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Abstract. In this article we investigate secure global name services

which are scalable to the Internet and account for particularities of mo-

bile agents (frequent changes in locations). Name services are required

for instance for message routing between mobile agents and for tracking

agents. In this article we propose �rst protocols targeted at providing

such name services. We focus in particular on security issues.
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1 Introduction

Early research on mobile agent systems concentrated on how to migrate

mobile agents. Manifold agent systems exist today and there is a notable

shift towards research in how to best support transparent communication

between mobile agents. Transparent means that agents need not be aware

of the actual location of agents with which they wish to communicate.

Two problems must be solved in order to achieve transparent communi-

cation:

{ The peer agent must be located, for instance by means of a name

service that maps an agent's location invariant name onto its current

whereabouts.

{ Messages must be routed to the peer. This can become diÆcult since

mobile agents might \run away" from messages. Guaranteed delivery

is addressed for instance by Murphy, Picco, and Moreau [10, 9].

In this article we address the problem of how to locate agents. Our goal is

to provide adequate global name services for mobile agents, which scale to

the Internet and account for the particularities of mobile agents (frequent

changes in locations). Establishing name services for mobile agents poses

a number of diÆculties:



{ Name service updates and lookups must be fast. Since mobile agents

can migrate at any time a huge rate of updates must be expected.

{ The load must be distributed between a suÆcient number of name

servers. A suitable unambiguous mapping between agents and name

servers must be established.

{ The number of name servers must be gradually scalable to increasing

demand.

{ Name services bring security problems that must be addressed prop-

erly. Yet heavyweight cryptographic protocols (e. g. three way authen-

tication [6]) most probably counter the demand for fast lookups and

updates.

In this article we sketch a �rst approach to solving these problems. We

aim at creating a protocol which is suitable to support public global name

services for mobile agents in Internet scale. Public means that lookups on

agent locations are not restricted in principle, yet we would like to account

for privacy issues arising for agent owners in establishing a global service

for agent tracking.

The remainder of this article is organized as follows: Section 2 illus-

trates and discusses four basic models of agent tracking. We identify one

model as suited for our purpose. In Section 3 we present basic attacks on

name services for mobile agents. We refer to these attacks in Sections 4

and 5, in which we present �rst an ad hoc approach to securing name

services and then an improved approach. The second approach yields a

number of features that we expect from a secure and global public name

service for mobile agents. In Section 6 we conclude by pointing out re-

maining risks and areas for further research.

2 Tracking Agent Locations

Several models of tracking agents are conceivable. Aridor and Oshima [1]

already gave an initial discussion of agent name services and suggested

three methods of locating agents: brute force, logging, and redirection.

Miloji�ci�c et al. distinguish four models [8] which incorporate those of

Oshima and Aridor: updating at home node, registering, searching, and

forwarding. In this section we elaborate on these four models and we

adopt the terminology given below:



Fig. 1. Direct response (left) means that an agent updates its home base on its new

location whenever it hops from one host to the next. The bu�ered response (right)

is the typical name server model. A dedicated server which is permanently online is

updated on the new locations of agents whenever the location changes.

Miloji�ci�c et al. Oshima et al.

direct response updating

bu�ered response registering
logging

searching searching brute force

forward references forwarding redirection

The simplest approach is to have agents update their locations when-

ever they hop from one host to the next (see Figure 1). We refer to this

method as direct response. A grave disadvantage of this method is that

the home base of an agent needs to be permanently online. This is not

desireable if e. g., the home base is a mobile device.

The bu�ered response illustrated in Figure 1 is the prototypical name

server model. Agents update a name server on their new location when-

ever the location changes. The name server is permanently online. If the

owner of an agent wishes to know the current location of one of his agents

he just queries the name server. This model is used for instance in the

Mobile Object Workbench [3].

Searching is illustrated in Figure 2. The general idea is that agent

servers provide a simple name service which takes as its input the name

of an agent and outputs Yes if the agent with the given name is currently

hosted by that server, andNo otherwise. Clients query these name services

according to a search strategy in order to locate an agent. For instance

Chen et al. [4] discuss a search heuristic based on the assumption that

the execution times of agents on a server have a binomial distribution.

For illustrative purposes we sketch a simpler probabilistic search strategy

based on linear extrapolation:



Fig. 2. Searching (left) is based on a simple name service per agent server. Clients

request con�rmation of the location of an agent based on a predictor of the agent's

location. Forward references (right) follow the path of an agent. Each reference points

to the host to which an agent migrated from the host holding the reference.

Let A be an agent and let H1; : : : ;Hn be its known route. Let Æt be

the mean time an agent stays on a host of the route. Let t0 denote

the point in time at which A was dispatched to its �rst host. At

time t > t0 the owner of A wants to know its current location. Let

i = min(n; b(t � t0)=Ætc). The owner queries the name services of

Hj, j = i� 1; 2; : : : for 1 � j � n.

Heuristic search is not suitable for free-roaming agents since the set of

hosts and the order in which they are visited by the agent are in principle

not known in advance.

Forward references point from one hop of an agent to its next hop.

Forward references are subject to expiration. After a �xed amount of time

the forward reference is deleted and the chain of references pointing to the

agent's location is broken. It is conceivable that references are renewed

in certain cases e. g., when the references are actively used. Forward

references have two principle disadvantages: �rst they can grow long, and

second the search algorithm has to catch up with the agent. Though

the chain of references can be reduced in length e. g., by successively

eliminating the middle host in a chain of three hosts.

Strategies based on forward references and dynamic forshortening of

reference chains are frequently proposed, e.g. by Wojciechowski, Sewell,

and Moreau [15, 9]; they are used in Mole for the purpose of orphan

detection [2].

The four models di�er in terms of which parties are active when agents

shall be located, and which host acts as the principal name server. The

di�erences between the four discussed models are summarized below:



Model Active Name server

Direct response agent agent origin

Bu�ered response agent, requester dedicated server

Heuristic search requester none

Forward references requester agent origin

Both direct response and heuristic search are unsuited as a general

name service scheme because of their limitations noted above. Forward

references are somewhat unreliable. Obviously, the chain cannot be re-

established when a server in the chain crashes. The time to live of the

chain of references is bounded by the least recent expiration time of any of

its elements. Keeping the chain together by means of re-activation signals

causes constant network traÆc which is undesireable. A viable solution is

the progressive shortening of the chain. Though this still produces unde-

sired network traÆc.

Let n be the number of hops of the agent when it is located. The

chain is of length n so each time the agent shall be located n queries are

required to follow the chain to its end. If the requester starts new searches

at the last known location of the agent and the agent did m hops since

the last query then at least m+1 queries are required to locate the agent.

Each of the servers the agent comes by has to store a forward reference.

In the case of bu�ered response n updates of the agent's name server

entry are required plus one query to the name server. Additional searches

cost one name server lookup plus m name server updates if the agent

made m hops in the mean time. Only one reference needs to be stored by

the name server.

Let c be the number of requesters querying for an agent, and let a be

the number of agents in the network. Below we give a rough estimate on

the space and time requirements of both models for the �rst lookup and

any following lookups. Tu and Tl denote the number of network operations

required for updating a location and for performing a lookup respectively.

S denotes the number of references that must be stored in the network.

n and mi should be taken as mean values.

Model Tu Tl S

Bu�ered response a � n c a 1st

a �mi c 0 ith

Forward references 0 c � n a � n 1st

0 c �mi a �mi ith

The overhead Tu and S is required whether queries are started or not.

The advantage of forward references over bu�ered response is that net-



Name Role description

Alice The owner of an agent.

Bob The operator of an agent server.

Carol She looks up agent locations and sends a message to Alice's agent.

Mallet An adversary.

Nick He provides a name service for Alice.

Table 1. This table lists the names of the actors and their roles in the attacks described

in this article.

work traÆc is generated only if a query is started. However, if queries

are frequent and multiple requesters query for an agent's location then

bu�ered response outperforms forward references easily. Furthermore the

bu�ered response approach allows to allocate overheads primarily at dedi-

cated servers while the forward references approach requires agent servers

also to carry the burden of managing and answering queries of requesters.

In summary, bu�ered response seems to be the most promising approach

for mobile agents.

3 Threats to Name Services

Name services are targets of potential attacks on the mobile agent in-

frastructure. DoS (Denial of Service) attacks on a name server's network

connection are particularly disruptive because all agents served by it are

a�ected simultaneously. We do not further address this type of attack

because it is not particular for name services, and must be addressed on

the level of network infrastructure. The primary threats we discuss are

DoS attacks speci�c to name services and attacks on the privacy of mobile

agent owners. Please note that name services for mobile agents in prin-

ciple do not di�er from ordinary name services. Therefor some attacks

described below apply to name services in general. However, the require-

ments to be ful�lled by name services and the defensive strategies have

to account for mobility. We use the names and roles listed in Table 1 in

order to illustrate some potential attacks below:

1. Mallet registers a huge number of chosen agent names with Nick which

all point to the agent server of Bob. Mallet uses names likely to be

used also by Alice and her friends. Therefor Carol and her friends

all over the world all innocently send messages to Bob's server which

chokes under the sudden load.



2. Mallet asks Nick to make an entry with the name of Alice's agent.

When Carol ask for the location of Alice's agent Nick points to Mal-

let's server. So Carol sends her message to Mallet who reads it.

3. When Alice tries to register her agent with Nick he tells her that

the name is already allocated to Mallet's agent. Alice has to choose

another Name.

4. Mallot �nds out the name of Alice's agent. He constantly asks Nick

for the new location of that agent and learns where it goes. From this

information, Mallet infers Alice's preferences.

5. Mallet opens up a name service; over time he �nds out lots of inter-

esting things about Alice and her friends. He sells this information to

others.

If Mallet runs a name server then it is possible for him to make Alice

believe that her agent took a particular route that it did not. However,

if Alice becomes suspicious then she can easily verify the correctness of

Mallet's responses. Mallet will not want to run this risk unless it is worth

it. Consequently Alice should not reveal which agent is hers.

4 Ad Hoc Name Server Protocols

In our discussion of tracking mechanisms for mobile agents we implicitly

assumed that the principal name server responsible for an agent is known.

However, knowing an agent's name server is one of the challenges in cre-

ating scalable name services for mobile agents. The easiest approach is to

let Alice choose a name server for her agent x. We refer to this approach

as approach 1. So whenever Alice publishes the name of her agent she

actually publishes (namex, \Nick"). The obvious problem is that Mallet

can replace Nick's name with his own whenever he comes across a refer-

ence to Alice's agent. He can even spread fake references. As a matter of

consequence, Alice needs to authenticate her choice of name server. So

Alice does the following:

Alice publishes the digitally signed authenticator sx :=

SigA(\Alice", namex, \Nick") where A is Alice's private key. Alice

puts sx and namex into the static part of her agent x and signs

the static part. Then Alice sends x on its way.

When x comes by Bob's server Bob veri�es Alice's signature on

the static part of x and the �rst two elements in sx. Then Bob asks

Nick to record (sx, \Bob"). Nick veri�es that the entity known as

\Alice" actually signed sx. If the veri�cation is successful then he

enters the mapping.



This scheme thwarts a number of attacks Mallet could launch. Mallet

cannot fake names (required in attacks 1 and 3). He can still trigger a

DCA (Distributed Coordinated Attack) on Bob as described in attack 1

by collecting lots of long lived authenticators, and sending them to Nick

with Bob's name as the target. \Long lived" denotes authenticators which

are actively used and which remain valid for a suÆciently long period of

time. This problem can be solved in a variety of ways. We sketch a simple

solution below:

Before Alice sends x on its way she chooses a random cookie ri,

and sends (sx, \Alice", ri) to Nick. Nick makes sure that sx is

actually signed by Alice and is not already registered, and stores

this information. Then Alice prepares x as described above and

sends (x, ri) to Bob.

Bob veri�es x and sx as in the previous protocol. Then he chooses

a random cookie ri+1 and sends ((sx, \Bob", ri+1), ri) to Nick.

Nick veri�es that sx and ri he got from Bob are bitwise identical

to the values he got from Alice and updates the stored entry with

Bob's name and the new cookie.

When x says it wants to migrate, Bob sends (x, ri+1) to the des-

tination speci�ed by x.

The cookies serve as proof of permission for updating the name server

entries. One agent server passes the authority on to the next one. Once

the next agent server updated the location of x even the previous name

server cannot modify the name server entry anymore. If Mallet wants

to launch a DCA then collecting authenticators is not enough. In order

to convince Nick he also has to collect the cookies used for the most

recent update of each authenticator. For the same reason attack 2 does

not work anymore. Even if Mallet runs an agent server and x comes by it

then Mallet cannot keep his name in Nick's reference and let go of x at

the same time. As soon as x migrates to Bob he will send his own name

to Nick. If Nick refuses to perform the update because Mallet gave a false

cookie to Bob then Bob will send an error report to Alice.

The protocol is fairly eÆcient because Nick has to verify Alice's signa-

ture on sx only the �rst time. Subsequent references to sx can be veri�ed

by a fast binary comparison.

Although there are a number of drawbacks. First, the approach de-

scribed above leaves Alice's identity pretty exposed. If Mallet runs the

name service rather than Nick then he has no diÆculties to link all agents

to their respective owners. Mallet also learns the itineraries of the agents



served by him; based on this information he is able to assemble highly

detailed reports on the interests of the agent's owners.

Second, the use of sx as the name of x is cumbersome. Using digital sig-

natures mandates a PKI (Public Key Infrastructure) for managing the as-

sociations between identities and public keys. Therefor the de facto stan-

dards PKCS#1 (Public Key Cryptography Standard), PKCS#7, ITU-

Recommendation X.509, and LDAP [14, 13, 6] must be supported by the

actors in our drama. The length of sx, if represented as PKCS#7 signed

data, likely exceeds 200 bytes.

The question that must be raised is whether there is an alternative ap-

proach that is both more eÆcient and more secure with regard to privacy

issues. This approach must also be scalable with gradually increasing de-

mand. Below we outline an approach that is both simple and ful�lls these

requirements.

5 Improvements

The diÆculties arising in the protocol described above stem from the fact

that Alice has to authorize her choice of name server. There is no way

around this unless the name server responsible for an agent can be derived

directly from that agent in an unambiguous way. Fortunately the latter

is easily done as follows:

Let x be the agent of Alice and x0 shall be the agent's static part.

The static part of an agent comprises all its data, code, and con�guration

information that does not change during the agent's lifetime. It is a kind

of a kernel to which the mutable parts of an agent must be bound. The

kernel gives the agent its identity.

Let H be a cryptographic hash function which is preimage and 2nd

preimage resistant (see e.g. [7]). Collision resistance is not strictly nec-

essary. In practice, the SHA (Secure Hash Algorithm) [5] is a suitable

candidate. Let n be the length of the output of H in bits; for practical

purposes let n = 160. We de�ne hx = H(x0) to be the name of x.

The name server of x is then identi�ed by the �rst l bits of hx with

0 < l < n. Ideally the number of available name servers is a power of

two, so 2l are required. The value of l is adaptable to the global average

number of agents in the Internet. The name servers should be spread over

the globe. What we propose is in fact a global hashtable. We refer to this

proposed approach as approach 2.

Consider m = 2l name servers. If the probability of a random break

down of a name server is equally distributed and Alice makes a random



pick among the name servers (approach 1) then her chances of picking

one of k broken ones among m are k=m. If she takes approach 2 then

her chances are also k=m given H has a reasonably equal distribution. If

Alice knows that a particular name server is down and hx is mapped to

it then Alice can simply add a random nonce to x0 and try again. The

chances that she does not succeed after t tries is (k=m)t. If half of the

name servers are broken and Alice makes 4 tries then her chance of failing

to generate an agent that is mapped to a working name server are 0:0625.

If Alice knows where x is about to go then Alice might want to choose

a name server with good connectivity to the destinations of x in ap-

proach 1. In approach 2 the packets between Bob and Nick might circle

the globe in the worst case. However, if x travels the globe and Alice

makes any pick among the name servers then the e�ects are the same.

If Alice still wants to pick one of a particular set of name servers in ap-

proach 2 then her chances of succeeding heavily depend on the actual

number of name servers and the number of name servers she is willing

to take. More precisely, her chances to pick one of k name servers among

a total of m servers after t tries is 1 � ((m � k)=m)t. If 1% of the name

servers are acceptable for Alice then her chances to pick one of those

after 4 tries are less than 0.04, and less than 0.1 after 10 tries. With a

probability of approximately 0.9 Alice will succeed after 230 tries. On a

Pentium II 400MHz we measured less than 4 seconds for computing 230

SHA-1 hashes on about 10K of data.

The full name server protocol uses cookies as described above in order

to prevent unauthorized updates of the name server entries. The protocol

goes as follows:

Alice prepares her agent x. She generates a random cookie ri and

puts it into the mutable part of x. Furthermore she generates a

random string of n bits, and puts it into x0. Then Alice signs her

agent and sends x to Bob.
Bob veri�es Alice's signature on x0. Then he generates a random

cookie ri+1, computes hx = H(x0) and looks up Nick's address

based on the �rst l bits of hx. He sends (hx, \Bob", ri+1), ri to

Nick, and replaces ri in x by ri+1.
Nick checks if hx is already registered. If it isn't he simply enters

(hx, \Bob", ri+1) in his database. If it is already registered then

he makes sure that the received ri equals the stored value before

he updates his entry for hx.

The chances of Mallet to guess the name of Alice's agent are negligible.

Given a hash function output of n = 160 bits actually Mallet's chances



to guess any agent name are negligible. If each currently living individual

had 100 agents running permanently then Mallet's chances to accidently

hit the name of any other agent is less than 2�120.

For this reason Mallet cannot launch attack 3 unless he eavesdrops

on Alice's network connection and registers hx before Bob does. This is

easily prevented. Neither can he launch attack 1 because his chances of

guessing enough agent names a-priori are negligible.

Mallet cannot launch attack 2 unless he �nds out the secret cookie

used by Bob when he registers with Nick. This is also easily prevented.

Even if Mallet runs a name service (attack 5) he cannot link the

names of agents to their respective owners. He cannot even tell whether

two agents have the same owner.

Alice can further improve the security by sending a relay agent to a

random agent server which allows her agent to listen on a network port.

She directs any lookups to this relay agent which in turn asks the name

server and returns its answer to Alice directly. This is crucial particularly

for the last hop of x because Alice should send (hx, null, 0), ri to the

name server in order to indicate the termination of x. The proxy agent

guarantees that this last call does not enable Mallet to infer the identity

of Alice after the last hop of her agent.

6 Conclusions

In this article we �rst described four known approaches to tracking agent

locations. Each approach yields a principal name server and several ad-

vantages and weaknesses. We concentrated on the two most promising ap-

proaches for a more detailed discussion and �nally decided that bu�ered

response is our choice of name service.

We then sketched a number of possible attacks on the name service

infrastructure. As a �rst solution we presented an ad hoc protocol for

securing the name service. This protocol showed several weaknesses with

regard to anonymity of agent owners. We re�ned the protocol and pro-

posed a second approach to agent naming which yields better protection

against attacks on the privacy of agent owners. Furthermore the second

protocol is more eÆcient and easier to implement than the �rst protocol.

Another property of the second protocol is that agents cannot claim a

fake identity since the agent name can be computed directly from the

agent's kernel.

It should be noted that neither the �rst nor the second protocol o�ers

protection against unauthorized name service lookups. This is not the idea



of a public global name service. However, the second protocol anonymizes

agent names. The identity of an agent's owner can be determined only

by parties which get a copy of the agent itself (because the agent carries

a signature of its owner). In order to authenticate the itinerary of one's

agents alternative approaches can be used [11].

A second weakness is that agent servers can still update the name

service entry with a name other than their own. In principle this is eas-

ily prevented by requiring agent servers to authenticate themselves. We

refrain from this because identi�cation yields a considerable overhead.

Further research should be directed at this problem.

Yet another problem are DoS attacks on the name servers by reg-

istering huge numbers of fake agent names. Name servers should adopt

a strategy of limiting the frequency of updates accepted from a single

source. In order to prevent IP spoo�ng attacks, name servers should en-

force peer identi�cation if the rate of registrations rises beyond a certain

threshold. This will slow down name services but it will also prevent a

general unavailability of a name server.

Cookies should be encrypted during transport in order to prevent

eavesdropping. However, since encrypted transport of agents is supported

by more and more agent systems this does not likely causes additional

overhead.

Agent servers that operate in disconnected networks or in LANs (Lo-

cal Area Networks) that do not require a global name service for mobile

agents can bind to local dedicated name servers. In some cases it might

even be advantageous to set up proxy name servers that o�er local name

resolution, and fall back to the global naming infrastructure if no match

is found.
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