. (5.33) –
Eq. (5.35) produce a diagonally dominant system. In Eq. (5.33), for example, the
magnitude of the diagonal values of 1 − αuii are significantly larger than that of the
off-diagonal values of αuij j 6= i, βuij and γuij. Thus, the resulting linear system converges
well with typical iterative procedures.
A short comparison between the meshfree projection method presented in Sec-

tion 5.2.1, the penalty approach coupled solver of Section 5.2.2 and the new coupled
solver presented in this section is listed below.
• All three methods have the same theoretical convergence rate with the spatial

discretization as all use Taylor expansions up to the same order of accuracy. All
three methods also use similar first order temporal discretizations. Higher order
methods have been studied extensively, especially for mesh-based fractional step
methods (for example, [120]). Such higher order approximations could be applied
to all three methods considered here.

• All three methods are “approximate” methods as opposed to “exact” methods,
in the sense that they only solve the mass conservation equation up to the trun-
cation error. However, the new method does not contain the additional sources
of error present in the other two methods. The projection method solves the
mass conservation indirectly which leads to errors due to a lack of consistency
between the first and second order derivatives. The penalty approach coupled
solver attempts to solve the mass conservation directly, but introduces an ar-
tificial compressibility to improve conditioning of the resulting system. On the
other hand, the new coupled solver solves the mass conservation equation di-
rectly and without introducing an artificial compressibility, and thus provides a
much better approximation to the mass conservation equation than both other
methods.

• Unlike the penalty approach coupled solver, the new coupled solver avoids the
saddle point structure1 of monolithic systems without introducing any extra er-
rors. The resulting system from the new coupled solver of Eq. (5.33) – Eq. (5.35)
can be written in matrix form as I −αu −βu −γu

−αv I − βv −γv

−αp −βp I − γp



~U (n+1)

~V (n+1)

~Pcorr

 =


~R1
~R2
~R3

 , (5.36)
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where α , β and γ are matrices formed from the coefficients in Eq. (5.33) –
Eq. (5.35) and ~R1, ~R2 and ~R3 are vectors formed from the right hand sides
of Eq. (5.33) – Eq. (5.35) respectively. On the other hand, the ideal case of
traditional monolithic solvers would be Eq. (5.11) with A = 0, which results in


I − ∆t

ρ
ηC∆ ∆t

ρ
Cx

I − ∆t
ρ
ηC∆ ∆t

ρ
Cy

Cx Cy



~U (n+1)

~V (n+1)

~Pcorr

 =


~R4
~R5
~R6

 , (5.37)

where ~R4, ~R5 and ~R6 are vectors formed from the right hand side of Eq. (5.11).
The 0 diagonal block in the last block of rows makes Eq. (5.37) hard to solve
with typical iterative procedures. This problem is avoided altogether in the new
coupled solver in Eq. (5.36), as the sparse linear system is constructed with the
function approximation stencils, and not the derivative operators. On the other
hand, the penalty approach coupled solver introduces and artificial compress-
ibility (last block of rows in Eq. (5.11)) to overcome this issue.

• Both coupled solvers solve one large implicit linear system while the projection
method solves two smaller implicit linear systems. In both coupled solvers,
the linear systems are of the same size, but the system is denser in the new
coupled solver. While the sparsity pattern of each block of rows in Eq. (5.36) and
Eq. (5.11) are identical, as they are dependent only on the support domains for
each point, several zero blocks are present in Eq. (5.11), while all blocks are non-
zero in Eq. (5.36). This is no longer true for cases of spatially varying viscosity
η, which are very common in fluid flow applications, for which all blocks are
non-zero in the systems arising from both the coupled solvers (due the presence
of the extra ∇η · ∇~v terms).

• While the penalty approach coupled solver and the projection method based on
the classical GFDM result in a compressible boundary layer, this is not present
in the new coupled solver presented here, due to the addition of the mass balance
equation on boundary points.

• Numerically it is observed that the new coupled solver has stability comparable to
the penalty approach coupled solver, and thus, much better than the projection
method which has a higher tendency of the solution to blow up, especially for
low Reynolds flow.

• The larger size of the implicit linear systems means that both coupled solvers
have higher memory requirements than the projection method.

• The fastest simulation times between the three methods vary on a case by case
basis, but the overall simulation time is similar for all three methods.

1Here, we only refer to the structure of the resulting sparse linear system that needs to be solved.
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5.4 Numerical Results

The explicit time-integration for the movement of points according to Eq. (5.4) results
in a CFL-like condition on the time step size [66, Section 4.4.9]

∆t = C∆t

(
h

‖~v‖

)
min

. (5.38)

Thus, a varying time step size according to Eq. (5.38) is used in all performed simula-
tions. To determine the numerical order of accuracy of the three methods, a small time
step is used in the first test case below by using a small value of C∆t. The remaining
test cases use a much larger time step which results in lower experimental convergence
rates. In the comparison of simulation times, the total time of the simulation refers
to the total clock time (in seconds) of the simulation, including the initial point cloud
setup and the post-processing error calculations. To ensure that these comparisons are
realistic, all three methods were implemented by the same programmer and use iden-
tical memory management. Further, for the sake of consistency and a fair comparison,
the imposed boundary conditions are the same in all three schemes. All simulations
were carried out in Fortran and were run serially on an Intel XeonE5-2670 CPU rated
at 2.60GHz. All sparse linear systems are solved using the BiCGSTAB iterative solver
[117] without the use of any preconditioner. For the penalty approach coupled solver,
the penalty coefficient is taken to be A = 0.1 in all simulations, since lower values
result in much larger simulation times due to poor convergence of the linear systems.

In each of the examples to follow, for an error ε, the numerical rate of convergence
of the solution with changing smoothing length is measured as

r =
log

(
ε(h2)
ε(h1)

)
log

(
h2
h1

) , (5.39)

where h1 and h2 are consecutive smoothing lengths considered. Further, we, once
again, note that irregularly space point clouds, and the addition and deletion of points
in the Lagrangian framework and the required interpolation therein (see Section 2.4)
can lower convergence orders, and can cause slight deviations from expected conver-
gence trends.

In all the figures below, the projection method presented in Section 5.2.1 is referred
to by ‘Projection’, the coupled solver with the penalty formulation presented in Sec-
tion 5.2.2 is referred to by ‘Coupled: Penalty’ and the new coupled solver which directly
solves an algebraically over-determined system, as done in Section 5.3, is referred to
as ‘Coupled: New’.
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5.4.1 Taylor-Green Vortices
As a validation case, we consider the two-dimensional decaying vortices referred to as
the Taylor-Green vortices on [0, 2π]× [0, 2π]. The analytical solution is given by

ua = sin(x) cos(y) exp(−4πt/Re) , (5.40)
va = − cos(x) sin(y) exp(−4πt/Re) , (5.41)

pa = ρ

4(cos(2x) + cos(2y)) exp(−8πt/Re) , (5.42)

~g = 0 , (5.43)

where ~va = (ua, va) is the analytical solution for the velocity, pa is the analytical
solution for the pressure, and Re = ρUL

η
is the Reynolds number, with the characteristic

velocity U = 1 and the characteristic length L = 2π. Error in the numerical solution
~v is measured by

ε2 =
[∑N

i=1 ‖~vi − ~va(~xi)‖2Vi∑N
i=1 ‖~va(~xi)‖2Vi

] 1
2

, (5.44)

where Vi is a post-processing volume associated with point i (see Sections 4.1 and 4.2).
The initial condition for the velocity is taken in accordance with the exact solution,

and is shown in Figure 5.1. Dirichlet boundary conditions are used on all boundaries.
The simulations are done up to an ending time of tend = 1s, for η = 1Pa s and
ρ = 1kg/m3, which gives Re = 2π. A small time step is used according to Eq. (5.38)
with C∆t = 0.005. The convergence of the errors with the smoothing length h are
shown in Figure 5.2 and are tabulated in Table 5.1. All three methods match the
analytical solution well. All three methods exhibit a similar convergence rate, which
matches the theoretical expectation. Errors in the new coupled solver are smaller
than the other two methods, while the errors in the projection method are the largest,
but are only slightly larger than those in the penalty approach coupled solver. Total
simulation times for each case are also shown in Table 5.1. All three methods take
approximately the same time, with the new coupled solver being the slowest and the
projection method being the fastest. Similar results were obtained for larger Reynolds
numbers.

Table 5.1: Errors, convergence orders and simulation times for the Taylor-Green vor-
tices test case. h is the smoothing length, N is the number of points in the
entire domain at the initial state, ε2 is the relative error, r is the order of
convergence of ε2, and t is the simulation time in seconds.

Projection Coupled: Penalty Coupled: New
h N ε2 r t ε2 r t ε2 r t

1 293 3.1× 10−2 − 6 2.4× 10−2 − 7 1.2× 10−2 − 9
1/2 1 047 9.7× 10−3 1.67 28 6.5× 10−3 1.88 29 3.1× 10−3 1.95 32
1/4 3 856 3.2× 10−3 1.59 195 2.5× 10−3 1.37 202 1.0× 10−3 1.63 207
1/8 14 878 1.1× 10−3 1.54 1934 8.2× 10−4 1.60 2010 3.3× 10−4 1.59 2031
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Figure 5.1: Initial condition for Taylor Green vortices. Arrow lengths are constant and
are not scaled by velocity magnitudes.
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Figure 5.2: Convergence of error for Taylor-Green vortices.

5.4.2 Flow Through a Bifurcated Tube

We consider flow of a fluid through the bifurcated tube shown in Figure 5.3. The
length of the tube is 60m, the width is 4m in the thick region and 1m in the thin
region. Simulation parameters are set as tend = 1s, ρ = 103kg/m3 and η = 2Pa s. The
velocity at the inflow, on the left of the tube, is kept constant at ~vin = (2m/s, 0). This
results in a Reynolds number of the order of 103. A varying time step is used according
to Eq. (5.38) with C∆t = 0.05. Homogeneous Neumann boundary conditions for the
velocity are used at the outflow and no-slip conditions on the walls. The pressure
is kept constant at atmospheric pressure at the outflow and homogeneous Neumann
boundary conditions are considered elsewhere for the pressure. The error in mass
conservation is measured as the difference between the total volume of fluid flowing in
and that flowing out, throughout the entire simulation. The mass conservation error
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Figure 5.3: 2D Bifurcated tube. Fluid inflow is on the left, and outflow is on the right.

is measured as done in the previous chapter and is given by

εmass =

∣∣∣∣∣∣
∫ tend

0

[∫
∂Ωin

~n · ~v dA
]
dt+

∫ tend
0

[∫
∂Ωout

~n · ~v dA
]
dt∫ tend

0

[∫
∂Ωin

~n · ~v dA
]
dt

∣∣∣∣∣∣ , (5.45)

where ~n is the outward pointing unit normal and ∂Ωin and ∂Ωout are the inflow and
outflow boundaries respectively. Note that εmass measures the errors during transient
states too, and not just the errors in the steady state solution. A measure for the
velocity divergence throughout the domain is taken as the integral of the divergence
of velocity scaled by the total volume

D(~v) =
∫

Ω |∇ · ~v|dV∫
Ω dV

, (5.46)

which is also as done in the previous chapter. This can be interpreted as the av-
erage value of local error in the mass conservation equation. Note that there is no
direct correlation between the measures of divergence and mass conservation, D(~v)
and εmass, because the absolute value of velocity divergence is taken in D(~v). The
presence of a numerical source and a sink of equal magnitudes for ∇ · ~v would cancel
out while measuring the mass conservation, but they would add up while measuring
D(~v). Figure 5.4 shows the convergence of the velocity divergence averaged over all
time steps, and the convergence of the error in mass conservation with respect to
changing smoothing length h. The same are also tabulated in Table 5.2. The errors
follow a similar pattern to those in the Taylor-Green vortices test case. The new cou-
pled solver produces significantly smaller errors than the other two methods in both
the average velocity divergence and mass conservation. The difference between the
projection method and the coupled penalty approach is quite small. We note that
convergence orders are observed to be much smaller than in the earlier test case due
to the use of larger time steps, Neumann boundary conditions and a non-standard
domain geometry.
Simulation times for the three methods are also shown in Table 5.2. While the new

coupled solver is the slowest by a large margin on the coarsest point cloud, it is the
fastest on the finest point cloud. This could be due to slower convergence of linear
systems in the other two methods.
To illustrate that the difference between the new coupled solver presented in this

chapter and the penalty formulation coupled solver goes beyond the addition of the
zero divergence equation at boundary points, we split the average divergence of ve-
locity, Eq. (5.46), along the interior and boundary points D(~v) = Dint(~v) + Dbnd(~v),
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Figure 5.4: Bifurcated tube: average divergence of velocity in the simulation do-
main (left) and error in mass conservation (right).

Table 5.2: Errors, convergence orders and simulation times for the bifurcated tube test
case. h is the smoothing length, N is the number of points in the entire
domain at the initial state, εmass is the relative error in mass conservation, r
is the order of convergence of εmass, and t is the simulation time in seconds.

Projection Coupled:Penalty Coupled:New
h N εmass r t εmass r t εmass r t

1/2 5 805 1.2× 10−1 − 556 7.3× 10−2 − 718 4.1× 10−3 − 927
1/4 21 294 9.1× 10−2 0.40 7378 5.6× 10−2 0.38 8752 2.5× 10−3 0.71 6056
1/8 81 125 7.1× 10−2 0.36 76850 4.1× 10−2 0.45 76936 1.7× 10−3 0.56 53477

with
Dint(~v) =

∫
Ω\∂Ω |∇ · ~v|dV∫

Ω dV
; Dbnd(~v) =

∫
∂Ω |∇ · ~v|dV∫

Ω dV
, (5.47)

where Ω\∂Ω represents only the interior points. Figure 5.5 shows Dint(~v) and Dbnd(~v)
averaged over all time steps. It illustrates that the new coupled solver improves the
accuracy of the mass conservation condition across both interior and boundary points.
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Figure 5.5: Velocity divergence on interior points (left) and boundary points (right)
for the bifurcated tube test case.
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5.4.3 Sloshing
The most common area of application of Lagrangian meshfree methods is for flows
with moving free surfaces. We consider the sloshing of a fluid contained in a constantly
moving rectangular box as shown in Figure 5.6. The dimensions of the initial state of
the fluid are 1.2m× 0.12m, and that of the box containing the fluid are 1.2m× 0.6m.

Figure 5.6: Sloshing at times t = 0s (top left), t = 1.31s (top right), t = 1.63s (bottom
left), and t = 2.23s (bottom right).

The initial state is taken to be at rest. Slip boundary conditions are used at the
walls for the velocity. The free surface boundary conditions are given as described in
Section 2.5.4, without surface tension. Homogeneous Neumann boundary conditions
are used for the pressure at the walls. The movement of the box is represented in
the gravitational and body forces term by setting ~g = (2 cos(10t),−10). The simu-
lation parameters are set as tend = 3s, ρ = 103kg/m3, and η = 0.1Pa s, which leads
to a Reynolds number of the order of 104. A varying time step is used according to
Eq. (5.38) with C∆t = 0.3. As done in the previous chapter, the error in mass con-
servation is measured by the change in total volume occupied by all points, since the
density ρ is fixed and constant throughout the domain

εV =
|
∫

Ω0
dV −

∫
Ωend

dV |∫
Ω0
dV

, (5.48)

where Ω0 is the initial domain and Ωend is the domain at tend. The average veloc-
ity divergence is measured as done earlier in Eq. (5.46). The convergence of volume
conservation error and average velocity divergence D(~v) with respect to a changing
smoothing length h for all three methods are shown in Figure 5.7 and are tabulated in
Table 5.3. The results follow a similar trend to that in the earlier two test cases. The
new coupled solver shows the highest accuracy in both velocity divergence and mass
conservation while the projection method shows the least accuracy in both. However,
the difference between the new method and the two older methods is not as large
as in the previous test case. The sharp increase in accuracy between h = 0.06 and
h = 0.03 is due to a bad approximation of the free surface for the coarsest point cloud.
For the finer point clouds, a small convergence rate is observed once again due to the
boundary conditions used and the use of large time steps.
Simulation times for the three methods are also present in Table 5.3. All three

methods take almost the same simulation time, with the new coupled solver being the
slowest for 3 out of the 4 point clouds considered.
We note that more turbulent sloshing problems than the one considered here produce

larger errors in volume conservation, but for such problems, the largest source of error
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Figure 5.7: Sloshing: convergence of solution with smoothing length h. Divergence of
velocity field (left) and error in mass conservation (right).

Table 5.3: Errors, convergence orders and simulation times for the sloshing test case.
h is the smoothing length, N is the number of points in the entire domain
at the initial state, εV is the error in volume conservation, r is the order of
convergence of εV , and t is the simulation time in seconds.

Projection Coupled:Penalty Coupled:New
h N εV r t εV r t εV r t

0.06 382 9.59× 10−2 − 10 7.09× 10−2 − 12 5.73× 10−2 − 15
0.03 1 361 3.27× 10−2 1.56 51 2.26× 10−2 1.65 59 1.47× 10−2 1.96 68
0.015 5 119 2.42× 10−2 0.43 723 1.67× 10−2 0.44 602 1.01× 10−2 0.54 746
0.0075 19 704 1.43× 10−2 0.76 7871 1.23× 10−2 0.44 6685 0.75× 10−2 0.43 7268

is often in the management of the point cloud and not in the approximation of the
PDEs.

5.4.4 Errors in Taylor Expansions
In the classical meshfree GFDM approach of Section 2.5, the errors in Taylor expan-
sions are minimized directly. For the direct GFDM approach, the addition of the PDE
error terms to the functional minimization in Eq. (2.64) and Eq. (5.23) could result in
larger approximation errors in the Taylor expansions.
For ~v = (u, v), we examine this difference numerically by looking at the errors

in the Taylor expansions for u. Formally, the functional being compared is Ji =∑
j∈Si

Wij(euij)2 for each point i. After the velocity at the new time-level is computed,
the obtained velocity is checked for errors in the Taylor expansions. Thus, these errors
include not just the truncation error in the discretization, but also the error due to
the tolerance of the sparse iterative solver. This comparison is done using the Taylor-
Green vortices test case considered earlier in Section 5.4.1, and for velocities after
the completion of the first time step of the simulation. These errors are tabulated
in Table 5.4 for the classical GFDM (with the projection method) and the direct
framework used for the new coupled solver. The errors are larger in the new coupled
solver, but not significantly. This agrees with the results in Section 2.7 that the added
approximation error in the direct GFDM is minimal.
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Table 5.4: Errors in Taylor expansions measured by the functional Ji =∑
j∈Si

Wij(euij)2. The table shows the mean value of Ji across all interior
points at the end of the first time step for the Taylor-Green vortices test
case.

h Classical GFDM: Projection Direct GFDM: New Coupled Solver
1.0 0.2976 0.3057
0.5 0.09579 0.09709
0.25 0.03255 0.03345
0.125 0.01153 0.01470

5.5 Conclusion
We presented a new monolithic algorithm for the incompressible Navier–Stokes equa-
tions, solved using a meshfree Generalized Finite Difference Method (GFDM). While
existing algorithms either solve the mass conservation indirectly via a pressure-Poisson
equation or introduce an artificial compressibility, in the new method presented here,
the mass conservation is solved directly without the introduction of any artificial com-
pressibility. This results in improved local approximations for the mass conserva-
tion equation for both interior and boundary points, which results in better accu-
racy overall. In this method, the momentum and mass conservation equations are
solved together, and simultaneously with a pressure-Poisson equation. The addition
of this Poisson equation is essential for stabilizing the scheme and results in an over-
determined system of PDEs. Accuracy is further improved at boundary points by
solving the mass conservation equation in addition to the usual boundary conditions.
This new scheme was compared with two existing methods: one fractional step

method and one monolithic method. All three methods have the same spatial and
temporal order of accuracy. Numerical comparisons were done for different Reynolds
flows, and the new method was shown to produce more accurate results. Comparisons
were done for the benchmarking example of Taylor-Green vortices, and also for non-
conventional examples with different domains, boundary conditions and free surfaces.
In each case, the new monolithic method showed better approximations to the velocity
zero-divergence condition, which resulted in more accurate results overall.
The new coupled solver exhibits stability similar to that of the penalty-approach

monolithic method, and thus, much better than the projection method. This comes as
the cost of a higher memory requirement to store the sparse linear systems. The new
coupled solver uses a modified GFDM framework, as a result of which it avoids the
saddle point structure of linear systems arising from conventional monolithic methods.
The simulation times for the three methods compared were similar, and the fastest
method varied on a case by case basis. Thus, the improved accuracy in the new coupled
solver does not come at the cost of higher computational times. While numerical
examples in this chapter were only carried out in 2 spatial dimensions, the algorithm
extends easily to more realistic problems in 3D 2.

2We note that since the completion of this thesis, the new monolithic solver presented in this chapter
has been extended to three spatial dimensions, and similar results were obtained.
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An interesting point of study not considered here is the impact of the ratio of weights
in the minimization of the functional in Eq. (5.23). Higher weights could be used, for
example, for the minimization of the error in the mass conservation equation.
From a larger perspective, the ideas presented in this chapter also illustrate the

potential of using the direct GFDM framework presented in Section 2.6 to solve over-
determined problems. And how the same can be used to determine solutions of systems
of PDEs.
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Chapter 6

Point Cloud Movement in Lagrangian
Meshfree Methods
In Lagrangian meshfree methods, the point cloud which forms the underlying spatial
discretization moves with the flow velocity. In this chapter, we consider different
numerical methods of performing this movement of points or particles. This movement
is most commonly done by a first order method, which assumes the velocity to be
constant within a time step. We show that this method is very inaccurate and that it
introduces volume and mass conservation errors. We further propose new methods for
the same which prescribe an additional ODE system that describes the characteristic
velocity. Movement is then performed along this characteristic velocity. The first
new way of moving points is an extension of mesh-based streamline tracing ideas to
meshfree methods. In the second way, movement is done based on the difference in
approximated streamlines between two time levels, which approximates the pathlines
in unsteady flow. Numerical comparisons show these methods to be vastly superior to
the conventionally used first order method.

6.1 Introduction
A moving Lagrangian framework is commonly used while modeling fluid flow. It often
provides better approximations than the fixed Eulerian framework for flows with open
free surfaces and multiphase flows with moving interfaces. The Lagrangian framework
has the further advantage of avoiding the non-linear advection term, and often provides
a more accurate depiction of transport phenomena. However, this comes at the cost
of generally having a more restrictive time step size control, and having the need to
take special care for several aspects of conservation.
In mesh-based methods, moving the mesh causes the additional disadvantage of

mesh distortion. To avoid this distortion and the need to remesh, a large class of
semi-Lagrangian and Arbitrary Lagrangian-Eulerian (ALE) methods have been devel-
oped (see, for example, [23, 106]). To improve conservation properties of mesh-based
Lagrangian methods, the so-called ideas of trace-back and volume adjustments for
mass conservation are often used [3, 45]. The ideas include adjusting the volume
of individual elements or cells based on their traced-back entities, and constructing
upstream vertices and cells based on their corresponding downstream ones.
Meshfree methods provide a more natural fit to Lagrangian frameworks than mesh-

based methods. They use the numerical basis of a set of arbitrarily distributed nodes
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without any underlying mesh to connect them. These nodes could either be mass
carrying particles or numerical points. Movement of this set of nodes, referred to as a
point cloud, in a Lagrangian framework could also lead to distortion. However, point
cloud distortion is easier to fix, as point clouds can easily be adapted locally, especially
in meshfree methods that use numerical approximation points instead of mass carrying
particles (see Section 2.4).
To improve conservation properties, trace-back ideas used in mesh-based methods

have also been generalized to Lagrangian meshfree methods [44]. These methods
involve adjusting the volume or mass of particles or the physical properties of approx-
imation points appropriately after their locations have been updated. In this chapter,
we consider the process of updating the point locations itself. We try to improve
conservation properties by addressing the question of the optimum process of point
movement, instead of adjusting physical quantities after movement is performed.
For incompressible flow, inaccurate movement of points or particles results in errors

in volume conservation. This results in the introduction of numerical compressibility.
This problem is especially relevant for applications with open free surfaces. To solve
this and similar problems, various ‘artificial displacement’ ideas have been introduced,
especially in the context of the meshfree Smoothed Particle Hydrodynamics (SPH).
These involve performing an extra movement step in addition to the Lagrangian move-
ment (or, equivalently, the addition of an extra term in the usual Lagrangian movement
step). This additional movement is artificial in the sense that it is not based solely
on the fluid velocity, as is the nature of the Lagrangian framework; rather it is based
on improving different aspects of the numerical solution, such as to conserve total
incompressibility of the simulated fluid [86] or to prevent local clustering of particles
[50, 101]. Both physical and non-physical arguments have been used for the same.
These methods are referred to under various names, such as particle shifting, artificial
particle displacement, corrective displacement and particle regularization. In contrast
to such methods, the methods presented in this chapter improve the main Lagrangian
movement step without the introduction of any additional artificial movement.
We begin the chapter by showing that the most widely used first order approach

for movement of points is extremely inaccurate, and propose two new methods for the
same. The first new method is based on generalizing mesh-based streamline tracing.
In this method, streamline velocities are approximated by an ODE system, and points
are moved along these approximated streamlines. This method proves to give very
good approximations for quasi-stationary flow problems. A further new method is
developed which considers movement according to the change of these approximated
streamlines between consecutive time levels. Numerical simulations show that this
method gives much better results for rapidly changing flow profiles.
To illustrate the use of these methods of point cloud movement, we use the classical

meshfree GFDM framework of Section 2.5. However the same could also be applied
to other meshfree methods. Since the methods discussed here can be applied to both
numerical points in approximation point based meshfree methods and to particles in
mass carrying particle based meshfree methods, the words ‘point’ and ‘particle’ are
used interchangeably.
In Section 6.2 we introduce the notation used, and present the first order method

which is commonly used to move point clouds in Lagrangian meshfree methods. In
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Section 6.3, we talk about mesh-based streamline tracing, and discuss about why direct
extension of these ideas to meshfree methods is challenging. We then propose new
methods for point cloud movement in Section 6.4. Numerical results on the application
of different movement methods are shown for a Lagrangian advection equation in
Section 6.5, and for the Lagrangian Navier–Stokes equations in Section 6.6. The
chapter is then concluded with a short discussion on the work in Section 6.7.

6.2 Point Cloud Movement - First Order Method
We consider the time-integration of point locations while proceeding from time level
tn to tn+1, with ∆t = tn+1 − tn being the time step size. Times in between the two
time levels are referred to by tn + τ . Point cloud movement is done by integrating the
equation

D~x

Dt
= ~v . (6.1)

Bracketed superscirpts are used to refer to the time level. Thus, point locations at
tn and tn+1 are referred to by ~x (n) and ~x (n+1) respectively; and velocities by ~v (n) and
~v (n+1) respectively. The closed-form movement is referred to as ∆~x = ~x (n+1) − ~x (n).
Throughout this discussion, we only consider methods which decouple the movement
step from the remaining PDEs being solved. Further, within a time step, we consider
the movement to be done before solving the remaining PDEs. Thus, ~v (n+1) is un-
known during movement. If the movement process would be done after the solution of
remaining PDEs is computed, ~v (n−1) and ~v (n) would be replaced with ~v (n) and ~v (n+1)

respectively, throughout the chapter.

6.2.1 First Order Movement
The most commonly used approach for moving point clouds is by assuming the velocity
to be constant throughout the time step.

∆~x = ~v (n)∆t , (6.2)

which is performed at each numerical point or particle. Several variations of this form
of movement are used in different meshfree methods. The most common is for each
point to move with its own velocity ∆~xi = ~v

(n)
i ∆t , ∀i. Some variants of SPH use

movement with the average velocity in the neighbourhood of each particle [78], while
others perform two first order movements per time step, one based on an ‘intermediate’
velocity, and one based on a ‘final’ velocity [87]. Some meshfree methods use the
average velocity of the current and the previous time step [103], and even refer to
the same as a second order method. We club all of these methods under first order
methods, since they assume the velocity to be constant throughout the time step.
This method provides a very inaccurate approximation of moving points. The most

significant errors come in capturing rotational parts of the flow correctly. This can
be illustrated by the simple case of a rotating disc. Each point on the boundary of
the disc has an instantaneous velocity in the tangential direction, as illustrated in
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Figure 6.1: In flows with a rotational component, the most commonly used first order
movement causes points to move along the tangential velocity.

Figure 6.1. Moving boundary points along this direction will result in the disc to
constantly increase in volume.
Despite the significant inaccuracies due to this method of movement, it is still used

extensively today in almost all Lagrangian meshfree methods (see, for example, recent
work in [73, 87, 103, 118]).

6.3 Mesh-Based Particle and Streamline Tracing
Particle tracing is a well established method for visualizations for fluid flow simula-
tions [51]. A common way to do this is to compute tangent curves by assuming a
linearly varying velocity field [20, 82]. This amounts to computing analytical solutions
to streamlines based on the underlying mesh. Such streamline tracing algorithms have
also been extended to irregular geometries and more complex meshes [52].
These ideas of streamline tracing in visualization have also been extended to the

movement of particles in Lagrangian particle methods. One such example is the Par-
ticle Finite Element Method (PFEM) which uses moving Lagrangian particles with
an underlying mesh. Like the aforementioned methods, vector fields are assumed to
be piecewise linear on the background mesh. Based on these, piecewise integration of
particle motion is performed by identifying the locations where particles cross simplex
boundaries, like that done in [51]. As a result, a closed-form solution to the movement
is obtained [41, 80]. In addition to improving accuracy of movement, this method
was shown to reduce the restriction on the time step size arising from the explicit
nature of movement. Since most meshfree methods lack a global underlying mesh,
such streamline tracing methods do not easily generalize to meshfree methods.
An alternative to analytical streamline tracing on the mesh is to approximate the

streamlines numerically. This is done by splitting the time step into multiple sub-steps
only for the purpose of determining the movement [41]. In each sub-step, each particle
is moved with a first order method. Then, at the resulting temporary location at the
end of a sub-step, a new velocity needs to be approximated for that temporary location
which is then used for the movement in the next sub-step. This velocity approximation
is also done based on the underlying mesh. Such a method has several drawbacks in
a meshfree setting. Firstly, in the absence of a background mesh, the interpolation of
velocities at the intermediate locations can prove to be very costly. Further, errors due
to the interpolation at temporary locations can be quite significant [14]. Moreover,

84



6.4 Improved Methods for Point Cloud Movement

since each sub-step uses first order movement of points, any improvement to the first
order method can be coupled with this sub-stepping method.
Numerical integration based on high-order numerical methods such as Runge–Kutta

methods have also been used for the purpose of particle tracking in mesh-based fluid
flow problems. These methods have also been used for particle movement in molecular
dynamics communities [53]. However, these methods have been shown to be less accu-
rate than those based on streamline tracing [72]. Moreover, such higher order methods
prove to be challenging in the context of many meshfree methods. These higher order
methods often require estimating mid-point slopes. For the movement process, this
amounts to estimating velocities in the middle of a time step (at locations where no
approximation node is present). This is quite expensive in a meshfree framework, as
explained above. Other higher order methods require information about velocities at
more than two time-levels which, as we shall show later, is often not available.
Due to these difficulties, the first order method, Eq. (6.2), is used almost exclusively

for the purpose of updating particle locations. In this chapter, we present methods
to improve the accuracy of movement of Lagrangian points in meshfree methods.
We begin by presenting a simple second order method and explaining why further
higher order methods are not feasible. Then we extend streamline tracing to meshless
contexts, and lastly, we combine the second order and streamline tracing methods to
obtain a new method that gives better results for non-steady flows.

6.4 Improved Methods for Point Cloud Movement
6.4.1 Second Order
To avoid the inaccurate movement of the first order method, second order methods
have been used by Kuhnert et al. [47, 57]. Such second order methods have also been
used in ALE frameworks [40] and in a select few SPH codes [18]. Instead of assuming
the velocity to be constant between two time levels, the velocity derivative is assumed
to be constant. The movement can be considered to be done over a characteristic
velocity ~v c, which satisfies the system

D~v c

Dt
(τ) = ~v (n) − ~v (n−1)

∆t , 0 < τ < ∆t (6.3)

~v c(0) = ~v (n) . (6.4)

Note that this system is solved for each point. The particle displacements are then
found by integrating along the characteristic velocity

D~x

Dt
= ~v c , (6.5)

to obtain
∆~x = ~v (n)∆t+ 1

2
~v (n) − ~v (n−1)

∆t (∆t)2 . (6.6)

We note that in this method, and henceforth, the variation of the characteristic
velocity between two time steps is only considered for the sake of movement of points,
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and not for the computation of the new velocity, ~v (n+1), which is done based on the
relevant PDE being solved.
Higher order time integration methods, such as those used in Discrete Element

Method (DEM) simulations [53], are usually not possible, especially for approximation
point-based meshfree methods. To prevent the distortion of point clouds, local adap-
tation is usually done. This involves adding points in locations containing ‘holes’ and
removing points in locations containing clusters of points (see Section 2.4). All phys-
ical properties at the current time level are approximated at every new point created.
However, approximating velocities from multiple time levels before the current one is
extremely inaccurate. Thus, a newly created point would not posses ~v (n−2), ~v (n−3), . . . ,
which are needed in many higher order time integration methods. Thus, these higher
order methods can not be used in many meshfree settings.

6.4.2 Meshfree Movement Along the Streamlines
In fluid flow, streamlines describe the flow direction at a fixed instance in time. Thus,
while going from time tn to tn+1, moving points along the streamline would entail mov-
ing them along the velocity field at tn. Meshed methods approximate this streamline
velocity by performing linear interpolations on the underlying mesh. In contrast, we
approximate the same by prescribing an ODE system which can be solved analytically.
To perform movement along the velocity streamlines, we assume that each point

is being advected based on the velocity gradient at its original location. Streamline
velocities are computed based solely on the convective acceleration (~v · ∇)~v. Since
the streamlines are taken at time tn, the convective term can be taken as (∇~v (n))~v,
written as a matrix-vector product. Thus, the characteristic velocity between the time
levels, along which movement is performed, can be taken by the initial value problem

D~v c

Dt
(τ) = (∇~v (n))~v c , 0 < τ < ∆t (6.7)

~v c(0) = ~v (n) . (6.8)

Eq. (6.7) can be interpreted as the material derivative of the velocity, with the partial
time derivative set to 0. The above assumption of setting ∇~v ≈ ∇~v (n) ensures that
the resultant ODE system can be solved analytically to obtain1

~v c(τ) = exp(∇~v (n) τ)~v (n) (6.9)

=
[ ∞∑
k=0

1
k!
(
∇~v (n)

)k
τ k
]
~v (n) . (6.10)

Integrating the movement equation, Eq. (6.5), leads to the following closed form

∆~x =
[ ∞∑
k=0

1
(k + 1)!

(
∇~v (n)

)k
(∆t)k+1

]
~v (n) , (6.11)

1Matrix exponential convention is used here.
(
∇~v (n))0 is defined to be the identity matrix of

appropriate size, irrespective of the value of ∇~v (n).
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where the velocity gradient is approximated numerically for each point based on the
velocities of its neighbouring points. Note that in the case when the velocity is constant
in space,∇~v (n) = 0 and Eq. (6.11) reduces to first order movement as given in Eq. (6.2).
While this method accurately captures steady flow, a significant disadvantage is

that it assumes the flow to be quasi-stationary. Ignoring the change of the velocity
with time results in this method not providing very good approximations when there
is a rapid change in the velocity profile.

6.4.3 Movement According to the Change in Streamlines
To overcome the disadvantage of the quasi-stationary flow assumption in the movement
along the streamline method, we now present a method that is a generalization of the
streamline method and the second order method. Rather than moving only along the
streamline at the present time level, the difference of the streamlines of the present
and the previous time levels is considered. For non-steady flows, this provides an
approximation of the pathlines of the flow. The approximated streamline velocity at
the present time level tn and previous time level tn−1 are referred to as ~v s and ~v s0
respectively. As done earlier, the streamline velocities are computed as

D~v s

Dt
(τ) = (∇~v (n))~v s , 0 < τ < ∆t

~v s(0) = ~v (n) .
(6.12)


D~v s0

Dt
(τ) = (∇~v (n−1))~v s0 , 0 < τ < ∆t

~v s0(0) = ~v (n−1) .
(6.13)

Which leads to the streamline velocities

~v s(τ) =
[ ∞∑
k=0

1
k!
(
∇~v (n)

)k
τ k
]
~v (n) , (6.14)

~v s0(τ) =
[ ∞∑
k=0

1
k!
(
∇~v (n−1)

)k
τ k
]
~v (n−1) . (6.15)

Note that ~v s is defined at time tn + τ , while ~v s0 is defined at time tn−1 + τ . The
second order method assumed a characteristic velocity which had a constant derivative
throughout the time step, based on the difference of velocities between the time levels.
In this method, we assume a characteristic velocity such that the velocity derivative
is based on the difference of the approximated streamline velocities.

D~v c

Dt
(τ) = ~v s − ~v s0

∆t , 0 < τ < ∆t (6.16)

~v c(0) = ~v (n) . (6.17)

Integrating this leads to the characteristic velocity

~v c(τ) = ~v (n) + 1
∆t

[ ∞∑
k=0

τ k+1

(k + 1)!

((
∇~v (n)

)k
~v (n) −

(
∇~v (n−1)

)k
~v (n−1)

)]
. (6.18)
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~x(tn+1) =?
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tn + τ

Figure 6.2: Moving with the change of streamlines: The actual locations of the point
being considered is represented by squares. The smaller circles represent
instantaneous dummy locations between the time levels. The instanta-
neous derivative of the characteristic velocity is taken to be the difference
in approximated (streamline) velocities at the dummy locations (the differ-
ence along the blue line). The movement is finally done along the resultant
characteristic velocity.

Integrating again to obtain the displacement,

∆~x = ~v (n)∆t+ 1
∆t

[ ∞∑
k=0

(∆t)k+2

(k + 2)!

((
∇~v (n)

)k
~v (n) −

(
∇~v (n−1)

)k
~v (n−1)

)]
. (6.19)

This process is represented in Figure 6.2. Unlike the streamline method, this method
takes into consideration the change in the velocity field between time levels, and thus
provides more accurate results for rapidly changing flows. This comes at the cost of
the need to store ∇~v (n−1). Note that in the case when the velocity is constant in space,
∇~v (n) = 0 and Eq. (6.19) reduces to second order movement as given in Eq. (6.6).

In the numerical results presented later, the infinite summations in Eq. (6.11) and
Eq. (6.19) are truncated after the first 5 terms, which introduces a small error. Since
each of the time-integration methods considered are explicit in nature, the difference
in simulation times between the methods is not significant. The results are split into
two parts. The first is a pure transport problem and the second incompressible flow
according to Navier–Stokes equations.
The explicit nature of each of the methods presented for point cloud movement

results in a CFL condition for stability given by ‖∆~x‖ < C∆th. Obtaining a practically
usable condition out of this for, say, Eq. (6.19) would be a highly non-trivial task.
Thus, only a rough approximation is used by ignoring higher order ∆t terms. This
would lead to the same approximate stability condition on the time step size for all 4
methods

∆t < C∆t
h

‖~v‖max
. (6.20)

As stated in earlier chapters, the majority of simulation time is spent in setting up
and solving the large sparse linear systems arising from the implicit discretizations of
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the governing equations. On the other hand, all the point cloud movement methods
are explicit, and each point can be moved independently. Thus, the movement process
does not does consume a significant amount of computational time, and the total
simulation time does not vary greatly between the methods.
We, once again, emphasize that the point cloud movement methods introduced in

this chapter can be used in all Lagrangian meshfree methods, irrespective of how
the other governing equations are discretized, and irrespective of how the numerical
derivatives are approximated.

6.5 Numerical Results: Advection Equation
We apply the different movement methods to a pure transport problem.

D~x

Dt
= ~v , (6.21)

Dφ

Dt
= 0 , (6.22)

where ~v is the advection velocity, and φ is the physical quantity being transported.
While both examples considered below use ‘simple’ prescribed velocity fields, they

are used to illustrate the impact of the point movement in Lagrangian transport in
meshfree methods. In both cases, the prescribed velocity fields are such that the
domain is undergoing rigid body motion. Thus, relative point positions do not change,
and there is no deformation of the point cloud. Thus, there is no need to perform point
additions or deletions to improve point cloud quality during the simulation, and errors
in the needed interpolation do not affect the simulation. This, coupled with the fact
that Eq. (6.22) can be integrated trivially, ensures that the only source of error is the
movement itself.

6.5.1 Rotation
We consider a circular disc of unit radius rotating about its center. The velocity field
is given by

~v = (−y, x) . (6.23)

The discretized domain contains N = 222 points. Since only rigid body rotation is
being performed, the area of the disc should be preserved. However, numerically, the
disc expands due to movement of points along the tangential velocity at the boundaries,
as shown in Figure 6.1. The error in the numerical result is measured as

εdia = |dnum − d| , (6.24)

where dnum is the numerical diameter of the disc at the end of two complete rotations,
and d is the theoretical diameter of the disc. The error with different time steps for the
different movement methods is shown in Figure 6.3. The first order method produces
the most inaccurate results. The remaining three methods produce similar results
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Figure 6.3: Errors for the rotating disc example. M1 stands for the first order method
of movement, M2 the second order method, M3 the movement along the
streamline, and M4 the movement according to the change of streamlines.

for small time steps, while the movement along the streamline produces the most
accurate results for large time steps. For large time steps, the movement according to
the change of streamlines is more accurate than the second order method. Even for
the smallest time step considered, the first order method is worse than the other three
methods by two orders of magnitude.

6.5.2 Transport Along a Lissajous Curve
We consider the same disc as in the previous example. The disc is being transported
along a velocity field

~v = (15 cos(5t+ π

2 ), 4 cos(4t)) . (6.25)

For a disc with center starting at (0, 0), the exact trajectory of the center of the disc
is given by the Lissajous curve

~xexact = (3 sin(5t+ π

2 )− 3, sin(4t)) . (6.26)

The spatially constant velocity means that∇~v ≡ 0, which results in Eq. (6.11) reducing
to Eq. (6.2); and Eq. (6.19) reducing to Eq. (6.6), as explained earlier. Thus, in this
case, the movement along the streamline and the first order method are the same;
and the movement according to the change of the streamlines and the second order
method are the same. Such cases with spatially constant velocity in a neighbourhood
are relevant for flow regimes in the ‘far field’ of the domain where the velocity does
not vary much. The error in the numerical solution is measured by

ε~x = ‖~xnum − ~xexact‖ , (6.27)
where ~xnum is the numerical center of the disc. For ∆t = 0.05, the evolution of errors
for the different methods of movement are shown in Figure 6.4. The second order and
change of streamline method produce more accurate results than the first order and
streamline method.
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Figure 6.4: Errors in transport along Lissajous curves. M1 stands for the first order
method of movement, M2 the second order method, M3 the movement
along the streamline, and M4 the movement according to the change of
streamlines.

6.6 Numerical Results: Incompressible Navier–Stokes
Equations

Consider the incompressible Navier–Stokes equations in Lagrangian form

D~x

Dt
= ~v , (6.28)

∇ · ~v = 0 , (6.29)
D~v

Dt
= η

ρ
∆~v − 1

ρ
∇p+ ~g , (6.30)

where ~v is the fluid velocity, p is the pressure, ρ is the density, η is the dynamic
viscosity and ~g includes both gravitational acceleration and body forces. The numerical
scheme consists of movement of the point cloud according to one of the methods
mentioned earlier, which is followed by a meshfree projection method, as explained
in Section 5.2.1. In addition, a k − ε turbulence model is also used. The boundary
conditions used, including the ones at the free surface, are as explained in Section 2.5.4.
While an inaccurate update of point locations represents one source of error in meshfree
solution schemes to the incompressible Navier–Stokes equations, other sources of errors
in the same have been discussed in earlier chapters.
The majority of simulation time is spent in setting up and solving the large sparse

linear systems arising from the implicit momentum and pressure Poisson equations.
Further, all the point cloud movement methods are explicit, and each point can be
moved independently. Thus, the movement process does not does consume a significant
amount of computational time, and the total simulation time does not vary greatly
between the methods.
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Figure 6.5: Sloshing. t = 0s (top left), t = 0.72s (top right), t = 1.44s (bottom left)
and t = 1.92s (bottom right). The red color indicates the free surface.

We, once again, emphasize that the point cloud movement methods introduced in
this chapter can be used in all Lagrangian meshfree methods, irrespective of how the
mass and momentum equations are discretized, and irrespective of how the numerical
derivatives are approximated.
Inaccurate movement of the points on the free surface can result in a volume loss

or gain, similar to that illustrated in the rotating disc example considered earlier. For
incompressible flow with density ρ fixed and constant throughout the domain, this
error in volume conservation also represents an error in mass conservation. This error
can be measured as done in earlier chapters, by the relative change in the total volume
occupied by all points in the computational domain.

εV =
|
∫

Ω0
dV −

∫
Ωend

dV |∫
Ω0
dV

, (6.31)

where Ω0 is the initial domain and Ωend is the domain at tend.

6.6.1 Sloshing
We consider the test case of sloshing of water contained in a constantly moving rectan-
gular box. This results in a non-stationary free surface as shown in Fig 6.5. The initial
state is taken to be at rest. The dimensions of the box are 1.2m × 0.6m × 0.2m. At
the initial state, water occupies a cuboidal shape of dimensions 1.2m× 0.12m× 0.2m.
Slip boundary conditions are used at the walls for the velocity. Neumann boundary
conditions are used for the pressure at the walls. The movement of the box is repre-
sented in the gravitational and body forces term by setting ~g = (4 cos(7t),−10,−5).
The simulation parameters are set as tend = 3s, ρ = 103kg/m3 and η = 10−4Pa s,
which results in a Reynolds number of the order of 107.
For a constant smoothing length of h = 0.06, which corresponds to an initial number

of points N = 12010, Figure 6.6 shows the error in volume conservation for different
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Figure 6.6: Volume conservation errors for the 3D sloshing test case. M1 stands for
the first order method of movement, M2 the second order method, M3 the
movement along the streamline, and M4 the movement according to the
change of streamlines.

time steps. For rapidly changing flows like that in this example, the movement along
the streamline method is no longer the most accurate, which agrees with the theoretical
expectation since this method does not take into account the velocity change with time.
In comparison, the second order movement produces more accurate results. Further,
point movement according to the change in streamline method produces slightly better
results than the second order method.
We note that in the less extreme sloshing case considered in Section 5.4.3, the ap-

proximations of the differential operators and the numerical scheme contribute the
largest sources of errors. On the other hand, in the heavier and more extreme slosh-
ing example considered here, the point cloud management, including movement and
addition/deletion are the largest sources of errors.
To see the effect of the movement methods, it would also be important to observe

what role they play on the discretization of the other governing equations. For the
same, the evolution of the mean value of velocity divergence (as defined in earlier
chapters in Eq. (4.51) and Eq. (5.46)) is shown in Figure 6.7 for the case of ∆t = 0.005.
The figure illustrates that the different methods of movement do not significantly affect
the divergence-free nature of the scheme. Further, the evolution of the total pressure
at two different locations is shown in Figure 6.8, for the same case of ∆t = 0.005.
Here, zero pressure occurs when no fluid is present at that location. While minor
differences in the pressure profile are observed due to different point locations, no
major difference in the pressure profile is there since the discretization of the mass
and momentum equations is the same for each of the movement methods.
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Figure 6.7: Evolution of total divergence of velocity for the sloshing test case. ∆t =
0.005. Plotting interval is 15 time steps. M1 stands for the first order
method of movement, M2 the second order method, M3 the movement
along the streamline, and M4 the movement according to the change of
streamlines.
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Figure 6.8: Evolution of total pressure for the sloshing test case at two different loca-
tions. ~x = (0, 0.05, 0.1) (left) and ~x = (0.5, 0.05, 0) (right). ∆t = 0.005.
Plotting interval is 15 time steps. M1 stands for the first order method
of movement, M2 the second order method, M3 the movement along the
streamline, and M4 the movement according to the change of streamlines.

6.6.2 Tank Filling

We consider the filling of an initially empty cuboidal tank from a inlet near the bottom,
as shown in Figure 6.9. For a fixed inflow velocity, the theoretical total volume of the
fluid inside the tank is known, and the numerical volume occupied by the point cloud
can be compared with it.
This test case captures several challenges of fully Lagrangian meshfree methods.

The impact of the high velocity jet on the domain walls can cause points to cluster
near the location of impact. Incorrect movement of points near the impact further
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Figure 6.9: Tank filling. t = 0.36s (left), t = 1.32s (center), t = 3.0s (right). Black
points represent interior points, red points represent points on the free
surface. The wall boundary points in white are hidden, except near the
edges. The blue region on the left of the box marks the inflow.

enhances this problem. Such clustering is a source of tensile instability in meshfree
methods that use mass carrying particles, such as SPH. While mass conservation is
seemingly trivial in these particle based meshfree methods, volume conservation is
an issue that affects all meshfree Lagrangian methods. In all meshfree methods, the
total geometric volume occupied by the point cloud or the particle cloud represents
the physical volume occupied by the simulated fluid. Since incompressible flow is
being considered, this volume should be conserved. However, this is not the case
numerically, and thus, an artificial compressibility is introduced. Further, incorrect
movement at and near the wall boundaries can lead to points escaping the simulation
domain. Depending on the meshfree method being used, these escaped points are
either projected back to the wall, or are deleted. Both these cases are another source
of error in conservation.
The dimensions of the tank considered in the simulations are 1m × 1m × 1m, and

that of the inlet are 0.3m × 0.3m. A constant velocity inflow of ~vin = (3, 0, 0)m/s
is used at the inlet. Slip conditions are used on the walls. The inflowing fluid has
properties of ρ = 103kg/m3 and η = 10−3Pa s which results in a Reynolds number
of the order of 106. The evolution of the numerical volume for simulations with all
four movement methods considered are shown in Figure 6.10 for a large time step of
∆t = 0.6× 10−2, and a small time step of ∆t = 0.6× 10−3. In both cases, the general
trend is the same as that in the sloshing test case. The movement according to the
change in streamlines is the most accurate, followed by the second order method; while
the first order method is the least accurate. For the larger time step considered, the
errors in the streamline and first order methods are significantly larger than the other
two methods, while the difference is not as big for the smaller time step. The error in
the first order method with the large time step is too huge for this combination to be
used in any practical simulations. The relative errors in volume at t = 3s for each of
the methods, and for both time steps used is also tabulated in Table 6.1.
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Figure 6.10: Total numerical volume for the tank filling test case. For a large time step
of ∆t = 0.6 × 10−2 (left), and a smaller one of ∆t = 0.6 × 10−3 (right).
M1 stands for the first order method of movement, M2 the second order
method, M3 the movement along the streamline, and M4 the movement
according to the change of streamlines. A represents the analytical vol-
ume.

Table 6.1: Tank filling test case: Relative errors in numerical volume when compared
with the analytical value, for different methods of movement at t = 3s.
The evolution of these errors is shown in Figure 6.10. M1 stands for the
first order method of movement, M2 the second order method, M3 the
movement along the streamline, and M4 the movement according to the
change of streamlines.

∆t = 0.6× 10−2 ∆t = 0.6× 10−3

M1 60.4% 8.4%
M2 10.8% 4.1%
M3 29.5% 6.0%
M4 5.5% 2.6%

6.7 Conclusion

We presented different methods of moving point clouds for fully Lagrangian meshfree
methods. The most often used first-order method was shown to produce very inaccu-
rate results. We presented two different methods to improve accuracy of movement.
In the first method, each point is moved along approximated streamlines in the neigh-
bourhood of that point. In the second method, the change of streamlines around that
point from the previous time step to the current time step is considered, and movement
is done based on that. Each of these methods provide a better way to track particle
motion, and thus they improve the accuracy of the Lagrangian movement step.
The numerical results match the theoretical expectations. For quasi-stationary flow,

moving points along the velocity streamlines produces better results than the other
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methods. On the other hand, for situations with rapidly changing flow profiles, move-
ment according to the change of streamlines showed the best results.
A key point of this work is to emphasize that the accuracy and conservative prop-

erties of fully Lagrangian meshfree methods can be improved without the need of
resorting to artificial, non-physical corrections of particle locations or the physical
quantities carried by the particles.
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Chapter 7

Conclusion and Outlook
The main goal of this PhD thesis was to explore the potential of meshfree General-
ized Finite Difference Methods, and make a first step towards reducing some of their
drawbacks. This was achieved in various ways.
Firstly, different meshfree GFDMs were compared. The possibility of extending a

particular variant of meshfree GFDMs to solve over-determined problems was pre-
sented, with various numerical examples of the same. Existing numerical schemes
to simulate fluid flow modeled by the incompressible Navier–Stokes equations were
studied, and their drawbacks were analyzed. A new meshfree GFDM scheme for the
same was presented, which reduced many of these drawbacks. This solved an over-
determined system and numerical examples showed the resultant increase in local
accuracy when compared to conventional methods.
Further, the requirements for global conservation in meshfree GFDMs was presented,

and a new method to obtain approximate conservation was developed. This was done
by introducing the idea of adding a flux balance on locally defined control cells. A con-
straint of conservation of quantities in the approximation space was added. Numerical
simulations were presented which showed improved global conservation properties.
Lastly, improvements in the discretization of the Lagrangian nature of various mesh-

free methods were investigated. A method to numerically approximate flow streamlines
in a meshfree setting was developed. This was used to further develop a new method
which numerically approximates the flow pathlines for unsteady flow. The former
method was shown to produce very good results for steady flow, while the latter was
shown to produce good results for unsteady flow profiles.
Put together, various aspects of meshfree GFDM fluid flow solvers were improved.

The three main parts being: improved local accuracy in the PDE solvers, improved
global conservation, and improved accuracy in the the Lagrangian discretization.
Implementation and numerical investigations of the new methods formed a signifi-

cant part of the work done in the duration of the thesis.

All in all, different ways to modify and extend conventional meshfree GFDM ap-
proximations were presented in this thesis. While these ideas were only used towards
improving fluid flow solvers, they showed a lot of promise and could be used in various
other applications. This opens up several possibilities to extend the work of this thesis.
The method to solve over-determined systems can be used to solve a wide variety of

problems, to improve solutions in some aspect. Direct extensions of the work presented
here in this regard could be applied to the field of magneto hydrodynamics (MHD)
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where many of the challenges are similar in nature to the ones in conventional hy-
drodynamics, which were solved here. The effect of the weighting parameter in this
method poses another interesting point of study.
The method of imposing flux conservation on locally defined cells within the usual

moving least squares framework can also be extended to solve a large class of problems.
Of course, a wide range of different flux functions can be used in this framework.
Moreover, the idea behind this method could be extended in a straightforward manner
to add different additional constraints to the differential operator definitions.
A further interesting point of study would be to determine how the local flux con-

servation constraint could also be added in the direct GFDM framework, which would
couple two of the major parts of this thesis.
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Appendix A

Numerical Differential Operators
Consider the classical GFDM differential operators as defined by the polynomial
method in Eq. (2.20) and Eq. (2.21)∑

j∈Si

c∗ijmj = ∂∗im, ∀m ∈M , (A.1)

min Ji = 1
2
∑
j∈Si

(
c∗ij
Wij

)2

. (A.2)

where ∗ = x, y, xx,∆, etc., andM is the set of all monomials upto order 2. Note the
factor 1

2 in the minimization for notational convenience. This minimization can be
rewritten in matrix vector form as

MT
i ~c
∗
i = ~b ∗ , (A.3)

min Ji = 1
2‖W

−1
i ~c ∗i ‖2 , (A.4)

where Wi is a diagonal matrix containing the weights, ~c ∗i is a vector containing the
stencil coefficients in the neighbourhood of i, ~c ∗i = (c∗i1, . . . , c∗in)T . Mi contains the
monomial test functions up to order 2. In two spatial dimensions

MT
i =



· · · 1 · · ·
· · · δxij · · ·
· · · δyij · · ·
· · · 1

2δx
2
ij · · ·

· · · 1
2δy

2
ij · · ·

· · · δxijδyij · · ·


, (A.5)

where δxij = xj − xi and δyij = yj − yi. And the RHS vectors are given by

~b 0 = (1, 0, 0, 0, 0, 0)T , (A.6)
~bx = (0, 1, 0, 0, 0, 0)T , (A.7)
~b y = (0, 0, 1, 0, 0, 0)T , (A.8)
~b∆ = (0, 0, 0, 1, 1, 0)T . (A.9)

Since the number of neighbours are taken to be more than the number of test functions,
Eq. (A.3) forms an under-determined system.
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A.1 Lagrange Multipliers
A possible way to determine the stencil coefficients is to use the method of Lagrange
multipliers, as done by Seibold [96]. Since

‖W−1
i ~c ∗i ‖2 = (~c ∗i )T W−T

i W−1
i ~c ∗i , (A.10)

the Lagrange function for the minimization problem Eq. (A.3) and Eq. (A.4) can be
given by

L(~c ∗i , ~λ) = 1
2 (~c ∗i )T W−T

i W−1
i ~c ∗i + ~λT

(
MT

i ~c
∗
i −~b ∗

)
, (A.11)

where ~λ is the vector of Lagrange multipliers. The optimal solution for ~c ∗i should
satisfy

∂L(~c ∗i , ~λ)
∂~c ∗i

= 0 . (A.12)

Using the fact that Wi is a diagonal matrix, and thus W−T
i = W−1

i , the Lagrange
multipliers for the optimal solution satisfy

W−2
i ~c ∗i +

(
~λTMT

i

)T
= 0 . (A.13)

This leads to

W−2
i ~c ∗i +Mi

~λ = 0 , (A.14)
~c ∗i +W 2

i Mi
~λ = 0 , (A.15)

Substituting this value of ~c ∗i in Eq. (A.3), we get

−MT
i W

2
i Mi

~λ = ~b ∗ (A.16)
~λ = −

(
MT

i W
2
i Mi

)−1~b ∗ . (A.17)

Now, Eq. (A.15) and Eq. (A.17) lead to

~c ∗i = W 2
i Mi

(
MT

i W
2
i Mi

)−1~b ∗ . (A.18)

However, the computation of the matrix product MT
i WiWiMi and its inverse can be

costly, and thus this approach is usually not desirable.

A.2 QR Decomposition
A more efficient method than the method of Lagrange multipliers to compute the same
stencil coefficients is to use a QR-decomposition. For this, Eq. (A.3) is rewritten as

MT
i Wi

(
W−1
i ~c ∗i

)
= ~b ∗ . (A.19)

102



A.3 Taylor Expansion Method

First, a QR-decomposition of
(
MT

i Wi

)T
is performed.

WiMi = QiRi , (A.20)

=
(
Q̂i

ˆ̂
Qi

)( R̂i

0

)
, (A.21)

= Q̂iR̂i , (A.22)

where Q̂iR̂i forms the so-called reduced or thin QR-decomposition. Using this decom-
position, Eq. (A.19) leads to

RT
i Q

T
i

(
W−1
i ~c ∗i

)
= ~b ∗ . (A.23)

Here, the minimum norm solution of
(
W−1
i ~c ∗i

)
is desired. Now, since Qi is a unitary

transformation
‖QT

i W
−1
i ~c ∗i ‖ = ‖W−1

i ~c ∗i ‖ . (A.24)
Thus, the minimum norm solution of QT

i W
−1
i ~c ∗i is desired, which is given by

QT
i W

−1
i ~c ∗i =

(
R̂−Ti

0

)
~b ∗ . (A.25)

This leads to

W−1
i ~c ∗i = Qi

(
R̂−Ti

0

)
~b ∗ , (A.26)

=
(
Q̂i

ˆ̂
Qi

)( R̂−Ti
0

)
~b ∗ , (A.27)

= Q̂iR̂
−T
i
~b ∗ , (A.28)

~c ∗i = WiQ̂iR̂
−T
i
~b ∗ , (A.29)

which is used to compute the differential operator stencils. Note that multiple GFDM
stencils can be computed by performing just one decomposition. For example,[

~c 0
i ,~c

x
i ,~c

y
i ,~c

∆
i

]
= WiQ̂iR̂

−T
i

[
~b 0,~bx,~b y,~b∆

]
. (A.30)

One of the advantages of this approach is that it avoids performing matrix multiplica-
tion MT

i WiWiMi and the explicit computation of its inverse. In the next section, we
show that such an approach can also be used to compute stencils in the direct GFDM
approach. Here, the local linear systems are larger ( for example, see Eq. (5.24) –
Eq. (5.29)), and the advantage of avoiding the computation of the matrix multiplica-
tion and its inverse is thus, larger.

A.3 Taylor Expansion Method
Above, we presented the efficient computation of the differential operator stencil in
classical GFDM written in the polynomial formulation. Now, we do the same for
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the Taylor expansion formulation and show that they are equivalent. Desired is the
solution to the minimization problem in Section 2.5.1. In 2D, the problem can be
stated as


ei1
...
ein


︸ ︷︷ ︸

~Ei

=


1 δxi1 δyi1

1
2δx

2
i1

1
2δy

2
i1 δxi1δyi1

... ... ...
1 δxin δyin

1
2δx

2
in

1
2δy

2
in δxinδyin


︸ ︷︷ ︸

Mi



ui
(ux)i
(uy)i
(uxx)i
(uyy)i
(uxy)i


︸ ︷︷ ︸

~ai

−


u1
...
un


︸ ︷︷ ︸

~bi

,

(A.31)
min Ji = (Mi~ai −~bi)TW 2

i (Mi~ai −~bi) , (A.32)

Note that in an abuse of notation, the RHS vector ~bi used here, and the one used in
the earlier sections ~b ∗ are not the same. The solution to this minimization can be
determined explicitly as follows. The functional Ji is expanded to obtain

Ji = ~aTi M
T
i W

2
i Mi~ai − ~aTi MT

i W
2
i
~bi −~bTi W 2

i Mi~ai +~bTi W
2
i
~bi . (A.33)

Using this, we perform the minimzation

∂Ji
∂~ai

= 0 , (A.34)

to obtain
2MT

i W
2
i Mi~ai −MT

i W
2
i
~bi −

(
~bTi W

2
i Mi

)T
+ 0 = 0 , (A.35)

which gives the solution

~ai =
[(
MT

i W
2
i Mi

)−1
MT

i W
2
i

]
~bi . (A.36)

It is important to note here that the vector ~ai containing the derivatives ui, (ux)i, etc.
are not the unknowns. The stencils to compute those derivatives are the unknowns
being found by this minimization. i.e. The rows of the matrix

[(
MT

i W
2
i Mi

)−1
MT

i W
2
i

]
are of importance to us. We recall the definition the classical GFDM derivatives

∂̃∗i u =
∑
j∈Si

c∗ijuj . (A.37)

Comparing this with Eq. (A.36), we get

· · · c0
ij · · ·

· · · cxij · · ·
· · · cyij · · ·
· · · cxxij · · ·
· · · cyyij · · ·
· · · cxyij · · ·


=
[(
MT

i W
2
i Mi

)−1
MT

i W
2
i

]
. (A.38)
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The transpose of the above system can be rewritten to get

[
~c 0
i ,~c

x
i ,~c

y
i ,~c

xx
i ,~c yyi ,~c

xy
i

]
= W 2

i Mi

(
MT

i W
2
i Mi

)−1
I , (A.39)

where I is an identity matrix of appropriate size. Clearly, this is the same as Eq. (A.18).
Note that the following is assumed to get said equivalence for the Laplace stencil
~c∆
i = ~cxxi + ~c yyi . Thus, the Taylor expansion approach and the polynomial approach
are equivalent (upto numerical round off errors). It is important to note that this
equivalence only holds if the weights used in the minimization are defined as done
above. We emphasize this by reiterating that the minimization in the Taylor expansion
formulation was written as

min Ji =
∑
j∈Si

W 2
ije

2
ij , (A.40)

while that in the polynomial formulation was written as

min Ji =
∑
j∈Si

(
c∗ij
Wij

)2

. (A.41)

If the weights in the minimizations are written in any other way, as is very often done
to simplify notation, including in our earlier work, appropriate care needs to be taken
to modify the weight functions to get the same equivalence. We note that in meshfree
literature, the minimimization in the Taylor expansion formulation is also commonly
written as ∑ W̃ije

2
ij, without the square of the weighting function; whereas that in the

polynomial formulation is also commonly written as ∑ Ŵijc
2
ij.

A.3.1 Direct GFDM

This equivalence can be exploited to obtain a more efficient method to compute the
direct GFDM differential operators described in Section 2.6. Similar to the case of clas-
sical GFDM explained above, the process of explicitly computing the matrix product
followed by the inverse of the local systems can be avoided by performing a QR-
decomposition. Consider the 1D over-determined system mentioned in Section 2.6.1

aru+ brux + cruxx + drv + ervx + frvxx = gr , r = 1, · · · , p . (A.42)

We recall that the function approximation stencils are given by

ui =
∑
j∈Si

αuijuj +
∑
j∈Si

βuijvj +
p∑
r=1

ζuirgr , (A.43)

vi =
∑
j∈Si

αvijuj +
∑
j∈Si

βvijvj +
p∑
r=1

ζvirgr . (A.44)
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The local least squares systems to obtain these function approximation stencils can
be written as



1 · · · 1 ar · · · ap
δxi1 · · · δxin br · · · bp
1
2δx

2
i1 · · · 1

2δx
2
in cr · · · cp

1 · · · 1 dr · · · dp
δxi1 · · · δxin er · · · ep
1
2δx

2
i1 · · · 1

2δx
2
in fr · · · fp





αui1 αvi1
... ...
αuin αvin
βui1 βvi1
... ...
βuin βvin
ζui1 ζvi1
... ...
ζuip ζvip



=



1 0
0 0
0 0
0 1
0 0
0 0


.

(A.45)
Note that unlike Eq. (A.39), only the function approximation stencils are desired, and
thus, only the relevant columns of the identity matrix are used. This system is solved
with a QR-decomposition in a weighted least norm sense as done in Section A.2. This
procedure can similarly be extended to higher dimensions and more variables, such as
that done in Section 5.3, to obtain stencils in a more efficient way for general problems.

A.4 Diagonal Dominance Proof
As noted in Section 2.5.5, it is often beneficial to control the central stencil value c∆

ii .
Eq. (2.44) – Eq. (2.46) can be written in matrix-vector form as



· · · δij · · ·
· · · 1 · · ·
· · · δxij · · ·
· · · δyij · · ·
· · · 1

2δx
2
ij · · ·

· · · 1
2δy

2
ij · · ·

· · · δxijδyij · · ·




...
c∆
ij
...

 =



c∆
ii

0
0
0
1
1
0


, (A.46)

where δij is the Kronecker delta function. The solution of this system can be written
as

~c∆
i = WiQ̂iR̂

−T
i b̃∆ , (A.47)

where b̃∆ is the RHS of Eq. (A.46). Since the QR-decomposition is of the matrix in
the LHS of Eq. (A.46), it does not depend on the central stencil value. Thus,

∂~c∆
i

∂c∆
ii

= ∂

∂c∆
ii

(
WiQ̂iR̂

−T
i b̃∆

)
, (A.48)

= WiQ̂iR̂
−T
i

∂

∂c∆
ii

(
b̃∆
)
. (A.49)
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Now,

∂

∂c∆
ii

(
b̃∆
)

= ∂

∂c∆
ii



c∆
ii

0
0
0
1
1
0


=



1
0
0
0
0
0
0


. (A.50)

Thus, ~d∆
i = ∂~c∆

i

∂c∆ii
is given by the minimum weighted norm solution of



· · · δij · · ·
· · · 1 · · ·
· · · δxij · · ·
· · · δyij · · ·
· · · 1

2δx
2
ij · · ·

· · · 1
2δy

2
ij · · ·

· · · δxijδyij · · ·




...
d∆
ij
...

 =



1
0
0
0
0
0
0


, (A.51)

which is equivalent to Eq. (2.52) – Eq. (2.54). This completes the proof for 2D. Exten-
sion of the same to 3D is straightforward.

A.5 Consistent Normal Operators

For the numerical differential operators, one of the mimetic properties desired is con-
sistency between the normal direction differential operator and the usual gradient
operators. Specifically, we want

~cni =
∑

k=x,y,z
nki~c

k
i , ∀i ∈ ∂Ω , (A.52)

where ~ni = (nxi , n
y
i , n

z
i ) is the outward pointing unit normal at point i.

As mentioned in Section 2.5.4, the stencils for the derivative in the normal direction
are commonly computed using a diagonal dominance procedure, similar to that done
for Laplace stencils. In such situations, the desired consistency, Eq. (A.52), is usually
violated. To retain this consistency, the following procedure is carried out.
Let ~cni be the stencil for the normal operator computed using the diagonal dominance

procedure of Eq. (2.38) and Eq. (2.39). Further, let ~c kold
i , k = x, y, z be the usual

first derivative operators computed by Eq. (2.20) and Eq. (2.21). The first derivative
operators are modified to ~c ki as follows

~c ki = ~c kold
i + ~αnki , k = x, y, z . (A.53)
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Plugging Eq. (A.53) into Eq. (A.52), we get the following, which we wish to enforce

~cni =
∑

k=x,y,z
nki
(
~c kold
i + ~αnki

)
, (A.54)

=
∑

k=x,y,z
nki~c

kold
i +

∑
k=x,y,z

~α
(
nki
)2
, (A.55)

=
∑

k=x,y,z
nki~c

kold
i + ~α , (A.56)

~α = ~cni −
∑

k=x,y,z
nki~c

kold
i . (A.57)

This is substituted back into Eq. (A.53) to obtain the new gradient operators at bound-
ary points. By construction, the new gradient operators are consistent with the normal
operator in the sense of Eq. (A.52). Further, they also satisfy the monomial consistency
conditions since

MT
i ~c

k
i = MT

i ~c
kold
i −MT

i ~αn
k
i , (A.58)

and

MT
i ~α = MT

i ~c
n
i −

∑
k=x,y,z

nkiM
T
i ~c

kold
i , (A.59)

= 0 . (A.60)

Eq. (A.60) is evident from the monomial consistency conditions themselves. In 2D,
MT

i is given by Eq. (A.5) and the RHS vectors ~b ∗ = MT
i ~c
∗
i are given by

~bx = (0, 1, 0, 0, 0, 0)T , (A.61)
~b y = (0, 0, 1, 0, 0, 0)T , (A.62)
~bn = (0, nxi ,n

y
i ,0, 0, 0)T . (A.63)

Eq. (A.60) follows directly.

A.6 Non-Symmetric Global Conservative Differential
Operators

Using the notation defined earlier in this appendix, Eq. (3.31) – Eq. (3.32) can be
rewritten as

MT
i ~c

k
i = bk , i = 1, . . . , N , (A.64)

N∑
i=1

Viψi~c
k
i = B̃ k , (A.65)

where B̃ k contains the appropriate geometric values of Eq. (3.26); and ψi ∈ RN×n(i)

is defined such that ~̄c ki = ψi~c
k
i , with ~̄c ki defined as in Eq. (3.24). Thus, ψi contains

exactly n(i) non-zero entries, each of them being 1. ~c ki ∈ Rn(i) contains the neighbour
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stencils with neighbours indexed as (1, . . . , n(i)). ψi ‘stuffs’ zeros in ~c ki to take it to
the globally indexed ~̄c ki ∈ RN . The above system can be further rewritten as

MT
1

. . .
MT

N

V1ψ1 . . . VNψN


︸ ︷︷ ︸

KT


~c k1
...
~c kN


︸ ︷︷ ︸

c̃ k

=


bk

...
bk

B̃ k


︸ ︷︷ ︸

B

, (A.66)

The linear system Eq. (A.66) is solved by minimizing the weighted ‖W−1c̃ k‖, as done
before, where

W =


W1

. . .
WN

 . (A.67)

Clearly,

‖W−1c̃ k‖2 =
N∑
i=1
‖W−1

i ~c ki ‖2 . (A.68)
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Appendix B

Over-Determined Problems
Throughout this thesis, a significant amount of attention has been paid to over-
determined problems. The main point to note here is that in this thesis, the term
‘over-determined problem’ is used to refer to specific problem formulations which con-
tain more PDEs than variables. Of course, such systems could be and often are
manipulated, either algebraically or through a series of differentiations, to obtain a
(somewhat) equivalent system which is no longer over-determined. An example of this
is given in Section 2.7.3. But what is of interest here is that in the formulation being
solved numerically, there are more PDEs than variables. As shown in Sections 2.7.2
and 2.7.3 , and in Chapter 5, solving such over-determined problem formulations nu-
merically can have several advantages.
We note that the mere fact that a system of differential equations is over-determined

has little relation with the question of whether the system is well-posed [115]. It is quite
possible for a system to have more algebraically independent PDEs than unknowns
and still have an infinite number of solutions. A simple example of the same is the
unbounded div-curl system in R3

∇× ~ψ = ~f , (B.1)
∇ · ~ψ = g . (B.2)

For any solution ~ψ0 of this system, and a harmonic ~ψ1 satisfying ∆~ψ1 = 0, ~ψ0 + ~ψ1 is
also a solution of this system. This system has 4 PDEs, and only 3 unknowns, but has
infinitely many solutions. Similarly, if Eq. (B.1) were to be considered independently,
it would result in a system with 3 PDEs and 3 variables, but infinitely many solutions.
Such situations can also occur on bounded domains. For example, imposing a Dirichlet
boundary condition on a certain part of the domain boundary is not always enough
to make the solution to ∇ × ~ψ = ~f unique. In such situations, additional closure
condition(s) are needed to get a well-posed system. This results in the need to solve
an over-determined system numerically. Section 2.7.3 lays out a few more situations
where numerically solving an over-determined system can be beneficial.
It must be noted that in the context of systems of differential equations, the terms

over, under and properly/exactly determined systems are also used to refer to the
solvability of the system of equations [115]. This is used in the sense that an under-
determined problem means one that has infinite solutions, and exactly determined
problem has a unique solution, while a over-determined system has no solutions. This
terminology is not used in this thesis.
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Local Centroidal Dual

In Chapter 4, the idea of using locally defined control cells to add additional constraints
to the definition of classical GFDM differential operators was presented. These local
control cells are also used to assign a geometric volume to each point. Control cells are
formed by considering the Delaunay tessellation of all points in the neighbourhood of
the central point. Such a local tessellation in 2D is shown in Figure C.1. The simplexes
(triangles or tetrahedrons) of the tessellation incident on the central point are the
only ones of interest. These are marked in Figure C.1 in blue. A dual graph to these
simplexes is used as the desired control cell. We note that in the local tessellations,
simplexes with very large circumradius (larger than 3h) are ignored. This is important
at boundaries where a simplex may be formed between multiple boundary points on
the outside of the domain. A 2D example of this is shown in Figure C.2.
The Voronoi dual to the Delaunay tessellation consists of edges (in 2D) or faces

(in 3D) formed by connecting the circumcenters of the Delaunay simplexes. The use
of the Voronoi cell containing the central point as the desired local control cell poses
several problems. Most importantly, the circumcenter of a simplex need not always
lie within it. This can lead to illogical volume definitions. At boundary points, it
is possible that the resultant control cell can extend beyond the simulation domain,
which would result in errors in estimating the total volume occupied by the point cloud.
An example of this is illustrated in Figure C.3, for the same point configuration and
local triangulation as the boundary point case considered in Figure C.1. Ensuring that
each circumcenter lies within its simplex imposes a quality criterion on the point cloud
to produce ‘good’ simplexes. We empirically observe that this criterion is significantly
stricter than the ones traditionally used in Lagrangian meshfree GFDMs, which are
described in Section 2.4, especially at boundary points.
A possible solution to avoid this problem is to use a centroidal dual to the Delaunay

tessellation. This is formed by connecting the centroids (barycenters) of each simplex,
rather than their circumcenters. By definition, the centroid lies at the mean position
of all the nodes of the simplex, and thus, always lies within the simplex. The difference
between the Voronoi and the centroidal duals is illustrated in Figure C.3. The figure
also illustrates two possible ways to construct the centroidal dual. It can either be
formed by connecting the centroids to each other directly, or by connecting them to
the mid-point of each Delaunay edge. We use the latter approach to form the control
cell used in Chapter 4, due to its ease of generalization to 3D.
At boundary points, the dual needs to be truncated to form a closed cell. This

process is illustrated by the green lines in Figure C.3. Those green lines are also used
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Figure C.1: Local Delaunay triangulation within the support domain. For an interior
point (left) and a boundary point (right). The central point is marked
with a cross, the support domain is indicated with the circle. The blue
triangles are the ones incident on the center point. A dual graph to these
is used as the local control cell.

Figure C.2: A triangle being ignored for the boundary point configuration used in
Figure C.1. The ignored triangle is marked in red.

Figure C.3: Voronoi dual (left) and centroidal dual (center and right) to the Delaunay
triangles marked in blue in the boundary point configuration in Figure C.1.
The light blue lines are part of the semi-infinite duals, which are truncated
by the green lines to form a closed cell. The center figure shows the cen-
troidal dual formed by connecting the centroids directly. The right figure
shows the one formed by connecting the centroids to the edge midpoints,
which is the procedure used for the local control cell. Remark: In this
and several figures to follow, the scaling of the two dimensions are not
the same. As a result, perpendicular lines may appear to not be so in the
figure.
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to prescribe the geometric area Ai and normal ~ni associated with the central boundary
point. This can lead to one of two problems with the use of the Voronoi dual. If Ai and
~ni are defined such that they accurately represent the local geometry of the domain
boundary, the resultant control cell could be self-intersecting, as shown in Figure C.3.
On the other hand, if the control cell is closed such that it is not self-intersecting,
the resultant Ai and ~ni do not accurately capture the local geometry of the domain
boundary. This problem no longer persists when the centroidal dual is used.
The use of a centroidal dual has the further advantage that the volume of each

simplex is split evenly between all its nodes1, while in the traditional Voronoi dual,
the volume split is uneven.
Details regarding the numerical construction of the centroidal dual are given below.

C.1 Construction of the Centroidal Dual
For a point i, we start with an established local Delaunay tessellation Ti. The set of
simplexes incident on point i is denoted by Ti, and the set of all neighbours connected
to i with a Delaunay edge is denoted by Ii.
The local control cell is given by the union of a dual to each edge il, l ∈ Ii. This

dual ĩl is formed by connecting the centroids of each simplex incident on the edge il
to the center of the edge il. It must be noted that a centroidal dual formed in this
way is not a dual to the Delaunay tessellation in a formal graph theoretic sense, but
only loosely resembles a dual graph.

C.1.1 2D
• If the Delaunay edge il has two triangles incident on it, the dual ĩl consists of

two edges formed by connecting the centroid of each of these triangles to the
mid-point of the edge il. This is shown in Figure C.4 (left).

• If the Delaunay edge il has only one triangle incident on it, the dual ĩl consists
of the single edge formed by connecting the centroid of this triangle to the mid-
point of the edge il, as shown in Figure C.4 (center). This case commonly occurs
for edges connecting two boundary points.

• For boundary points, the dual is closed by connecting the mid-points of each
Delaunay edge which has only one triangle incident on it with the center point
itself. This is shown in Figure C.4 (right).

The different parts (edges in 2D) of the dual ĩl are indexed as ilk, for a varying k.
~nilk and Ailk are used to denote the unit normal to the k-part of the dual, pointing
away from i, and the area (length in 2D) of that part respectively. Then the normal ~nil
and area Ail for the dual ĩl, which is used to define the fluxes across the dual region,

1When the cells are defined based on local tessellations, as done in this thesis, this only holds true
if the local cells stitch together to form a global mesh.
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are defined as

~nilAil =
∑
k

~nilkAilk , (C.1)

Ail =
∑
k

Ailk . (C.2)

A similar sum is carried out over the boundary points to define the boundary normal
and area. The volume associated with each point is taken to be the volume (area in
2D) of the entire cell. Note that the normal ~nil is not made of unit length to ensure
that the normal and area definitions are consistent with the cell being closed:∑

l∈Ii

~nilAil = 0 , if i /∈ ∂Ω , (C.3)

~niAi +
∑
l∈Ii

~nilAil = 0 , if i ∈ ∂Ω . (C.4)

We note that in the case of a Voronoi dual, the normal ~nil is in the direction of the
edge il. This is generally not true for the centroidal dual used here.

Figure C.4: Construction of the centroidal dual. The left and center figures show the
dual to a Delaunay edge. The Delaunay edge is marked in red, while its
dual is marked in light blue. The centroid of each triangle incident on the
edge is marked with an orange diamond, while the center of the edge itself
is marked with a dark blue diamond. The left figure shows the case of
two triangles incident on the edge, while the center shows the case of one
triangle. The right figure shows the closure of the cell by the boundary
half-edges.

C.1.2 3D
The dual in 3D is formed by generalizing the 2D procedure mentioned above. The dual
ĩl to each Delaunay edge il is formed by connecting the centroids of all the tetrahedrons
incident on il. Since all these centroids need not lie in a plane, the centroids need to
be connected with the mid-point of the edge il, in a way similar to that done in the 2D
case above. In 2D, ĩl consisted of multiple edges sharing a common vertex. Similarly,
in 3D, ĩl consists of multiple triangles sharing a common vertex, with several pairs of
triangles sharing a common edge. Each triangular part of ĩl corresponds to a pair of
tetrahedra incident on il which share a common face. The centroids of each of such a
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pair of tetrahedra are connected to each other, and to the mid-point of the edge il to
form the dual triangle. The union of all such triangles gives ĩl. For boundary points,
the cells are closed in a manner similar to that done in 2D. Normals and areas are also
given in a way similar to 2D.

~nilAil =
∑
k

~nilkAilk , (C.5)

Ail =
∑
k

Ailk , (C.6)

where the summation index k is over all triangular parts of ĩl. Once again, ~nil is not
made of unit length. It must be noted that taking such a centroidal dual no longer
guarantees that the local cells will be convex.
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