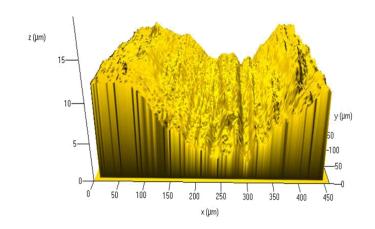
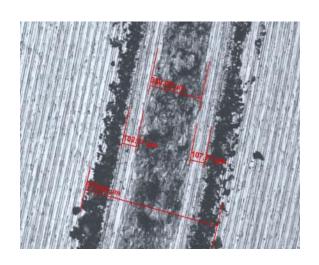
Reinheitsspezifikationen der Halbleiterindustrie an Werkstoffen

Lounges 2012: SESSION 07 mit FOKUS HALBLEITER

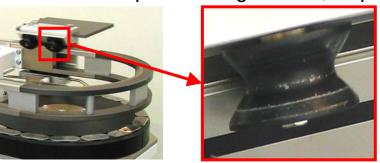

28. Februar 2012, Karlsruhe.

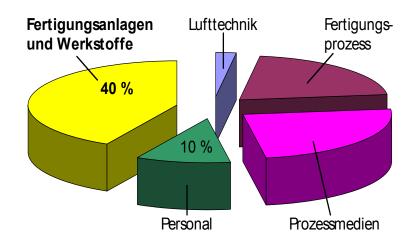


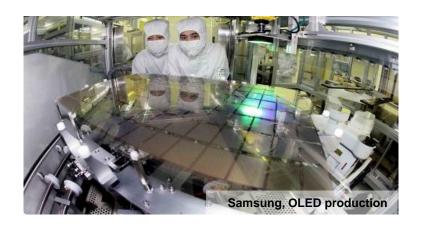
Dr.-Ing. Dipl.-Phys. Udo Gommel Abteilungsleitung; Fraunhofer IPA Stuttgart, Reinst- und Mikroproduktion

Struktur des Vortrags

- Motivation
- Betrachtete Kontaminationsarten
 - Partikel
 - Ausgasung
 - Reinigbarkeit
- Beispiele kritischer Kontaminanten
- Praxisbeispiele
- Ausgasungsmessmethoden
- Materialklassifizierung
- Raumklassifizierung




Ausgangssituation Halbleiterproduktion


- Fertigungsanlagen und Werkstoffe

Aktuelle Situation

- Produktionsanlagen & Werkstoffe haben mit
 40% größten Einfluss auf Produktreinheit.
- kaum Literatur / Regelwerke kaum übergreifende Grenzwerte, nur sehr prozessspezifisch
- keine einheitlichen Prüfverfahren, unterschiedliche Bewertungen, keine Klassifizierung
- teils nur empirische Ergebnisse, Haptik

Ausgangssituation Halbleiterproduktion

- Fertigungsanlagen und Werkstoffe

Werkstofflisten

- Auflistung von Einzelwerkstoffen, meist nur Angabe der Werkstofffamilien ohne exakte Werkstoffkennzeichnung
- ohne Infos der betrachteten
 Kontaminationsart
 (Partikel, Ausgasung, ESD, Reinigbarkeit, ...)
- ohne Infos über Bewertungssystem

Abhilfe seit ca. 2004:

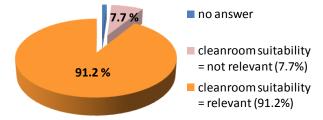
- Definition der Reinraum-/Reinheitstauglichkeit von Werkstoffen
- Festschreibung in Regelwerken (VDI, DIN, ISO, ...)
- Sammlung in Werkstoff-Datenbanken

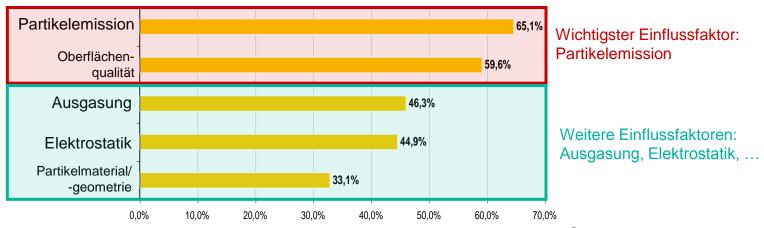
"Halb	leiterindustr ie u	gelassen'é	Werkstoffe						
Metalle bzy	wMetalllegierungen	Elasto							
Edelstähl(diverse z. B. V2A (1.4301)	Legierun)gen 1.4303, V4A (1.4571)	Ti FKMKalre)z FPM(Vitor)							
Stählediverse Leg z. B. austenitisch	gierun g en ne Stä lslä ure korrosionsbes		oylendienkauts)chuk nyle h exafluorpropy)en						
Ti(Titan)									
Mo (Molybdä)n Al (Aluminiur)n	"NICHTHalbleiterindustrizugelassen"eWerkstoffe								
Div Alulegierung z. B. AlMg oder	Metalle bzwMetalllegierungen								
	beschichtungsfreie Eiser beschichtungsfreie Gust beschichtungsfreie Schv Buntmetalle und Buntme Cu(Kupfe)r Zn(Zin)k Sn(Zin)k Lötwerkstoffe b Bronze Rotguss Messing	sstähle varzstähle stalllegierungen	Galvanische Beschichtun Zn(Zin)k Ni(Nick)el Cr(Chrori)h Cu(Kupfe)* TiN(Titannitr)d Aluminiumlegierungen mi Cu(Kupfe)* Pb(Ble)i Mn (Manga)h Zn(Zin)k						

Ausgangssituation

Regelwerke & Standards

"Cleanroom Suitability of Equipment and Materials"

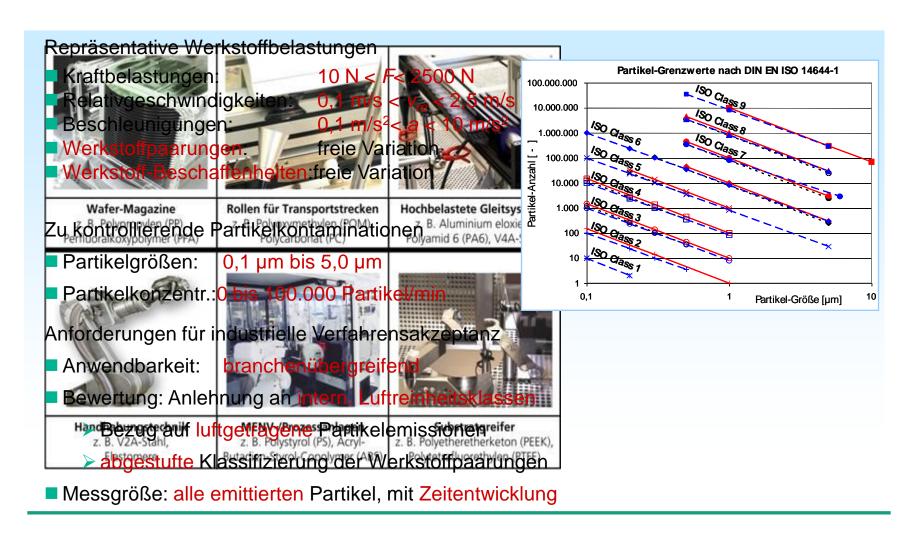

1. NFPA 287: Standard Test Methods for Measurement of Flan standards & guidelines Apparatus (FPA) 2. ISO 14644-5: Cleanrooms and associated controlled environ (national & international)
3. ISO 14644-7: Cleanrooms and associated controlled environ (national & international)


Investigation by Fraunhofer IPA, Germany , cican air noods, gloveboxes.

- isolators and mini-environments)
- 4. UNE-ENV 1631: CLEANROOM TECHNOLOGY. DESIGN, CONSTRUCTION AND OPERATION OF CLEANROOMS AND CLEAN AIR DEVICES.
- ASTM E 1731: Standard Test Method for Gravimetric Determination of Nonvolatile Residue from Cleanroom Gloves
- 6. ASTM E 2312: Standard Practice for Tests of Cleanroom Materials
- 7. ASTM E 1549: Standard Specification for ESD Controlled Garments Required in Cleanrooms and Controlled Environments for Spacecraft for Non-Hazardous and Hazardous Operations
- JIS B 9917-3: Cleanrooms and associated controlled environments Part 3: Test methods
- JIS B 9917-1: Cleanrooms and associated controlled environments Biocontamination control Part 1: General principles and methods
- 10. VDI 2083, Part 17: Compatibility of materials with required cleanliness class and surface cleanliness
- 11. VDI 2083, Part 9.2: Verbrauchsmaterialien (german working draft, not finalysed yet)
- 12. VDI 2083, Part 9.1: Compatibility with required cleanliness and surface cleanliness
- 13. IEST-RP-CC031: Method for Characterizing Outgassed Organic Compounds from Cleanroom Materials and Components
- 14. IEST-RP-CC040: Cleaning of Equipment Surfaces in the Cleanroom and Controlled Environments
- 15. MIL-HDBK-406: Contamination Control Technology: Cleaning Materials for Precision Pre-Cleaning and Use in Cleanrooms and Clean Work Stations
- 16. MIL-HDBK-407: Contamination Control Technology: Precision Cleaning Methods and Procedures
- 17. IEST-RP-CC032.1: Flexible Packaging Materials for Use in Cleanrooms and Other Controlled Environments
- 18. ASTM E 2090-06: Standard Test Method for Size-Differentiated Counting of Particles and Fibers Released from Cleanroom Wipers Using Optical and Scanning Electron Microscopy
- 19. ASTM E 2352: Standard Practice for Aerospace Cleanrooms and Associated Controlled Environments-Cleanroom Operations
- 20. ASTM E 2217: Standard Practice for Design and Construction of Aerospace Cleanrooms and Contamination Controlled Areas

Bedarfsabfrage

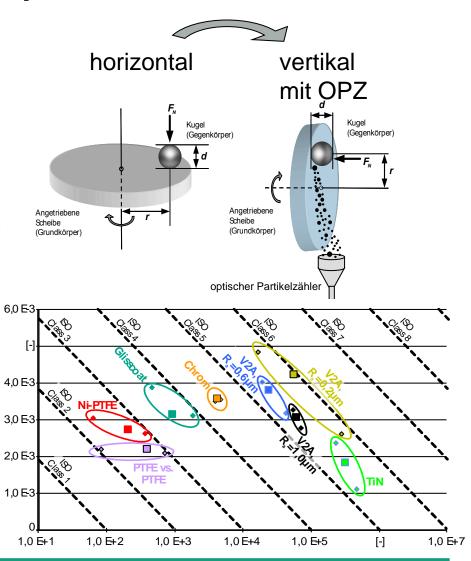
- Marktanalyse des IPA »Reinraumtaugliche Materialien« (2003):
 - → Umfrage bei knapp ca. 2700 Unternehmen, Rückläuferquote 11 %
 - → Forschungspotenzial festgestellt
- Wesentliche Ergebnisse:
 - → Relevanz der Reinraumtauglichkeit v. Werkstoffen
 - → Gewichtung der einzelnen Einflussfaktoren



- → Expertendiskussion: Gründung des Industrieverbunds CSM®
- → Ziel: Entwicklung von industrienahen Verfahren zur Bewertung des Kontaminationsverhaltens von Werkstoffen

Betriebsmittel/Werkstoffpaarungen (Halbleiterindustrie)

– Analyse aus Literatur & Qualifizierungen

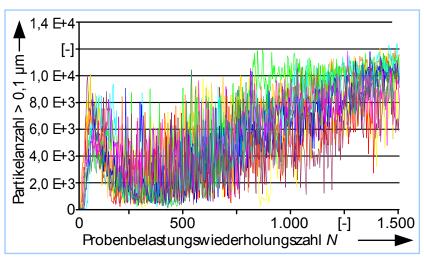

Entwicklung des Messprinzips

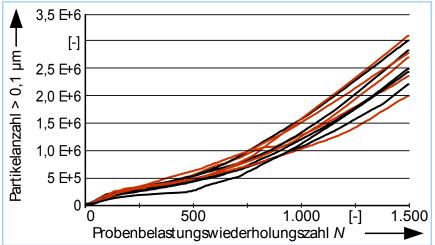
Innovativer, kreativer Lösungsansatz für die Prüfstandentwicklung:

- → Modellversuche nach etablierter ,Kugel-Scheibe'-Prüftechnik aus der Tribologie
- → Drehen der Versuchsanordnung
- → Gleichz. Messung der emittierten Partikel mittels optischem Partikelzähler

Auswertung der Daten

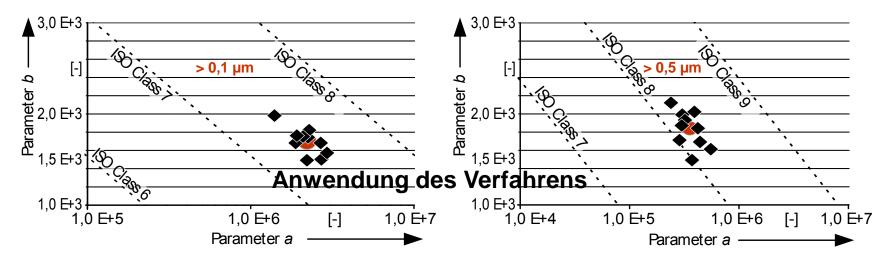
→ Vorgehensweise ermöglicht eindeutige Reinraumtauglichkeits-klassifizierung der Werkstoffe




Anwendung des Verfahrens

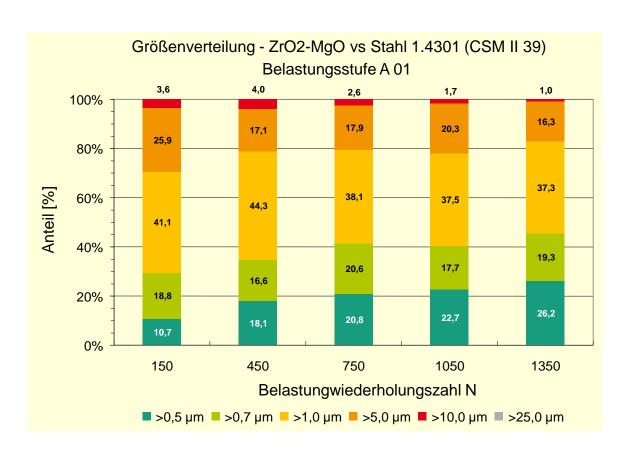
Beispiel eines typischen Tribosystems

Werkstoffpaarung = Metallische Referenzproben: V2A ↔ 100Cr6


Messwerterfassung für V2A ↔ 100Cr6

Differentielle Darstellung; nur Tendenzen erkennbar Kumulative Darstellung; Exponentialverlauf erkennbar

Partikelgrößenverlust

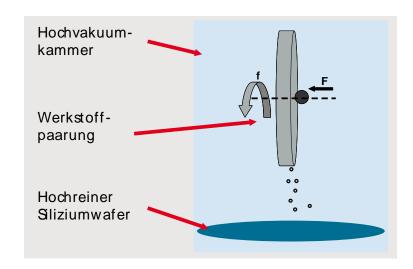


V2A ↔ 100Cr6

- ◆ Einzelne Messwerterfassung
- Mittel der Einzelmesswerterfassungen

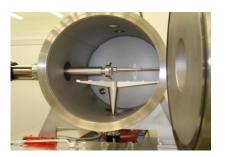
Bewertung differenziert zwischen unterschiedlichen Partikelgrößen

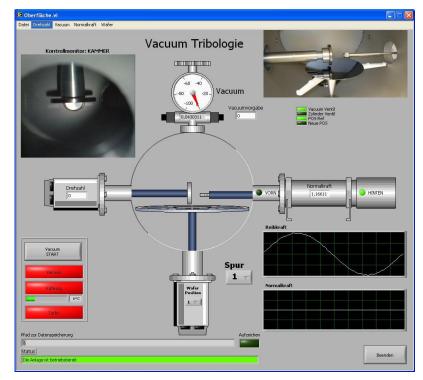
Zeitliche Partikelgrößen-Entwicklung



Verfahren liefert Infos über dynamische Verschleißvorgänge:

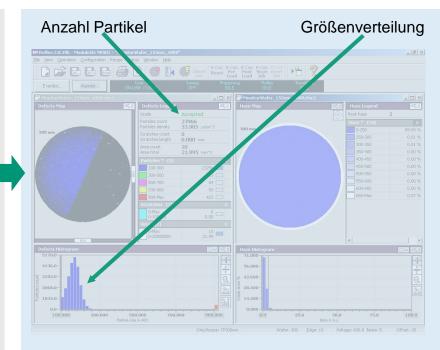
Zeitliche Entwicklung der


- Partikelgrößen
- Reinraumklassifizierung
- Reibbeiwerte
- Kraftverläufe
- Verschleißbeträge


Realisierung, technische Umsetzung

- Steuerung/Regelung/Erfassung Prüfparameter
 - Drehzahl
 - Normalkraft
 - Spur
 - Vakuum
 - Waferposition
- Integration in Netzwerk
- Speicherung der Prüfparameter

Aufbau: Analog zu tribol. Belastung von Werkstoffpaarungen im Hochvakuum.



Zeitliche Partikelgrößen-Entwicklung

- Vollautomatische Vermessung der Probe
- Untersuchung der Oberfläche mit Streulichtverfahren
- Hohe Auflösung (67 nm)

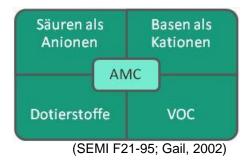
300mm-Oberflächenscanner (hier: Reflex AF, Fa. NanoPhotonics)

- Weiterführende Untersuchungen:
- Stoffliche Zusammensetzung: Raman, EDX
- Geometrie: Inspektionsmikrokopie

VOC-Emissionen von Materialien

Struktur der Präsentation:

- Motivation; Ausgangssituation:
 - AMC
 - VOC
- VOC-Quellen
- Beispiele kritischer Kontaminanten und deren Folgen
- Grenzwerte
 - ITRS Roadmap
- Praxisbeispiel Waferprocessing

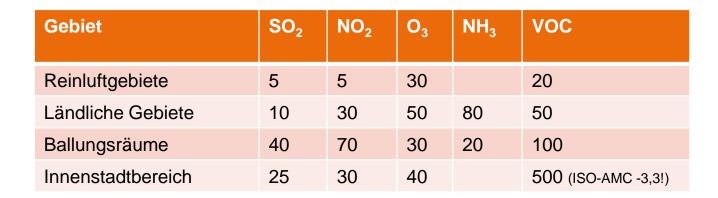

■ Was sind AMC? Definition aus ISO 14644-8 ("Klassifikation luftgetragener molekularer Kontamination"):

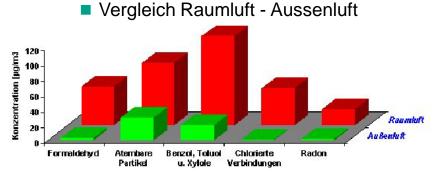
Airborne molecular contamination (AMC):

"Vorhandensein solcher molekularer (chemischer, nichtpartikulärer) Substanzen in der Gas- oder Dampfphase innerhalb der Atmosphäre eines Reinraums oder Reinraumbereichs, die eine schädliche Wirkung auf das Produkt, den Prozess oder die Ausrüstung haben können"

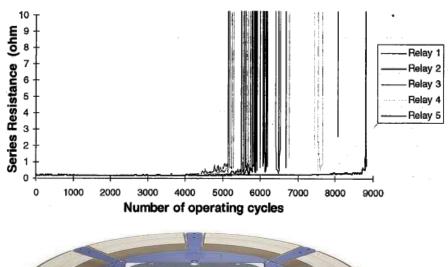
Beispiele für AMC:

- Säuren (ac)
- Basen (ba)
- Biotoxin (bt)
- Kondensierbare Kontaminante (cd)
- Ätzende Kontaminante (cr)
- Organische Kontaminanten, VOCs (or)
- Dotierstoffe (dp)
- ..
- VOC sind Bestandteil von AMC!

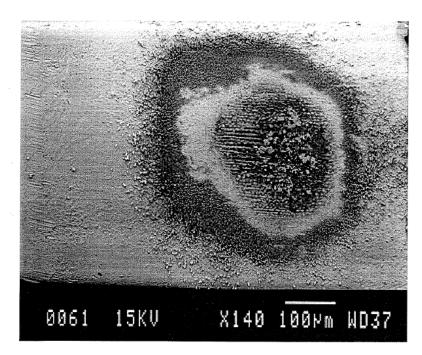



- Was sind VOC?
- **VOC:** <u>Volatile Organic Compounds flüchtige organische Verbindungen. Beispiele:</u>

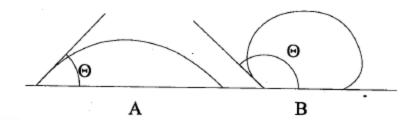
- Warum können bestimmte VOCs problematisch sein?
- Giftig (Dioxine, PCBs,..)
- Prozessschädigend (Halbleiter: Fogging auf Linsen,...Elektronik: Kontaktausfall,...)
- Produktschädigend (Halbleiter: falsches Doping,...Life-Science: Übertritt ins Produkt,...)

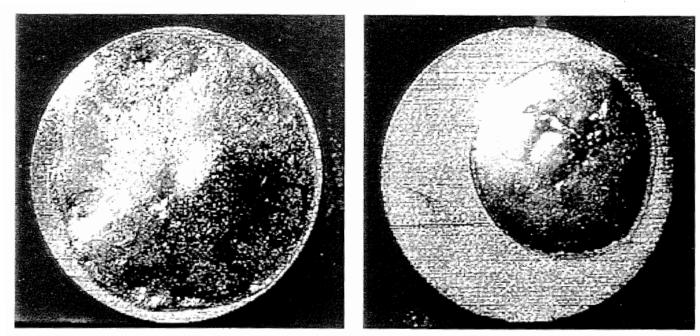

VOC-Quellen

- VOC-Quellen in Reinraumumgebungen
 - Ausgasung von Baumaterialien (Dichtungen, Beschichtungen, Filtermaterialien, Klebstoffe...
 - Faktor Mensch
 - Prozess-Chemikalien (Fotolack, Reiniger, Ätzstoffe,...)
 - Wafer-Boxen
 - Zuluft
 - Typische Aussenluft-Konzentrationen [µg/m³]:



- Kontaktausfall durch Kieselsäuren aufgrund Siloxan-Kondensation und Lichtbogen-Einfluss während Schalten unter Last
- Betrifft Relais, probe-cards,...

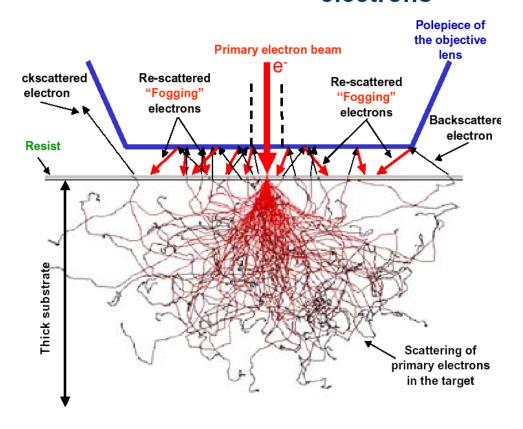




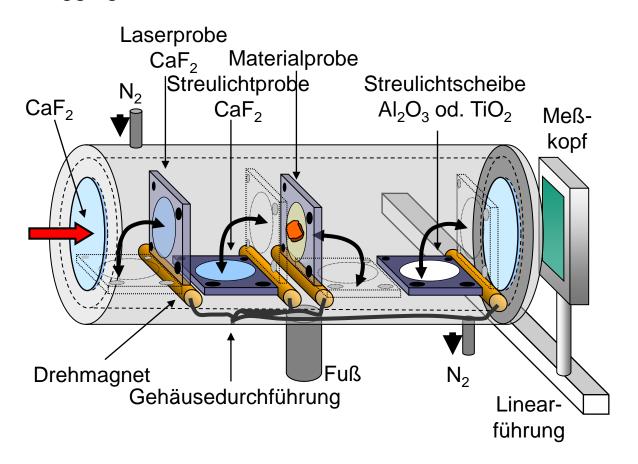
Source: Feinmetall

H. Anderson et al: Silicone contamination, IVF Research Publication 98812, Mölndal, 1997

- Schlechte Kontaktierung beim Lötvorgang
- Grund: Kondensierte Siloxane vergrößern den Kontaktwinkel

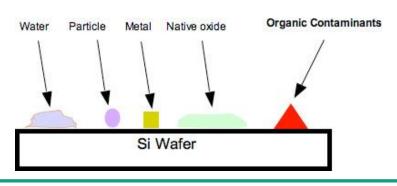


Source: H. Anderson et al: Silicone contamination, IVF Research Publication 98812, Mölndal, 1997


- Fogging auf Linsen durch kondensierte VOC
- Führt zu langwelligen Rückstreu-Elektronen
- Verursacht eine physikalische Schädigung des prozessierten Wafers durch unkontrollierte Belichtung

Fogging Effect: re-scattering of electrons

Source: P.Hudek, U.Denker, D.Beyer, N.Belic, H.Eisenmann: **Fogging effect correction method in high-resolution electron beam lithography**, *MNE'06 - International Micro- and Nano-Engineering Conference*, Barcelona, Spain, September 17-20, 2006.


Fogging auf Linsen: Messkammer von Zeiss SMT AG

Source: Mit freundlicher Genehmigung von Herrn Dr. Düsing, Carl Zeiss SMT AG

- Weichmacher aus Verpackungsmaterialien
- Phthalate (beispielsweise in PVC) wirken als Xenohormone
- DEHP: MAK-Wert = 10 mg/m³
- DEHP auch als Zusatz in Farben und Lacken bekannt
- Ersatzstoff: beispielsweise Mesamoll oder Hexamoll
- Kontaminationen auf Wafern
 - Phthalate, e.g. DEP, DBP, DOP, DINP,...
 - Organophosphate, z.B. TCEP, TCPP,...als Flammschutzmittel
 - Antioxidantien, z.B. BHT, Oxide von BHT
 - Siloxane, Cyclosiloxane
 - Adipinat, (Weichmacher in PVC o.ä.)
 - Amine
 - Kohlenwasserstoffe

Grenzwerte

■ Beispiel: Grenzwerte aus einem 0,25 µm Prozess (1995!)

Prozessschritt	AMC Grenzwerte (pptM)									
	Max. Säuren Basen Verweil- dauer (h)	Konden- Dotierstoffe sierbare Stoffe								
Wartezeit vor Gate-Oxid	4 13.000 13.000	1.000 0,1								
Salicidation	1 180 13.000	35.000 1.000								
Kontakt Herstellung	24 5 13.000	2.000 100.000								
DUV Photolithographie	2 10.000 1.000	100.000 10.000								

- pptM: molare parts per trillion = 10⁻¹² (Volumenangabe)
- pptM bezieht es sich auf das Molverhältnis (im Gas: Molekülverhältnis pro Volumen).
- 10 µg Benzylalkohol in 1 m³ Luft [ISO-AMC class -5 (or)] sind etwa 2000 pptM
- Geruchsschwelle von Toluol: 8 mg/m³ (= 2 ppmM oder ISO-AMC class -2,1)

Bereits bei DUV Grenzwert zwischen 1 – 100 ppb!

Source: L. Gail, H.-P. Hortig: Reinraumtechnik, Springer Verlag, Berlin, 2002

Grenzwerte

Organische Kontaminationen auf Oberflächen - Schichtdicke

	Schichtdicke Organik
Lithographie	< 0.1 nm
Festplatten	< 1 nm
Raumfahrttechnik	< 4 nm
Feinmechanik allg.	~ 10 nm
Lebensmittel/Pharmaindustrie	Keine sichtbare Kontamination

Source: Carl Zeiss SMT AG

Grenzwerte

■ Beispiel ITRS Roadmap 2010

Year of Production	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
Flash 1/2 pitch [nm]	38	32	28	25	23	20	18	15,9	14,2	12,6	11,3	10,0	8,9	8,0	7,1	6,3
AMC in Gas Phase [pptV]																
Lithography clean room																
Condensable Organics (w/GCMS																
retention times >benzene,																
calibrated to hexadecane)	26000	26000	26000	26000	26000	26000	26000	26000	26000	26000	26000	26000	26000	26000	26000	26000
Organics containing ex. S, P, Si)	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Gate/furnace area Wafer																
Dopants	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10

- Bezug: Hexadecan; MW = 226 g/mol
- ■TVOC = 26000 ppt entspricht etwa ISO-AMC class -3,6 (or)
- ■TVOC = 100 ppt entspricht etwa ISO-AMC class -6,0 (or)
- Hier wird allerdings angenommen, dass die umgebende Prozessluft VOC-filtriert wird.
- Standzeit der Filter!!

Source: ITRS Roadmap 2010

Zwischenresumee AMC

- AMCs stellen eine immer wichtigere Kontaminationsart dar
 - Geringere Strukturbreiten erhöhen die Anforderungen an AMCs
 - Industrie fordert AMC/VOC-reduzierten Materialien
 - Kritische Kontaminanten und deren Grenzwerte sind prozessbedingt und können nicht allgemeingültig festgelegt werden
- Eine Abschätzung des TVOC-Levels in Reinräumen wird mittlerweile teils schon in der Ausschreibungsphase gefordert (v.a. Raumfahrt, Halbleiter)
 - Notwendig: Einfaches Screening zur vergleichenden TVOC-Abschätzung und Darstellung kritischer Kontaminanten
 - Lösung: Mikrokammermessungen nach VDI 2083 Blatt 17 (draft)

Messverfahren zur Bestimmung der spezifischen Emissionsrate von Materialoberflächen

Struktur der Präsentation:

- Motivation; Ausgangssituation
- Existierende Messmethoden für VOC-Emissionen -Auszug
- Vorstellung der VDI 2083 Blatt 17 (draft)
 - Grundlagen der VOC-Messtechnik
 - Probenvorbereitung und -Lagerung
 - VOC-Emissionsmessungen
 - Oberflächenspezifische Emissionsrate
 - Materialklassifizierung in ISO-AMC_m-Klassen
 - Umrechnungsmodell auf reale Produktionsumgebungen

 Für bestimmte Prozesse ist eine entsprechende AMC-kontrollierte Umgebung notwendig
 → Reinraumtechnik:
 DIN EN ISO 14644 und VDI 2083-Reihe

ISO-AMC-Klassifizierung von Reinräumen (DIN EN ISO 14644-8)

- ISO-AMC-Klassifizierung auf Grundlage der gemessenen Konzentration [g/m³]
- VOC-Emissionen sind eine der wichtigsten AMC-Klassen: (or)
- Angabe: ISO-AMC (or) = -5,5
- Notwendig: vergleichende Materialauswahl für Reinräume hinsichtlich TVOC-Emission

ISO- AMC Klasse	Konzentration in g/m³				
0	10 ⁰				
-1	10 ⁻¹				
-2	10 ⁻²				
-3	10 ⁻³				
-4	10-4				
-5	10 ⁻⁵				
-6	10-6				
-7	10 ⁻⁷				
-8	10 ⁻⁸				
-9	10 ⁻⁹				
-10	10 ⁻¹⁰				
-11	10 ⁻¹¹				
-12	10 ⁻¹²				

ISO-AMC-Klassen nach ISO 14644-8

Vorstellung der VDI 2083 Blatt 17 (draft)

- Problem: Es gibt keine allgemeingültige vergleichende <u>Ausgasungs-Klassifizierung</u> von <u>Materialien</u>
- Motivation: VDI 2083 Blatt 17 (draft): Reinraum- und Reinheitstauglichkeit von Werkstoffen – Teilaspekt Ausgasung

Vorstellung der VDI 2083 Blatt 17 (draft)

Folgende allgemeingültige Aussagen können getroffen werden:

- Die Ausgasung findet an Materialoberflächen statt.
- Es herrschen kontrollierte Umgebungsbedingungen (z.B. Temperatur = 23 °C und rel. Feuchte = 45 %)
- Durch Kenntnis der **spezifischen Emissionsrate SER** [g/m²s] kann eine Aussage über die Emissionseigenschaften des Materials gegeben werden
- Die SER ist abhängig vom Alter des Materials
- Durch Kenntnis der SER, des Alters und der anteiligen Oberfläche des Materials im Reinraum kann dessen theoretische ISO-AMC(or)-Klasse berechnet werden
- Um eine qualitative Aussage über das Vorhandensein kritischer Kontaminaten (Halbleiter: Phthalate, Siloxane, Amine, Orhanophosphate) machen zu können, wird die Materialprobe bei 90 °C vermessen
- Diese Aussagen sind Grundlage der VDI 2083-17 (draft) bei der Bewertung des Ausgasungsverhaltens von Materialproben.

Existierende Messmethoden für VOC

Es existieren mannigfaltige Messmethoden – Auszug

ASTM E595-07:

Ergebnis: TML (total mass loss), CVCM (collected volatile condensable material)

ASTM F1227-89 (1999) withdrawn

Ergebnis: TML (total mass loss), CVCM (collected volatile condensable material)

■ SEMI E108-0307

Ergebnis: T_c [ng/cm²] (total organic contaminants)

■ IEST-RP-CC031.2

Ergebnis: TVOC in µg/g

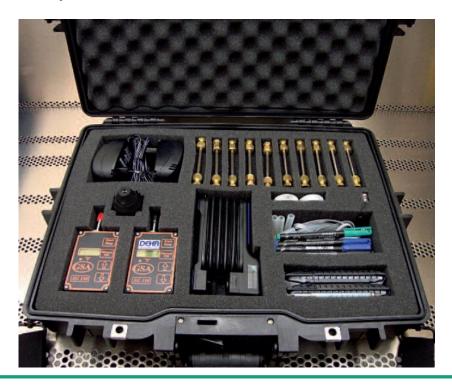
■ IDEMA M11-99

Ergebnis: in g/g, g/m² oder g/m³

■ VDA 278

Ergebnis: in g/g

DIN EN ISO 16000-9

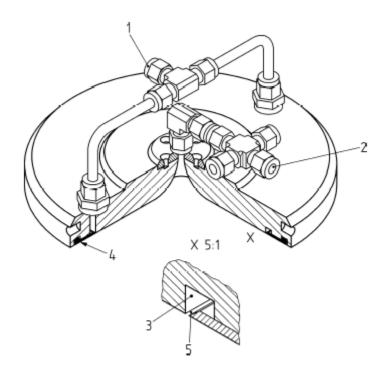

Bestimmung der flächenspezifischen Emissionsrate SER in g/m2s

- Neu: VDI 2083 Blatt 17 (draft) speziell für Reinraumanwendungen
- **IEST-RP-CC031.2:** "Method for Characterizing Outgassed Organic Compounds from Cleanroom Materials and Components"

Messstrategie im Feld

ISO-AMC-Klassifizierung von Reinräumen (DIN EN ISO 14644-8)

- Messung durch Probenahme auf Adsorber; Analyse durch TD-GC/MS
- Analyse im Labor mit TD-GC/MS



Existierende Messmethoden für VOC - Materialien

- ISO 16000-10: "FLEC-Zelle" siehe auch ASTM D7143-11 und ENV 13419-2 (zurückgezogen)
- Prüfzellen-Verfahren
 - Messtemperatur: 23 °C
 - Bezug detektierte Masse TVOC/Oberfläche der Probe

Legende

- 1 Lufteinlass
- 2 Luftauslass
- 2 Kana
- 4 Dichtungsmaterial
- 5 Schlitz

Quelle: ISO 16000-10

Auswahl des Messverfahrens

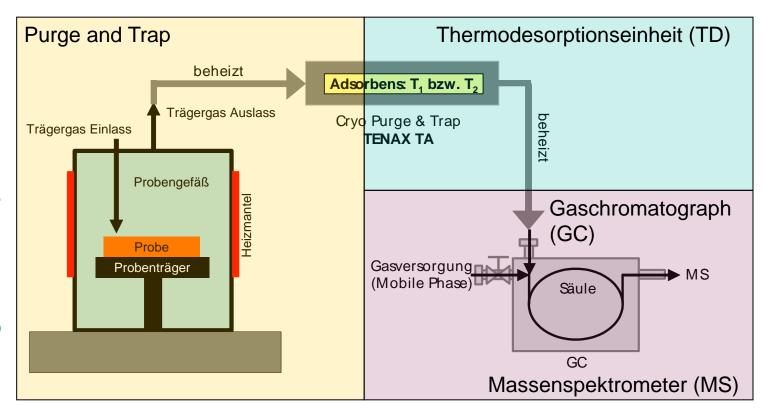
■ Überblick aus VDI 2083 Blatt 8.1 Molekulare Verunreinigungen der Reinraumluft (AMC)

ISO-AMC-							Kont	aminante	nfamilie					
Klasse N 10 ⁿ g/m ³	s	äure	E	Base		Organische Biotoxin Kontaminante			nsierbare minante		ende ninante	Dotierung		
-1 -2 -3 -4 -5 -6	IMP, DIFF IMP, DIFF	IC, UVS, CLS, IR, CPR IC, UVS, IR, CLS,	IMP, DIFF	IC, UVS CLS, IR CPR IC, UVS IR, CLS		GC-FID, GC-MS, IR	MP,	IC, UVS, GC-FID, GC-MS, IR, CPR IC, UVS, CLS, IR, CPR IR, CLS, CPR, GC	SOR	GC-FID, GC- MS, IR	IMP, DIFF, SOR IMP, DIFF	IC, UVS, GC-FID, GC-MS, IR IC, UVS, CLS, IR, CPR	SOR, IMP	GC-FID, GC-MS, IR, IC, ICP-MS, GF-AAS, UVS
-7 -8	IMP	CPR IC	DIFF	CPR		GC D,	SO IM	MS, ICF IC, GC-M ICP-MS IC, CZE,	9AP	GC- 7, GC- MS, 3D	SOR P, DR	IC BC-M		
-9 -10 -11	IMP	IC, CZE, IMS	IMP	IC, IMS			IMP, SOR	IMS, GC- MS, ICP- MS CZE, GC- MS, ICP-			IMP, SOR	IC, CZE, IMS, GC- MS		IC, GC-MS,
-11	IMP	CZE	IMP	IC, CZE	SOR	GC-MS	IMP, SOR	MS, ICP- MS	SOR	GC-MS	IMP, SOR	CZE, GC- MS	IMP, SOR	IC, GC-N

TD-GC/MS bietet breites

Spektrum an

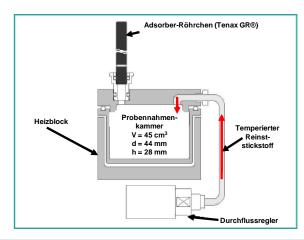
detektierbaren


Kontaminanten

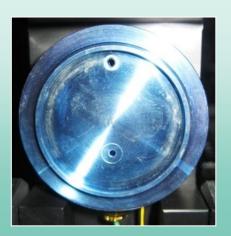
- Probenahmeverfahren: Thermo-Desorption (TD) mit Sorbensröhrchen (SOR)
- Separates Analyse-Verfahren: Gaschromatographie-Massenspektroskopie (GC-MS)

Grundlagen Messtechnik VOC durch TD-GC/MS

Purge and Trap TD-GC/MS: Thermodesorption mit gekoppelter Gaschromatographie und Massenspektrometer; vorgeschaltete Probekammer und Adsorberröhrchen: Emissionskammermessungen


Purge and Trap GC/MS

Grundlagen Messtechnik VOC durch TD-GC/MS


Technische Umsetzung der Kammermessungen: Lösung

- Keine Temperatursenken: Komplette Kammer beheizt
- einfache Reinigung: Kammer separat reinigbar
- kleineres Kammervolumen: leer V = 45 cm3
- Lösung µCTE Mikrokammer von MARKES International

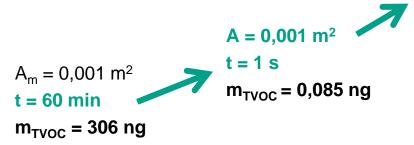
Probenvorbereitung und -Lagerung

Technische Umsetzung Probenvorbereitung:

- Keine offenen Schnittkanten: optimierter Auflagering oder standardisierte Glas-Petrischale
- Reaktive Proben (Epoxy-Systeme, Dichtstoffe, Lacke, ...) werden nach Applikation 30 Tage bei 23 °C und 45 % rel. Feuchte und in Minienvironment mit VOC-filtrierter Zuluft gelagert.
- Ergebnis: Sehr gute reproduzierbare Messreihen

Messparameter Kammermessung

Messparameter: CSM-Standard Phase 4


Mit diesem Parametersatz können Messungen an verschiedensten Proben vorgenommen werden.

Parameter	23 C	90 C			
Zeit	60 min	1 min			
Spülgasfluss (fix)	100 ml/min				
Oberfläche (fix)	10 cm ²				
Volumen der Messkammer (fix)	45 cm ³				
Start der Messung nach Einbringen der Probe in die Kammer	15 min				
Alter reaktiver Proben zum Zeitpunkt der Messung	30 Tage				

Die Sorptionsröhrchen werden in Anlehnung an VDA 278 per TD-GC/MS analysiert. Die 90 °C-Messung wird nicht zur Klassifizierung herangezogen.

Werkstoffklassifizierung nach VDI 2083-17 (draft)

$$SER_{m} = \frac{m_{TVOC}}{A_{m} \cdot t}$$

 $SER_m = 8.5 *10^{-8}g/m^2s$

 $A = 1 \text{ m}^2$

t = 1 s

Hierbei gilt:

SER_m = flächenspezfische Emissionsrate des Materials m bei einer Raumtemperatur von 22 +/- 1 °C in g/(m²•s)

m_{TVOC} = Masse der Gesamtausgasung des Werkstoffs m in g

A_m = Fläche des Werkstoffs m in m² t = Dauer der Probennahme in s

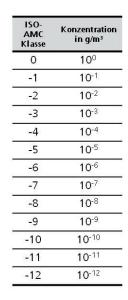
Werkstoffklassifizierung nach VDI 2083-17 (draft)

Die Klassifizierung des Werkstoffs in ISO-AMC_m(or)-Klassen erfolgt anhand der Größe TVOC_{norm} in Anlehnung an DIN EN ISO 14644-8:

$$TVOC_{norm} = \frac{SER_{m} \cdot A_{norm}}{V_{norm} \cdot n_{norm}}$$

Hierbei gilt:

 V_{norm} = normiertes Kammervolumen von1 m³ A_{norm} = normierte Fläche des Werkstoffs von 1 m²


n_{norm} = normierte Spülgasrate von 1/s

TVOC_{norm} = normierte Gesamtausgasung des Werkstoffs m in g/m³

$$ISO-AMC_m(or) = \log(TVOC_{norm})$$

 $ISO-AMC_m$ (or) = -7,1

Umrechnung der werkstoffspezifischen ISO-AMC_m Klasse auf die ISO-AMC_{CR} Klasse realer Reinraumumgebungen

Die anteilige Fläche und stark emittierende Materialien spiegeln v.a. die Relevanz der SER_m-Werte zur Berechnung der ISO-AMC_{CR}-Klasse wieder. Vor allem relevant sind:

Flächen

- Böden (Doppelböden!)
- Wand
- Decken (Filtersysteme)
- Klimatechnik

Starke VOC-Quellen:

- Dichtmassen
- I | 1 | 2...

Flooring & Coating

Umrechnung der werkstoffspezifischen ISO-AMC $_{\rm m}$ Klasse auf die ISO-AMC $_{\rm CR}$ Klasse realer Reinraumumgebungen

Die durch das Einbringen von VOC-emittierenden Werkstoffen zu erwartende ISO-AMC-Klasse eines Reinraums (CR) mit bekannten Betriebsparametern <u>im stationären Zustand</u> wird wie folgt berechnet:

$$TVOC_{CR} = \frac{\sum SER_{m} \cdot A_{CR}}{V_{CR} \cdot n_{CR}}$$

Hierbei gilt:

TVOC_{CR} = berechnete Gesamtausgasung des Werkstoffs m

im Reinraum in g/m³

A_{CR} = Fläche des Werkstoffs im Reinraum in m²

 V_{CR} = Reinraumvolumen in m³

n_{CR} = Frischluftrate des Reinraums_in 1/s LWR_{CR} = Luftwechselrate im Reinraum in 1/s

FLA_{CR} = Frischluftanteil im Reinraum

 ΣSER_m = Summe aller SER_m relevanter Materialien

 $ISO-AMC_{CR}$ (or) = -5,7

ISO- AMC Klasse	Konzentratior in g/m³					
0	10 ⁰					
-1	10 ⁻¹					
-2	10-2					
-3	10 ⁻³					
-4	10-4					
-5	10 ⁻⁵					
-6	10 ⁻⁶					
-7	10 ⁻⁷					
-8	10 ⁻⁸					
-9	10 ⁻⁹					
-10	10 ⁻¹⁰					
-11	10-11					
-12	10-12					

Beispielwerte:

 $\begin{array}{lll} A_{CR} & = 100 \text{ m}^2 \\ V_{CR} & = 300 \text{ m}^3 \\ LWR_{CR} & = 0,15 \text{ 1/s} \\ FLA_{CR} & = 0,1 \end{array}$

$$n_{CR} = LWR_{CR} \cdot FLA_{CR}$$

Zischenresumee Ausgasung aus Werkstoffen und in Produktions-/Fertigungslösungen

- Partikelemissionsverhalten nun möglich
- Werkstoff- und Reinraum-Klassifizierung bzgl. Ausgasungen: nun möglich
- Bislang keine Messmethode, welche eine direkte Abschätzung realer Umgebungen ermöglichte
- Richtlinie VDI 2083 Blatt 17 (draft) ermöglicht Klassifizierung von Materialien hinsichtlich deren VOC-Ausgasungseigenschaften durch:
 - Vorbereitung und Lagerung der Materialprobe
 - Probenahme durch Mikrokammermessung
 - Auswertung durch TD-GC/MS
 - Klassifizierung des Materials anhand der ermittelten spezifischen Emissionsrate
- Mögliche Abschätzung des TVOC-Levels realer Produktionsumgebungen