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Abstract

EN

The goal of this PhD is to improve various aspects of meshfree Generalized Finite Dif-
ference Methods (GFDMSs). In this thesis, different meshfree GFDMs are compared,
and their potential to solve over-determined problems is presented. A new method is
presented that introduces conservation of fluxes in a meshfree setting, which reduces
the problem of lack of conservation that has plagued meshfree methods. Special at-
tention is paid on the application of meshfree GFDMs to simulate fluid low modeled
by the incompressible Navier—Stokes equations. A new meshfree GFDM scheme for
the same is presented which improves local accuracy, and shows better approximations
to the mass conservation condition. Further, different aspects of meshfree Lagrangian
frameworks are studied, and new methods to improve accuracy in the Lagrangian
movement process are also presented.

DE

Das Ziel dieser Dissertation ist die Verbesserung einiger Aspekte gitterfreier ver-
allgemeinerter Finite Differenzen Methoden (engl. GFDM). In dieser Arbeit wer-
den verschiedene solcher gitterfreier GFDMs verglichen und deren Potenzial zur Lo-
sung iiberbestimmter Probleme herausgestellt. Es wird eine neue Methode prasen-
tiert, welche die Erhaltung von Fliissen in den gitterfreien Kontext iibertragt und
somit das fiir gitterfreie Methoden typische Problem mangelnder Erhaltung reduziert.
Besonderes Augenmerk wird auf die Anwendung gitterfreier GFDMs zur Simulation
von Fluid Stromungen, welche durch die inkompressiblen Navier—Stokes Gleichungen
beschrieben werden konnen, gelegt. Hierfiir wird ein neues gitterfreies GDFM Ver-
fahren vorgestellt, das die lokale Genauigkeit und die Approximation an die Bedin-
gung der Massenerhaltung verbessert. Dariiber hinaus werden verschiedene Aspekte
des Lagrange-Formalismus im gitterfreien Kontext untersucht und neue Methoden zu
Verbesserung der Genauigkeit im Lagrange’schen Bewegungsprozess prasentiert.
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Chapter 1

Introduction

Most numerical methods for solving partial differential equations require the genera-
tion of a mesh over the computational domain. Despite advances in mesh generation
technology and computer hardware, the generation and management of meshes is of-
ten the most difficult and time consuming part of the simulation procedure. This is
further compounded for complex, time-dependent geometries. In many practical sce-
narios, the simulation domain changes with time. In such situations, there may arise
the need to remesh the domain repeatedly during the simulation. This causes a fur-
ther bottleneck in numerical simulations. The quality of numerical solutions depends
directly on the quality of the mesh. Thus, the efficiency of mesh generation limits the
overall accuracy, robustness and speed of the numerical simulation process. Moreover,
mesh generation can not always be entirely automated, and often requires a lot of man
hours. In fact, in the simulation industry, there exist jobs called ‘meshers’ whose work
is solely the creation of 3D meshes for simulation domains.

To avoid the task of meshing and remeshing, several classes of meshfree or meshless
methods have been developed. These gridfree methods use the numerical basis of a set
of nodes to cover the computational domain. Nodes need not be regularly distributed,
and usually are arbitrarily spaced. These nodes are usually referred to either as points
or particles, and are broadly of two types. A node could either be a mass-carrying
entity, or simply a location where approximations are performed. For each node, the
only geometrical information required is a local set of neighbouring nodes over which
approximations are carried out. No additional connectivity information is needed.
The generation of the set of nodes across the entire simulation domain, referred to as
a point cloud, is much easier than mesh generation. Point cloud generation can be
automated to a great extent, thus significantly reducing the necessary man hours to
set up a simulation. For simulation domains that move or change with time, meshfree
methods have the further advantage of local adaptivity. Modifying a point cloud is
much easier than remeshing the entire domain. Due to these advantages, meshfree
methods are becoming increasingly popular in industrial simulation applications. One
of the biggest fields of application of meshfree methods is fluid flow problems, which
often have an open free surface which rapidly changes with time.

Of course, these advantages of meshfree methods come with their own set of chal-
lenges. The lack of available mathematical rigour has driven several mathematicians
away from meshfree methods. A further issue is the lack of global conservation. In
meshed methods, the global mesh ensures that accurate local approximations provide
a good global solution. The absence of such a mesh in most meshfree methods means
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that there is often no direct relation between local accuracy and global solution qual-
ity. This lack of global conservation, and thus accuracy, in the numerical solution has
been a big reason for the aversion to meshfree methods in many communities. The
aim of this thesis is to address this issue. We try to improve conservation properties,
and accuracy, both local and global, of a certain class of meshfree methods. This is
done with a strong emphasis on (fully) Lagrangian meshfree methods for fluid flow,
where the point cloud moves with the fluid velocity.

1.1 Thesis Outline

This thesis is organized as follows.

e In the remainder of this chapter, we introduce a few different meshfree methods,
and talk about point cloud generation and neighbour search algorithms which
are essential in all meshfree methods.

e Chapter[d goes into details about meshfree Generalized Finite Difference Meth-
ods (GFDMs) which are the central topic of this thesis. Their advantages and
disadvantages are discussed, along with a comparison with other strong form
meshfree methods. Different variations of meshfree GFDMs are presented, with
numerical comparisons between them. The unexplored potential of extending
meshfree GFDMs to solve over-determined problems is brought to light, and a
few numerical examples of the same are also performed.

e Chapter[3introduces the topic of conservation in relation with meshfree GFDMs.
Existing work to improve conservation is presented, and a new method to gener-
alize the same is also developed. The inherent drawbacks of both these methods
are discussed, which poses the need for more work in conservation with meshfree
GFDMs.

e Chapter [{] presents a novel method to introduce approximate conservation in
meshfree GFDMs. This method is significantly more efficient than the existing
work on the same which was discussed in the previous chapter. An idea to intro-
duce local balances of numerical fluxes in meshfree methods is presented. This
flux balance is done within the usual moving least squares framework. Unlike
Finite Volume Methods, it is done on locally defined control cells, rather than
a globally defined mesh. Applications of this method to an advection-diffusion
equation and the Navier—Stokes equations are shown. Numerical simulations are
presented to compare this new method to classical GFDMs, and the new method
is shown to be superior.

e Chapter[j talks about meshfree GFDM schemes to solve fluid flow. Drawbacks
specific to meshfree methods are brought to light, and a new scheme is presented
which reduces those drawbacks. The new monolithic scheme presented improves
accuracy of the mass conservation condition, while avoiding the difficult saddle
point structure of linear systems arising in most monolithic schemes. In contrast
with the previous chapter which aimed to improve global conservation (and ac-
curacy), the work presented here aims to improve local accuracy of the solution.

e Chapter [0] deals with the Lagrangian nature of meshfree methods. Different
methods to move the point cloud with the fluid velocity are discussed. Inaccu-
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racies in existing methods are highlighted, and new methods are presented for
the same. A new method to approximate streamlines in a meshfree setting is
presented. Point cloud movement along these approximate streamlines is shown
to be more accurate than traditional methods for steady flows. A further new
method is presented which moves points along pathlines which are computed
by determining the change in the approximated streamlines between time steps.
Numerical examples show this method to be the most accurate for rapidly chang-
ing flow profiles. Unlike the previous chapters, the work presented here applies
to all Lagrangian meshfree methods, and not just meshfree GFDMs.

e Chapter[7 presents an outlook about the work of this thesis, and talks about the
potential to extend the different ideas presented.

o Appendiz[A]presents some details about the construction of numerical differential
operators for meshfree GFDM. This forms an extension of Chapters [2] and [3]

o Appendiz[B gives a short note on the over-determined systems which are referred
to in Chapters [2] and

o Appendiz[(] shows the construction of local control cells which are used for local
balances of fluxes in Chapter [4

1.2 Different Meshfree Methods

Meshfree methods can be broadly classified into two classes based on the formulation
of the partial differential equations being solved.

1.2.1 Weak Form Meshfree Methods

A wide variety of weak-form meshfree methods have been developed. Some important
examples of the same are

Element-Free Galerkin (EFG) [9]

Meshless Local Petrov-Galerkin (MLPG) [5]
Reproducing Kernel Particle Methods (RKPM) [70]
Diffuse Element Method [81]

Finite Volume Particle Method (FVPM) [3§]

Some of these methods, such as the EFG, are based on global weak forms and
perform integrations based on a global background mesh. Others, such as the MLPG,
are based on local weak forms and integrations are performed only on local background
meshes. Some methods, such as the MLPG arise from generalizing finite element and
galerkin methods, while others such as the FVPM stem from generalizing finite volume
methods.

Since this thesis focuses on strong form meshfree methods, we do not go into de-
tails about the advantages and disadvantages of meshfree weak form methods. The
interested readers are referred to the book by Liu and Gu [65] and the habilitation of
Schweitzer [05] for the same.
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1.2.2 Strong Form Meshfree Methods

Several strong-form meshfree methods have been developed over the years. Below, we
introduce three major classes of strong form meshfree methods.

Smoothed Particle Hydrodynamics (SPH)

SPH [66] is one of the first and most widely used meshless methods. In SPH, spatial
discretizations are based on an integral representation of functions. The integral rep-
resentation of a function f is motivated by the dirac-delta integral identity, and its
value at point ¥ is given as

f(f)z/gf(f’)W(f—f’,h) dz’, (1.1)

where W is the so-called kernel function or smoothing function, and h is the spatial
discretization parameter, referred to as the smoothing length. W is chosen such that
it approaches the dirac-delta function as h — 0. Derivatives are also approximated
by integral operators. For example, if f in Eq. is some derivative of a function
g, the derivative is transferred to the known function W by performing an integration
by parts, similar to that done in many weak-form methods. The final integral is then
discretized at the particle locations.

SPH is a Lagrangian meshfree method which was originally developed for astro-
physical applications in the late 1970s [34]. It has also been used a lot for fluid flow
applications in the past two decades. The origins in astrophysical problems with no
solid boundaries meant that SPH does not have a natural way to prescribe bound-
ary conditions. As a result, one of the biggest drawbacks of SPH is the difficulty in
enforcing boundary conditions [60, [68, [90]. While a lot of work has been done to
address this issue, the SPH formulation still does not naturally include treatment of
most boundary conditions and extra effort is needed to enforce them.

Another major drawback of SPH in its classical formulation is the so-called particle
inconsistency issue which results in the absence of a valid approximation order. The
original SPH does not even have C° particle consistency for irregularly distributed
particles and boundary particles. Attempts to solve this problem include the ker-
nel renormalization [16] which comes at the price of the loss of certain conservation
properties for momentum and energy.

In SPH, the computational domain is discretized by particles which carry mass.
Thus, mass conservation is directly guaranteed'] However, this means that particles
can not be easily added or deleted. This results in clustering of particles and un-
balanced or distorted particle distribution, which is related to the so-called tensile
instability problem.

"'While mass conservation is seemingly guaranteed in SPH, volume conservation is not. This is
discussed in detail in Chapter[6] For incompressible flows, a constant density means that an error
in volume conservation corresponds directly to an error in mass conservation.
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Radial Basis Functions (RBF)

Radial functions are functions whose values only depend on the distance from a fixed
point. Thus, a radial function ¢ centered at ¢ satisfies

¢(7,¢) = ¢([|l7 —d]) . (1.2)

Meshless methods based on RBFs stem from the use of radial functions in scattered
data interpolation. In these methods, a function is approximated by a linear combi-
nation of a single radial function translated at different points

=z

Z (lz =il , (1.3)

where the coefficients ¢; are found by inverting a global matrix. Derivatives are defined
based on Eq. (1.3 by considering the derivatives of the radial functions. For example,

V(@) = Z:CNMIISE—@II)- (1.4)

To avoid the poor conditioning of the global systems and the high computational costs
involved in inverting them, many meshless methods based on RBFs have started using
local approximations [94], making RBFs resemble other meshless methods. One way
of doing this is by replacing the summation in Eq. by a local one depending only
on the nodes in the support domain of the central node.

A drawback of meshfree RBF-based methods is that the choice of the basis function
¢ and the related shape parameters significantly affect the accuracy and stability of
the method [79]. While a lot of has been done to determine the optimal choice for
the same (for example, [28]), this choice remains application-specific and ad-hoc in
nature. Depending on the choice of the parameter, extra stabilization techniques may
be required, which are usually extremely expensive [30].

Meshfree Generalized Finite Difference Methods (GFDM)

As the name suggests, meshfree GFDMs generalize traditional finite difference meth-
ods to arbitrary point distributions. They are based on weighted least squares ap-
proximations. Derivatives are given by linear combinations of the function values on
neighbouring points. Meshfree GFDMs are the central theme of this thesis, and a
detailed introduction to them is given in Chapter [2]

1.3 Point Cloud Generation

An important aspect of meshfree methods is the generation of the initial set of nodes.
A common misconception is that point cloud generation can be as tough as mesh
generation. This stems from the fact that many meshfree communities initially used
the nodes of a mesh as the point cloud. Some meshfree methods have also used
randomly scattered nodal distributions, which further promotes the misconception.
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A commonly used easy way to set up the initial point cloud is to start with adding
points on the domain boundary with a certain spacing. These boundary points are
used as a source to generate a first layer of interior points, which in turn act as a source
for the next layer of interior points. This procedure is continued till the entire domain
is filled. This process can be easily automated, and can even be used to generate
point clouds on extremely complex geometries. A more detailed description of this
procedure can be found in Drumm et al. [24]. Similar setup procedures have been
commonly referred to as the advancing front technique [71].

1.4 Neighbour Search

Efficient neighbour searching is integral to the efficiency of meshfree methods. For
each node, its neighbouring nodes are usually determined as the nodes within a cer-
tain distance h from it. The naive approach to neighbour searching would thus involve
computing distances between every pair of nodes in the computational domain. How-
ever, this procedure is exorbitantly expensive. To avoid excessive distance computa-
tions, the domain is usually split into multiple regions referred to as boxes or cells.
Using such a decomposition, for each node, distances only need to be computed with
other nodes within the same box (or possibly also adjacent boxes). Several different
data structures have been used to this end. One of the ways to do the same is to
use quadtree or octree type searching algorithms. Efficient methods for neighbour
searching have been studied in, for example, [22], 85].
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Meshfree Generalized Finite
Difference Methods

Moving Least Squares (MLS) approximations used in data fitting have widely been
used as a basis for many meshfree methods [§]. In MLS approximations, a function u,
given only on a set of points, is approximated by a smooth function

v(Z) = kf:pk(f)ak(:?) , (2.1)

where py, () are basis functions, usually monomial or singular functions, ay(Z) are their
coefficients, and m is the number of basis functions. The coefficients a; (%) are obtained
such that v(Z) provides the best approximation to u (and possibly its derivatives), in
the least squares sense. This results in the minimization of the quadratic form

J =2 W(@) () —u(@))*, (2.2)

zes

where S' is the set of points about which the approximation is being carried out, and
W (&) is a weighting function. The derivatives of u are approximated by the derivatives
of v. Similar methods have also been reffered to as Weighted Least Squares (WLS or
WLSQ) methods. Such least squares procedures have been used in a wide variety
of meshfree methods including those based on both weak forms and strong forms.
A comparison between different least squares procedures commonly used in meshfree
methods has been done by several authors. For example, Onate et al. [83] present
an overview of several point data-interpolation based procedures used in meshfree
methods, while Seibold [96] provides a more formal classification between the “local”
and “moving” varieties, and the “interpolating” and “approximating” varieties of least
squares approaches. Most of these details are skipped in this thesis, and we focus on
the use of such procedures in meshfree GFDMs.

Meshfree GFDMs are one such class of meshfree methods based on MLS or WLS
procedures. They have been widely used (for example, [32], 48] 89, 105} 121]) and are re-
ferred under various names, including FPM, which stands for both the Finite Pointset
Method [I11] and the Finite Point Method [83], the Kinetic Meshless Method (KMM)
[89], and the Least Squares Kinetic Upwind Method (LSKUM) [33].

There are two variations of meshfree GFDMs that we consider in this thesis, both
of which are based on MLS approximations. The first is the widely used approach
based on the work of Liszka and Orkisz [63], which we refer to as the classical GFDM.
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This method very closely resembles traditional finite differences, and is carried out
by minimizing errors obtained from Taylor expansions. Most meshfree GFDMs fall
under this class. The second approach is a modification of the classical GFDM based
on the work of Tiwari and Kuhnert [IT1] in which the error in the PDE considered is
minimized simultaneously with the errors obtained from Taylor expansions. We refer
to this method as the direct GFDM. In both variations, we consider Taylor expansions
up to second order terms. Higher order accuracy can be attained in both formulations
and have been considered, for example, by Milewski [76].

2.1 Finite Pointset Method

The Finite Pointset Method (FPM) [47, 67, 110l 112] is one type of meshfree GFDM,
and is used as the basic meshfree framework in this thesis. FPM is a fully Lagrangian
meshfree method that evolved out of SPH while addressing the issues of boundary con-
ditions, particle inconsistencies, and tensile instabilities [55]. Both meshfree GFDMs
formulations considered in this thesis have been referred to under the name of FPM.

The FPM has been shown to be a robust method with many practical applications
[24, [47, 110, [116]. The FPM is also used as the numerical basis of two commercially
used meshfree simulation tools: NOGRID [77] and the meshfree module of VPS-
PAMCRASH [113]. Further, it is also the numerical basis of the upcoming simulation
software MESHFREH1

It must be noted that in the meshfree context, the acronym FPM is often a confusing
one. It is used to represent not only the aforementioned Finite Pointset Method, but
also the Finite Particle Method [69] and the Finite Point Method [83]. The confusion
is compounded by the fact that each of these three methods are well established in
different communities and have been around for well over a decade. Further, in the
early days of meshfree methods, FPM was also used to denote the Free Points Method
[25]. Thus, we henceforth drop the acronym FPM and refer to the Finite Pointset
Method under the umbrella term of GFDM.

2.2 Comparison with Other Meshfree Methods

e In many meshfree particle methods like SPH, mass-carrying particles are used
to discretize the computational domain. In contrast, meshfree GFDMs use nu-
merical points which are simply locations where approximations are carried out.
These numerical points do not have a massE], and thus points can easily be added
or removed during a simulation [47]. This is especially relevant in Lagrangian
frameworks where points move with a fluid velocity. This movement could cause
clustering of points in one region, or the development of ‘holes’ with insufficient
number of points. Points can easily be deleted in the first situation, and added
in the second, to prevent instabilities from developing. Such addition and dele-
tion is not as easy in the mass-particle based methods like SPH which suffer
from the so-called tensile instability problem and distorted point clouds. Thus,

"https://www.meshfree.eu/
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2.3 Notation

meshfree GFDMs are more adaptive (in terms of the spatial discretization) than
many other meshfree methods. The fact that point clouds can easily be modified
locally is also a major advantage of meshfree GFDMs over mesh-based methods,
where remeshing would often require a global re-computation. Details about this
addition and deletion of points in meshfree GFDMs are given in Section [2.4]

e Since meshfree GFDMs are based on Taylor expansions (or polynomials, as ex-
plained later in this chapter), an order of accuracy at the discrete level can be
easily prescribed, which is not the case for many meshfree methods such as SPH.

e Meshfree GFDMs provide a framework to naturally incorporate boundary con-
ditions, without any extra effort, which has been a major issue in many particle-
based meshfree methods such as SPH. Details about enforcing boundary condi-
tions in meshfree GFDMs are given in Sections [2.5.4] and [2.6.2]

e In RBF generated finite differences (RBF-FD), the desired function derivatives
depend on the derivative of the radial function being used as a basis. The choice
of the basis function (and the related shape parameters) play a big role in overall
accuracy and stability of the method [28, BT} [79]. Similarly, derivatives in SPH
also depend on the derivatives of the chosen kernel function, and thus the choice
of the kernel function once again plays a major role. In contrast to these other
strong form meshfree methods, derivatives in meshfree GFDMs are taken as
linear combinations of function values in a support domain, and do not directly
depend on the derivatives of any kernel function. The weighting function only
plays a role in norm minimization. It does not affect the approximation order
and it can be argued that its shape does not significantly affect accuracy and
stability of the method?]

2.3 Notation

For meshfree GFDMs, the computational domain €2, with boundary 052, is discretized
using a cloud of N numerical points with positions ;, ¢ = 1,...,N. This includes
points both in the interior and on the boundary of the domain. The points are usually
irregularly spaced. Each numerical point carries the necessary numerical data of the
problem. Each point i has a set of neighbouring points S; which contains n = n(i)
points, including itself. The neighbourhood or support S; is determined by spatial
proximity

Si =A%« |7 — 7|l < Bh}, (2.3)
where h = h(Z,t) is the radius of the support, referred to as smoothing length or
interaction radius; and § < 1 is a positive constant. The spatial distribution of

2Points do not have a mass prescribed directly. However, in many applications, each point would
have a prescribed density. Each point is associated with a volume for post-processing reasons,
and thus, the density and volume combination indirectly specify a mass.

3The weight function has to provide a reasonable weight to the neighbouring points. It must be
noted that a weight function that fails to do so (for example, a very narrow Gaussian that will
effectively reduce the size of the neighbourhood) could lead to poor conditioning of the local least
squares matrix.
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points is described by three parameters: h, 7, and r,... It is ensured that no
two points are closer than r,,;,h and there exists at least one point in every possible
sphere of radius 7,,,.h in the computational domain. Thus, the smoothing length A
also determines the spatial discretization size. 7., and r,,., usually have values of
approximately 0.2 and 0.45 respectively. [ affects the size of neighbourhoods, and a
discussion on its value is done in Chapter [d] For all the simulation results presented
in this thesis, each fully interior pointf] has a neighbourhood that contains about
45 — 50 points in 3D, and 15 — 20 points in 2D. These numbers are slightly lesser at
and near the domain boundaries. We note that many meshfree methods use smaller
neighbourhoods. However, these often impose strict conditions on the regularity of
the point distributions to maintain stability of the simulation.

For a central point ¢, the subscript 75 is used to denote a quantity defined with
relation to neighbouring point j. For example, the weight W of point j € S; while
performing the approximations at point 7 is denoted by W;;. The subscript ¢j can have
two different interpretations, depending on context, which are used interchangeably.
The value of j in the subscript ij could be the point number based on a global indexing
of all points j € S; C (1,2,...,N). Alternatively, it could also be based on a local
indexing of all points in the support domain j € (1,2,...,n(7)). Further, the same
interpretations also hold for function values. u; can be used to denote the value of the
function w at point j, j € [1,..., N] (globally indexed), while wuy,us,...,u, can also
be used to denote the function values in the neighbourhood of some central point 7.

2.4 Adding and Removing Points

As noted earlier, the ease of adding and deleting points locally during the simulation
of a fluid in the Lagrangian framework poses an important advantage of meshfree
GFDMs over other meshfree methods.

Points are added in the point cloud to ensure that every possible sphere of radius
mazh has at least one point in it. The first aspect of this is the identification of ‘holes’
or spheres of radius 7,,,.h which contain no points. A possible way to do the same
locally is to consider the local Delaunay tessellation of points in each support domain.
Any triangle (in 2D) or tetrahedron (in 3D) with circumradius larger than 7.,
represents a hole, at the center of which a point needs to be added. After the addition
of the new point, all field properties carried by each point need to be approximated at
this new location. A possible way to do the same is to use the smoothing operators
defined in the coming sections.

Points are deleted in the point cloud to ensure that no two points are closer than
rminh. These points can be identified by a distance calculation in each neighbourhood.
Rather than deleting one of the two points, an alternative is to merge the two at a
central location. This would then require interpolation of all field properties at this
new location. This could be done either as done in the point addition case explained
above, or it could be based solely on the two points being merged.

Further details about the addition and deletion/merging of points in meshfree
GFDMs can be found in, for example, Drumm et al. [24].

4A fully interior point here refers to an interior point with no boundary neighbours.

10
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“Correct” point cloud management in these aspects is essential for the stability of a
wide range of problems. Considerations to this end in meshfree GFDMs have been done
by Seibold [96], among other authors. Similar work has also been done in the context
of other meshfree methods by Iske [44], among other authors. However, despite these
contributions, existing literature on meshfree methods does not fully address accuracy
issues with respect to point cloud management, and the required interpolation therein.
These considerations of accuracy in Lagrangian meshfree GFDMs are not looked into
in this thesis.

2.5 Classic GFDM Differential Operators

As the name suggests, in meshfree GFDMs, numerical derivatives are computed with
a generalized finite difference approach. For a function u defined at each numerical

point ¢ = 1,2,..., N, its derivatives are approximated as
O*u(T) ~ Ofu = > g, (2.4)
JES;

where * = x,y, zx, A, etc. represents the differential operator being approximated, 0*
represents the continuous *-derivative, and 0 represents the discrete derivative at
point 7. For each point i, the stencil coefficients ¢j; are found using a weighted least
squares approach. Two equivalent formulations can be used for the same and are
explained below. In both formulations, and in the direct GFDM operators presented
later, the operators can be found locally at each point by solving a small linear system,
independently of the operators at the rest of the point cloud.

2.5.1 Taylor Expansions

For a point 7, consider Taylor expansions around it at each neighbouring point j € S;
S S T 7 Lo
€ij + U(.CE]) = U,(.TZ) + Vu - (%j — QEl) + 5(1’] — .CEi)TD($j — ;1:1) . (25)

The unknown coefficients of Vu and D are computed by a weighted least squares
method, by minimizing
. 2 2
JES;

where W is a weighting function used to make sure that the points closer to the central
point ¢ have a larger impact than the points farther away. We note that the square
of the weighting function is used only for notational convenience, the benefit of which
will be made evident later. The weighting function is usually taken as a Gaussian
distribution

175 — @i
Wij = eXP<—OéW hJZQ ) (2.7)

where ayy is a positive constant usually taken in the range of (2,8). Note that the
weighting function is only defined on the local support S; consisting of n(i) points.

11
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For the sake of brevity, we present only the case of one spatial dimension. Eq. (2.5
leads to the following system which is solved at each point i =1,..., N

€i1 5£Ci1 %5%31 ( ) Uy — U;
= : : Ye)i ) : : (2.8)
: . .2 (uzx)Z :
Cin 0Tin 5075, | e Up — Uj
a; —_————
E; M; ' 5.

7 (3

where dz;; = x; — ;. Or, in short form E; = M@, — l;l The minimization Eq. (2.6)
can be rewritten as

min J,L = EiTm25i7 (29)

= (Md; — by)TW2(M;a; — b;) (2.10)

where W; is a diagonal matrix with entries Wy, ..., W;,. A formal minimization leads
to

@ = [(MTW2M,) "M W2b; . (2.11)

Appendix[A.3|shows a proof of the same. This leads to the differential operator stencils

(ug)i = Y cf;(uj — ), (2.12)

JES;

(Uge)i = Z i (uy — ), (2.13)

JES;

where ¢; and ¢} represent the values in the first and second row respectively of the
matrix [(MIW2M;)"*MIW?] in Eq. (2.11). A more efficient method to compute the
stencil coefficients is shown in Appendix[A.2] These stencil coefficients are then used to
obtain the spatial discretization of the PDE being solved. For example, if we consider
the PDE

au + bu, + cuy, = d. (2.14)
The derivative approximations Eq. (2.12]), Eq. (2.13)) are substituted into the PDE to

obtain

au; +b Y ch(uy —w) + ey ¢ (uy —u) = d, i=1,...,N, (2.15)
JES; JES;
which forms a large sparse implicit system which is solved with an iterative method.
Alternatively, Eq. (2.8) can be rewritten as

eil 1 0y 3023 (uo); Uy
=1 : (wo)i | =1 &+ |- (2.16)
€in 1 bz 503, (Ugz)i U,

Carrying out a minimisation procedure as above leads to the derivative stencils

(ug); = Z Ciiy (2.17)

JES;

(Uga)i = Y, Cuy. (2.18)

JES;

12
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In addition, the minimization also leads to stencils for function smoothing

JES;

For reasons that will be made clear later, we refer to such function smoothing stencils
as function approximation stencils. Further (ug); is referred to as w; in shorthand.
The formulation in Eq. and the stencils that follow are the ones we will use
throughout this thesis.

2.5.2 Polynomial Method

An alternate, but equivalent, way to arrive at the stencil coefficients in Eq. (2.17) —
Eq. (2.19) is to ensure that the derivatives of monomials m € M, up to the order of
accuracy desired (usually 2), are exactly reproduced.

> ciym; = Om, Ym e M, (2.20)
JES;
c\ 2
min J; = ) <I/I;j> . (2.21)
JES; v

where * = x,y,zx, A, etc.. An efficient method to compute the differential operators
stencils in this formulation is presented in Appendix [A.2]

2.5.3 Equivalence of the Two Formulations

To illustrate the equivalence of the two formulations mentioned above, we start with
the Taylor expansions around point ¢ at the location of point j € S;. In one spatial
dimension,

1
€ij + uj = u; + 0w (uz)i + 559012](%:0)2 : (2.22)

Multiplying Eq. (2.22) with ¢;;, and summing over all j € S;, we get

g R Y it Y o (ug) + Y cmiéx Uge )i (2.23)
JES; JES; JjES; JES;
= (Z cfj) u; + (Z c;‘jda:ij) Uz )i (Z cw&cw) (Uzz )i - (2.24)
JES; JES; JES;

Note that the error term of O(h?) has been dropped for convenience. Thus, for the
first derivative, * = x, comparing the definition Eq. (2.4)) with Eq. (2.24) leads to

Yo =0, (2.25)

JES;
o =1, (2.26)
JES;
> coal =0, (2.27)
JES;

13
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Similarly for the second derivative, we get

Yo gr=0, (2.28)

JES;
> o =0, (2.29)
JES;
> o, (2.30)
JES;

And for the function approximation stencil, we get

do=1, (2.31)

JES;
> hox; =0, (2.32)
JES;
Y oal =0. (2.33)
JES;

The three above systems are the same as Eq. and thus the stencils in the two
formulations satisfy the same consistency conditions. Further, if the same weighting
function is used in Eq. and Eq. , the weighted minimizations also lead to
the same stencils in both formulations, upto numerical round off errors. A proof of
this is shown in Appendix [A.3]

In terms of modifying the classical meshfree GFDM to different ends, both formu-
lations mentioned above come with their own advantages and disadvantages. This
forms a major part of the present thesis. An existing extension of the Taylor expan-
sion formulation is presented in Section [2.6| Those ideas are then extended to solve a
wider range of problems in Section [2.6.1], and then later used to design improved fluid
flow solvers in Chapter Extensions to the polynomial formulation are discussed
in Chapter |4 with the aim of introducing an approximate notion of conservation in
meshfree GFDMs, and in Section [2.5.5]

2.5.4 Boundary Conditions

The ease of enforcement of boundary conditions is one of the biggest advantages of
meshfree GFDMs over other meshfree methods. Consider a 2D PDE in 1 variable

au + bug + cuy + dugy + ety + fuzy =g. (2.34)

An implicit discretization of this PDE, as described earlier, would lead to the following
sparse linear system

auz—l—chwuj—i-chwuj—i-ch Tuj+e Y i+ Y Glui=g,
JES; JES; JES; JjES; jES;
i=1,2,... N.
(2.35)

Similar to traditional finite differences, boundary conditions in the classical meshfree
GFDMs are enforced by simply replacing the relevant rows in Eq. (2.35) by the dis-
cretized boundary condition. For Dirichlet boundary conditions u = gp at a boundary

14
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point 7, the discretized boundary condition is given by simply adding the following row
in the sparse system

Ui = gp - (2.36)
For a Neumann boundary condition 7 - Vu = gy, the following row is added
> cuj = g (2.37)
JES;

where ¢}, can be defined in one of two ways. The first way is to get the stencil for

the derivative in the normal direction by using the stencils for the derivatives (in 2D)

in the # and y directions: cj; = njcf; + nc};, where 7; = (nf,n{). Alternatively, it

is sometimes desirable to compute derivative stencils in the normal direction directly
by a minimization procedure similar to that explained earlier. In the polynomial

formulation, this would require the following minimization

> dimy =i Vm, Ym e M, (2.38)
JES;
ch. 2
min J; = ) (ﬁ) . (2.39)
JES; K

The advantage of this is that a diagonal dominance procedure, as explained in the
next section, can be carried out to improve the convergence of iterative solvers for
the sparse linear system. If the stencils for the derivatives in the normal direction
are computed using this method, the regular gradient stencils need to be modified to
ensure the consistency ¢ = nfc; + nfcf;. The procedure for the same is shown in
Appendix [AJ5] For all numerical examples in this thesis, we use this method for each
Neumann boundary condition in the classical GFDM framework.

An important boundary condition in fluid flow applications is the one imposed on
the free surface. We do this by equating the stresses at the free surface in the normal
and tangential direction(s). In 2D, this is given by

tr

-S-n1=0, (2.40)
nr.g.

St

=p—po— OK, (2.41)

where 7 is a unit vector in the tangential direction to the free surface, p is the pressure,
po is the atmospheric pressure, S = S(¥) is the stress tensor for velocity ¥, o is
the surface tension, and k is the local free surface curvature which is determined
geometrically. This can be simplified to obtain

ou ou v ov

T4 T4y YT T4y YT Yy —
(2n™t )—ax + (n"tY 4+ nt )—ay + (n"tY 4+ nYt )—ax + (2nYt )—ay 0, (2.42)

ou ou ov ov
2(n")*) — + (2n"nY)— + (2n"nY)— + (2(n¥)?)— =p —po — oK. (2.4
((n))8x+(nn>8y+(nn)8y+((n))ﬁy p—po—ok. (2.43)

This can be discretized as done in Eq. . A similar procedure is done for the stress
evaluation in slip boundary conditions, and for the 3D case.

Note that the use of ghost nodes outside the domain boundary or any similar pro-
cedure is not needed in the enforcement of boundary conditions.
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2.5.5 Diagonal Dominance

It is often desirable to have the central stencil value c; to be much larger in absolute
value than the others cj;,7 # j € 5;. For the Laplace operator, this significantly im-
proves stability for Poisson problems and heat equations. More specifically, positivity
is desired in the Laplace stencil: the central stencil value should be negative, and the
neighbouring values should be positive. Seibold [97] provides a detailed account of
the need of positivity and the resultant M-character of the matrices in linear systems.
He goes on to show how to achieve the same by selecting neighbouring points by a
minimization approach, rather than the circular proximity-based neighbourhoods used
here. In this section, we present a method to improve stability for Poisson problems
while maintaining circular neighbourhoods.

An advantage of writing the differential operators in the polynomial formulation
is that it can easily be extended to add a control over the central stencil value. In
addition to the monomial test functions, a Kronecker-delta function is added to the
consistency conditions. The Laplace operator can then be determined as

> ciAjmj = 0%m, Vme M, (2.44)
JES;
i = A, (2.45)
CA 2
min J; = Y <J> : (2.46)
JES; m

where A, < 0 is the desired central stencil value. The optimal choice of A, would be
situation specific, and thus explicitly setting the central stencil value is not a desirable
way to achieve positivity or diagonal dominance. However, this can be used to get a
more general method to achieve the same. The key point to note is that the entire
stencil changes as A. changes. Using this, one way to achieve most possible diagonal
dominance (for a given neighbourhood configuration) is to minimize the functional

Ses () (@.a)
g® = JE(C%); _ (03)2, (2.47)
A = (A, A

where ¢& = (¢, -, ¢5,) is the vector formed by the stencil coefficients at each neigh-
bouring point of 4, and (-, -) represents the scalar product. Since the minimization is

done with respect to a varying central stencil value, we wish to set
dg” B
ocs

0. (2.48)

Analytically, it can be seen that

a o
g (Ci)i*@A’ gZ%> B (Ci)3<5A e (2.49)

Thus, Eq. (2.48)) leads to

(@5, dPVeh — (@d,ed) =0, (2.50)

!
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where A
dA = azié . (2.51)

It can be proven that d:A as defined above is the same as that defined by the following
minimization

S dim;=0, VmeM, (2.52)
JES;
2 =1, (2.53)
a3\’
min J; = ) (ﬁ) . (2.54)
JES; K

The proof of this relies on the formulation of derivative stencils computed by the
QR-decomposition as shown in Appendix [A] and [A.2] The actual proof is given in
Appendix [A4]

Now, using J;A, the Laplacian stencil is split into two parts, one of which is used
to satisfy the monomial consistency conditions, and the other is used to change the
central stencil values.

e =GP 4+ aPd? (2.55)

(2

where a® € R is determined by the minimization of the functional g2, as in Eq. (2.50)).

A

o~ is an approximate guess for the Laplacian stencil. It satisfies the monomial con-

sistency conditions, while CZ;A as given in Eq. (2.52)) — Eq. (2.54]) lies in their null space.

S A - .
ol is given by

> Jﬁmj = 0%m,, Ym e M, (2.56)
JES;
O-z% = A07 (257)
oA\’
min J; = ) <I/I;J> : (2.58)
JES; K

where A, ¢ {0,1} is some fixed central stencil value for #2. Clearly, the Laplace
stencil defined by Eq. (2.55)) satisfies the monomial consistency conditions for every
value of a®.

Now, plugging Eq. (2.55) into Eq. (2.50)) leads to

at = &) 1 . (2.59)

&2 and d;A can be computed as explained above, and thus Eq. gives the Lapla-
cian stencil according to Eq. .

We note that &2 and d:-A can be computed by one minimization with different right
hand side vectors as shown in Appendix [A.2] and thus, performing this procedure does
not increase the computation time significantly.

We further note that this procedure does not guarantee diagonal dominance of the
matrices in the resultant linear systems or positivity of the Laplace stencil. In fact,
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positivity is not always possible on circular proximity-based neighbourhoods. How-
ever, empirically this method has shown to significantly improve stability in Poisson
problems and heat equations. The usefulness of the outlined procedure to obtain most
possible diagonal dominance is illustrated with a simple diffusion example. Consider
the heat equation on the domain [0, 1] x [0, 1]

¢
— =A¢. 2.60
0~ n (2.60)
Initial conditions are taken as
#(Z,0) = 5sin(mz) sin(my) . (2.61)

Dirichlet 0 boundary conditions are applied on all boundaries. The resulting solutions
with classical GFDM differential operators without any imposed diagonal dominance,
and those with approximate diagonal dominance as explained in this section are shown
in Figure at various times. The figure illustrates the instabilities that often develop
when diagonal dominance is not used. Such instabilities have often been the reason
that many meshfree communities avoid meshfree GFDMs. However, as shown here,
these instabilities can be easily avoided. In the remainder of this thesis, this outlined
procedure for most possible diagonal dominance is always used when the Laplace
operator is considered in the classical GFDM framework.
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%102

Figure 2.1: Heat equation results for h = 0.05, N = 2521 and At = 0.01. With-
out diagonal dominance (left column) and with diagonal dominance (right
column). ¢ = 0.35 (first row), ¢ = 0.7 (middle row) and ¢ = 2 (bottom

row).
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2.6 Direct GFDM Differential Operators

The function approximation stencil Eq. leads to the question : ‘would it be pos-
sible to arrive at function approximation stencils that also incorporate a minimization
of errors in the underlying PDEs being solved?’. This would lead to a situation in
which computing a function that satisfies the function approximation stencil at each
point would directly give a solution to the PDEs being considered. This question
was answered by Tiwari and Kuhnert [ITI]. Here, we refer to their method as the
direct GFDM. In our earlier work, the same has also been referred to as Tiwari’s ap-
proach. This method extends the Taylor expansion formulation of GFDM differential
operators. Derivative and function approximation stencils in this approach are given
by

p
Ou(;) ~ Oju="Y_ aju;+ > Chgr, (2.62)
JES; r=1

where p is the number of PDEs in the system being solved, g, are dependent on each
PDE, and oj; and ¢}, are the coefficients computed in the local minimization. While
the stencil coefficients in classical GFDM differential operators were dependent only on
the local geometry of the point cloud, the stencil coefficients in this approach depend
on both the local geometry and the PDE being discretized. The process of determining
the unknown coefficients is explained below.

In this method, stencil coefficients are found that include the PDE being solved as
a local constraint. Then a function is found that satisfies the conditions on all the
stencils computed. The least squares procedure for minimizing the errors includes not
just the Taylor expansions, but also the error in solving the PDE itself. Consider the

PDE Eq. (2.14) used in the previous section. The system Eq. (2.16]) and Eq. (2.6]) gets
extended to

€i1 1 (S.Z'ﬂ %(5%31 Uy
' =| - ' ' Uz); | — : , 2.63
Cin 1 oz, %(5@2” ((u )) Uy, ( )
€PDE a b c d
JES:
which is solved at each point i = 1,..., N. The stencils to the function approximation

of u are the only ones of interest. Proceeding in the same way as done in Section
leads to a system similar to that obtained in Eq. (2.11]). The first row of this system
gives the function approximation stencilsﬂ

u =y aju;+ Gd. (2.65)
JES;
We then find a function u that satisfies all these stencils by solving a large sparse
implicit system with an iterative method.

(I—og)u;— > ogu; =¢ld.  i=1,...,N. (2.66)
JES;
i

®Once again, the O(h?) terms have been dropped for convenience.
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We refer to this method as the direct GFDM because functions are computed di-
rectly with function approximation stencils, as in Eq. (2.66[), without the need for the
derivative stencils.

It is empirically observed that this results in a (‘close’ to) diagonally dominant
system, and that no extra procedure needs to be performed for stability as was neces-
sitated in the classical GFDM case. One of the advantages of this direct approach over
the classical GFDM one is that it can be used to solve algebraically over-determined,
but well-posed, systems. i.e. systems with more PDEs than variables. An impor-
tant use of this is to solve PDE systems on boundary points along with the imposed
boundary conditions, which is not possible by the classical GFDM. Tiwari and Kuhn-
ert [I11] used this framework for pressure-Poisson equations in Navier—Stokes solvers.
There, an over-determined system was solved on boundary points, consisting of both
the boundary conditions and the pressure-Poisson equation itself. The same idea was
later extended for imposing free surface boundary conditions [I12], for compressible
flows [56], and recently for heat transfer boundary conditions by Reséndiz and Saucedo
[91], among other applications. A similar idea of adding the PDE on boundaries was
also done in context of the meshfree Radial Basis Functions (RBF), by using an addi-
tional set of nodes adjacent to the boundary [29], which was shown to increase accuracy
over standard RBF. Using the direct GFDM, a similar increase in accuracy is obtained
in meshfree GFDMs and can be done without the addition of extra nodes.

However, other than solving a PDE along with the boundary condition at boundary
points, to the best of our knowledge, this framework has not been used to solve over-
determined problems (where an over-determined system is solved across all points in
the computational domain). A basic comparison in one spatial dimension between
the classical GFDM and the direct approach of this section has been done by Illiev
and Tiwari [43]. However, a more detailed comparison on multi-dimensional problems
has not been done. Further, the advantage of the direct framework for non-trivial
simulation domains and over-determined problems has not been explored. This lack
of a detailed comparison between the two formulations has resulted in them being
occasionally misunderstood to be more similar than they are. One of the goals of this
thesis is to fill these gaps. Further in this chapter, we show the versatility of this
direct method and also present its advantages over classical GFDMs with a series of
numerical examples. In Chapter 5, we show how this framework can be used to devise
new algorithms which reduce some problems with existing meshfree GFDM solvers for
the incompressible Navier—Stokes equations by solving an over-determined problem
across the entire computational domain.

2.6.1 Over-Determined Problems

This framework can be extended to solve over-determined problems’ and problems
with multiple variables as shown below. Consider the following one-dimensional system
with two unknowns v and v, and p linear PDEs, which are assumed to form a well
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posed system. .
a,u + bty + Collgy + dpv + €0, + frUpe = Gr r=1,---,p. (2.67)

Locally, errors in Taylor expansions in both variables are minimized along with the
errors in each PDE. The system Eq. (2.63) and Eq. (2.64]) gets extended to
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where the superscript in the errors e;; represent the variable for which the Taylor
expansion is being performed. The weights for the Taylor expansion error terms are
taken as the same for each variable, and according to a Gaussian kernel as described
carlier in Eq. (2.7). Weights for the PDE errors can be chosen flexibly. Throughout this
thesis, we use Wipg, = 2, which is double that of the central value of the Gaussian
weighting kernel W2 = 1. The question about optimal weights for the same is an
interesting problem, but is not addressed in this thesis. Extension to higher spatial
dimensions are straightforward, and an example of the same is provided in Chapter

The above minimization leads to the unknowns @; = [(MZW2M;)"*MTW2]b;. Once
again, only the function approximation stencils are of interest to us, i.e. the rows
corresponding to u and v (the first and fourth rows of the system). The resultant
function approximation stencils obtained can be written as

p

w =Y aguy+ Y Bvg + Y Gror s (2.70)
JES; JES; r=1
p

vi= Y ajui Y Bhvi+ Y G (2.71)
JES; JES; r=1

where the coefficients o, § and ( represent the values in the relevant rows of the
matrix [(MIW2M;)"*MIW?]. A numerically more efficient method to obtain these
stencils, as compared to computing this matrix product and inverse, is shown in Ap-

pendix [A.3.]]

5The term ‘over-determined problem’ is used to refer to a system with more PDEs than variables.
For more details on the same, see Appendix E}
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2.6 Direct GFDM Differential Operators

We note that the resultant sparse linear systems can be solved by both explicit and
implicit methods. If explicit integration methods or iterative procedures like Gauss-

Seidel methods are being used, the system Eq. (2.70) and Eq. (2.71)) can be solved
as

uP T =3l £ ST gl +Zc;;gf, (2.72)
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where the bracketed superscripts s and s + 1 denote the iteration number. On the
other hand, if implicit integration methods are being used, the system Eq. (2.70]) and

Eq. (2.71) can be solved as

(1 — o)l — 3 arul ™ = 37 gl = chgr : (2.74)
JES; jES;
J#i
— Yt 4 (1 - gyt = 3 grolet zcwgr . (2.75)
JES; Jis
JF1

As mentioned earlier, the system Eq. (2.74) and Eq. (2.75) is emperically observed
to provide well conditioned linear systems that can easily be solved with standard
iterative solvers.

2.6.2 Boundary Conditions

Similar to the classical meshfree GFDM case explained in Section [2.5.4] enforcement
of boundary conditions in the direct GFDM framework is also quite straightforward.
Consider the 2D PDE in 1 variable used earlier

au + bu, + cuy + dug, + euyy + fug, =g. (2.76)

An implicit discretization of this PDE, as described earlier in Eq. (2.63) — Eq. (2.66]),
would lead to the following sparse linear system

(1= ap)u; — Y oyjuj = i=1,...,N. (2.77)

JjES;

J#
Similar to the classical GFDM case, here the boundary conditions are enforced by re-
placing each relevant function approximation row in Eq. by one for the boundary
condition. For a Dirichlet boundary condition u = ¢gp, the first way to do the same, as
done in existing literature, is to simply replace the relevant row in the sparse system

with

u; = gp, (2.78)

which was also the same procedure followed in the classical GFDM case. An alternative
way to enforce dirichlet boundary conditions is by adding the respective boundary
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condition in the least squares system, similar to that done in Eq. (2.68). Thus, the
following system has to be solved

€i1l 1 5371‘1 5y11 %5%31 %53/121 5.]71‘15:%‘1 ( ) (751
. . . uac (]
€in =11 T OYin %(5:1;12” %51/?” 0% in0Yin ((u y)> N I I VP
€PDE a b c d e f (t1yy): g
eBC 1 0 0 0 0