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Abstract

Several interesting practical problems in process control, planning and scheduling can be expressed

and solved using the model of constraint satisfaction problems. At least four drawbacks of this

classical model directly relate to areas of distribution: complexity, scalability, privacy and robust-

ness. Hence, research on distributed constraint satisfaction problems is a new direction in this area.

A typical engineering task in distributed constraint satisfaction is the design of the distribution

itself. A careful look at this task reveals that the design of distribution is critical to the quality

and eÆciency of the problem solving process and is itself an optimization problem.

In this report we formalize di�erent variants of this con�guration problem and prove them to be

all at least NP -complete. For solving these problems, we present two local operators, agent melting

and agent splitting, that can be combined to allow for an autonomous and dynamic recon�guration

of the organizational structure of the problem solvers. We prove sequences of these operators to

be suÆcient for solving any given con�guration problem. We also brie
y describe what practical

steps are necessary to exploit the rather theoretical result of the proof in realistic applications.

Keywords

distributed constraint satisfaction, autonomous dynamic recon�guration, partitioning, agent melt-

ing, agent splitting

Zusammenfassung

Viele interessante praktische Probleme in der Proze�kontrolle, in Aktions- und Einsatzplanung

k�onnen als Constraint-Satisfaction-Probleme modelliert und mit entsprechenden Verfahren gel�ost

werden. Mindestens vier der Nachteile dieses klassischen Modells h�angen direkt mit The-

men der Verteilung zusammen: Komplexit�at, Skalierbarkeit, Datenschutz und Robustheit. Aus

diesem Grunde hat sich in letzter Zeit die Untersuchung von Distributed-Constraint-Satisfaction-

Problem als Forschungsrichtung etabliert. Eine typische technische Aufgabe in diesem Zusam-

menhang ist der Entwurf der Verteilung an sich. Eine genaue Untersuchung dieser Aufgabe

zeigt, da� der Verteilungsentwurf eine kritische Gr�o�e f�ur die Qualit�at und die EÆzienz des Prob-

leml�osungsprozesses ist und auch selbst ein Optimierungsproblem darstellt.

In diesem Bericht formalisieren wir verschiedene Varianten dieses Kon�gurationsproblems and

weisen nach, da� sie alle zumindest NP -vollst�andig sind. Zur L�osung dieser Probleme schlagen

wir zwei lokale Operatoren vor, die Agentenverschmelzung und die Agentenzerteilung, die beide

kombiniert werden k�onnen, um die autonome und dynamische Rekon�guration der Organisations-

struktur zwischen den Probleml�osern zu erm�oglichen. Wir beweisen, da� Folgen dieser Operatoren

hinreichend f�ur die L�osung jedes Kon�gurationsproblems sind. Au�erdem beschreiben wir kurz,

welche praktischen Schritte notwendig sind, um die eher theoretischen Ergebnisses dieses Beweises

in realistischen Anwendungen umzusetzen.

Stichworte

Distributed-Constraint-Satisfaction, autonome dynamische Rekon�guration, Partitionierung,

Agentenverschmelzung, Agentenzerteilung
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1 Introduction

Several interesting practical problems in process control, planning and scheduling can be expressed

and solved using the model of constraint satisfaction problems (CSPs, [28]) and the algorithms of

constraint programming. Though the CSP framework is very generic and its algorithms are often

quite successful in solving NP -hard optimization problems near to the optimum very eÆciently,

there are also some major drawbacks in this problem solving approach. At least four of these

drawbacks directly relate to areas of distribution: complexity, scalability, privacy and robustness.

After having brie
y introduced the standard CSP model, we will hence motivate the need for a

distributed variant of constraint satisfaction and will propose a slightly more detailed de�nition of

a distributed constraint satisfaction problem (DCSP, [40]) in section 2.

Since the distribution of problem solvers is often not fully speci�ed by the natural distribution

of the problem, a typical engineering task in distributed constraint satisfaction is the design of

the distribution itself. As soon as major parts of the problem space are under control of a single

realm of authority (as it usually is in information or enterprise resource planning systems) it has to

be decided what part of the problem should be assigned to a certain problem solver. More global

problem solving promises the highest quality solutions to the common problem but may be infeasible

due to technical, social or security restrictions. Distributed problem solving is able to obey social

aspects and may diminish problem complexity by partitioning but also entails suboptimal solutions

and vast communication overhead. Therefore, the design of distribution (called con�guration) and

the task allocation mechanism is critical to the quality and eÆciency of the problem solving process

and is itself an optimization problem. We formalize di�erent variants of this problem in section 3

and prove them to be all at least NP -complete.

The traditional approach to distributed problem solving is to design the distribution aspects

o�-line by statically assigning certain roles and competences to speci�c problem solvers. Thus, the

problem space is statically distributed among a more or less �xed set of problem solvers. In section

4 we will present two local operators, agent melting and agent splitting, that can be combined to

allow for an autonomous and dynamic recon�guration of the organizational structure of the problem

solvers. Together with measures for internal problem complexity and communicational e�ort, the

system shall autonomously adapt to the current problem structure by melting and splitting problem

solving knowledge, tasks and skills. In this section we will also brie
y describe our steps towards

the realization of these operators in autonomous multi-agent problem solving. A section on related

work (5) and remarks on open questions for future research (6) conclude our report.

2 Distributed Constraint Satisfaction

2.1 Common CSP Model

Before introducing the distributedmodel of constraint satisfaction we will present a formal de�nition

of a constraint satisfaction problem which can be found more or less in all CSP articles.

De�nition 1 (Constraint Satisfaction Problem) A (general) constraint satisfaction problem

(CSP) is speci�ed by a triple �cs = (X;D;C).

X = fx1; : : : ; xng is a set of domain variables xi each ranging over its domain Di from the set

D = fD1; : : : ;Dng. A labelling � = (v1; : : : ; vn) 2 D1 � : : : �Dn assigns a value vi 2 Di to each

domain variable xi. C = fC1; : : : ; Cmg; Ci = f(v1; : : : ; vn) 2 D1 � : : :�Dn j p (vi1; : : : ; vik)g is

a set of constraints each restricting the set of possible labellings by applying a boolean predicate
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p : (Di1 � : : : �Dik) �! ftrue; falseg. Given this speci�cation, the problem is to �nd a labelling

� 2 � = C1 \ : : : \Cm from the solution space �.

A constraint satisfaction problem is called binary (�bcs), i� all constraints Ci 2 C have the form

Ci = f(v1; : : : ; vn) 2 D1 � : : : �Dn j p (xj ; xk)g, with p : (Dj �Dk) �! ftrue; falseg.

De�nition 2 (Solution Equivalence) Two constraint satisfaction problems �1
*
and �2

*
are

called solution equivalent (�1
*
� �2

*
), i� 9(f : �1 �! �2) : f bijective.

Remark 1 a) In the de�nition of binary CSPs �bcs, we do not consider unary constraints since

they only restrict the domain of a single domain variable and can hence be satis�ed directly by

reducing the proper domain. No further processing is needed.

b) Every general CSP �cs can be transformed into a solution equivalent binary CSP �bcs by

introducing further domain variables [3].

Sometimes it is necessary to illustrate constraint satisfaction problems graphically. Especially

binary CSPs are easily represented by ordinary graphs as given by the following de�nition and

example.

De�nition 3 (Constraint Graph) A constraint graph of a binary CSP �bcs is a triple �bcs =

(N;E; �)).

N = fn1; : : : ; nng is a set of nodes each associated with a domain variable xi from �bcs. E �
ffnj; nkg j nj ; nk 2 Ng is a set of edges with fnj ; nkg 2 E () 9Cl 2 C : Cl = f� j p (vj; vk)g.
� : N [ E �! T marks nodes and edges with terms from T de�ned by the predicate calculus

underlying �bcs; � (ni) = (xi;Di), � (fnj ; nkg) =
V
f�jp (vj ;vk)g2C

p (xj ; xk).

Example 1 (Simple Constraint Satisfaction Problem)

x1 <> x3 x1 = x2

x2 > x3

(x1, {1, 2})

(x3, {1, 2})
(x2, {1, 2})

Figure 1: Simple CSP

The simple binary constraint satisfaction problem �bcs = (X;D;C)

with X = fx1; x2; x3g, D = ff1; 2g; f1; 2g; f1; 2gg and C =

fC1; C2; C3g; C1 = f(v1; v2; v3) 2 f1; 2g � f1; 2g � f1; 2g j v1 =

v2g = f(1; 1; 1); (1; 1; 2); (2; 2; 1); (2; 2; 2)g, C2 = f(v1; v2; v3) 2
f1; 2g � f1; 2g � f1; 2g j v2 > v3g = f(1; 2; 1); (2; 2; 1)g,
C3 = f(v1; v2; v3) 2 f1; 2g � f1; 2g � f1; 2g j v1 6= v3g =

f(1; 1; 2); (1; 2; 2); (2; 1; 1); (2; 2; 1)g can be illustrated by the con-

straint graph given by �gure 1. The only possible feasible labelling

� is determined by � = C1 \ C2 \ C3 = f(2; 2; 1)g 3 (2; 2; 1) = �.

Though it is theoretically possible to reduce every general constraint satisfaction problem to a

binary one (as already mentioned), this is not very convenient and the constraint graphs tend to

explode. To illustrate general CSPs graphically, we introduce an extended form of constraint graphs

that can encode any type of constraints.

De�nition 4 (Extended Constraint Graph) An extended constraint graph of a general CSP

�cs is a 4-tuple �cs = (V N;CN;E; �).

V N = fvn1; : : : ; vnng is a set of variable nodes each associated with a domain variable xi from

�cs. CN = fcn1; : : : ; cnmg is a set of constraint nodes each associated with a constraint Ci from

�cs. E � ffvnj; cnkg j vnj 2 V N ^ cnk 2 CNg is a set of edges with fvnj ; cnkg 2 E () Ck =

f� j p (: : : ; vnj ; : : :)g. � : V N [CN �! T marks variable and constraint nodes with terms from T

de�ned by the predicate calculus underlying �cs; � (vni) = (xi; Di), � (cni) = p (xi1; : : : ; xik) ()
Ci = f� j p (vi1; : : : ; vik)g.
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2.2 Motivation for Distribution

Problems of real-world size tend to be too complex to be solved by a monolithic constraint solver.

Additionally, monolithic systems often scale poorly in the size of variables and constraints. Par-

titioning the problem and searching for a near optimal solution composed from the solutions of

detached subproblems is a typical approach of parallel computing and more recent distributed

computing. But this eÆciency and scalability argument is by far not the only one in favor of

distributed problem solving. The information on variables and constraints is very often spatially

distributed among di�erent natural organizational units. Even in case of a monolithic solver one

would have to collect all the information from its several sources, transfer it to the solver, solve the

problem and again distribute the results of optimization among the di�erent users. Hence, even

in case of a central optimizer one has to cope with communication and information consistency

problems. At this point, distribution is a should-have.

Another argument against a central solver is privacy. Social structures, like within enterprises

or in supply chains of di�erent enterprises, create heterogeneous �elds of competencies and in
u-

ences. Few executives of organizational units accept transferring all their process data to other

organizational units for global optimization. Even less they accept automatic control over their

unit's processes by a central instance. For acceptance, there have to be secure interfaces between

realms of competency that only let pass authorized and restricted information. Decisions on pro-

cesses have to be done at the same locations of competency where these processes are enacted in

reality. At this point, distribution is already a must-have.

A last argument for distribution is redundancy and robustness. A crash of a central solver or

missing connectivity would in
uence the whole enterprise connected to the solver leading to chaos.

Master/slave concepts raise the amount of communication overhead by caching and mirroring. In

contrast to that, the crash of a single problem solver in one organizational unit would in
uence

only that unit and its neighbors.

2.3 DCSP Model and a Real-World Example

The formal model of distributed constraint satisfaction problems di�ers from that of ordinary

CSPs only by adding a distribution function � assigning each variable and constraint to a certain

problem-solving agent out of a set of agents A.

De�nition 5 (Distributed Constraint Satisfaction Problem) A distributed constraint sat-

isfaction problem (DCSP) is speci�ed by a 5-tuple �dcs = (X;D;C;A; �).

X, D and C are de�ned as given by Def. 1. A = fa1; : : : ; apg is a set of agents. � : X [ C �! A

assigns an agent to each domain variable and each constraint. Again, the problem is to �nd a

labelling � 2 � = C1 \ : : : \ Cm.

Remark 2 a) From a declarative view point, a DCSP does not di�er from its associated CSP. The

di�erence can only be seen from an operational view point.

b) Since domains are always directly associated with their domain variables, the distribution of

domains depends on the distribution of variables and is not discussed further. Hence, according to

[27] our approach to distribution can be classi�ed as variable-based.

c) � de�nes a partition on the union of domain variables and constraints that can be denoted

by ��1 = f(a1; �
�1 (a1)); : : : ; (ap; �

�1 (ap))g with ��1 (ai) = fxc 2 X [ C j� (xc) = aig. Hence,S
a2A �

�1 (a) = X [ C ^ 8ai; aj 2 A; i 6= j : ��1 (ai) \ �
�1 (aj) = ;.

d) DSCPs are denoted graphically by using extended constraint graphs together with Venn-

diagram-like hulls illustrating the partition. Edges connecting nodes from di�erent partition sets,
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(a1, D 1)

(a2, D 2)

(a3, D 3)

before ( a1, a2)

before ( a2, a3)

capacity ( a1, a2, a4)

(a4, D 4)

(a5, D 5)

(a6, D 6)

(a7, D 7)
capacity ( a3, a5, a6, a7)

before ( a4, a5)

before ( a5, a6)

before ( a6, a7)

p1

p2

d1

d2

Figure 2: Small Sample of a Medical Appointment Scheduling Problem

i. e. e = fvni; cnjg ^� (vni) 6= � (cnj), are called external edges. All other edges are called internal

edges.

Example 2 (Medical Appointment Scheduling) In principle, medical appointment schedul-

ing is a slightly extended variant of classical job-shop-scheduling. Primarily, it involves a set of

patients each demanding appointments (decision variables) for a set of medical examinations and

a set of diagnostic providers each o�ering a certain set of examination types. Constraints restrict-

ing the choice of appointments include partial orders among examinations of patients, capacity

constraints de�ned by the calendars of the providing units and others, e. g. maximum number of

examinations each day, setup times and so on. Figure 2 shows an extended constraint graph for

a small sample of such a medical appointment scheduling problem. Only partial order and capac-

ity constraints are shown. Two patients fa1; a2; a3g and fa4; a5; a6; a7g compete for two common

diagnostic resources. The appointments are sequentialized by before-relations. The �gure also il-

lustrates the distribution function �. There are four agents, two patient agents p1 and p2 and two

diagnostic unit agents d1 and d2.

3 DCS Configuration Problems

Despite the advantages of distribution, such systems have also major disadvantages. The complexity

that has been saved within the several solvers is transfered to the coordination process. This is

strikingly shown by �gure 3 in which ten patients compete for four diagnostic resources (even this

example is not of real-life size). Due to this fact, investigations on todays distributed solver systems

often report poor optimization results or vast communication overhead. Since global problem

solving promises the higher quality solutions to the common problem but may be infeasible due

to technical, social or security restrictions, we are facing a well-known trade-o� between a global

and a local design. Therefore, the design of the distribution (called con�guration) is itself an
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Figure 3: Complex Sample of a Medical Appointment Scheduling Problem

optimization problem. In this section we will formalize the problem of �nding a good partition for

a given constraint satisfaction problem.

3.1 Partitions and Quality

A �rst and important step towards a formalization of the con�guration problem is to de�ne the

term \good". To do this, we assume that the quality of a partition is mainly determined by two

criteria that are complementary: internal problem complexity and external communication cost.

In DCSP solving, internal problem complexity depends on the structure of the sub-CSP to solve,

i e. the number of variables, the number of constraints and the complexity of variable-constraint

relations. Research in phase transitions [20, 11, 16] de�nes a notion of constrainedness that promises

to be a good measure for identifying the complexity of a given sub-CSP. In this report, we simply

assume the existence of a function � : 2X[C �! N that assigns a complexity value to a subset of

all variables and constraints. By external communication cost we do not denote the physical time

for transmitting a message from one problem solver to another, but we denote the semantic e�ort

of a whole consensus �nding protocol run as presented in [12] to ensure consensus between two

autonomous problem solvers. Nevertheless, we assume this e�ort to be directly related to a very

simplistic measure: the number of external edges in the extended constraint graph of the DCSP.

The target of a good partition is to increase internal complexity as far as possible to utilize the

full power of conventional CSP solving within the agent and such to achieve high-quality solutions.

Additionally, a good partition has minimal external communication costs. All this is formalized by

the following de�nition.

De�nition 6 (Quality of a Partition) Given a partition ��1 = f(a1;X1 [ C1); : : : ; (ak;Xk [
Ck)g and an internal complexity function � : 2X[C �! N (X =

S
i=1;:::;kXi; C =

S
i=1;:::;k Ci), the
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quality of ��1
is de�ned by

q��1 =

kX
i=1

2
64
internal complexityz }| {
� (Xi [ Ci) �

external communication costz }| {X
C02Ci

���xj 2 X j C 0 = f�jp (: : : ; vj ; : : :)g ^ � (xj) 6= � (C 0)
	��
3
75 : (1)

The best partition in this sense is the one containing only one set including the whole initial

constraint satisfaction problem. It has the highest possible internal complexity and no external

communication costs at all. That directly corresponds to our intuition to solve a CSP problem

centrally if only possible. Alas, following our argumentation in favor of distributed problem solving

this is not always possible. Therefore, we have to encode the restrictions we used to argue in favor

of DCSPs as it is done in the next subsection.

3.2 Core Problem and Variants

The main restrictions that do not allow us to solve many CSP centrally are the boundedness of

tractable complexity and social boundaries. We will encode these restrictions by an upper bound

�u on the internal complexity perhaps found by empirical studies on the given CSP class and

the careful attention to the social competency boundaries. Both are formalized in the following

de�nition.

De�nition 7 (DCS Configuration Problem) A static DCS Configuration problem is

speci�ed by a 5-tuple (�cs; �; �u; �l; �s).

�cs = (X;D;C) is a constraint satisfaction problem, � : 2X[C �! N is an internal complexity

function, �u is an internal complexity upper bound, �l is an internal complexity lower bound and

�s de�nes a social partition. Additionally, let

Q =
n
q��1

��� �cs � �dcs = (X;D;C;A; �) ^ (2)

8(ai;Xi [ Ci) 2 �
�1 : (�l � � (Xi [ Ci) � �u) ^ (3)

8xci; xcj 2 X [ C : �s (xci) 6= �s (xcj) =) � (xci) 6= � (xcj)
o
: (4)

Then, three variants of the static DCS Configuration problem are

1. Is q� = maxQ � k for a given k 2 Z? (decision problem �Con)

2. Find q�! (value optimization problem !Con)

3. Find ��
dcs

= arg maxQ! (solution optimization problem 
Con)

The set Q includes the quality measures of all possible DCSPs that are solution equivalent to

the given CSP. The following restrictions are put onto these DCSPs: (2) ensures that the DCSPs

preserve the set of variables X, the set of domains D and the set of constraints C. Hence, the

only free variables of the DCS Configuration problem are the set of agents A used to solve

the given CSP and the distribution function �. (3) ensures that the complexity of every set of

the partition de�ned by � lies within the bounds given by �u and �l. This property is called

complexity feasibility and is denoted by the predicate feasiblec. Finally, (4) enforces the given

social partition de�ned by �s to be preserved by the found partition de�ned by �, such that

no two variables or constraints that are desired to be in di�erent social partition sets are in the

same partition set. This property is called social feasibility and is denoted by the predicate feasibles.
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Theorem 1 The decision variant of DCS Configuration �Con is NP -complete in the size of

jX [ Cj.

Proof:

a) (�Con 2 NP ) �Con is in NP because it can be solved by enumerating every possible partition

��1 of X[C (which are Bn=jX[Cj =
P

n

k=1

h
1
k!

P
k�1
i=0 (�1)

i
�
k

i

�
(k � 1)n

i
many1) and testing q��1 � k

(which can be done in polynomial time as long as � is computable in polynomial time).

b) (NP -hardness of �Con) We reduce the Minimum Bisection graph problem to �Con. The

Minimum Bisection graph problem is proven to be NP -complete [10] and is de�ned as follows.

Given a graph � = (N;E); jN j = 2 � i; i 2 N+. Let

M =
n
m = jffi; jg 2 E j ni 2 N1 ^ nj 2 N2gj

��� N1 [N2 = N ^N1 \N2 = ; ^ jN1j = jN2j
o
: (5)

Is m� = minM � k for a given k 2 Z?
We will do the reduction in a three step process.

1. (Input) We transform the input of the Minimum Bisection problem to an input of �Con by

X = N and C = ff(vi; vj) j p (vi; vj)g j fi; jg 2 Eg. Hence, there are only binary constraints

in C. The domain set D is without any importance to this reduction and can be left empty.

2. (Restrictions) According to remark 2b) � de�nes a partition. Additionally, de�ning � (Xi[Ci) =

jXij and �u =
jN j
2

= �l enforces �
�1 to be a bisection with equally sized parts, since

8(ai;Xi [ Ci) 2 �
�1 :

�
� (Xi [ Ci) �

jN j
2
^ � (Xi [ Ci) �

jN j
2

�
=) 8(ai;Xi [ Ci) 2 �

�1 : jXij =
jN j
2

=) j��1j = 2 ^ jXij = jXj j =
jN j
2

(since jN j =
P

(ai;Xi[Ci)2��1 jXij)

Finally, disabling the social partition by 8xc 2 X [ C : �s (xc) = 1 leads to a full reduction

of the set restrictions of M [(5)] to the set restrictions of Q [(2){(4)].

3. (Measure) The last thing to do is to reduce the measure m of theMinimum Bisection problem

[(5)] to the measure of �Con q��1 [(1)].

m = jffj; kg 2 E j nj 2 N1 ^ nk 2 N2gj
= jffj; kg 2 E j � (xj) 6= � (xk)gj (see restrictions)

= jff�jp (vj ; vk)g 2 C j � (xj) 6= � (xk)gj (see def. of C)

=
P

(ai;Xi[Ci)2��1

P
C02Ci

jfC 0 = f�jp (vj ; vk)g j � (xj) 6= � (xk)gj (altern. counting)

What we are doing here is to check every constraint C 0 2 C whether it restricts variables that

are in di�erent sets of the partition ��1. Since we have only two sets in the partition and

constraints are only binary, there are three possible cases for the relation among a constraint

C 0 and its restricted variables xj and xk: � (C
0) = � (xj) 6= � (xk), � (C

0) = � (xk) 6= � (xj)

or � (C 0) = � (xj) = � (xk). In the �rst two cases, m is increased by 1. Alternatively, we can

count the number of nodes connected to a constraint C 0 that are not in the same partition

1
Bn is the so-called Bell-number.
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set as the constraint, because (looking at the three cases) there is exactly one such node or

none, leading also to an increase of m by 1 in the �rst two cases. Hence, we can derive

m =
P

(ai;Xi[Ci)2��1

P
C02Ci

jfxj 2 X j C
0 = f�jp (: : : ; vj ; : : :)g ^ � (xj) 6= � (C 0)gj

=
P

(ai;Xi[Ci)2��1 � (Xi [ Ci)� q��1

=
P

(ai;Xi[Ci)2��1 jXij � q��1

= jN j � q��1

Therefore, m has been successfully reduced to an equivalent term containing a constant and

the inverse of q��1 . The constant can be removed by adjusting k 2 Z properly, the negative

sign is indeed correct and needed because �Con maximizes Q while Minimum Bisection

minimizes M .

This polynomial three step procedure reduces Minimum Bisection to �Con and hence proves our

proposition. 2

Corollary 1 The optimization variants of DCS Configuration are NP -hard.

Though the DCS Configuration problem is itself interesting, it is too static and centralized

in nature to be fully suitable for what we are behind in multi-agent systems research. Hence, we

propose an extended version of this problem that describes the task to dynamically adapt to the

given CSP structure.

De�nition 8 (DCS Reconfiguration Problem) A dynamic DCS Reconfiguration prob-

lem is speci�ed by a 5-tuple (�o

dcs
; �; �u; �l; �s).

�o

dcs
= (X;D;C;Ao; �o) is a distributed constraint satisfaction problem, � : 2X[C �! N is an

internal complexity function, �u is an internal complexity upper bound, �l is an internal complexity

lower bound and �s de�nes a social partition. Additionally, let �o

dcs
be complexity and socially

feasible and

Q =
n
q��1

��� �o

dcs
� �n

dcs
= (X;D;C;An; �n) ^

feasiblec (�
n

dcs
; �; �u; �l) ^ feasibles (�

n

dcs
; �s)

o
:

Then, three variants of the dynamic DCS Reconfiguration problem are

1. Is q� = maxQ � k for a given k 2 Z? (decision problem �ReCon)

2. Find q�! (value optimization problem !ReCon)

3. Find ��
dcs

= arg maxQ! (solution optimization problem 
ReCon)

Remark 3 a) An interesting special case of the decision variant �ReCon is q� = maxQ � k =

q
�o

�1?, i. e. whether the optimal partition quality is greater than the partition quality de�ned by

the given DCSP �o

dcs.

b) Of course, the decision variant of this problem is again NP -complete. This can be proven

similarly to theorem 1 by reducingMinimum Bisection to this problem with the help of a trivial

initial bisection (for example X1 [ C1 = fx1; : : : ; x jV j

2

g [ C and X2 [ C2 = fn jV j

2

; : : : ; njV jg).
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a) b)

Figure 4: Results of Agent Melting

4 Solving DCS Configuration Problems

In subsection 2.2 we have argued in favor of distribution to solve realistic constraint satisfaction

problems. The same arguments hold for solving a given DCS Configuration problem and its

variants. For example, if our system of problem solvers underlies a certain social competence

structure, the con�guration of the problem solvers won't be in
uencable by a central instance. Due

to this, we need recon�guration operators that allow for local and potentially autonomous adaption

to the problem structure.

Please take another look at �gure 3. Ten patient agents have to communicate with four resource

agents to reach consensus. Now, �gure 4 shows the results of a local operator, called agent melting.

In part a) patient agents that are strongly connected with a single resource agent have been uni�ed

to a single patient group agent. Though this has the advantage that requests of several patients can

be bundled and sent collectively to the resource agent, external communication has not decreased

substantially. Part b) shows a further step of local recon�guration in which resource agents have

been melt with patient group agents that often use their resource. As can be seen by the thick

lines, this step signi�cantly reduces the external communication overhead. In the next subsections

we will formalize a minimal set of local operators that will prove to be suÆcient to solve any given

DCS Reconfiguration problem and will brie
y present steps towards getting this theoretical

result to practice.

4.1 Local Operators and their SuÆciency

The local operator introduced by the aforementioned example is formalized by the following de�-

nition.

De�nition 9 (Agent Melting) Given a set of agents A = fa1; : : : ; apg : A, a partition ��1 =

f(a1;X1[C1); : : : ; (ap;Xp[Cp)g : � of a domain variable and constraint set X[C and two indices

i; j : N, agent melting is a function � : (A� �)�N�N �! A� � de�ned by

� ((A;��1); i; j)=

(�
A n fajg; (�

�1 n f(ai;XCi); (aj ;XCj)g) [ f(ai;XCi [XCj)g
�
; ai; aj 2 A

(A;��1); else
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Of course, to ful�ll all demands on complexity and social feasibility of a problem solver con-

�guration, agent melting alone is not suÆcient. As soon as one agent emerges to have a too high

internal complexity it has to be split into two (or more) smaller agents. The complementary local

operator to agent melting is called agent splitting and is de�ned as follows.

De�nition 10 (Agent Splitting) Given a set of agents A = fa1; : : : ; apg : A, a partition ��1 =

f(a1;X1 [ C1); : : : ; (ap;Xp [ Cp)g : � of a domain variable and constraint set X [ C, an index

i : N and a subset XC 0 : 2X[C
of domain variables and constraints, agent splitting is a function

� : (A� �)�N� 2X[C �! A� � de�ned by

� ((A;��1); i;XC 0) =8><
>:
�
A [ fajAj+1g; (�

�1 n f(ai;XCi)g) [ f(ai;XCi nXC 0); (ajAj+1;XC 0)g
�
; ai 2 A ^

XC 0 � XCi

(A;��1); else

Remark 4 To simplify the notation of consecutive application of these local operators to the

same initial set of agents A and partition ��1, we will use the following abbreviations. Applying

agent melting of agents i and j to (A;��1) is denoted by (i; j)(A;��1). Applying agent splitting

of agent i with subset XC to (A;��1) is denoted by (i;XC)(A;��1). For further abbreviation,

we write (~{;~| )m(A;��1) for (i1; j1) : : : (im; jm)(A;�
�1). Hence, ((~{;~| )2(~k; ~XC))(A;��1) denotes

� (� (� ((A;��1); i1; j1); i2; j2); k1;XC1).

x1
c2

x2c1

a)

x1
c2

x2c1

b)

Figure 5: Counter-example

The given de�nitions of the local operators do not obey complexity

and social feasibility. These operators are not directly applicable

to DCS Reconfiguration problems, since they may only lead

to con�gurations that are not feasible. This can easily be seen by

the example given by �gure 5. Let's assume that � (X [ C) =

jX [ Cj; �u = 2; �l = 2. Though this may seem very restrictive, we

have used a similar restriction in our NP -completeness proof. Part

a) of the �gure shows the given con�guration and part b) shows the

optimal one. Neither agent melting nor agent splitting is solely applicable to the con�guration

given by a), because both operators violate the demanded complexity restrictions. Therefore, we

cannot build our recon�guration strategy directly on the local operators. We need an extended

atomic operator that is able to obey complexity and social feasibility. We call this atomic operator

recon�guration transaction and specify it as follows.

De�nition 11 (Recon�guration Transaction) Given a complexity and social feasible dynamic

DCS Reconfiguration problem �ReCon = ((X;D;C;A; �); �; �u ; �l; �s); A : A; � : �, a recon�g-

uration transaction is a function � : A�� �! A� � speci�ed by

(A0; ��10) = � (A;��1) = (~{;~| )m(~k; ~XC)n (A;��1);

~{;~| 2 (f1; : : : ; jX [Cjg)m; ~k 2 (f1; : : : ; jX [ Cjg)n; ~XC 2 (2X[C)n;m; n 2 N0

such that

feasiblec ((X;D;C;A
0; �0); �; �u; �l) ^ feasibles ((X;D;C;A

0; �0); �s)

To solve the example illustrated by �gure 5, only a kind of exchange operator would be suÆcient.

Fortunately, with the help of the above speci�ed recon�guration transaction we can emulate any
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x1
c2

x2c1

x1
c2

x2c1

x1
c2

x2c1

(1, 4)(2, 3)(1, { c1})(2, { c2})

a 1 a2

a 1

a 2

a 4

a 3

a1

a2

Figure 6: An Exchange Transaction composed from Local Operators

other feasible local operator, like exchange and transfer. Figure 6 shows how a recon�guration

transaction composed of four local splits and melts can be used to emulate an exchange and solve

the given example.

Though we may already have an intuition on the strength of recon�guration transactions, the

following theorem lays a theoretical foundation for the suÆciency of this concept to solve DCS

Reconfiguration problems.

Theorem 2 (SuÆciency of Recon�guration Transactions) Given a complexity and social

feasible DCS Reconfiguration problem �ReCon = ((X;D;C;A; �); �; �u ; �k; �s). Assuming that

A and � do not in
uence the solution equivalence between two di�erent DCSPs, i. e. 8A1; A2 2
A; �1; �2 2 � : (X;D;C;A1; �1) � (X;D;C;A2; �2), �ReCon can be solved by �nding a certain

sequence

((~{1;~|1 )
m1(~k1; ~XC1)

n1) : : : ((~{p;~|p )
mp(~kp; ~XCp)

np)

of recon�guration transactions applied to (A;��1).

Proof:

Since we are assuming that the solution equivalence between any pair of DCSPs does not depend on

(A;�), it is enough to show that we can systematically enumerate all complexity and social feasible

partitions of the underlying CSP with the help of a sequence of recon�guration transactions.

a) (Correctness) In our context, correctness means that only complexity and social feasible par-

titions are created by a sequence of recon�guration transactions. This is true by de�nition 11,

since every single recon�guration transaction of the sequence takes a complexity and social feasible

partition as input and computes a partition that is forced to be complexity and social feasible.

b) (Completeness) In our context, completeness means that (1.) every given complexity and social

feasible partition can be produced and that (2.) all partitions can be found by systematically

enumerating sequences of recon�guration transactions.

1. Assume that we want to produce the (complexity and social feasible) partition ��1
2 =

((a1;XC2;1); : : : ; (an;XC2;n)) given the (complexity and social feasible) partition ��1
1 =

((a1;XC1;1); : : : ; (am;XC1;m)). This can be done by the following recon�guration transaction

(A2; �
�1
2 ) = (1; 2)(1; 3) : : : (1;m)| {z }

melt all agents

(1;XC2;1)(1;XC2;2) : : : (1;XC2;n)| {z }
split agent a1 according to �

�1

2

(A1; �
�1
1 )

Note that this may be only one (and not very clever) recon�guration transaction of several

possible. Nevertheless, this recon�guration transaction is invariant to (A1; �
�1
1 ) as long as

a1 2 A1, i. e. (A2; �
�1
2 ) can be produced from every given partition.
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2. Given any initial partition (A;��1), the following algorithm realizes a systematic enumeration of

all possible recon�guration transactions and incrementally builds the sequence of successful

recon�guration transactions (sequence) and the set of feasible partitions (partitions
f
) and

non-feasible partitions (partitions:f ).

finitializationg
sequence (); (1)

(Ac; �
�1
c
) (A;��1); (2)

partitions
f
 f(Ac; �

�1
c
)g; (3)

partitions:f  ;; (4)

fenumeration schemeg
while jpartitionsf j+ jpartitions:f j < BjX[Cj do

fcompute new partitiong
(~{;~|;~k; ~XC;m; n) (?;?;?;?; 0; 0); (5)

while (A;��1) 2 partitionsf _ (A;�
�1) 2 partitions:f do

fcompute and apply new local operator sequence from the previous oneg
(~{;~|;~k; ~XC;m; n) generate new parameters (~{;~|;~k; ~XC;m; n); (6)

(A;��1) (~{;~| )m(~k; ~XC)n(Ac; �
�1
c ); (7)

end while

ftest feasibility of new partitiong
if feasiblec ((X;D;C;A; �); �; �u ; �l) ^ feasibles ((X;D;C;A; �); �s) then

flocal operator sequence is a valid recon�guration transactiong
sequence sequence : (~{;~|;~k; ~XC;m; n); (8)

(Ac; �
�1
c
) (A;��1); (9)

partitionsf  partitionsf [ f(A;�
�1)g; (10)

else

partitions:f  partitions:f [ f(A;�
�1)g; (11)

end if

end while

After initializing the recon�guration transaction sequence, the current con�guration and the

partition sets (lines 1 to 4), the algorithm passes two loops. The outer loop checks whether

all possible partitions have been enumerated (this is done by checking the cardinality of the

two partition sets against the Bell-number). If not, we have to compute a new partition by

initializing the search for a new local operator sequence (line 5) and running the inner loop.

Using the previous parameter set, we compute a new parameter set (line 6) and apply the

local operator sequence to the current partition (line 7).

So why can this inner loop produce all possible partitions? This is because for every par-

tition there is at least one local operator sequence producing the partition regardless of the

given recent partition (see 1.). Hence, if we are able to enumerate all possible local opera-

tor sequences every partition will eventually appear. It is the responsibility of the function

generate new parameters to ensure that all possible local operator sequences are enumer-

ated. The parameters of a local operator sequence ir; jr; kr;XCr are from �nite sets, because

they are all restricted by the given �xed number of domain variables (X) and constraints (C).

Even m and n are restricted to be from a �nite set because we cannot apply an arbitrary

number of e�ective agent melting operator to a set of agents as well as we cannot split agents
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in�nitely. Therefore, the set of possible local operator sequences is �nite and well-structured,

i. e. we can enumerate it by trying one melt with all parameter combinations without any

splits, one split with all parameter combinations without any melts, one melt and one split

and so on.

After having found a new partition, it is checked whether we have found a valid recon�gura-

tion transaction and such a complexity and social feasible partition. If yes, our sequence of

recon�guration transactions is augmented, the current con�guration is set to the found one

and the partition is stored in the set of feasible partitions (lines 8 to 10). If not, the partition

is stored in the set of non-feasible partitions (line 11) and the sequence of transactions and

the current con�guration remain unchanged.

Following the described algorithm, we can derive all possible feasible partitions from the given

partition by consecutively applying the recon�guration transactions from the computed sequence.

Hence, we can easily solve the decision variant, the value optimization variant and the solution

optimization of the given DCS Reconfiguration problem. 2

Of course, the aforementioned theorem is only a theoretical result. The presented algorithm to

prove suÆciency of recon�guration transactions is neither realistic nor eÆcient. In fact, it is much

less eÆcient than simply enumerating all possible partitions, since there are many recon�guration

transactions leading to partitions already stored and there are even more local operator sequences

that are no valid recon�guration transactions. Nevertheless, the theorem is the theoretical foun-

dation for allowing us to seek in the space of recon�guration transactions rather than in the space

of partitions to solve a DCS Reconfiguration problem. This can be exploited to build more

realistic algorithms as brie
y introduced in the next subsection.

4.2 Using the Local Operators autonomously

The algorithm used to prove the potential completeness of sequences of recon�guration transactions

is in fact a global one, since it employs a centrally controlled function generate new parameters

to systematically enumerate all possible recon�guration transactions. This is bad for two reasons:

�rst, we initially wanted to avoid a global algorithm to solve DCS Reconfiguration problems;

second, the way of enumerating all possible transactions is far from being eÆcient. Nevertheless,

the local character of recon�guration transactions remains and we can modify their use to build a

real autonomous approach to DCS Reconfiguration solving.

Real autonomy means in this context to allow arbitrary concurrent recon�guration transactions

to be initiated by the problem-solving agents themselves by using knowledge-based heuristics. This

yields the potential to be much more eÆcient than centrally and sequentially scanning all possible

transactions, but also entails the danger of instability, loops and the loss of completeness though

not of correctness. We claim this to be a general rule in optimization: to gain signi�cant speed-up

in eÆciency by exploiting parallelism or distribution you have usually to abandon completeness.

This is, because to reach completeness in distributed solving of highly interconnected problems the

problem solvers have to be coordinated to explore the full operator space. Coordination algorithms

used to do this often contain some kind of hidden synchronization or even sequentialization (refer

e. g. to the prioritization scheme of Yokoo et al. [40]), such that the speed-up of distribution is

destroyed at once.

The same argumentation holds for solving DCSPs. In our opinion, it is suitable to use com-

plete algorithms for solving intra-agent problems and incomplete cooperation protocols for solving

inter-agent problems. This also emphasizes the need to minimize external communication demand
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while maximizing internal complexity to �nd better solution to the given problem. Unfortunately,

allowing inter-agent problem solving to be incomplete directly violates our assumption in theorem

2 that con�guration does not in
uence solution equivalence. One way to cope with this structural

problem is to resign solution equivalence in the de�nition of theDCS Configuration problem and

its variants and replace it by a weaker notion of solution reducibility. In words, solution reducibility

means to resign completeness but to keep correctness.

De�nition 12 (Solution Reducibility) A constraint satisfaction problem �2
*
is called solution

reducible to another constraint satisfaction problem �1
*
(�2

*
� �1

*
), i� 9(f : �2 �! �1) :

f injective.

The in
uence of using this weaker notion to the formal foundation of autonomous dynamic

recon�guration is subject to further research. Nevertheless, we are currently evaluating empirically

the autonomous usage of recon�guration transactions in the so-called AuReCon project. This

project involves the development of concepts and realizations in the �elds of agent technology and

constraint-based optimization. A central concept are composable agents that can freely exchange

their knowledge, targets and skills to support recon�guration (see [15] and [32]). Another important

part of AuReCon is the development of an incomplete but very eÆcient consensus �nding protocol

for inter-agent cooperation (see [12]). For intra-agent problem solving we are using constraint logic

programming that is a very declarative form of programming languages and is hence well-suited for

information exchange among agents ([14], [13]).

5 Related Work

5.1 DCSP Solving

An excellent, though a little out-dated overview to DCSP models and algorithms is given in [27]

and [24]. They present an interesting classi�cation of DCSP solving approaches by distinguishing

variable-based approaches (in which every agent cares for a subset of variables), domain-based

approaches (in which ever agent cares for a subset of values for a unique variable) and function-

based approaches (in which costly computations in centralized CSP solving are distributed to speed

them up). Following this classi�cation our approach is variable-based. In [24, 26, 25] the authors

propose di�erent algorithms to solve DCSPs variable-based, domain-based and function-based.

They all assume a binary DCSP and are hence based on simple constraint representations via

no-good-sets.

An important contribution to DCSP solving has been given by Sycara, Roth, Sadeh and Fox in

[38] in which they present Distributed Constrained Heuristic Search. They characterize the design

trade-o� for a proper level of distribution in a system for a given communication bandwidth,

but do not address this problem in the paper. Sycara et al. characterize the e�ect of di�erent

decompositions and their characteristics to be a subject of future research.

Being another classical reference in DCSP, the work of Yokoo and Ishida introduces a DCSP

model that simply assigns the variable nodes of a binary CSP graph to the di�erent agents. Hence,

this is a variable-based approach. Their main contribution lies in the development of distributed

search algorithms, like asynchronous backtracking and asynchronous weak-commitment search. The

earlier versions (collectively presented in [40] and [42]) relied on the assumption, that every agents

cares for just one variable. Newer versions [41] overcome this restriction by allowing complex local

problems. All these algorithms are correct and complete. To coordinate the di�erent forms of
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asynchronous backtracking, the algorithms establish a static or a dynamic order among agents that

determines the cooperations patterns between agents. Unfortunately, the assumption of simple

binary constraints restricts the applicability in real-world settings.

Extending Yokoo's asynchronous weak-commitment Mammen and Lesser [29] investigate the

impact of problem structure to the solving process. To do this, they propose a parameterized

problem generator for DCSPs and implement a MAS simulator. Based on simulated runs they draw

conclusion on the interdependence of structure and solvability. Though providing useful insight in

random problem generation and simulation their approach does not allow to assign constraints to

agents.

Another approach to DCSP solving does not try to solve the DCSP with new distributed

propagation or search methods but to facilitate existing CSP solvers to solve the problems local

to an agent and then to combine the results of these solvers. An early reference on this approach

is [4]. Berlandier and Neveu introduce the notion of interface problems by partitioning a DCSP

along variable nodes and not as usual along constraint arcs. All variable nodes that belong to more

than one agent form a new problem | the interface problem. The variable nodes not belonging

to the interface problem can be labeled independently from other variable nodes. Such, solving

the interface problem and then solving the independent problems eventually using backtracking

solves the whole problem. A disadvantage is the need for a global instance for �nding the solution

to the interface problem and collecting the solutions of the independent problems. Solotorevsky

and others [37] follows a similar strategy by de�ning canonical DCSPs which consists of a special

constraint graph connecting all independent local constraint graphs. Similar to Berlandier and

Neveu they use common CSP solvers to solve the partitioned problems. All these authors assume

a given partitioning of the DCSP and facilitate a global instance for guiding the solving process.

5.2 Graph Partitioning

Our DCS Configuration problem and its variants are strongly related to the problem of par-

titioning graphs, as can be seen in the reduction of Minimum Bisection to our problem. It is

not surprising that graph partitioning algorithms are quite often the basis for load balancing in

parallel computing. Hendrickson and Leland [18] provide a good overview on static graph par-

titioning algorithms. They include greedy algorithms like the famous one by Kernighan and Lin

[23] and extensions of it [6], so-called spectral methods [2, 5, 1] and other hybrid approaches. Sev-

eral of these algorithms have been implemented and integrated into tools that can be used as

o�-line pre-processors to partitioning a central computing problem. Among these tools are Chaco

[19], METIS [22] and JOSTLE [39]. Recent research also tackles the problem of dynamic load

balancing. Hendrickson and Devine [17] assess di�erent approaches to this problem.

Though the problem of load balancing in parallel computing is similar in its objectives to our

research context, the given environmental situation is usually quite di�erent. In parallel computing

there is a central problem that can easily be decomposed into equally sized subproblems which can

be solved nearly independently. Hence, the task of load balancing is to �nd a good distribution of

these decomposed subproblems to processors such that communication is minimized. In our setting,

decomposition itself is the problem. Subproblems are not easy to �nd and have to be constructed

such that interrelations are minimized. These interrelations are not just communication lines

but semantic connections, like shared resources or other social constraints. Nevertheless, results

from load balancing, especially heuristics are promising to be applied to our autonomous dynamic

recon�guration approach.
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5.3 Agent Technology for Reorganization

In [9] Durfee reports on various approaches to organizational structuring in distributed problem

solving as a strategy for reducing communication. Durfee states that the design of organizational

structures is a complex search problem in its own right. He reports on the work of Decker and

Lesser [7] that allows structuring when the problem instance is initialized and the work of Ishida

et al. [21] and Prasad et al. [33] that allow dynamic restructuring. Our approach to autonomous

dynamic recon�guration di�ers from these approaches as they do not recon�gure on the social

structure level but on the individual structure level of agents. Additionally, the work of [21] relies

on a production system-based agent architecture which entails the known problems of rule-based

computing (e. g. rules are not combinable).

Agent cloning [8, 35] denotes the reproduction of a similar agent in place or remotely. This ap-

proach claims to subsume mobile agents and other similar approaches. It has been mainly developed

to support load balancing by delegating tasks to other or new agents that are idle. Compared to

our proposal, this approach is more on the technical side of recon�guration. The concepts presented

in this report include not only a quantitative recon�guration but also a qualitative recon�guration

in the sense of forming new agent types.

In the project MetaMorph I [31, 30] Maturana and others have developed an architecture for

distributed task decomposition in manufacturing and coordination in dynamically created clusters.

The agents in this system are organized by mediators and contain templates and cloning mech-

anism to create new agent (sub)levels. The follow-up project, MetaMorph II [36] extends these

concepts by taking into account manufacturing design issues, marketing, supply chain management

and execution control. MetaMorph II has not been fully implemented. Again this approach for

recon�guration lies on the social level of agency and not on the individual like proposed in this

report.

Sandholm et al. report research on coalition structure generation [34] that is quite near to ours.

Alas, the optimization measure is simpler in this setting, since it only cumulates the value (in our

approach complexity) of all partition subsets without taking into account connecting edges. Hence,

they can use di�erent kinds of algorithms. Additionally, no concept similar to our local operators

can be found in this work.

6 Conclusions

After motivating the need for distribution in certain problems of constraint satisfaction, we have

introduced a model of distributed constraint satisfaction problems that slightly di�ers from other

models by assigning constraints to agents, too. Since there is often some freedom in assigning sub-

problems to agents, the main administrative problem in DCSP solving is the design of distribution.

We have formally introduced the DCS Configuration problem and its variants and have proven

them to be at least NP -complete. To solve this problem we have described two local operators,

agent melting and agent splitting, that can be combined to sequences of recon�guration transaction

and such are suÆcient to solve any given DCS Configuration problem.

As can be seen by our brief considerations on the autonomous usage of these operators, our

main objective for future work is to extend the formalism to be applicable under weaker conditions

of completeness in the recon�guration and DSCP solving process. Another main point will be the

realization of the named concepts and their empirical evaluation in the AuReCon project.
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