
A publication by Fraunhofer IESE

Improving Organizational Memories
Through User Feedback

Authors:
Klaus-Dieter Althoff
Markus Nick
Carsten Tautz

Accepted for publication in
Proceedings of the Workshop on
Learning Software Organizations,
Kaiserslautern, June 1999

IESE-Report No. 004.99/E
Version 1.1
February 1, 1999

Fraunhofer Einrichtung
Experimentelles

IESE

Software Engineering

Fraunhofer IESE is an institute of the
Fraunhofer Gesellschaft.
The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists com-
panies in building software competencies
customized to their needs, and helps them
to establish a competetive market position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach
Sauerwiesen 6
D-67661 Kaiserslautern

vCopyright © Fraunhofer IESE 1999

Executive Summary

The benefits of an organizational memory are ultimately determined by the use-
fulness of the organizational memory as perceived by its users. Therefore, an
improvement of an organizational memory should be measured in the added
perceived usefulness. Unfortunately, the perceived usefulness has many impact
factors (e.g., the precision of the user query, the urgency with which the user
needs information, the coverage of the underlying knowledge base, the quality
of the schema used to store knowledge, and the quality of the implementation).
Hence, it is difficult to identify good starting points for improvement.

This paper presents the goal-oriented method OMI (Organizational Memory
Improvement) for improving an organizational memory incrementally from the
user’s point of view. It has been developed through several case studies and
consists of a general usage model, a set of indicators for improvement potential,
and a cause-effect model. At each step of the general usage model of OMI, pro-
tocol cases are recorded to pinpoint improvement potential for increasing the
perceived usefulness. If improvement potential is identified based on the inter-
pretation of the protocol cases, the user is asked for specific improvement sug-
gestions. Since this is a continuous diagnosis of the usefulness of the organiza-
tional memory, this method is able to adapt the organizational memory to the
needs of the users – even if the environment, for which the organizational mem-
ory was designed, changes.

vi Copyright © Fraunhofer IESE 1999

viiCopyright © Fraunhofer IESE 1999

Table of Contents

1 Introduction 1

2 Our Implementation: A Case-Based Organizational
Memory 3

3 Perceived Usefulness 6

4 Usage Model 10

5 Diagnosing for Improvement 12

6 Improvement With Protocol Cases – An Example 16

7 Conclusion 22

Acknowledgements 22

References 23

viii Copyright © Fraunhofer IESE 1999

1

Introduction

Copyright © Fraunhofer IESE 1999

1 Introduction

The management of knowledge is a critical factor of an enterprise´s success. The
objective of knowledge management is the optimal use of the resource »knowl-
edge« for enabling learning from experience, continuous process improvement,
and the extension of a company’s creativity potential [ADK98]. To support these
objectives, a company’s knowledge has to be explicitly stored in a so-called
organizational memory (OM). While building up such an OM is already a chal-
lenging task and involves difficult subtasks like knowledge acquisition, model-
ing, evaluation, and reuse, the improvement of an OM through user feedback is
of essential importance if an OM shall be a continuous source of a company’s
benefit.

The benefits of an OM are ultimately determined by the usefulness of the OM as
perceived by its users. Therefore, an improvement of an OM should be mea-
sured in the added perceived usefulness. Unfortunately, the perceived useful-
ness has many impact factors (e.g., the precision of the user query, the urgency
with which the user needs information, the coverage of the underlying knowl-
edge base, the quality of the schema used to store knowledge, and the quality
of the implementation). Hence, it is difficult to identify good starting points for
improvement.

This paper presents the goal-oriented method OMI (Organizational Memory
Improvement) for improving an OM incrementally from the user’s point of view.
It has been developed through several case studies [ABT98] and consists of a
general usage model, a set of indicators for improvement potential, and a
cause-effect model. At each step of the general usage model of OMI, data in
the form of protocol cases are recorded to pinpoint improvement potential for
increasing the perceived usefulness. Such protocol cases include formal parts
like the user-specified query, the retrieval goal of the query (see Section 3), the
result of the query, and certain actions the OMI method has invoked (e.g, asking
the user a specific question or forwarding the case to the OM maintenance
team). The protocol cases also include informal parts like the user´s answers to
certain questions, the user´s general feedback at the end of a session, or some
explanatory texts that have been written by the OM maintenance team. The
purpose of protocol cases is twofold:

• On the one hand they can be used by the OM maintenance team to improve
the OM’s content, to react on identified user problems by contacting the
respective user, or to start any necessary improvement action.

• On the other hand, if a protocol case − or parts of it − have been qualified
and published by the OM maintenance team, it can be used by the OM man-

2

Introduction

Copyright © Fraunhofer IESE 1999

agement system (OMMS). Based on the general usage model of OMI and the
formal parts of the respective protocol case, the OMMS can automatically
interpret the case, i.e., apply case-based reasoning (CBR). This includes ask-
ing the user specific questions to collect his feedback or presenting situation-
specific lessons learned.

If improvement potential is identified (by the OM maintenance team or the
OMMS) based on the interpretation of the protocol cases, the user is asked for
specific improvement suggestions. Since this is a continuous diagnosis of the
usefulness of the OM, this method is able to adapt the OM to the needs of the
users – even if the environment, for which the OM was designed, changes.
Thereby the OMI method allows to overcome the general problem that users are
often not available during the development of the OM. The basic idea underly-
ing OMI is to start with an »intelligent guess« (not focus of this paper) and to
improve the OM/OMMS incrementally by systematically collecting and analyzing
focused user feedback (focus of this paper). Basing on the OL-CBR approach
(organizational level case-based reasoning: [ABT98]), OMI integrates the manual
interpretation of the protocol cases by the OM maintenance team with the
automatic interpretation by the OMMS, which actually is based on a CBR tool
(see Section 2). The more formal knowledge is recorded as part of the protocol
cases (based on OMI’s usage model) and/or added through the OM mainte-
nance team´s analysis and revision, the more knowledge can be used by the
OMMS to adapt to the users´ needs based on user feedback. Thereby OMI can
cope with practical constraints like avoiding user overload through asking too
many questions.

In spirit OMI is comparable to evolutionary constructions of repositories (e.g.,
[Hen97]) and approaches based on Failure Mode and Effect Analysis (FMEA)
[JK98, PZ96, Pfe96], which also try to avoid failure situations, i.e. in case of OMI,
a decrease of the perceived usefulness. At least partially these approaches base
also on CBR [JK98, PZ96].

OMI can also be compared to approaches for diagnostic problem solving, espe-
cially case-based diagnosis [AW91, Wes95, Alt97], because a classification prob-
lem has to be solved based on collected symptoms. By contrast, OMI is not
intended to be fully automated. It is flexible concerning the degree of using fully
automated interpretation of cases by the OMMS or manual case analysis and
interpretation by the OM maintenance team.

In the next section our approach for implementing an OM is shortly introduced.
Section 3 and Section 4 present OMI’s cause-effect model for usefulness as per-
ceived by the user and the general usage model, respectively. Section 5
describes OMI’s diagnostic process for improving an OM, whereas Section 6
explains the utilization of protocol cases. Finally some conclusions are drawn.

3

Our Implementation: A Case-
Based Organizational Memory

Copyright © Fraunhofer IESE 1999

2 Our Implementation: A Case-Based Organizational Memory

To talk about improvement of an OM, we need to state some assumptions
about implementation aspects of the OM. We will do so by describing major
primitives of the representation formalism REFSENO1 we use for specifying the
ontology (i.e., the schema) underlying an OM [ABT98, TG98, TG99]. REFSENO is
implemented in collaboration with a commercial CBR tool provider [Tec99]2.

1. An OM contains different types of experience (e.g., lessons learned, typical
effort distribution for projects, specific project information such as schedules
and milestone plans). Each of these types is specified by a concept. The actual
contents of the OM are stored as instances of the concepts. Hence, a concept
describes a class of experience items. Figure 1 describes the three-layered
representation we employ. The meta knowledge (in the form of REFSENO)
guides the specification of an ontology for an OM, whereas the ontology
guides the population and exploitation of the OM’s contents.

2. The OM’s contents are made up of two parts: the artifact itself and its char-
acterization. The artifact itself can be a file or database. Often it has a propri-
ety format, meaning that it is difficult or impossible to access the information
contained in it by generic tools (like an OMMS). The characterization part
contains all information that is deemed to be necessary for performing some
predefined task(s) with the experience item. For instance, a lesson learned
may be characterized for the purpose of later application by information
about the lesson learned itself (e.g., name, length, descriptions of a problem
and one or more solutions for solving the problem), information about its
interface (e.g., prerequisites for the application of the lesson learned), and
information about the context in which it has been created and used (e.g.,
project and situation in which the described problem occurred). These char-
acterizations guide both storing and searching for experience items. Informa-
tion contained in characterizations may overlap with or complement informa-
tion contained in the artifact [ABT98].

3. It is partially known a-priori what information needs to be part of the charac-
terization.3 This knowledge is captured as part of the ontology in the form of
a set of attributes. We distinguish two categories of attributes: terminal (con-
taining actual information needed for some task) and nonterminal attributes
(acting as references to related instances which in turn contain more terminal

1 REFSENO stands for Representation Formalism for Software Engineering Ontologies.
2 A first prototype implementation can be accessed at http://demolab.iese.fhg.de:8080/.
3 During operation, further information needs will become apparent. Considering them constitutes an im-

provement of the OM.

4

Our Implementation: A Case-
Based Organizational Memory

Copyright © Fraunhofer IESE 1999

and nonterminal attributes; represented by lines in Figure 1). Terminal
attributes can be used for retrieval, whereas nonterminal attributes can be
used for navigational search. Just as in modern programming languages,
both categories of attributes can be typed. This gives the OMMS the possibil-
ity to perform certain consistency checks on the contents of the OM (e.g.,
whether a value supplied by the user lies within a predefined value range or
whether the value of a nonterminal attribute references an instance of a pre-
defined concept). They also allow to perform type checks for value inferences
(formulas that specify how to calculate automatically computable attribute
values) and assertions (formulas that specify dependencies between a set of
attributes).

4. Exact matches between a query and the instances in the OM can be expected
only in rare situations. This leads to the introduction of similarity. If an OMMS
supports retrieval based on characterizations, it must be capable of returning
characterizations similar to the one used for specifying the needed artifact.
The underlying hypothesis is that two artifacts (e.g., milestone plans) are sim-
ilar if they have similar characterizations. Hence, this assumption allows us to
retain experience items as they are gained, that is, as instances of predefined
concepts, keeping the effort for storing new experience low. During reuse,
stored experience can be retrieved (via the similarity feature) and adapted to

Figure 1: Three types of knowledge are used to describe schema and contents of an organizational
memory.

REFSENO
(Representation
Formalism for
Software Engineering
ontologies):
- Concepts
- Attributes
- Similarities
- Dependencies:
 - relationships
 - value inferences
 - assertions

Meta knowledge

Quantitative
 experience

Technique

Role

Process
 Step

Process
 model

Product
 model

Proj.
Char.

Measure-
ment

Process
Modelling

SE technologies

Project info

Conceptual knowledge

Inspection
manager

Project
manager

Role

Standard
ABS

Product
model

Context-specific knowledge

Ontology

Quantitative
experience

Measurement
SE technologies

Judy

Vesuv

Purace
Hugo

Project
char

Project
info

Process
step

Standard
4711

Process
modelProcess

Modelling

5

Our Implementation: A Case-
Based Organizational Memory

Copyright © Fraunhofer IESE 1999

the new situation. In the ontology, similarity functions are associated with
attributes (local similarity) and concepts (global similarity combining local sim-
ilarities).

In summary, the structural specification of an OM is made up of a set of con-
cepts that are specified through a set of typed attributes:

There is a similarity function associated with the concept and the attributes. The
similarity is always computed from an instance i to a query q where i and q are
instances of the same concept, i.e.:

It is computed using the similarity function associated with this concept:

where vala(i) stands for the value of attribute a of instance (or query) i.

SpecOM c1 … cn, ,{ } t1 … tl, ,{ },{ }=

with cj aj 1, … aj mj,, ,
⎩ ⎭
⎨ ⎬
⎧ ⎫

j 1 … n, ,{ }∈()

where

=

type aj k,() t1 … tl, ,{ } k 1 … mj, ,{ }∈()∈

concept i() concept q() c a1 … am, ,{ }= = = c1 … cn, ,{ }∈

sim i q,() simc i q,() f sima1
vala1

i() vala1
q(),⎝ ⎠

⎛ ⎞ … simam
valam

i() valam
q(),⎝ ⎠

⎛ ⎞, ,⎝ ⎠
⎛ ⎞= =

6

Perceived Usefulness

Copyright © Fraunhofer IESE 1999

3 Perceived Usefulness

The success of an OM can be measured in many ways. Examples for specific
views on evaluation mainly from the knowledge-based system and related fields
are [AA96, Alt97, Coh89, GKP+83, GXG98, Kir94, SW88, vW96]. Also, some
evaluation work has been done in the area of software reuse (programs), mainly
regarding economic success [BB91, Lim96, HS93]. Many of the economic mod-
els for software reuse can also be used to evaluate organizational memories,
because OMs are also about reuse. Only in the case of an OM, reuse is not
restricted to software development artifacts. Other evaluation criteria, most
importantly recall and precision, come from library and information science
[SM83].

However, using a goal-oriented measurement and evaluation approach where
experts participate in the definition of a measurement program [BDR96], we
found out that the usefulness, as perceived by the user of the OM, is the most
important measure for the success of an OMMS [NT99]. This is not surprising
since an OM is worthless if it fails to deliver information that is of value to its
users. These findings are also supported by Harter [Har92] (there called »psycho-
logical relevance«) and Cooper [Coo97] (there called »personal utility«).

Therefore, we will judge whether any change is an actual improvement based
on the perceived usefulness before and after the change. If the usefulness
improved, the change is regarded as an improvement.

As pointed out by Cooper, the ideal measurement of the usefulness as per-
ceived by the user is practically and economically impossible [Coo97]. Therefore,
we have to simplify the measurement procedure. To do so, we recall the mean-
ing of similarity. Ideally, the similarity between an experience item in an OM and
the needed experience (specified by the query) is an a-priori approximation of
the a-posteriori usefulness as experienced by the user [Wes95, AR99]. If the
OMMS returns the instances i1, …, in in response to a query q, where i1 is most
similar to q and in least similar, the user should select (ideally) i1 or – if more than
one instance is perceived as useful – the set i1, …, im with m < n. Ideally, m = n.
This implies also an assignment of the degree of usefulness to the instances on
an ordinal scale, that is, i1 is the most useful instance, i2 the second most useful,
etc.

Since it is difficult to determine a minimal similarity value (this depends among
others on the background knowledge of the user), an OMMS could return a
fixed number of instances, e.g., n = 10. If im denotes the last useful instance,
then the system is optimally useful if an OMMS never returns an instance i ∈ {i1,

7

Perceived Usefulness

Copyright © Fraunhofer IESE 1999

…, im} that is not useful. The more often an OMMS returns such an instance,
the less useful it will be. Using this definition, the user can simply mark all
instances i1, …, in as either useful or not useful. Based on this data, the useful-
ness of an OMMS can be computed (e.g., relative to the number of queries
issued by users). Another important aspect of usefulness is that an OMMS
returns useful instances at all, i.e., m should be greater than 0.

Unfortunately, there is no single parameter with which the usefulness of an
OMMS can be changed. Rather, there is a large number of variation factors. Fig-
ure 2 shows the variation factors we have identified so far. However, we do not
claim that the list is exhaustive. In the following, we will go into detail for the
main branches of the cause-effect model.

Figure 2: OMI’s cause-effect model: The usefulness as perceived by the user is influenced by many factors.

• User. The intentions and abilities of the user will greatly influence the useful-
ness of the experience items returned by the OMMS. For instance, if a user
does not specify his needs correctly, the OMMS might return experience
items adequate for the needed experience as specified by the query, but not
for the actual experience needed (which is in the mind of the user). But even
if the query is specified correctly, it may be underspecified (user gives too lit-
tle attribute values to allow a meaningful differentiation among the stored
experience items) or overspecified (the user gives too many attribute values –
no experience item in the OM can be found which matches the query). An
overspecification is only possible in OMMS that are only capable of retrieving
exact matches or OMMS computing a cutoff-value for similarities. For a simi-
larity-based OMMS that returns a fixed number of instances, an overspecifi-
cation is practically impossible.

Also of importance for the usefulness of an experience item is the purpose
for which the user retrieves the experience (denoted as »retrieval goal« in

user tool
conceptual

environment methodology contents

retrieval
goal

urgency
of search

improvement
program
maturity

climate

experience

query
spec.

correctness

precision awareness
of ex. artif.

retrieval

semantics

fixed

user
interface

REFSENO

character-
ization

accuracy

completeness

user-definable similarity

completeness

artifact

coverage

attribute concept

attribute

concepts

universe of
discourse

origin quality

artif. distribution

universe of
discourse

 process

knowledge

perceived
usefulness

similarity

8

Perceived Usefulness

Copyright © Fraunhofer IESE 1999

Figure 2). A characterization may contain all information that is necessary to
apply a lesson learned (thus the lesson learned will be perceived as useful),
but may fail to provide hints how to adapt its solution to other situations
(thus the lesson learned might be perceived as not useful if it needs to be
changed).

Quite interestingly, the urgency of the search [Har92] and the experience of
the user (e.g., the user might perceive only new experience, that is, experi-
ence he was not aware of, as useful) [Coo97] will also affect the perceived
usefulness.

• Environment. The environment in which the OMMS operates may be
mature. In this case the OM tends to be filled with more experience that has
been gained by the organization itself. Typically, own experience is more
valuable than experience that is part of textbooks, because it can be tailored
more easily to new situations since the contexts between the situation in
which it was gained and the situation in which it is applied do not differ as
much (or at least, the differences are better known) [BR88, BCR94]. Also, the
climate in an organization influences how willingly people are to share their
experience with their colleagues over an OMMS. In organizations where mis-
takes are not viewed as chances to learn, valuable information will remain in
the minds of the people – mistakes will be repeated [Dam98].

• Tool. For the user, the tool (OMMS) is mainly characterized through its
behavior and its user interface. The behavior is determined through all other
branches (except for the »environment« branch) and is not considered fur-
ther at this point. The user interface constitutes a sort of barrier for the usage
of a system. If a system is hard or cumbersome to use, people will try avoid
using the system [MD97, Nic98, NT98]. And, if a system is not used, it is per-
ceived as not useful.

• Methodology. It is the methodology that is supported by the OMMS. If the
underlying methodology (e.g., the retrieval process supported by the OMMS
or the semantics of REFSENO’s primitives) is not optimal, it cannot be
expected that the system is perceived as useful as it could be.

• Conceptual Knowledge. Clearly, the behavior of an OMMS is not solely
determined by its implementation, but also by its contents and the organiza-
tion of these. As the conceptual knowledge determines what and how expe-
rience is stored in the OM, it plays a major role regarding the usefulness of a
system. First of all, the concepts and their attributes define a universe of dis-
course that the OM can cover. In contrast to this universe stands the universe
of discourse the OM shall cover. The concepts and attributes may not cover
all kinds of experience to be stored or all information needed to perform cer-
tain predefined tasks. In addition, the similarity functions may not approxi-
mate the perceived usefulness appropriately. And finally, certain characteris-

9

Perceived Usefulness

Copyright © Fraunhofer IESE 1999

tics of the universe of discourse may not be expressible using the primitives of
REFSENO.

• Contents. Even if the conceptual knowledge is defined optimally regarding
the usefulness, the contents of the OM may cause the system to fail. Just as
with databases, the information stored in an OM must be accurate and com-
plete [NT98]. Otherwise, users will lose their confidence in the experience
provided by the system. This will lower the overall perception of the system’s
usefulness.

Also, the universe of discourse the OM shall cover is not covered simply by
defining the universe in terms of experience types to be stored. The actual
experience has still to be stored! The coverage of a universe of discourse is
influenced by two characteristics: the number of artifacts in the OM and their
distribution. The more artifacts are stored, the more likely it is that the system
will return useful information. However, it is possible that many artifacts are
stored, but the stored artifacts do not match the users’ queries good enough
(they are not similar enough). Thus, the distribution of the artifacts must
match the distribution of the users’ queries.

The usefulness of experience offered by the OMMS is also determined by the
known quality of its artifacts. Quality can be measured in many ways, e.g., in
terms of popularity or importance [Coo97]. In addition, the origin of an arti-
fact (e.g., the author) may influence the perceived usefulness. For instance,
assume that the user issues a search request on software inspections. Let us
further assume that the OMMS returns experience on software inspections
whose author is known to the user to be an expert in software testing. The
user may now value the usefulness of this particular experience item very
high, because he may suspect a connection between software inspections
and testing. In a consecutive query, the user may now also want to include
experience regarding software testing.

10

Usage Model

Copyright © Fraunhofer IESE 1999

4 Usage Model

As can be seen from the variation factors presented in the previous section, the
usage of an OMMS cannot be described by a sequential process. The result of a
query may lead to new insights and thus to additional queries. Queries leading
to unsatisfactory results will be changed and issued again. To analyze these situ-
ations further, we first describe the »ideal« (i.e., sequential) usage scenario for
an OMMS. Later, we describe under which circumstances the user might go
back and repeat some of the steps.

Figure 3 shows the sequential usage model. The process starts with the specifi-
cation the user has in mind for the experience needed. The user formulates a
query based on this specification guided by the ontology. This query is input for
the OMMS. It identifies potential experience items (e.g., if the user requests a
project schedule, all project schedules are potential experience items). The iden-
tified experience items are then evaluated by computing a similarity value (as
defined by the ontology) for each of the experience items to the query. The
resulting list is ordered by decreasing similarity and cut off at a fixed number
(e.g., after the tenth experience item). The characterizations of the ten artifacts
are displayed to the user who evaluates (manually) the offered experience items.
The user selects and retrieves all useful artifacts from the OM based on the pro-
vided characterizations. Finally he applies the artifacts.

Figure 3: The »ideal«, sequential usage model of an OMMS.

In practice, this idealized process does not take place. It starts with the fact that
users try to optimize the effort for maximum information gain [Har92]. This
means for our usage model that the user will not formulate a query with all
known information (from the specification in the user’s mind), but rather specify
only some attribute values (in interviews, experts stated that at most ten values

OM

spec formulate
query query identify evaluate

select
apply

ontology

11

Usage Model

Copyright © Fraunhofer IESE 1999

ought to suffice for a query) [Nic98]. This may result in underspecified queries
which in turn lead to an unsatisfactory retrieval result. If the user thinks that the
system can do better, he will go back to step »formulate query« and supply
additional information and reissue the search request.

Also, it is unlikely that a user will solely select artifacts on the basis of their char-
acterizations. Typically, he will examine the artifacts using some editor to make
the decision on whether to apply them, or not (e.g., Is the artifact well docu-
mented? Can it be easily understood?). However, aim of the characterization
knowledge is to limit the number of artifacts that have to be examined in this
way as well as to reduce the effort needed to examine the artifacts (by supplying
information that can only be extracted using large amounts of effort, e.g., cor-
rectness of a technical design with respect to its specification). After the exami-
nation of the artifact the rating of the usefulness of the artifacts may change.
The deepened understanding may also lead to additional queries, starting a new
usage process.

Finally, it may turn out after applying the artifact that it was not the best candi-
date for the purpose. If the task could not be performed by applying a retrieved
artifact, the user may want to reissue his (possibly refined) query to find more
suitable artifacts.

12

Diagnosing for Improvement

Copyright © Fraunhofer IESE 1999

5 Diagnosing for Improvement

At each step of the usage model presented in the previous section, indicators
may be examined to identify improvement potential. The basic idea is to diag-
nose situations that lead to suboptimal usefulness. These situations can be
described using the variation factors of usefulness as they have been presented
in Section 3. Based on the diagnosis, changes can be suggested that (hopefully)
will lead to improvements of the OMMS. As we have already seen in Section 3,
not all of the variation factors can be changed by purely technical means.
Although some of these variation factors influence the usefulness of an OMMS
substantially, the diagnosis and change of these factors is beyond the scope of
this paper.

To ease the understanding of situations that can be changed by tailoring the
OMMS, Figure 4 shows the usage model enhanced by change steps to the
OMMS. In the following, each of the steps of the usage model is examined in
detail.

Figure 4: The usage model (shown in grey) can be enhanced by change steps to the OMMS.

• Formulate query. At this step it may turn out that the universe of discourse
to be covered by the OM, is actually not covered. For instance, if no concept
for lessons learned is part of the conceptual knowledge, it is not possible to
specify lessons learned for retrieval. If lessons learned are needed by the
users, they should be part of the universe of discourse of the OM. Therefore,
a new concept for lessons learned should be introduced. At the same time,

OM

spec formulate
query query identify evaluate

select
apply

ontology

change
coll. criteria

collectionlearn

change
query

change
ontology

 criteria

application
experience

13

Diagnosing for Improvement

Copyright © Fraunhofer IESE 1999

existing lessons learned (e.g., in form of memos and minutes) should be ana-
lyzed and characterized for their retainment as artifacts in the OM.

• Identify. This step is performed without user interaction. Hence, no situation
for improving the usefulness can be identified (by the user) during this step.

• Evaluate. This step has an automatic and a manual part. As with the step
»identify«, the automatic part cannot be used for identifying improvement
potential (by the user). Considering the extended usage model where the
user employs some editor to examine candidate artifacts to decide on their
usefulness, the manual part of the step »evaluate« is actually a three step
process:

1. Decide (based on the characterizations) which artifacts to examine in
which order (artifacts that are deemed useless based on the characteriza-
tions are neglected).

2. Examine the artifacts in the predetermined order. Stop if only one artifact
is needed and an examined artifact meets the needs.

3. Mark all useful artifacts. If not enough useful artifacts have been marked,
decide whether to go back to step 1 or to reissue a revised query.

During the first step, the user may not be able to decide whether to examine
an artifact or declare an artifact as »useless«. As the examination of an arti-
fact can require considerable effort (imagine, you have to decide whether a
textbook actually contains information important to your research work), the
user wants to examine only those artifacts that have a high potential of being
useful. If the user is not able to make this decision, some information about
the artifact is missing. This can be supplied as part of the characterization.
Therefore, for all artifacts the user cannot decide on, the user should articu-
late the missing information. This feedback can be used to improve the con-
ceptual knowledge of the OM in a goal-oriented way by adding new
attributes. If the missing information is supplied by the OM maintenance
team (i.e., including the values for new attributes), the user will be able to
decide next time he issues a similar query. The usefulness of the system will
have been improved.

The output of the first step is the order in which potentially useful artifacts
are examined. If the examination of the artifacts is invoked under the control
of the OMMS, the OMMS can record this order during step 2. Ideally, the
order should be the same as the one determined during the automatic part
of the step »evaluate« (as pointed out in Section 3). If it is not or if artifacts
which are placed high up in the similarity-based ordering although they were
deemed useless by the user, the user can be asked why he chose a different
ordering. The reasons may be either (a) underspecified queries (the user
knows more than he has specified, and he matches the characterizations

14

Diagnosing for Improvement

Copyright © Fraunhofer IESE 1999

with the unspecified but known information; in this case nothing needs to be
improved) or (b) improper similarity functions (either because of inadequate
local or global similarity functions or because of undocumented knowledge
known/assumed by the user; in the latter case additional attributes should be
defined capturing the undocumented knowledge and the new knowledge
should be considered by the similarity functions).

• Select. After one or more artifacts have been examined, the best suitable
artifact is selected to be applied. If the user shall not be bothered with too
many questions (these will arise especially after the initial set-up of an
OMMS), the questions can be restricted to the artifact actually applied. This
alternative will not be able to identify situations in which artifacts were origi-
nally judged to be useful (based on the characterization), but later judged to
be useless (based on the artifact’s examination).

At any rate, if the selection step yields no selected artifact, the user should be
asked to give a reason why the most similar artifact was not chosen. In this
case, a hole in the coverage of the OM has been identified. The artifact
needed to fill this hole is both specified by the original query supplied by the
user and the reason why the most similar artifact does not cover the require-
ments. Based on this feedback, the collection criteria for the type of the
requested experience should be analyzed. Do they allow the collection of an
artifact similar enough to the requested one? If not, the collection criteria
should be changed. If the missing artifact is deemed to have a high applica-
tion potential in the future by other users, either a separate project for creat-
ing such an artifact may be started or – if the artifact is created as part of the
project the user belongs to – the artifact may be stored after the project has
been completed.

• Apply. During the application of an artifact, experience such as effort for
understanding and modifying the artifact as well as how the artifact should
(not) be changed should be recorded. Such experience can then be attached
(in form of an extended characterization) to the artifact after its application.
In this way, the applicability information is improved continuously with each
application of an artifact.

During the artifact’s application, it may turn out that the artifact is not as
useful as originally estimated. If this is the case, one of four choices can be
made:

1. Ignore the fact and continue applying.

2. Stop applying and do nothing more (e.g., if it turns out that a lesson
learned is not applicable in the current situation).

3. Stop applying and create the needed artifact from scratch (e.g., a project
schedule).

15

Diagnosing for Improvement

Copyright © Fraunhofer IESE 1999

4. Stop applying and retrieve another (hopefully more useful) artifact (e.g., a
project schedule).

In the latter case, the old query may serve as an entry point.

The descriptions above show how improvements in the conceptual knowledge
and contents of an OM can be pinpointed by automatically collecting data in the
form of protocol cases and asking the user for feedback if the system behaves
not as expected (based on the usage model). Changes regarding other branches
of Figure 2 (e.g., user interface and missing experience items the user is aware
of) can be suggested based on answers to questions posed to the user after
each (or after each n-th) retrieval attempt at the end of step »select«. However,
in contrast to the situations outlined above, these questions cannot be posed
based on some (automatic) analysis and, thus, must be posed unconditionally.
This might lead to an overburden on the user who has to devote his time in
answering the posed questions.

Finally, the variation factors listed in the »user« branch deserve a closer look.
While the precision and the correctness of the query has been taken care of by
allowing the user to reissue a revised query, the variation factor »retrieval goal«
may not be underestimated. Different retrieval goals have different information
needs and the usefulness of the retrieval result is measured (at least partly) in
terms of how well the presented experience items are suited to perform some
predefined task. Consequently, both the information need (represented by a set
of attributes) and the similarity functions (estimating the usefulness) may differ.
Therefore, all optimizations of the OMMS must be performed with respect to
the retrieval goal. Otherwise, an improvement done for one retrieval goal may
result in a change to the worse for another retrieval goal.

As a consequence, an OMMS should ask the user for his retrieval goal at the
beginning of the session. Based on the retrieval goal, the query attributes can be
restricted to the relevant ones. Thus, the user is guided more effectively which in
turn also helps to reduce the risk of incorrect and/or meaningless queries. In
addition, optimal similarity functions can be selected. Finally, the retrieval goal
can be used to tailor the OM for specific retrieval goals – the optimizations do
not influence the behavior of the OMMS for other retrieval goals. However,
besides the (marginal) additional effort on part of the user to specify the
retrieval goal, a new error source is introduced. Now, not only the query may be
incorrect but also the specification of the retrieval goal. Hence, it may not be
enough for the user to change his query in case the system does not behave as
wanted, but perhaps the user must correct his retrieval goal as well. An empiri-
cal investigation is needed to find out whether an average user is capable of rec-
ognizing what to change.

16

Improvement With Protocol
Cases – An Example

Copyright © Fraunhofer IESE 1999

6 Improvement With Protocol Cases – An Example

The representation of all the information being collected during the OM usage
process in the form of protocol cases (see Figure 5) helps the OM maintenance
team in systematically analyzing the information, because they can apply CBR
based on the formally described parts of a protocol case. During this analysis
user problems may be identified and the OM maintenance team could directly
contact the respective user. Also based on the analysis the contents of the OM
may be improved. In addition, the behavior of the OMMS may be improved (see
Figure 6)

• manually by the OM maintenance team and/or

• by adding revised, qualified protocol cases to the system such that the user
can access them and/or

• by applying CBR for the automatic interpretation of these cases by the
OMMS.

Figure 5: A protocol case contains a log of the human-computer interaction as well as actions aiming at the improve-
ment of the organizational memory.

In the following, we will demonstrate the utilization of protocol cases using
GQM plans as an example. GQM (Goal/Question/Metric Paradigm) [BDR96] is an
innovative technology for goal-oriented software engineering measurement
[GB97]. GQM helps defining and implementing operational and measurable
software improvement goals. It has been successfully applied in several compa-
nies, such as NASA-SEL, Bosch, Digital, and Schlumberger [CEM96]. In GQM
programs, the analysis task of measurement is specified precisely and explicitly
by detailed measurement goals, called GQM goals. Relevant measures are
derived in a top-down fashion based on the goals via a set of questions and
quality/resource models. This refinement is precisely documented in a GQM
plan, providing an explicit rationale for the selection of the underlying measures.

Protocol case:
• Retrieval goal
• 1
• 2
• 3
• …
• Result
• OMMS action/user reaction

(text of user reaction)
• Explanatory texts (OM maintenance

team)
• Actions to be carried out by OMMS

Query

formal knowledge
informal text

17

Improvement With Protocol
Cases – An Example

Copyright © Fraunhofer IESE 1999

Figure 6: Protocol cases are the basis for improving the organizational memory.

Figure 7: Simplified example of a GQM plan (taken from [TG99]).

User

Protocol
Cases

OM
maintenance

team

Qualified
Protocol

Cases

Published
Protocol

Cases

co
lle

ct
st

or
e

qu
al

ify

publish

indicators for user feedback

user accesses protocol cases
OM maintenance team improves
usage based on protocol cases
CBR based on protocol cases

OM usage process

co
m

m
un

ic
at

io
n

OM

OMMS

GQM Goal: Analyze the Software process in order to characterize relaibility from the viewpoint of the software developer in the
company Y.
Q_1 What is the overall number of failures reported before delivery?

M_1.1 count of failure reports turned in before delivery [ratio: integer]1

Q_2 What is the distribution of failures reported before delivery by criticality level?
Model: Distribution = (# critical failures/ total # failures, # uncritical failures/ total # failures)
critical: complete breakdown of system; uncritical: unable to perform one or more of the functions F1-F6
M_2.1 classification by criticality [ordinal:uncritical;critical]
M_2.2 count of failure reports before delivery [ratio: integer]

Q_3 What is the distribution of faults by life cycle phase of detection before delivery?
Model: Distribution = (# faults in REQ/ total # faults,# faults in HLD/ total # faults, # faults in LLD/IMP/ total # faults)
M_3.1 count of fault per life cycle phase where the fault was introduced [nominal: REQ, HLD, LLD/IMP]

Q_4 What is the total rework effort?
Model: rework effort = (effort to isolate fault + effort to correct fault)
M_4.1 for all failures reported before delivery: effort to isolate the faults that caused the failures (person-hours)

[ratio: integer]
M_4.2 for each fault detected before delivery: effort to correct the fault (person-hours) [ratio:integer]

1[scale: range]

GQM-Based Measurement: GQM Plan
A GQM plan is developed based on a measurement goal consisting of the following components [BDR96]:
- a goal, defining the object, purpose, quality focus, viewpoint and the context of the measurement program,
- a set of questions, operationalizing the goal,
- a set of models, specifying how to answer the questions,
- a set of measures, operationally defining the data to be collected to feed the models.

18

Improvement With Protocol
Cases – An Example

Copyright © Fraunhofer IESE 1999

The data collected is interpreted in a bottom-up fashion considering the limita-
tions and assumptions underlying each measure. The process of planning GQM
programs can be substantially supported through the reuse of measurement
experiences [GB97, GABT98]. The GQM plan is a principal element of the plan-
ning of a GQM-based measurement program (see Figure 7).

The contents of a GQM plan can be (partially) characterized by the measure-
ment goal as indicated in Figure 7. For our example, we will assume that the
organizational memory consists of the GQM plans listed in Table 1 and the
project characterizations listed in Table 2..

Table 1: GQM plans of the organizational memory

Name MObject MPurpose Quality focus MViewpoint Context

A:X - Adaptability 1 Design document Characterization Adaptability Software developer A: X

A:X - Adaptability 2 Requirements
document

Characterization Adaptability System engineer A: X

A:X - Completeness Requirements
document

Characterization Completeness System engineer A: X

A:X - Efficiency 1 Design inspection Characterization Efficiency Project supporter A: X

A:X - Efficiency 2 Code inspection Characterization Efficiency Project supporter A: X

A:X - Effort Development pro-
cess

Characterization Effort Technical leader A: X

A:X - Reliability Software product Characterization Reliability Quality assurer A: X

B: Y - Communica-
tion efficiency

Communication Characterization Communica-
tion efficiency

Software developer B: Y

B: Y - Comprehensi-
bility

Development doc-
ument

Characterization Comprehensi-
bility

Software developer B: Y

B: Y - Effectiveness Quality assurance
activities

Characterization Effectiveness Department head B: Y

B: Y - Reliability Software product Characterization Reliability Software developer B: Y

C: Z - Effort Development pro-
cess

Characterization Effort distribu-
tion

Technical leader C: Z

C: Z - Usability Specification Characterization Usability Software developer C: Z

C: Inspection -
Effort

Inspection process Characterization Effort Department head C: Z

D: W - Effort 1 Development pro-
cess

Characterization Effort Technical leader D: W

D: W - Effort 2 Development pro-
cess

Characterization Effort Department head D: W

D: W - Effort 3 Development pro-
cess

Characterization Effort Software developer D: W

D: W - Reliability 1 Development doc-
ument

Characterization Reliability Software developer D: W

D: W - Reliability 2 Development doc-
ument

Characterization Reliability Technical leader D: W

D: W - Reliability 3 Development doc-
ument

Characterization Reliability Department head D: W

19

Improvement With Protocol
Cases – An Example

Copyright © Fraunhofer IESE 1999

Table 2: Project characterizations of the organizational memory

A query for a GQM plan that describes the measurement of the effort of a soft-
ware process (includes both the development process and the quality assurance
activities) from the viewpoint of a project manager for a project with a duration
of 6 months and a team size of 3 would result in a protocol case as shown in
Table 3. The protocol case reveals:

• The user changed the query once. He extended it by a specification of the
context. Apparently, the query was too imprecise.

• »Text of user reaction (1)« shows two problems:
1. The user has a hard time to decide which viewpoint (department head or

technical leader) is appropriate for the needed viewpoint
2. Information about the completeness of GQM plans is missing in the char-

acterization of GQM plans. As it is unclear what is meant exactly by »com-
pleteness of GQM plans« the maintenance team will have to talk to the
user before adding a new attribute to the characterization schema of
GQM plans.

• Because there is no GQM plan on the software process, but only on its parts
(development process and quality assurance activities), the user decides to
merge two existing GQM plans (positions 1 and 4 are checked out). This fact
is emphasized by »Text of user reaction (3)«.

• The deviation from the expected user reactions (viewing position 4 before
position 6 and checking out positions 1 and 2) does not require a change of
the OMMS because the user grouped the returned positions by their objects
(see »Text of user reactions« (2) and (3)).

• The last three sections are empty because they are filled out by the mainte-
nance team.

The maintenance team reviews this protocol case as part of its regular analysis
activities. The team:

1. asks U. Ser what he means by completeness of GQM plans and adds a new
attribute »completeness« for GQM plans. The »completeness« values of
existing GQM plans are set to <unknown>; however, the attribute value will
be determined for all future GQM plans stored in the OM.

Project Duration Team size …

A: X 24 100

B: Y <unknown> 200 …

C: Z 18 20 …

D: W 8 7 …

20

Improvement With Protocol
Cases – An Example

Copyright © Fraunhofer IESE 1999

Table 3: Exemplary protocol case produced by a query

Section Dimension Value

User Name U. Ser
Retrieval goal Object GQM plan

Purpose Modification
Viewpoint Project supporter

Query (1) MObject Software process
MPurpose <undefined>
Quality focus Effort
MViewpoint Project manager
Context <undefined>

Query (2) MObject Software process
MPurpose <undefined>
Quality focus Effort
MViewpoint Project manager
Context: Duration 6
Context: Team size 3
Context: … <undefined>

Result Position 1 D: W - Effort 1 (0.976)
Position 2 D: W - Effort 2 (0.976)
Position 3 C: Z - Effort (0.967)
Position 4 C: Inspection - Effort (0.967)
Position 5 D: W - Effort 3 (0.965)
Position 6 A: X - Effort (0.962)
Position 7 A: X - Efficiency 1 (0.896)
Position 8 A: X - Efficiency 2 (0.896)
Position 9 D: W - Reliability 2 (0.889)
Position 10 D: W - Reliability 3 (0.889)

OMMS action/user
reaction

User reaction (1) View position 1

User reaction (2) View position 2
User reaction (3) View position 3
User reaction (4) View position 6
User reaction (5) View position 4
User reaction (6) View position 7
OMMS action (1) Ask why user could not decide on usefulness without viewing the GQM plans
Text of user reaction (1) Answer: »(a) it was not clear whether the department head or the technical leader

viewpoint matches the needed project manager perspective better; (b) there was no
information on how complete the GQM plans were«

OMMS action (2) Ask why position 6 is preferred over position 4
Text of user reaction (2) Answer: »Positions 1-3 and 6 are about the development process, whereas positions

4 and 7 are about the inspection process.«
User reaction (8) Check out position 1
User reaction (9) Check out position 4
OMMS action (3) Ask why position 4 is preferred over positions 2 and 3
Text of user reaction (3) Answer: »In contrast to position 4, positions 2 and 3 do not cover quality assurance

activities.«
Explanatory texts – –
Actions to be car-
ried out by OMMS

– –

Suggestions to the
user

– –

21

Improvement With Protocol
Cases – An Example

Copyright © Fraunhofer IESE 1999

2. seeks a solution for deciding which viewpoint is best for the project manager.
It does so by modifying the protocol case shown in Table 3:

• Removing query 1

• Defining an »=« filter for »MViewpoint« (meaning that this protocol case
will only be retrieved if the user needs a GQM plan for the project man-
ager; however, »MObject« and »Quality focus« may be similar).

• Adding »There was no GQM plan available for the project manager« as
explanatory text

• Adding »A GQM plan for the technical leader was used which corre-
sponded better to the needs of the project manager than the ones for the
department head« as suggestions to the user.

• Adding the action »ask user« as an action to be carried out by the OMMS
with the following prompt: »Hypothesis: Whether a GQM plan from the
viewpoint of the department head should be preferred over a GQM plan
from the viewpoint of the technical leader depends on whether the
department head typically acts as the project manager. For organizations
in which the line and project managers are not the same, the project man-
ager is more similar to the technical leader than the department head.
(a) Would you agree with this?
(b) If not: why not?
(c) What other factors influence the similarity between the project man-
ager and the department head/technical leader?«

The latter OMMS action exemplifies how the users can be involved actively in
the improvement of the OMMS while they are trying to solve a similar problem
themselves. Alternatively, the users could be called and asked for their opinion
(e.g., as members of a steering committee). However, in this case they would be
asked without having a concrete problem at hand. Therefore, the quality of the
answer is likely to be lower than if they have to solve a similar problem anyhow.
In the particular example presented, the user will be asked only if he looks for a
GQM plan for a project manager that has a similar measurement object, quality
focus and context. The OMMS can ensure that each user is asked each question
at most once.

22

Conclusion

Copyright © Fraunhofer IESE 1999

7 Conclusion

In this paper we have presented a method for improving the perceived useful-
ness of an organizational memory incrementally through user feedback. It is
based on a general usage model, a cause-effect-model for usefulness as per-
ceived by the user, a set of indicators for improvement potential, and an organi-
zational level case-based reasoning approach (based on protocol cases) that is
flexible concerning the degree of using fully automated interpretation of the
cases by the organizational memory management system or manual case analy-
sis and interpretation by the organizational memory maintenance team. The
organizational memory improvement method considers the practical constraints
typically encountered in industrial environments, e.g., limited time of users. Cur-
rently both our general organizational memory approach as well as the improve-
ment method are validated within a number of industrial and in-house projects.
It is expected that the method will lead to quick improvements after the intro-
duction or extension of an organizational memory. Later on, the change rate
will decrease. Thus, the additional effort requested from the users for their feed-
back will be limited in time.

Acknowledgements

The authors would like to thank Christiane Gresse von Wangenheim for provid-
ing the exemplary GQM plan.

23

Conclusion

Copyright © Fraunhofer IESE 1999

References

[AA96] Klaus-Dieter Althoff and Agnar Aamodt. Relating case-based prob-
lem solving and learning methods to task and domain characteris-
tics: Towards an analytic framework. AICom - Artificial Intelligence
Communications, 9(3):109–116, September 1996.

[ABT98] Klaus-Dieter Althoff, Frank Bomarius, and Carsten Tautz. Using
case-based reasoning technology to build learning organizations. In
Proceedings of the the Workshop on Organizational Memories at
the European Conference on Artificial Intelligence ’98, Brighton,
England, August 1998.

[ADK98] Andreas Abecker, Stefan Decker, and Otto Kühn. Organizational
memory (in German). Informatik-Spektrum, 21(4):213–214, August
1998.

[Alt97] Klaus-Dieter Althoff. Evaluating case-based reasoning systems: The
Inreca case study. Postdoctoral thesis (Habilitationsschrift), Univer-
sity of Kaiserslautern, 1997.

[AR99] Klaus-Dieter Althoff and Michael M. Richter. Similarity and utility in
non-numerical domains. In W. Gaul and M. Schader, editors, Math-
ematische Methoden der Wirtschaftswissenschaften. Physica-Ver-
lag, Heidelberg, Germany, 1999.

[AW91] K.-D. Althoff and S. Wess. Case-based knowledge acquisition,
learning and problem solving in diagnostic real world tasks. Pro-
ceedings of the Fifth European Knowledge Acquisition for Knowl-
edge-Based Systems Workshop, pages 48–67, 1991.

[BB91] Bruce H. Barnes and Terry B. Bollinger. Making reuse cost effective.
IEEE Software, 8(1):13–24, January 1991.

[BCR94] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. Experi-
ence Factory. In John J. Marciniak, editor, Encyclopedia of Software
Engineering, volume 1, pages 469–476. John Wiley & Sons, 1994.

[BDR96] Lionel C. Briand, Christiane M. Differding, and H. Dieter Rombach.
Practical guidelines for measurement-based process improvement.
Software Process, 2(4):253–280, December 1996.

[BR88] Victor R. Basili and H. Dieter Rombach. The TAME Project: Towards

24

Conclusion

Copyright © Fraunhofer IESE 1999

improvement–oriented software environments. IEEE Transactions on
Software Engineering, SE-14(6):758–773, June 1988.

[CEM96] The CEMP Consortium. Customized establishment of measurement
programs. Final report, ESSI Project Nr. 10358, Germany, 1996.

[Coh89] P. R. Cohen. Evaluation and case-based reasoning. In K. Hammond,
editor, Proceedings of the Second DARPA Workshop on Case-Based
Reasoning, pages 168–172. Morgan Kaufman, 1989.

[Coo97] William S. Cooper. On selecting a measure of retrieval effectiveness.
In K.S. Jones and P. Willet, editors, Readings in Information
Retrieval, pages 191–204. Morgan Kaufmann Publishers, 1997.

[Dam98] Leela Damodaran. Development of a user-centered IT strategy: A
case study. Behavior and Information Technology, 17(3):127–134,
1998.

[GABT98] Christiane Gresse von Wangenheim, Klaus-Dieter Althoff,
Ricardo M. Barcia, and Carsten Tautz. Evaluation of technologies for
packaging and reusing software engineering experiences. Technical
Report IESE-Report No. 055.98/E, Fraunhofer Institute for Experi-
mental Software Engineering, Kaiserslautern (Germany), 1998.

[GB97] Christiane Gresse and Lionel Briand. Requirements for the Knowl-
edge-Based Support of Software Engineering Measurement Plans.
In Proceedings of the Ninth International Software Engineering and
Knowledge Engineering Conference (SEKE’97), pages 559–568,
Madrid, Spain, June 1997.

[GKP+83] J. Gaschnig, P. Klahr, H. Pople, E. Shortliffe, and A. Terry. Evaluation
of expert systems: Issues and case studies. In F. Hayes-Roth, D.A.
Waterman, and D.B. Lenat, editors, Building Expert Systems, pages
241–282. Addison-Wesley, Reading, Mass., USA, 1983.

[GXG98] Avelino Gonzales, Lingli Xu, and Uma Gupta. Validation techniques
for case-based reasoning systems. IEEE Transactions on Systems,
Man, and Cybernetics, 28(4):465–477, July 1998. Part A: Systems
and Humans.

[Har92] Stephen P. Harter. Psychological relevance and information science.
Journal of the American Society for Information Science, 43(9):602–
615, October 1992.

[Hen97] Scott Henninger. An evolutionary approach to constructing effective
software reuse repositories. ACM Transactions on Software Engi-

25

Conclusion

Copyright © Fraunhofer IESE 1999

neering and Methodology, 6(2):111–140, April 1997.

[HS93] B. Henderson-Sellers. The economics of reusing library classes. Jour-
nal of Object-Oriented Programming, (4):43–50, 1993.

[JK98] Matthias Jarke and Ralf Klamma. Innovation based on computer-
aided failure management: Results of the BMBF project FOQUS (in
German). In Proc. Wirtschaftsinformatik, 1998.

[Kir94] S. Kirchhoff. Mapping Quality of Knowledge-Bases Systems: A
Methodology for Evaluation (in German). Josef Eul Verlag, Bergisch-
Gladbach, Germany, 1994.

[Lim96] Wayne C. Lim. Reuse economics: A comparison of seventeen mod-
els and directions for future research. In Murali Sitaraman, editor,
Proceedings of the Fourth International Conference on Software
Reuse, pages 41–50, Orlando, Florida, USA, April 1996. IEEE Com-
puter Society Press.

[MD97] Michael G. Morris and Andrew Dillon. How user perceptions influ-
ence software use. IEEE Software, 14(4):58–64, July/August 1997.

[Nic98] Markus Nick. Implementation and Evaluation of an Experience Base.
Diploma thesis, Fraunhofer IESE, University of Kaiserslautern, 1998.

[NT98] Markus Nick and Carsten Tautz. Practical evaluation of an organiza-
tional memory using the goal-question-metric technique. Technical
Report IESE-Report No. 063.98/E, Fraunhofer Institute for Experi-
mental Software Engineering, Kaiserslautern (Germany), 1998.

[NT99] Markus Nick and Carsten Tautz. Practical evaluation of an organiza-
tional memory using the goal-question-metric technique. In Pro-
ceedings of the Workshop on Knowledge Management,
Organizational Memory and Knowledge Reuse during Expert Sys-
tems ’99 (XPS-99), Würzburg, Germany, March 1999.

[Pfe96] T. Pfeifer, editor. Knowledge-Based Systems in Quality Management
(in German). Springer-Verlag, 1996.

[PZ96] T. Pfeifer and T. Zenner. Using experience during failure analysis -
the application of case-based techniques (in German). In R. Grob
and J. Spiekermann, editors, Workshop at the Third German Con-
ference on Expert Systems, pages V1–V12. Technical Report LSA-
95-04, University of Kaiserslautern, 1996.

[SM83] Gerard Salton and Michael J. McGill. Introduction to Modern Infor-

26

Conclusion

Copyright © Fraunhofer IESE 1999

mation Retrieval. McGraw-Hill Book Co., New York, 1983.

[SW88] J. R. Slagle and M. R. Wick. A method for evaluating candidate
expert system applications. AI Magazine, 9(4):44–53, 1988.

[Tec99] CBR-Works. URL http://www.tecinno.de/english/products/
cbrw_main.htm, 1999. tecInno GmbH, Germany.

[TG98] Carsten Tautz and Christiane Gresse von Wangenheim. REFSENO: A
representation formalism for software engineering ontologies.
Technical Report IESE-Report No. 015.98/E, Fraunhofer Institute for
Experimental Software Engineering, Kaiserslautern (Germany),
1998.

[TG99] Carsten Tautz and Christiane Gresse von Wangenheim. A represen-
tation formalism for supporting reuse of software engineering
knowledge. In Proceedings of the Workshop on Knowledge Man-
agement, Organizational Memory and Knowledge Reuse during
Expert Systems ’99 (XPS-99), Würzburg, Germany, March 1999.
http://www.aifb.uni-karlsruhe.de/WBS/dfe/xps99.proc.htm.

[vW96] Bert van Wegen. Impacts of KBS on Cost and Structure of Produc-
tion. PhD thesis, 1996.

[Wes95] S. Wess. Case-Based Reasoning in Knowledge-Based Systems for
Decision Support and Diagnostics (in German). PhD thesis, Univer-
sity of Kaiserslautern, 1995.

Copyright 1999, Fraunhofer IESE.
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or trans-
mitted, in any form or by any means including,
without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial
purposes.

Document Information

Title: Improving Organizational
Memories Through User
Feedback

Date: February 1, 1999
Report: IESE-004.99/E
Status: Final
Distribution: Public

