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ABSTRACT
Naturally gaze is used for visual perception of our environ-
ment and gaze movements are mainly controlled subcon-
sciously. Forcing the user to consciously diverge from that
natural gaze behavior for interaction purposes causes high
cognitive workload and destroys information contained in
natural gaze movements. Instead of proposing a new gaze-
based interaction technique, we analyze natural gaze behav-
ior during an object manipulation task and show ways how it
can be used for intention recognition, which provides a uni-
versal basis for integrating gaze into multimodal interfaces
for different applications. We propose a model for multi-
modal integration of natural gaze behavior and evaluate it
for two different use cases, namely for improvement of ro-
bustness of other potentially noisy input cues and for the
design of proactive interaction techniques.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces

General Terms
Human Factors, Experimentation, Theory

1. INTRODUCTION
Visual perception is an important information channel

during manipulation of real or virtual objects (e.g. icons
on a graphical user interface). It allows for perceiving the
current state of manipulated objects and/or for visuomotoric
control of manipulators like our hands or a computer mouse.
During manipulation tasks, our gaze behavior is mainly con-
trolled top-down and subconsciously by cognitive processes
which are responsible for task execution. Therefore, natural
gaze behavior provides a window into the human mind and
allows a conclusion to be drawn about user’s intentions and
goals. However, in most state-of-the-art interfaces gaze is
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only used as an explicit pointing device, e.g. as a replace-
ment for a mouse [10]. This requires gaze to be used for ma-
nipulation (e.g. for pressing keys on a virtual keyboard [10])
in addition to its natural purpose, namely visual perception.
Such interaction techniques might be useful for certain ap-
plications, e.g. when hands are not available as an input
modality. However, using gaze-based pointing as a general
input technique for human computer interaction (HCI) has
many limitations. First, forcing the user to stare consciously
at a certain location on a display to trigger a desired action
of the system is often at odds with his/her natural gaze be-
havior. Hence, such usage of gaze as input modality causes
high cognitive workload. Second, by preventing the user
from using natural gaze behavior, valuable information con-
tained in it (e.g. the user’s intention) is lost and cannot
be used for interaction purposes. Third, using gaze as sole
input modality leads to the so-called “Midas-Touch” prob-
lem[6]. Everything we look at immediately changes its state,
even if we only want to perceive it’s current state.

In order to allow for a design of more sophisticated gaze-
based interaction techniques in a multimodal context, we
analyzed natural gaze behavior during an object manipula-
tion task and propose a model which allows for integration
of it as an additional modality. In contrast to other studies
on natural gaze behavior we chose a large scale display as
experimental platform. We consider gaze as particularly in-
teresting for interaction with large scale screens, since large
spatial distances need to be bridged during interaction and
in some setups not all regions are within the grasping range
of the user but within his/her field of view. Gaze provides
promising properties for interaction with distant objects and
for covering large spatial distances without major physical
fatigue.

Numerous studies of natural gaze behavior and hand-eye
coordination during manipulative activities in natural envi-
ronments like block-copying [12], basic object manipulation
[7], driving [8] and playing cricket [9] revealed gaze shifts
and fixations to be commonly proactive (eye-movements oc-
cured previous to movements of the manipulated object or
the manipulator). In addition, a detailed study on hand-
eye coordination during an object manipulation task [7] re-
vealed, that subjects almost exclusively fixated landmarks
critical for the control of the task and never the moving ob-
ject or hand. Such landmarks could be obstacles or objects
in general that are critical for the completion of the task,
like in [9] where batsmen concentrated on the ball, and not
on their hands or the bat. These studies show, that natural
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gaze behavior is complex and determined by many differ-
ent parameters (e.g. position of obstacles in [7] or previous
experience of a person [9]).

Gaze behavior was also studied in various tasks related to
HCI. However, in contrast to our experiment these studies
were conducted with indirect input devices (e.g. [15]). Other
studies from the field of psychology and physiology, e.g. [5,
4] investigated differences in gaze behavior during action ex-
ecution and observation. They distinguished three different
gaze behaviors, namely proactive, reactive and tracking gaze
behavior [5].

In all of the above studies natural gaze behavior numer-
ous different gaze patterns were observed during task exe-
cution and were described informally. To our knowledge no
model exists which describes the causal relations between
natural gaze behavior and other input modalities or system
states. However, an understanding of the reasons why a
person looks at a certain location in a certain situation is
necessary to judge the usefulness of natural gaze behavior
for HCI and to integrate gaze with other modalities, respec-
tively.

In this paper we develop a model which systematically de-
scribes the causal relationship between gaze and other input
modalities during an object manipulation task and use it for
intention recognition. We chose an object manipulation task
for our experiments since this is one of the most important
basic tasks in HCI. We first describe a user study we con-
ducted in order to get an impression of natural gaze behav-
ior during direct object manipulation at a large horizontal
screen. The observed gaze patterns are categorized system-
atically and compared with observations made in other in-
teractive environments already described in literature. On
this basis a model describing the causal relations between
natural gaze behavior and the context of interaction is de-
veloped and formally described by means of a Bayesian net.
Finally we illustrate how the model can be used for two use
cases, namely for improvement of robustness and efficiency
of video-based input devices and for designing proactive mul-
timodal user interfaces.

2. NATURAL GAZE BEHAVIOR DURING
OBJECT MANIPULATION

To understand and formally characterize natural gaze be-
havior during object manipulation at large screens we con-
ducted a user study in a tabletop scenario as shown in Fig-
ure 1.

2.1 Method

2.1.1 Participants
Eleven subjects (2 female, 9 male) participated in the

study. All participants were right-handed and none of them
wore glasses or contact lenses. All of them were experienced
computer users, although no one had experience on direct-
touch interaction with large scale tabletop displays.

2.1.2 Apparatus
During the experiments participants stood in front of the

tabletop with a horizontal 90x120 cm sized display (Figure
1). The display is realized as back projection with a reso-
lution of 1024x768 pixels. This resolution leads to a pixel
size of 1.17x1.17 mm. The working area was restricted to

a rectangle with the size of 824x500 pixels in the center of
the horizontal display in order to be easily reachable by the
user.

As input device we used a vision-based hand gesture recog-
nition system [1]. The system is able to detect and distin-
guish between several hand symbols above the tabletop as
well as to detect a touch of the display surface by the user.
We only used simple pointing gestures as input during the
experiments, which were captured at a rate of 25 Hz. The
system has a latency of 1-2 video frames.

Figure 1: Experiment participant at the tabletop.
(1: eye tracker, 2: scene camera, 3: gesture recogni-
tion cameras, 4: infrared lighting, 5: coded markers)

Participants’ eye movements were captured by a SMI iViewX
TM

HED [14] head mounted eye tracking system at a sampling

rate of 50 Hz. The SMI iViewX
TM

system delivers a video
of the surrounding scene and gaze positions in pixel coor-
dinates of the scene video. To enable a mapping between
gaze positions and location of user interface items displayed
on the tabletop surface, a marker tracking system was con-
nected to the scene video camera of the eye tracking system.
Coded markers were attached to the edges of the tabletop
display to determine its position in the scene video (see Fig-
ure 1).

2.1.3 Tasks

Figure 2: Example of an experimental task.
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Every participant had to perform simple object manipula-
tion tasks. At the beginning, squares of different sizes and a
rectangular target area were displayed on the tabletop sur-
face (see Figure 2). Squares were placed with different dis-
tances to the target area. The goal was to move the squares
to the target area and place them there. The squares disap-
peared as they were placed in the target area. The task was
successfully completed if all squares were placed in the target
area. The same task with varying initial positions and num-
ber of squares was repeated four times by every participant.
The position of a square could be manipulated by touching
it with the index finger and dragging it to the desired lo-
cation. As soon as the index finger was lifted, the object
was deselected and disappeared if placed within the target
area. This interaction cycle, consisting of three consecutive
phases, namely selection, manipulation and deselection of a
graphical object, is illustrated in Figure 3. Successful ter-
mination of each phase is indicated by appropriate system
feedback. To indicate that an object is selected a red frame
surrounding the object is displayed.

selection manipulation deselection

Figure 3: Schematic illustration of a direct hand
gesture based interaction cycle.

2.1.4 Procedure
Each participant first was introduced to the use of the

tabletop. This was followed by the calibration of the eye
tracker and two tests to detect the accuracy of the eye
tracker and the mapping of gaze positions to user interface
items. The average accuracy of the eye tracker for all partic-
ipants was between 33.9(29) and 44.0(38) mm(px) in x- and
51.2(44) and 73.2(63) mm(px) in y-direction. The average
completion time of all tasks was about 6 minutes per person.

2.1.5 Data Analysis and Classification
In order to understand and systematically characterize

the gaze behavior of participants we analyzed the recorded
hand and object movements, as well as the gaze data. Gaze
movements consist of two different components: fixations
and saccades. While saccades are rapid eye movements used
to locate the gaze at a certain position, gaze remains al-
most still during fixations to enable retrieval of visual infor-
mation. Two different algorithms have been implemented
for automated fixation detection. Both algorithms “I-DT”
(Dispersion-Threshold Identification) and “I-VT” (Velocity-
Threshold Identification) are taken from [13]. The first al-
gorithm clusters gaze points according to their spatial dis-
tribution, the second one according to the velocity of gaze
movements. An interaction cycle as described before starts
with the selection of an object and ends with the deselec-
tion of this object at the target area. First examinations
of recorded data showed that fixations during an interac-
tion are mainly determined by object movements and not
by hand movements: None of the participants ever fixated

the hand during object manipulation. We assume that the
reason is the proprioceptive feedback of the hand position
that mediates an approximate anticipation where the hand
is located. In the remainder of this paper we therefore only
focus on the relation between object and fixation positions
and do not consider hand-object or hand-eye relations any
further.

A fixation normally lasts about 150 to 600 ms [3]. During
this time a manipulated object may change its state (se-
lected/unselected) or its position, respectively, while gaze
position remains at a fixed location. According to fixation-
object relations at the beginning and end of a fixation we
assign a fixation to one of the following five categories for
analysis purposes:

• O0: Gaze and object position is similar during the
whole fixation. State of object does not change during
the fixation.

• Oc: Gaze and object position is similar during the
whole fixation. State of object changes during the fix-
ation (e.g. selection).

• P (Proactive): Gaze and object position is different
at the beginning of the fixation. At the end of the
fixation object and gaze position is similar / closer.

• R (Reactive): Gaze and object position is similar at
the beginning of the fixation. At the end of the fixation
object position is different from gaze position.

• N : Gaze and object position is different during the
whole fixation. State of object does not change during
the fixation or moves away from gaze position.

Note that in the above definitions with “object” we denote
that object, which is closest to the gaze position. The cri-
teria above are formulated generically to be also applicable
to other tasks for categorization of fixations. The notions
“similar” and “closer” as well as the categorization criteria
are formally defined in 3.3.

2.2 Results of the Study
We evaluated the gaze behavior of participants for two

phases of the task, namely selection and manipulation, with
respect to the number and duration of fixations as well as
the distribution of fixations between the different categories
defined in 2.1.5.

In Figure 4 the mean number of fixations over all partici-
pants and tasks is shown. The distance between the initial
location of an object to its target position seems to have a
significant influence on the number of fixations made dur-
ing the manipulation phase. This dependency was not de-
scribed in any previous publication. Probably due to sig-
nificant smaller displays used in earlier studies (e.g.[15, 11])
this effect could not be observed or was significantly smaller.

The duration of fixations varied strongly during task ex-
ecution. Fixations directly preceding the selection of a cer-
tain object lasted significantly longer than fixations during
visual exploration of the GUI or during manipulation phase.
The end of fixations which comprise an object state change
(Oc,R,P ) correlates with the point in time when the visual
feedback about the changed state of the object was displayed
(e.g. new position or red frame for indicating a selection).
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Figure 4: Relation of fixation positions and the dis-
tance between initial object position and target area.

Figure 5: Distribution of time shift between end of
fixation and change of object state.

The distribution of the time shift between the end of a fix-
ation and the state change of an object for all fixations of
type Oc,R and P is shown in Figure 5.

The frequency of the different fixation types during selec-
tion and manipulation phase are shown in Table 1. During
selection phase only O0-, Oc and N fixations were observed,
during manipulation mainly P - and R-fixations. However,
during manipulation not only one type of fixations was used
constantly over the whole phase. For further analysis we de-
note the different gaze patterns during manipulation phase
consisting of one or multiple fixations with [R]i (only R-
fixations), [P ]i (only P -fixations), [R → P ]i (switch from
R- to P -fixations), [P → R]i (switch from P - to R-fixations)
and [m]i (any other mixed pattern). The index i ≥ 1 de-
notes the number of fixations. In Figure 6 the frequencies
of the different patterns are shown.

Reactive gaze behavior [R]i and the proactive pattern [P ]1
with only one fixation at the target area have been already
observed in other studies [15, 11]. Consistently, we call these
two patterns object following and target gaze behavior. In

Fixation type O0 Oc N P R
Selection 111 42 2140 0 0

Manipulation 25 78 0 1623 1035

Table 1: Occurrence of different fixation types dur-
ing selection and manipulation.

our study we observed several appearances of patterns with
more than one proactive gaze switch during manipulation
phase ([P ]i>1) which we denote with stepwise proactive be-
havior. Such patterns have also been reported in [5], how-
ever they were not explicitly distinguished from target gaze
behavior. In [15, 11] stepwise proactive behavior was not
observed at all. We think this is mainly due to the limited
display size compared to the large scale tabletop we used in
our study, which is strongly supported by the results shown
in Figure 4, namely the influence of object-target distance
on the number of fixations made during an interaction cycle.

Worth to mention is that the usage of the different pat-
terns is highly user dependent. For example 3 out of 9 users
did not use the “target gaze” pattern at all.

The direction of saccades after reactive R-fixations are
determined by the new position of the manipulated object
at the end of the fixation. Unlike the gaze position dur-
ing proactive P -fixations, which is chosen freely by the user
without having a visual reference to look at. However, as
illustrated in Figure 7, gaze movements previous to a proac-
tive fixation are mainly performed in manipulation direction
of the object and towards the target area.

These results have the following implications for using
gaze as an input modality for the basic tasks selection and
manipulation as described above.

• An object is always fixated previous to a selection. Fix-
ations previous to a selection last longer than fixations
during visual exploration. Therefore the intention for
selection of a certain object could be estimated from
gaze data and could be used as basis for implementing
proactive interaction techniques.

• Natural gaze behavior during direct manipulation highly
varies for different users and situations. To use natu-
ral gaze behavior as an additional modality the reasons
behind the individual gaze patterns have to be under-
stood and the system has to react according to the
anticipation of the user.

• Natural gaze behavior may change during the manip-
ulation phase. Such switches implicitly could convey
interesting information to be used for HCI.

3. A MODEL FOR INTEGRATION OF NAT-
URAL GAZE BEHAVIOR

In the following section we propose a model which de-
scribes the causal relations between natural gaze behavior
and the context of interaction. This model provides the ba-
sis for integrating gaze with other input modalities and also
provides a possible explanation for each of the different gaze
patterns described in the previous section.
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Figure 7: Relation of the length of a proactive sac-
cade and the deviation of gaze position from actual
object path and target position.

3.1 Fundamental Causal Relations
When interacting with a system the user usually has a

certain goal in mind. In our case this is the selection and
positioning of objects displayed on the tabletop as described
in section 2.1.3. In order to reach a goal or sub-goal (e.g.
selection of the object to be manipulated), the user has to
perform certain actions which are captured by input devices,
in our case the gesture recognition system. If a certain action
was performed the user either verifies whether the reaction
of the system to the input conforms with the user’s model
of the system or whether the goal or sub-goal was reached
(e.g. object is at desired position). We call these two dif-
ferent behaviors action- and goal-directed verification (see
Figure 8).

The feedback from the system in our experiment was mainly
encoded in the visual channel. By measuring gaze movement
and position we can, therefore, infer where the user per-
ceived this visual feedback or where she/he expected visual
feedback to be displayed.

Figure 8: A simple model describing fundamental
causal relations between gaze behavior and the con-
text of interaction.

During reactive gaze behavior the user is only able to ver-
ify, if an object moved away from a certain location on the
display, possibly also into which direction in the peripheral
field of view. During proactive behavior the user anticipates
a certain system reaction and object state (e.g. its position),
respectively, and acts proactively for verification. This en-
ables the user to verify, e.g. during a movement phase, if the
object has moved at all (like it is also possible with reactive
gaze behavior) and if the object moved to the expected loca-
tion according to the user’s model of the system. Therefore,
gain of information for the user is higher with proactive ver-
ification behavior than with reactive verification. On the
other hand, more knowledge about the system is necessary
in order to verify system reactions proactively.

The results presented in the previous section strongly sup-
port this model and interpretation in the following ways.
Both, action- and goal-directed verification behavior were
observed during the movement phase of the task. While
gaze pattern “target gaze” is proactive and goal-directed,
“stepwise”pro- and reactive patterns contain action-directed
verification steps. In accordance with observations made
during task execution in a natural environment [11], goal-
directed “target gaze” patterns occured more often during
interaction when the initially inexperienced users got used
to the system. This supports the proposition above, that
more knowledge about the system is needed for that kind
of verification behavior. The same holds for switches from
proactive to reactive verification behavior during an inter-
action cycle which are characterized by [P → R]i gaze pat-
terns. While duration of P -fixations over all experiments
and participants was about 320 ms, the last P -fixation be-
fore the switch to a reactive pattern in [P → R]i in average
took about 200 ms longer (520 ms). This indicates that a
delayed system feedback, thus unexpected feedback was the
reason for switching from proactive to reactive verification
behavior. It also indicates that loss of trust into the sys-
tem and the mental model of the system, due to unexpected
or missing feedback, leads to a transition from proactive to
reactive verification behavior.

The model of the verification process as illustrated in Fig-
ure 8 is also supported by the fact, that the end of fixations
highly correlate with changes of object states and the corre-
sponding visual feedback, respectively.
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3.2 A Probabilistic Model for Integration
According to the model above, the fundamental link be-

tween natural gaze behavior and other input modalities is
that gaze is used for verification of goals and actions, either
proactively or reactively. In order to allow for integration of
natural gaze with other input modalities in this section we
describe a formal probabilistic model which contains all of
the involved components and their interrelationships. Fig-
ure 9 gives an overview of the different random variables of
the model and their inter-dependencies.

n1

U I

Figure 9: Conditional dependencies of user input,
system states and gaze.

Qt and Qt+n are discrete random variables describing ob-
ject states prior and after n manipulation steps. In our case
an object’s state is represented as q = (p, α) with p ∈ N×N
and α ∈ {0, 1}, where p denotes the current position in
display coordinates and α indicates whether the object is
selected (α = 1) or not (α = 0).

We denote Q as the set of all possible object states and
G ⊆ Q as the set of all states which represent a target
state. In our case we have separate sub-goals for each of
the three phases, namely selection, manipulation and dese-
lection, which can be defined as

Gsel = {q|p = p0 ∧ α = 1} (1)

Gmove = {q|p ∈ T ∧ α = 1} (2)

Gdesel = {q|p ∈ T ∧ α = 0} (3)

where T describes all points in the target area and p0 is
the initial position of an object. Note that the sets Gmove

and Gdesel are the same for all objects. The subgoal Gsel is
different for each object, due to different initial positions.
Ft is a random variable with values in N × N describing

a fixation position in display coordinates at time t ∈ [ts, te],
where ts is the start and te the end of the fixation. As de-
scribed in previous section 3.1 by combining the fixation po-
sition Ft with the underlying verification behavior Bt with
values in {goal, action} × {proactive, reactive} we can esti-
mate the visual feedback anticipated by the user and the
corresponding object state in a future time step t + n, re-
spectively. The calculation of Bt, namely the classification
of gaze behavior is described in section 3.3 and the calcula-
tion of Qt+n in section 3.4.

According to Card [2] an input device can be defined as
a translation mechanism which maps physical properties of
the real world to logical values in an application. However,
the transformed signal in some cases is affected by noise, like
wrongly classified hand gestures in our video-based recog-
nition system. Therefore we describe the interrelationship
between the input expressed by the user U and the input
recognized by the system I with the conditional probabil-
ity distribution P (I | U = u). This distribution describes
the characteristic of an input device and can be determined
empirically.

The mapping between a measured input i and the sys-
tem reaction should be deterministic in most systems. For

example, pressing the left mouse button is always mapped
to a “mouse button pressed” event at the current position
by the underlying operating system, which in turn changes
some internal application state. Therefore a state transition
induced by input it at time t can be described as

P (Qt+1 = qi
t+1 | It = it, Qt = qt) = 1 and (4)

P (Qt+1 6= qi
t+1 | It = it, Qt = qt) = 0, (5)

where qt denotes a certain initial state and qi
t+1 the state

after the state transition.

3.3 Classification of Gaze Behaviour
The gaze behavior Bt at time t is estimated on the basis of

a fixation f t. For every fixation we decide whether it is pro-
or reactive and action- or goal-directed. First, we classify
a fixation f t according to its spatial relation to the closest
object into the five categories described in 2.1.5. While the
categories are described in 2.1.5 we define them formally in
this section.

First we define the spatial relation vts = f ts
−pts

between
the gaze position and the position of the closest object at
the beginning of the fixation (see Figure 10). The same
relation vtr = f tr

− ptr
is calculated at a reference point

tr ∈ (ts, te] during or at the end of the fixation. For off-line
analysis of gaze behavior as described in 2.1.5 we used the
end of the fixation as reference point (tr = te). However, for
on-line intention recognition we want to classify a fixation
as early as possible. Therefore, for on-line fixation classi-
fication the reference point could be either the time when
the object state changed or a value bound by an empirically
determined threshold. The following list shows the differ-
ent formal conditions to be fulfilled for a fixation f t to be
assigned to the respective category:

O0 : (‖vts‖ ≤ v0) ∧ (‖vtr‖ ≤ v0) ∧ (qts
= qtr

) (6)

Oc : (‖vts‖ ≤ v0) ∧ (‖vtr‖ ≤ v0) ∧ (qts
6= qtr

) (7)

P : (‖vts‖ > v0) ∧ (
〈
vts ,ptr

− pts

〉
> 0) (8)

R : (‖vts‖ ≤ v0) ∧ (‖vtr‖ > v0) (9)

N : (‖vts‖ > v0) ∧ (
〈
vts ,ptr

− pts

〉
≤ 0) (10)

In equations for P - and N -fixations 〈·〉 denotes the standard
scalar product. A threshold value v0 specifies when a fixa-
tion is considered as being on an object. In our study v0 was
set to half the object’s dimension plus an additional constant
of two pixels in order to accommodate bad eye tracking and
gesture recognition results.

If the object state changes multiple times during one fix-
ation the most recent object state is considered for classi-
fication. Thus, a O0-fixation can change into a Oc- or a
R-fixation and a N -fixation into a P -fixation.

We classify a fixation as proactive if it belongs to category
P . If f t is a N -fixation and (qts

= qtr
) it is also classified

as a proactive fixation, since the fixation will eventually be
categorized as a P -fixation. Due to the same reason O0-
and Oc-fixations are classified as proactive during selection
and as reactive during manipulation phase. R-fixations are
always classified as reactive.

A fixation is considered as being goal-directed if the gaze
position f t lies within one of the target areas, hence

(f t, {0, 1}) ∩ Gt 6= ∅ (11)
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Figure 10: Relations between fixations and object
states.

where Gt is the set of all target states at time t which are
relevant for successfully completing the task. If no objects
are selected at time t then Gt = Gsel ∪ Gmove ∪ Gdesel. After
object selection the set of relevant target states reduces to
Gt+1 = Gmove ∪ Gdesel. If condition (11) is not fulfilled f t is
action-directed.

3.4 Inference of user intention
Having Ft and Bt, we can estimate the user’s intention

and the probability of future system states. In this section
we describe how estimates for the next state Qts+1 and for
the next goal qg ∈ Gts can be calculated from a proactive
fixation. Reactive fixations are not considered for intention
estimation, since they do not convey information about po-
tential future system states. However, they might be useful
for detecting unexperienced users as denoted in 3.1.

During selection phase the next state and the next goal
can be estimated from goal-directed fixations, namely O0- or
Oc-fixations. The next state or goal is q̂ts+1 = q̂g = (pts

, 1)
of the fixated object. During the manipulation phase, goal-
and action-directed fixations must be treated separately.

goal-directed proactive fixation: bt = (goal, proactive)
Estimating the next goal is trivial, since by definition a

goal-directed proactive fixation directly indicates a target
state. In order to estimate the next state we need to calcu-
late P (Qts+1 | Qts , Fts , Bts). However, using a state transi-
tion matrix is in most cases impossible due to the large state
spaces of Qts+1, Qts and Fts . Therefore we either could ap-
proximate the probability distribution by a parametric dis-
tribution or, as it is sufficient for many applications, only
calculate an estimate q̂ts+1 for the condition expectation of
Qts+1. For goal-directed proactive fixations during the ma-
nipulation phase we first calculate the expected direction of
object movement

v̂ts = f ts
− pts

. (12)

Assuming a linear movement, the next position of the object
should lie somewhere close to the line defined by

pts+1 = pts
+D · v̂ts

‖v̂ts‖
. (13)

In order to use this equation for calculating p̂ts+1, D can
be considered as a random variable with values in R. For
goal-directed proactive fixations we assume D ∝ N (µ, σ).
The parameters of the normal distribution can be estimated
by using

d =

〈
wts+1,

vts

‖vts‖

〉
(14)

for calculating realizations d of D from gaze and object data,
where wts+1 = pts+1−pts

. On our data from the user study

described in 2 we obtained by means of maximum-likelihood
estimation µ = 16.3 and σ = 17.49 for all proactive fixations.

action-directed proactive fixation: bt = (action, proactive)
For estimating the next state from an action-directed proac-

tive fixation we use the same method and distribution for D
as for goal-directed fixations.

The next goal can be estimated by first calculating the
expected movement direction v̂ as in (12). Assuming a lin-
ear movement, the goal should lie somewhere close to or
on the line defined in (13). The next goal can therefore be
estimated by calculating

Gg = argmin
qg∈Gts

](pg − pts
, v̂ts) (15)

obtaining Gg as the set of potential next target states, where
qg = (pq, αq). If Gg contains more than one state, multiple
potential target states in Gts have the same deviation from
the estimated movement direction (e.g. lie on the line de-
fined by (13)).

4. RESULTS AND DISCUSSION
We evaluated our model for two different use cases for the

object manipulation task described in section 2. In the first
case the estimated user intention is to be used for improving
the robustness of an input device. In the second case the
estimated intention is to be used for realizing a proactive
user interface.

In the first case we want to calculate the probability dis-
tribution P (Its |Qts+1, Qts = qts

). It can be used as a-
priori knowledge for Its in order to improve the estimation
obtained from noisy user input by P (Its |Uts). Especially
video-based input devices like the gesture recognition sys-
tem used in this paper can benefit from such a-priori knowl-
edge for the sake of detection, classification and tracking
robustness as well as efficiency.

Since qts
is known, we only need to calculate q̂ts+1. Dur-

ing a selection phase q̂ts+1 determines when an object will
be selected and which of the objects will be selected next.
For all fixations in the selection phase we calculated q̂ts+1

as described in 3.4. 80.7% of the selections were predicted
correctly, for 5 out of 9 participants even 100%. The percent-
age of false positive predictions was 12.3% and was mainly
caused by noise in gaze position measurement. This number
could be reduced by incorporating the duration of a fixation
as an additional feature into Ft, because fixations directly
preceding a selection last significantly longer than other fix-
ations as we described in 2.2.

For evaluation of p̂ts+1 during the manipulation phase we
interpreted the euclidean distance to the actual following
state pts+1 as error. Depending on the participant we mea-
sured averaged errors of 9 pixels (σ = 10 pixels) up to 16
pixels (σ = 12 pixels) over all proactive fixations. The direc-
tion of movement was estimated with a mean deviation of
37.86 degrees from the true movement direction. Although
we do not get perfect estimates, we can take advantage of
them e.g. for improving the efficiency of detection or track-
ing processes in vision-based input devices by restricting the
search space.

In the second use case, we estimated the next goal the
user wants the system to take. This information also could
be used for improving the robustness of an input device as
in the first use case, but it also allows for the design of new
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gaze-based interaction techniques. For the task considered
here, the estimated target state q̂g ∈ Gg could for example
automatically be taken by the system without requiring the
user to perform the whole manipulative movement. Espe-
cially when working at large screens such techniques could
reduce physical fatigue induced by wide ranging hand move-
ments.

Estimating the next goal during the selection phase is ac-
tually the same as in the first use case, since the next target
state at the same time is the next state, namely the se-
lection. During manipulation, however, many intermediate
steps can be taken by the object before reaching its target
state. Additionally action- and goal-directed gaze behav-
ior needs to be treated differently as described in 3.4. With
goal-directed fixations we obtained as expected 100% correct
estimations due to the trivial task with only one target area
and the definition of goal-directed fixations. For evaluating
the accuracy of the estimated movement direction v̂ts , we
calculated the reference vector wg = pg − pts

which is the
difference between the actual target state qg = (pg, 0) of an
object in the target area and its state at the start of a fixa-
tion ts. The mean absolute difference between v̂ts and wg

was 21.77 degrees over all proactive fixations. By incorpo-
rating additional information, e.g. the movement direction
of the hand or multiple fixations, the estimation could be
further improved.

The promising results presented above show, that the pro-
posed model provides a good basis for integrating natural
gaze behavior in a multimodal context, at least for the sim-
ple but very common task considered here. The formulation
of the model and the methods for classification of gaze be-
havior in section 3, however, are kept general and therefore
can be applied easily to other tasks.

5. CONCLUSION
The presented user study revealed, as expected, that nat-

ural gaze behavior during an object manipulation task is
highly complex and is determined by different parameters.
Many influences can be explained by the proposed model,
which describes fundamental causal relations between nat-
ural gaze behavior and the current task. By categorizing
fixations into proactive and reactive as well as goal- and
action-directed ones, the gaze data is interpreted in the con-
text of interaction and can be handled on a higher level of
abstraction for estimating the user’s intention.

Since most information about future system states is con-
veyed by proactive fixations, multimodal interaction tech-
niques using gaze should be designed in a way, which en-
courages usage of proactive gaze behavior. Our results in-
dicate, that conformity of system reactions with the user’s
mental model seems to have a significant influence on the
proactivity of gaze movements. Therefore using metaphors
well known by the user for interaction techniques could be
beneficial not only for reducing the training time, but also
for increasing the amount of proactive gaze behavior. This
however is subject to future work, as well as improvements
to the accuracy of eye-tracking systems which has a signif-
icant influence on the performance of intention recognition.
Another interesting question for future research is to iden-
tify what happens to natural gaze behavior if gaze is not
only used for visual perception but also for interaction as il-
lustrated in the second use case above. Finally the proposed
model needs to be further evaluated for more complex tasks

and influence of uncertainty and latency of video-based in-
put devices on natural gaze behavior should be investigated
systematically.
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