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Abstract

We consider the problem of finding points of inter-
est along local curves of binary images. Information
theoretic vector quantization is a clustering algorithm
that shifts cluster centers towards the modes of prin-
cipal curves of a data set. Its runtime characteristics,
however, do not allow for efficient processing of many
data points. In this paper, we show how to solve this
problem when dealing with data on a 2D lattice. Bor-
rowing concepts from signal processing, we adapt infor-
mation theoretic clustering to the quantization of binary
images and gain significant speedup.

1 Introduction
In a project on analyzing large amounts of digitized

graffiti tags as shown in Figure 1, we were faced wit the
problem of locating interest points along the strokes of
highly stylized letters. We tested morphological oper-
ators, medial axis transforms, key point detectors, and
clustering algorithms. Information theoretic clustering
was found to yield good results, but in its original form,
it proved too slow to be of practical use.

In this paper, we present a novel variant of informa-
tion theoretic vector quantization that is tailored to the
quantization of binary images. Recasting essential steps
of the original method in terms of efficient convolution
operations significantly reduces runtime and enables us
to quickly extract interest points from large amounts of
shape images.

Next, we briefly review information theoretic clus-
tering and discuss its properties. Then we derive our ac-
celerated version and present experimental evaluations
that underline its favorable performance.

2 Information Theoretic Clustering
Given a set of data X = {x1, . . . , xN} ⊂ Rd, infor-

mation theoretic vector quantization (ITVQ) as intro-

(a) 100 codebook vectors resulting from k-means

(b) 100 codebook vectors resulting from accelerated ITVQ

Figure 1. Different placements of code-
book vectors on a digitized graffiti tag.
While k-means evenly distributes the
cluster centers, ITVQ shifts them towards
local principal curves.

duced in [4, 5, 6] considers an entropy-based measure
to determine a suitable set of M � N codebook vec-
torsW = {w1, . . . , wM} ⊂ Rd.

Assuming that probability density functions p(x)
and q(x) are available that characterize X and W ,
respectively, ITVQ iteratively optimizes the location
of the codebook vectors by means of minimizing the
Cauchy-Schwartz divergence

Dcs(X ,W) = 2H(X ;W)−H(W)−H(X )

between p(x) and q(x). Note that the last term of Dcs

does not depend on W; the entropies in the first and
second term are defined as

H(X ;W) = − log
∫
p(x)q(x)dx

= − log V (X ;W)

H(W) = − log
∫
q2(x)dx

= − log V (W)

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.229

914

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.229

914

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.229

910

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.229

910

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.229

910



(a) a set X of pixels (b) pdf p(x) of X (c) initial pdf q(x) ofW (d) pdf q(x) after optimization

Figure 2. Information theoretic clustering for shape quantization: (a) a binary shape forms a
set X of 2D vectors xi; (b) the Parzen estimate of the pdf p(x) of X ; (c) for randomly initialized
codebook vectors wj , the pdf q(x) ofW diverges from p(x); (d) minimizing the Cauchy-Schwartz
divergence of p(x) and q(x) shifts the codebook vectors towards (local) principal curves of X .

and correspond to Renyi’s cross entropy between p(x)
and q(x) and Renyi’s entropy of q(x), respectively. The
fundamental idea in [4, 5, 6] is to model the densities
p(x) and q(x) by means of their Parzen estimates

p(x) =
1
N

N∑
i=1

Gξ(x− xi)

q(x) =
1
M

M∑
j=1

Gω(x− wj) (1)

where we use the shorthand Gσ(x) = exp−‖x‖2
2σ2 to

denote Gaussian kernels of variance σ2.
Because of the Gaussian product theorem and prop-

erties of the so called overlap integral, the entropies can
then be written as∫

p(x)q(x)dx =

∑
i,j

∫
Gξ(x−xi)Gω(x−wj)dx

MN

=
1

MN

N∑
i=1

M∑
j=1

Gτ (xi − wj)

∫
q2(x)dx =

1
M2

M∑
i=1

M∑
j=1

Gρ(wi − wj)

where τ2 = ξ2 + ω2 and ρ2 = 2ω2.
Differentiating Dcs(X ,W) with respect to wk,

equating to zero, and rearranging the resulting terms
yields a fix point update rule for the vectors inW

wnew
k =

∑N
j=1Gτ (xj − wk)xj∑N
j=1Gτ (xj − wk)

− c ·
∑M
j=1Gρ(wj − wk)wj∑N
j=1Gτ (xj − wk)

+ c ·
∑M
j=1Gρ(wj − wk)∑N
j=1Gτ (xj − wk)

wk (2)

where the constant c is given by N
M

V (X ;W)
V (W) .

It can be shown that the mean shift procedure [1, 2]
is a special case of ITVQ [5]. The cross entropy term
log V (X ;W) in the Cauchy-Schwartz divergence turns
ITVQ into a mode seeking algorithm. The quantity
log V (W), on the other hand, can be understood as the
potential of a repellent force between codebook vectors.
The resulting codebook vectors are thus located at local
modes, but in contrast to mean shift, the repellent force
prevents them from collapsing into a few modes only.
Figure 2 illustrates the process of ITVQ and how traces
out local principal curves of binary shapes.

ForN data points andM codebook vectors, the com-
puting time per iteration is of the order O(MN). How-
ever, in contrast to other clustering algorithms of the
same complexity, such as k-means, there is a large con-
stant that factors into the overall runtime: each of the
k = 1, . . . ,M updates in (2) requires the computation
ofN+M distances ‖xj−wk‖2 or ‖wj−wk‖2 as well as
the evaluation of as many exp(·) functions. In practice,
we found the cost of a single iteration to be prohibitive
even for moderately sized shape images.

3 Accelerated ITVQ
In this section, we derive an update rule for infor-

mation theoretic vector quantization that is tailored to
binary images. The key idea is to model Parzen den-
sity estimates using methods from signal processing.
This eliminates the need of having to compute many
distances and exponentials and thus considerably accel-
erates the procedure.

First, we note that convolving a function f with a
shifted delta impulse shifts the function

δ(x− µ) ∗ f(x) = f(x− µ).

A Parzen density estimate using a sum of Gaussians
centered at data points xj thus equals a sum of shifted
delta impulses convolved with a Gaussian∑

j

Gσ(x− xj) = Gσ(x) ∗
∑
j

δ(x− xj).
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Key to our algorithm is that every pixel of a binary
image can be seen as a discrete delta impulse located at
some point on a regular 2D lattice. In a slight abuse of
notation, we may therefore write the density function of
a set X of pixels as

p(x) = X ∗Gξ.

Convolution with a Gaussian is of course a standard op-
eration in image processing. If ξ is small, the 2D convo-
lution can be efficiently separated into two 1D convolu-
tions with corresponding, pre-computed filter masks; if
ξ is large, it is more efficient to apply recursive schemes
[3, 7]. Although this way of computing p(x) will still
require efforts proportional to the number N of pixels,
the effort per pixel will become very small.

If the codebook W , too, is understood as a binary
image, i.e. as an image where there are M active pixels,
its density q(x) = W ∗ Gω can be computed just as
efficiently. On a discrete lattice such as a pixel array,
the entropy integrals V (X ;W) =

∫
p(x)q(x)dx and

V (W) =
∫
q2(x)dx are therefore readily available.

It remains to derive an update rule similar to (2). To
this end, we once again consider (1) and note that

∂q(x)
∂wk

=
∂

∂wk

1
M

M∑
j=1

Gω(x− wj)

=
1
M

wk − x
2ω2

Gω(x− wk).

Using this, we differentiate Dcs(X ,W) with respect to
wk, equate to zero, rearrange the resulting terms, and
obtain the following update rule:

wnew
k =

∫
p(x)Gω(x− wk)xdx∫
p(x)Gω(x− wk)dx

− V (X ;W)
V (W)

∫
q(x)Gω(x− wk)xdx∫
p(x)Gω(x− wk)dx

+
V (X ;W)
V (W)

∫
q(x)Gω(x− wk)dx∫
p(x)Gω(x− wk)dx

wk. (3)

In contrast to (2), every Gaussian in (3) is of the form
δ(x − wk) ∗ Gω(x). This allows for further accelera-
tion. Following common image processing practice, we
approximate the Gaussian Gω(x) by means of a pre-
computed, discrete filter mask F of finite support. In-
stead of evaluating the integrals in (3) over the whole
image plane, it then suffices to consider a neighborhood
N of wk whose size depends on ω; for instance:∫

p(x)Gω(x−wk)xdx ≈
∫
N
p(x)F (x−wk)xdx

Concluding our derivation, we observe that, in con-
trast to the original update algorithm for ITVQ, our ver-

Input: discrete 2D vectors X ⇔ binary image X
Output: discrete codebookW ⇔ binary image W

initialize W through sampling the active pixels of X

approximate the pdf p(x) using P = X ∗Gξ
t = 0
repeat

approximate the pdf q(x) using Q = W ∗Gω
compute V (X ;W) =

∑
i,j PijQij

compute V (W) =
∑
ij Q

2
ij

for k = 1, . . . ,M
compute wnew

k using (3)

updateW =
⋃
k w

new
k

until Dcs(X ;W) ≤ ε ∨ t← t+ 1 > tmax

Figure 3. Accelerated ITVQ tailored to the
processing of binary images.

(a) k-means and acc. ITVQ (b) k-means and acc. ITVQ

Figure 4. Locations of 100 codebook vec-
tors on shapes from the Kimia data set.

sion for binary images avoids (i) computation of Eu-
clidean distances and (ii) explicit evaluation of expo-
nentials. Rather, it solely resorts to convolutions which
can either be efficiently computed for the whole image
or may be evaluated from finite local support only. Fig-
ure 3 summarizes the accelerated ITVQ algorithm.

4 Practical Performance
In this section, we present and discuss results ob-

tained from experimenting with the original ITVQ al-
gorithm and our accelerated version. We also discuss
results from using k-means clustering for binary image
quantization to provide a baseline for comparison.

All experiments were carried out on an Intel Core
2 Duo CPU (2.53 GHz). The variance parameter ω
was set dynamically, taking into account the number
N of pixels in a shape and the number M of code-
book vectors to be produced: ω =

√
N/M/2. This

way, a smaller codebook will lead to larger discrete fil-
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Figure 5. Left panel: average computing time per iteration w.r.t. shape size. The graphs com-
pare the performance of accelerated ITVQ, original ITVQ, and k-means in extracting 100 code-
book vectors from shapes of growing size. Middle panel: average computing time per iteration
w.r.t. number of codebook vectors extracted from a shape of about 8800 pixels. Original ITVQ
and k-means show linear growths (note the logarithmic scale); for accelerated ITVQ, our choice
of local support regions (see text) even causes decreasing runtime. Right panel: average dis-
placement of a codebook vector w.r.t. number of iterations. Original ITVQ and k-means perform
continuous optimization and continue to slightly shift codebook vectors for many iterations.
Accelerated ITVQ optimizes the location of codebook vectors on a discrete lattice; after about
15 iterations, codebook vectors jitter by less than half a pixel but cease to shift.

ter masks applied in computing (3). Note that in order
to benefit from our idea of local support, it may in fact
be preferable to consider convolution masks of smaller
diameter. The parameter ξ was set to ω/2. Finally, all
presented results are averaged over multiple trials with
random initializations ofW .

Figures 1 and 4 exemplify the different placements
of codebook vectors produced by k-means and accel-
erated ITVQ. Where k-means produces almost uni-
formly distributed coverings of the underlying shapes,
ITVQ places the codebook vectors at local modes of
the (shape) images. This causes the codebook vectors
to better trace out elongated parts of a shape.

The left and middle panel of Figures 5 underline
the runtime improvement of accelerated ITVQ over the
original algorithm. For larger choices of N and M , the
time per iteration required by our accelerated version
of ITVQ is an order of magnitude smaller than that re-
quired by the original version. The declining time per
iteration of accelerated ITVQ for a growing number of
clusters is a consequence of the above choice of ω and
its impact on the size of filter masks.

The right panel in Fig. 5 shows the convergence be-
havior of the three methods. In contrast to k-means and
the original ITVQ procedure, the accelerated algorithm
is tailored to data on a discrete lattice and uses convo-
lution masks of finite support. The resulting round offs
cause the average shift of codebook vectors not to de-
crease to zero but to jitter. In this sense the algorithm
converges, once the average displacement of codebook
vectors falls below 0.5 pixels. Applications that do not
require subpixel accuracy but real time capability do

greatly benefit from this characteristic: convergence re-
quires only a few iterations and since each iteration only
requires fractions of a second, the proposed version of
ITVQ allows for processing several shapes per second.

5 Summary
We introduced an accelerated version of information

theoretic vector quantization that efficiently computes
interest points along the modes of principal curves of
shape images. Replacing costly computations in the
original algorithm through efficient convolution oper-
ations, we achieved significant speedup.
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