
Using HLA for factory simulation

Marco Schumann, Eberhard Bluemel
Fraunhofer Institute for Factory Operation and Automation

Sandtorstrasse 22
39106 Magdeburg, Germany

+49-391-4090-158, +49-391-4090-110
schuma@iff.fhg.de, bluemel@iff.fhg.de

Thomas Schulze, Steffen Strassburger, Klaus-Christoph Ritter
Department of Simulation and Graphics in the Department of Computer Science

 „Otto-von-Guericke“ University, Magdeburg
Universitätsplatz 2

39106 Magdeburg, Germany
+49-391-67-12017

tom@isg.cs.uni-magdeburg.de, strassbu@isg.cs.uni-magdeburg.de, kcritter@isg.cs.uni-magdeburg.de

Keywords:
Factory simulation, SLX, Simulation tools, Visualization

ABSTRACT: Starting with a short analysis of the current situation in the field of factory simulation and an overview
of current tendencies in the manufacturing area, the article introduces the work carried out in order to integrate HLA
and existing simulation tools. It presents the simulation tool SLX and the visualization tool Skopeo, which were both
utilized to perform a prototype federation of a manufacturing plant. The article is concluded by looking at further
chances for HLA to also become a standard in the field of factory simulation.

1 Current situation in factory simulation

Simulation has become an important tool for planning
the complex process structure of a company's business.
Whereas during the last few years simulation was mainly
focused on a few key activities of a company’s overall
business it recently became more important to
consequently involve simulation in all parts of a factory’s
life cycle.

In the design stage, simulation can be used to determine
capacities of certain production facilities as well as to
estimate efficiency and throughput of the future factory.
The same simulation model might be used to evaluate
different control strategies in subsequent stages. Also,
the simulation model can support the training of
personnel before the factory is even finished.

During the last few decades a variety of simulation tools
has been developed. Most of them include model
elements specialized in a certain area of application.
Each simulation system usually has its own paradigm of
how to map the real world's objects into the simulation
model. Each product comes with its own version of a
model editor and has its own way of presenting the

simulation results ranging from simple text-based output
to sophisticated three-dimensional graphical scenes.

Nevertheless, the great amount of time spent on
acquiring input data, programming the simulation model,
and the considerable effort of adequately visualizing the
simulation results have been often criticized in the past.
They conflict with current tendencies in the
manufacturing industry. It is therefore necessary to
research new concepts of factory simulation.

2 Tendencies within manufacturing

The shortening of a product's life cycle, the rising variety
of customized products, as well as increased competition
in the market force companies to transfer new
technologies into production more rapidly in order to
gain advantages over their competitors. This requires
simulation models not only to be created cheaper and
with less time but also to be easier to adapt. These
improvements can be accomplished by increasing the
reusability of simulation models, or at least parts of it.

Often plants of a certain manufacturing branch consists
of similar components. For example, there are several
car manufacturing plants in Germany but only very few
manufacturer of paint shop equipment. Therefore, the

same hardware might even be installed in factories that
produce cars of different brands. Suppliers of such
equipment could take advantage of that fact and could
already offer simulation models for their components.
These models could be used by the customers to be
included in their overall factory simulation model. That
opens up a new market for the supplier and is also an
advantage for the customer since it decreases
development time for simulations.

Another tendency in the manufacturing industry is the
globalization of the market. Complex products are very
seldom manufactured by only one company. Usually
components are produced by different companies and
assembled at a different location. Capacities of ware-
houses are reduced and often parts are delivered "just-in-
time" as needed, which increases the dependency
between companies. Therefore, it will become more
important in the future for a simulation study to also
include the simulation models of the company’s
suppliers. This raises the need for interoperability of
simulation models to solve logistical problems.

Interoperability is also important because it increases
flexibility of the simulation model. In case of an
alteration of co-operation between companies, it is easier
to adapt the simulation model to the new circumstances.
If all simulation models adhere to the same standard, the
component that simulates the old partner can be replaced
by a new one. Interoperability is especially important
because different industry partners use different
simulation tools according to which tool is most feasible
for their purpose. Reusability of their models can only be
achieved by setting up a standardized interface through
which interoperability is granted.

Due to the increased graphical capabilities of today’s
computers, there is also a new field of application for
computer simulation: user training. Although many
complex devices are computer-controlled, some of them
still need to be supervised by humans. Incorrect
operation can often cause substantial damage. For this
reason, simulation tools are already in use, for instance,
to qualify railroad engineers to operate Germany’s high
speed trains or for training drivers to operate harvesting
machines. These tools, however, have the restriction that
the teacher and trainee have to physically be at the same
location. Also, collaborative work is not simulated
adequately. Here, distributed simulation will become
more important.

A very powerful application of distributed simulation is
also the training of personnel for coordinating control
stations within a factory. For training purposes, the

trainee might use a one-by-one replica of the control
panel whereas the real machines might be transparently
replaced with a simulation model running on a different
computer. Once the trainee is experienced enough,
he/she will not actually control a simulation model but
instead the real machine. This provides a high level of
reality within the simulation.

To conclude the section above, it can be said that the
current problems that simulation faces can be improved
by consequently applying the concepts of reusability,
interoperability, and distributed simulation to factory
simulation. Hence, HLA has a promising basis to
become an accepted standard within the field of factory
simulation, too.

3 Towards an HLA based factory simulation

As mentioned in the first section, most factory simulation
developers prefer to use specialized simulation tools
rather than programming languages like C++. By being
convinced to move to C++, developers could use the
advantages of HLA immediately, but it would also imply
the loss of an often highly specialized simulation and
modeling environment. In most cases, this is not
acceptable, therefore, propagation of HLA within the
field of factory simulation will only be successful, if there
are appropriate simulation tools available. Currently,
this is not the case.

For this reason, research work focused on opportunities
for the integration of classical stand-alone simulation
tools into the High Level Architecture. In general,
adapting a simulation tool to be HLA-compliant will
require modifications of the source code as well as inside
knowledge of the software. In particular, it is necessary
to have access to the internal event list and detailed
knowledge of the internal representation of data types
within the simulation tool. For this reason, it can only be
accomplished through a close co-operation with the
software provider.

The simulation tool SLX has been selected as a platform
to gain first experiences with HLA-based factory
simulation. Reasons for this decision were the
availability of the required inside information and the
availability of a library for factory simulation. As a first
step, SLX needed to be integrated into HLA. This was
accomplished by Steffen Strassburger [1]. The results of
his work will be described in chapter 4.

Another part of the research focused on adapting a
visualization tool. For this purpose the Java-based tool
Skopeo developed by K.C. Ritter [2] has been chosen.

The major advantage of this tool is the availability of its
source code since it was developed at the University of
Magdeburg. A description of HLA-Skopeo is given in
chapter 5.

4 SLX

4.1 What is SLX?

SLX is a discrete event simulation tool for Windows
95/NT operating systems developed by the Wolverine
Software Corporation. [3] SLX is a classical simulation
language-oriented stand-alone tool that includes a pro-
gramming language with a C-like syntax. The program
has an open software architecture. It has a library inter-
face which allows to call functions in any standard
Windows DLL from SLX. This is one of the basic
prerequisites for connecting a commercial tool like
SLX to the RTI without modifying the actual
source code of the tool. In addition to this
interface, SLX also offers the extraordinary feature
of writing DLL header files. This feature allows
the user to take a look into the inside of SLX. The
DLL header file discloses the internal structure of
SLX objects with their attributes and therefore,
facilitates the external modification of SLX objects
(e.g. from a DLL).

Although the facts mentioned above identify SLX
as a very open tool, not all of the requirements that
the HLA interface specification imposes can be
fulfilled at the first view. It is not possible to
directly create instances of C++-objects inside
SLX, which means it is not possible to call the
methods of the RTI ambassador object directly
from SLX.
It is furthermore not possible to directly implement
the federate ambassador object with its callback methods
inside SLX.

Another fact to consider is the difference between SLX
and C/C++ data types. Although SLX has a C-like
syntax, it has a different data type concept. This concept
is meant to prevent SLX users from some of the pitfalls
of C (e.g. freeing memory although it is still being
referenced, exceeding the boundaries of arrays, strict type
checking, ...). The entire string concept is completely
different from the C approach: SLX internally keeps
track of the current and maximum length of strings and
does not use the zero-termination of C.

4.2 Integrating SLX into HLA

4.2.1 The Wrapper Solution

The solution to all problems mentioned above is very
straight forward: A wrapper library (Figure 1) can be
used to provide access to the RTI ambassador methods
from SLX. This is accomplished by creating a normal C-
function for each function that needs to be accessed from
SLX.

The library itself has been developed using Microsoft
Visual C++ 5.0 and the RTI libraries from the RTI 1.0.3
distribution for Windows NT 4.0.

These wrapper functions perform all necessary type
conversions between SLX data types and C/C++ type.

The functions also simplify the whole process of
programming with the RTI: the entire RTI-ID handling
(creating attribute- and parameter-handle-pair-value sets,
obtaining RTI-handles for class and attribute names, etc.)
is handled internally.

The wrapper functions have direct access to the objects
simulated in SLX. They internally keep track of the
mapping between SLX objects and HLA objects and
interactions using mapping tables. It is necessary to pass
a pointer only once to the memory areas associated with
the SLX objects during runtime. The functions can
automatically detect the data types of SLX object
attributes. Therefore the process of generating updates or
sending interactions is very simple for the end-user:
He/she only issues an „RTI_UpdateAttributeValue"
function call and passes the object ID and all names of all
parameters that have to be updated.

Runtime Infrastructure (RTI)

RTI Ambassador

Wrapper
C / C++

RTI Library
C++

SLX-Model

Simulation ObjectsSimulation Objects

......

SLX_StateObjectSLX_StateObject

Function CallsFunction Calls

Federate Ambassador

Tables

Wrapper-
Functions

Figure 1: Wrapper library for SLX

The second major task of the wrapper
library, in addition to providing access to
the RTI ambassador methods, is to
implement the federate ambassador. The
federate ambassador is responsible for
receiving all kind of data from the RTI via
callback invocations. This reception
process is also handled internally by the
wrapper library. Since the wrapper library
cannot notify SLX that something has
happened (SLX does not allow any user-
defined callback functions), a mailbox-
principle is used: Certain state information
that the federate ambassador receives is
stored in an SLX object with a fixed
structure. The SLX model can then access
this object to check the things that have
changed on the RTI side. This is quite a
suitable solution and not a very unusual
approach.

In addition to this static object our solution also
introduces dynamic structures for the actual objects that
are being modeled. If a simulation has subscribed to
certain object classes and interactions, a mapping onto
associated SLX objects is performed. If an update is
received, it can be written directly to the appropriate SLX
memory area. The same mechanism applies for
interactions.

The problem with this approach is that the wrapper
library does not know the structure of these SLX objects
at compilation time. The DLL has to therefore calculate
the address of each object attribute at runtime. Certain
conventions have to be considered in order to do so.

With this dynamic approach we were thus able to build a
model-independent wrapper library. This means that
even if the simulation model inside SLX changes, no
changes to the wrapper library are necessary.

4.2.2 Synchronization Issues

The HLA programming paradigm expects a federate to
tick the RTI to trigger the reception of any callback
invocations by calling the tick-method of the RTI
ambassador. This should usually be done between
requesting a time advance and waiting for the according
time advance grant. As a simplification for the SLX user
this is handled internally by the wrapper library. The
SLX user simply requests to advance to the next logical
event time and then (after a while) receives a time
advance grant. If an external event has to be processed,
the grant time may be smaller than the actual time

advance that had been requested. The user is then
expected to check the static and dynamic SLX objects for
any data or events that need to be processed. After that
the normal simulation execution can proceed; possibly by
issuing the same time advance request again.

To ensure the behavior outlined above, the according
functions of the wrapper library for requesting the time
advances work synchronously, i.e. the wrapper library
keeps control until a time advance grant is received.
This is different from the original RTI ambassador
functions which work asynchronously.

4.2.3 The Users Point of View

Everything stated up to now has been related to the
implementation side of the solution for SLX. Since the
primary goal of our solution was to provide the end-user
with an easy access to the HLA functionality, this section
elaborates on the user’s point of view.

The actual modeling paradigm under SLX is not effected
by being part of a distributed simulation. Some minor
things have to be taken care of.

The most important change probably relates to the
synchronization with other federates: a special
synchronization thread has to be added to the model (see
Figure 2). The synchronization thread should have the
lowest priority in the model to ensure that at a certain
logical simulation time all actual „simulation" events

forever {
Get next event time;
Request time advance;
Advance granted time;
Process Interactions {

...
}
Process Updates{

...
}

}

HLA synchronization

SLX Federate(s)RTI Init;

initial {
RTI_RegisterObject;

}

actions {
...
RTI_UpdateAttributeValues;
...
RTI_SendInteraction;

}

final {
RTI_DeleteObject;

}

Simulated objects

outgoingincoming

Figure 2: The User’s Point of View

have been processed before the
time stamp of the next event is
determined. This way no event can
be scheduled with a time stamp
lower than the one for which the
request is issued.

The other change to the modeling
paradigm relates to the
classification of SLX objects. The
following types can be identified:

• Normal SLX objects:
 They are of no interest to the

federation.

• Public objects:
 They are of interest to other

federates and need to be
published and updated.

• Local copies of remote objects:
 They are updated from the outside.

The user has to take care to
integrate them into his/her
model.

In the second case the initial and
final properties (which can be
compared to constructors and
destructors in C++) of the SLX
objects have to be enhanced by only
two function calls (see Figure 2).
The only major change applies to
their action property: Each time a
change to an attribute is made,
other federates have to be informed by sending an update.

The third scenario is slightly more complicated: each
time an object which matches the federate’s subscription
interests is detected, the federate ambassador notifies
SLX about the existence of an object. The SLX model
then has to create a local copy of that object (a ghost) and
register it with the wrapper library. All subsequent
updates are stored in this object instance. The SLX
model has to react appropriately to every change. This
can be done by using the SLX mechanism of control
variables.

4.2.4 Possible Improvements

The current version of the wrapper library represents a
simulation model independent HLA-connection for the
simulation tool SLX. The solution provides access to a
basic set of HLA functionality from SLX. It comes with
an easy to use interface for utilizing HLA without having
to care about the complicated programming work with

the RTI. Certain higher techniques of HLA still need to
be implemented. This mostly relates to the services of
the HLA data distribution management, which had not
been implemented in the current versions of the RTI
provided by the DMSO. RTI support for this service
group is announced for later this year and will then be
incorporated into future versions of the wrapper library
for SLX [4].

The next step in our development efforts will be to
implement the concept of ownership transfer into SLX by
providing access to the methods of the Ownership
Management service group of the HLA Interface
Specification.

Other areas of research are the investigation of different
time management regimes. The current version uses a
conservative approach with the possibility of using zero
lookahead.

Figure 3: Screenshot of a 3D- and 2-Skopeo visualization

5 Visualizing the simulation results

As mentioned above, most factory simulations are
currently developed with specialized simulation tools that
usually provide functionality for representing the
simulation results. Executing distributed simulations,
however, requires a tool that can not only visualize its
own data but also objects controlled by other simulations.

In general, there are two approaches of computer
animation: active animation and passive animation. In a
passive animation, the visualization tool only collects
data and ensures events to be visualized in the proper
order. There is no user interaction possible. In an active
animation, the user can interact with the visualized
objects. The latter is much more complicated to
implement and to handle, therefore, the current imple-
mentation of the visualized tool uses passive animation.

During the research for an appropriate visualization tool,
it turned out that the easiest approach was to adapt the
already exiting Java-based tool Skopeo to comply with
the HLA standard. Skopeo was developed by K.C. Ritter
- a Ph.D. student at the University of Magdeburg. It had
the best premises because its source code was available,
and its Java-based implementation already allowed for a
utilization in a networking environment widely
independent from a given hardware platform.

The program runs as a stand-alone application as well as
an applet within a web browser. Once the required data
for a post-run scenario is downloaded from the Skopeo
server, the animation completely runs on the client’s
machine. The Skopeo kernel does not distinguish
between real-time data, such as needed for an online
visualization, and trace data, such as needed for a post-
run animation. Both kinds of data are inserted into the
kernel’s data basis by a thread synchronized with the real
time clock.

By default, Skopeo displays the data as a two-
dimensional graph within a window outside of the actual
HTML page. The window size may be changed
according to the computer’s performance. In addition to
the default display, Skopeo can communicate with other
applications which are part of the same HTML page.
This feature has been used to also allow the data to be
displayed with a VRML browser (Figure 3).

In order to allow for a communication between all
federates a workgroup concept has been established. A
deamon running on the Skopeo host server receives data
from all connected web browsers and can also sent data
to each web browser, if desired, regarding the safety

restriction implied by Java. This deamon has been
modified to act as an HLA federate.

A major point to discuss is the time management.
Basically, there would have been three alternatives:

• always up to date:
 Within discrete event simulation time progresses in

discrete steps. An animation trying to update the
scene will immediately appear jerky in most cases.

• floating mean value:
 An average time advance between two time steps is

dynamically calculated. The disadvantage of this
technique is the varying speed of animation.

• buffered:
 Any data to be visualized is recorded in a buffer. The

animation federate reads from the buffer at a speed
determined by the user. In case the user sets the
speed too high, i.e. faster than the simulation clock
progresses, no data is lost, but the animation is
slowed down and becomes jerky again.

For the implementation of Skopeo presented here,
buffered animation has been selected. It allows for a time
continuous animation. In addition, all displayed data can
be recorded, and the speed of the animation can be
changed dynamically by the user without slowing down
the entire federation.

After joining the federation, Skopeo subscribes to all
object attributes and interactions that are of interest for
the visualization. Currently, Skopeo does not publish
any attributes or interactions. In order to display the
simulation objects at the proper locations, at least logical
locations have to be defined in the SOM. In order to
minimize the traffic between federates the detailed
geometric representation of the simulation objects has
been defined separately in 2D- and 3D-geometric data
file. When the federation is executed, only the ID’s of
locations are transferred.

The next chapter introduces a small example federation
that uses SLX and Skopeo federates. Another federation
using SLX and Skopeo is introduced in [5].

6 Example Federation

A small sample federation has been established in order
to test both tools. The federation is designed to consist of
three federates maximum.

The simulation federate simulates a material flow
through a small manufacturing area. Parts enter the
virtual factory through the source and have to be
processed sequentially by machines of three different

types. There is one machine of type 1 and 3, but two
machines of type 2 so that parts may be handled
alternatively by either machine 2.1 or 2.2. All machines
are connected through conveyor belts. Parts leave the
system after they have been processed by machine 3 (see
Figure 4). The simulation federate is time-constrained as
well as time-regulating.

Machine 1Source DrainMachine 3

Machine 2.2

Machine 2.1

Figure 4: Material flow to be simulated

A second federate is used to simulate a control station
which is intended to serve for training purposes. From
time to time, a machine simulated by the first federate
may fail. This is noticed by the control station federate
which brings up a message to the user. In a training
scenario, the user must then make arrangements for the
machine’s repair. He has to confirm when the machine is
repaired and ready for operation. This will cause an
interaction to be sent which is evaluated by the
simulation federate that will then include that machine in
the simulation again. The control station federate runs
real-time proportional and it is time-regulating. The
simulation and the control station
federate, both are implemented using
the SLX-RTI library.

The third federate is the visualization
federate, Skopeo. It is used to
visualize the simulation (Figure 5).

Although this federation is quite
simple, it demonstrates that existing
simulation tools can be adapted to be
HLA compliant. Thus, it also
demonstrated that HLA can be used in
the field of factory simulation.

7 Conclusion and Outlook

As pointed out at the beginning of this
article, current trends within the field
of manufacturing will require
simulation models to be developed
more rapidly, and the market
globalization will raise a need for
increased interoperability of simulation
models. HLA is a feasible concept to
also be applied in the field of factory

simulation.

Whereas simulations in the US military are often
developed using C/C++, this is not the case in the field of
factory simulation. Thus, a successful introduction of
HLA in the field of factory simulation is closely related to
the availability of HLA-compliant factory simulation
tools. As demonstrated in this article and examined
further in detail in [5], existing simulation tools can be
extended to support HLA. However, this requires a
substantial initial amount of work as well as inside
knowledge of the simulation tool. In most cases it can
only be accomplished by the supplier of the software.

Designing HLA-compliant simulations requires a certain
amount of additional work, which is rewarded by the
advantages of interoperability and reusability. These
advantages, however, only apply when there already is a
wide basis of simulation modules developed that use
HLA. In contrast to military demands, there are no
regulations to utilize the HLA in the field of factory
simulation. This is the reason why the introductory time
for HLA will be much longer than it is in the field of
military simulation.

Also, it can be expected that some companies have no
interest in developing interoperable simulation

Figure 5: A screen shot from the Skopeo visualization

components. Big companies often develop their own
software packages and require their customers to use
their software. This creates a certain level of dependence
which is needed to bind a customer to that company. To
summarize, it can be stated that the HLA can be usefully
applied in the field of factory simulation, but because of
the different background and regulations, it will require
more time.

Despite these facts the Fraunhofer Institute and the
University of Magdeburg will continue to research the
advantages of the HLA architecture. Research at the
Fraunhofer institute will concentrate on developing new
concepts and software that exploits the advantages of
HLA for the training of multiple users at multiple sides.
Here HLA opens new possibilities of distributed user
training – certainly a worthy topic of another paper.

References

[1] Strassburger, S.; Klein, U.: ”Integration des Simu-
lators SLX in die High Level Architecture” , In: [8]
pp. 32-40

[2] Ritter, K. C.: „Skopeo - Animation“,
http://simos2.cs.uni-magdeburg.de/skopeo/

[3] Henriksen, J. O.: “An introduction to SLX”. In:
“Proceedings of the 1997 Winter Simulation
Conference”, eds. Andradoittir, S; Heally, K. J.;
D.H. Withers, and B.L. Nelson, pp.559-566

[4] Strassburger, S.: The SLX with HLA Homepage.
Available online under http://www.cs.uni-
magdeburg.de/~strassbu/SLX_with_HLA.html

[5] Menzler, H.-P.; Klein, U.: „Distributed Traffic
Simulation based on the High Level Architecture“,
Paper 98F-SIW-016 presented at the Simulation
Interoperability Workshop Fall 1998, Orlando,
Florida, 1998.

[6] Schulze, T.; Klein, U.; Strassburger, S.; Ritter,
K.C.; Bluemel, E.; Schumann, M.: „HLA basierte
verteilte Simulationsmodelle fuer die Fertigung“,
In: [8], pp. 19-31.

[7] Schumann, M.: „Adaptive Generierung von Simu-
lationsmodellen auf Grundlage von SLX“, Master’s
thesis, department of computer science, University
of Magdeburg, 1998.

[8] Lorenz, P.; Preim, B.: „Simulation und Visualisie-
rung ‘98“, Society for Computer Simulation Inter-
national, Ghent/Belgium, 1998.

Author Biographies

EBERHARD BLUEMEL is the Department manager of
the Department for Planning and Visualization
Techniques at the Fraunhofer Institute Magdeburg. He
holds a Ph.D. in natural science from the University of
Magdeburg. His research fields include discrete
optimization, operations research, logistics, simulation,
and Virtual Reality.

KLAUS-CHRISTOPH RITTER holds a diploma in
computer science and works as a Ph.D. student at the In-
stitute for Simulation and Graphics within the Faculty for
Computer Science of the Otto-von-Guericke University of
Magdeburg. He is using Java and other W3 technologies
in combination with simulation environments to visualize
simulation results.

THOMAS SCHULZE is an Associate Professor at the
Department for Computer Sciences of the Otto-von-
Guericke-University Magdeburg. His research interests
include modeling methodology, public systems modeling,
traffic simulation, and distributed simulation with HLA.
He is an active member in the ASIM, an organization for
computer simulation in Gemany.

MARCO SCHUMANN is an employee at the
Fraunhofer Institute Magdeburg. He holds a Master’s
degree in Computer Science from the Otto-von-Guericke-
University Magdeburg. His experiences in developing
simulations and applications for the Internet include a
one-year-stay at the University of Wisconsin, Stevens
Point. His main research interest lies in application of
simulation methods in the field of factory planning and
optimization.

STEFFEN STRASSBURGER is a Ph.D. student at the
Department for Computer Science of the Otto-von-
Guericke-University Magdeburg. He holds a Master’s
degree in computer science from the same university.
His experience with inter-networking and simulation
includes a one-year-stay at the University of Wisconsin,
Stevens Point. His main research interest lies in
distributed simulation and High Level Architecture.

