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Abstract

The majority of processors produced nowadays are targeted at dedicated computing
systems that execute either a single application or a small set of previously known
applications. In contrast to generic computing systems, these dedicated systems
have very specific run-time support requirements, which are not properly fulfilled
by general-purpose operating systems. The impossibility to anticipate which appli-
cations will be executed results in generic operating systems being forced to provide
an extensive set of services targeted at making all resources available to all applica-
tions. The standardization of such generic system services locked general-purpose
operating system inside a hard shell that prevents innovations from reaching ap-
plications. With regard to dedicated computing, these generic operating system
provide uncountable services that are not used by individual applications, and yet
fail to fulfill application demands.

This dissertation proposes a novel strategy to systematically construct
application-oriented operating systems as arrangements of adaptable software com-
ponents. Instead of standard compliance and hardware properties, the features
offered by such a system emanate directly from application requirements, thus
enabling it to be customized according to the needs of particular applications.
Such application-tailored system instances are produced by selecting, configuring,
and composing proper components. Even if applications refrain from the new
application-oriented services in benefit of standard interfaces, most dedicated ap-
plications require such a small subset of those interfaces that mapping them to new
system services—instead of porting their traditional implementations—is usually
possible.

The Application-Oriented System Design multiparadigm design method pro-
posed in this dissertation guides domain decomposition towards families of scenario-
independent system abstractions that can be reused to build a variety of run-time
support systems. Environmental dependencies observed during domain decompo-
sition are separately modeled as scenario aspects, which can be transparently ap-
plied to system abstractions with the aid of scenario adapters. The assembling of
such software components to produce a functioning system is assisted by component
frameworks, which capture elements of reusable software architecture identified in
the course of domain engineering. Usability is improved by inflated interfaces, which
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export whole families of abstractions to users as if they were single macrocompo-
nents, passing the responsibility of selecting appropriate family members to the
system.

The concepts and techniques introduced by application-oriented system design
were verified during the development of Epos (Embedded Parallel Operating Sys-
tem), an application-oriented operating system for the domain of high-performance
dedicated computing. The prototype of Epos implemented for the Snow cluster
of workstations consists of a repository of software components that encapsulate
system abstractions and scenario aspects, a statically metaprogrammed component
framework, and a set of tools that is able to automatically select and configure
components in order to generate application-oriented system instances.

Keywords: application-oriented operating system, parallel and embedded sys-
tems, software components, domain engineering, object-oriented design, family-
based design, generative programming, aspect-oriented programming, static
metaprogramming.
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Zusammenfassung

Die Mehrzahl der heutzutage produzierten Prozessoren, wird in Spezialsystemen
eingesetzt, die einer einzelnen oder von einer kleinen Zahl vorher bekannter Anwen-
dungen gewidmet sind. Der Betrieb solcher Spezialsysteme unterliegt besonderen
Anforderungen, die Allzweckbetriebssysteme, wie sie auf Arbeitsplatzrechnern zum
Einsatz kommen, in der Regel nicht erfüllen können. Da es vorab nicht möglich
ist anzugeben, welche Anwendungen ausgeführt werden sollen, bieten Allzweckbe-
triebssysteme potentiellen Anwendungen vorsichtshalber eine sehr große Menge von
Diensten an. Die Standardisierung solcher allgemeinen Dienste schließt ein Allzweck-
betriebssystem in starre Schranken ein und erschwert die Nutzbarmachung innova-
tiver Konzepte für die Anwendung. Das Problem von Allzweckbetriebssystemen für
Spezialrechensysteme ist, dass einerseits unzählige Dienste angeboten werden, die
die Anwendungen gar nicht benötigen, andererseits aber spezielle Anforderungen
nicht erfüllt werden.

In dieser Arbeit wird ein neuer Ansatz dargelegt, um aus anpassungsfähigen
Softwarebausteinen systematisch anwendungsorientierte Betriebssysteme zu kon-
struieren. Anstatt die Eigenschaften eines Systems aus Standardfunktionen und
Hardwareeigenschaften abzuleiten, bestimmen die Anforderungen der Anwendun-
gen die konkrete Systemausprägung. Dies vereinfacht die Konstruktion angepasster
Systeme. Solche anwendungsspezifischen Systeme werden durch Auswahl, Konfigu-
ration und Integration geeigneter Komponenten gebildet. Dieser Ansatz ist sinnvoll
selbst dann, wenn Anwendungen neue Spezialisierungen zunächst nicht nutzen und
stattdessen ausschließlich auf Standardfunktionen zurückgreifen. Die Mehrzahl der
Spezialsysteme benutzt nur eine Teilmenge der Standardfunktionen, so dass es ver-
gleichsweise einfach ist, diese Teilmenge auf neue Systemdienste abzubilden, ohne
dabei alle Standardfunktionen zu portieren.

Die in dieser Arbeit diskutierte anwendungsorientierte Entwurfsmethodik basiert
auf der Zerlegung eines Anwendungsgebietes in eine Menge von Familien szenario-
unabhängiger Systemabstraktionen, die je nach Bedarf zur Konstruktion eines
angepassten Laufzeitsystems wiederverwendet werden. Umgebungsabhängigkeiten,
die während der Zerlegung auftreten, werden getrennt als sogenannte Szenario-
Aspekte modelliert und wirken eigenständig in Form von Szenario-Adaptern auf
die Systemabstraktionen ein. Die Spezialisierung und Integration solcher Soft-
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warekomponenten zu einem funktionsfähigen Gesamtsystem wird durch Komponen-
tengerüste ergänzt, die die im Verlauf der Zerlegung eines Anwendungsgebietes iden-
tifizierten, wiederverwendbaren Elemente der Software-Architektur erfassen. Die
Anwendbarkeit der Komponenten wird weiterhin durch die Bereitstellung einer um-
fassenden Schnittstelle verbessert. Jede dieser umfassenden Schnittstellen exportiert
eine ganze Familie von Abstraktionen und wirkt dadurch als eine Art Makrokom-
ponente. Daraus folgt, dass die Auswahl geeigneter Familienmitglieder dem System
überlassen wird.

Die Konzepte und Techniken, die durch die anwendungsorientierte Entwurf-
smethodik eingeführt wurden, wurden bei der Entwicklung von Epos (Embed-
ded Parallel Operating System), einem anwendungsorientierten Betriebssystem für
das Gebiet des spezialisierten Hochleistungsrechnens, überprüft. Der Prototyp
von Epos wurde auf einem Cluster von Arbeitsplatzrechnern implementiert und
besteht aus einer Sammlung von Softwarekomponenten, aus einem statisch meta-
programmierten Komponentengerüst und schließlich einem Satz von Werkzeugen
zur automatischen Auswahl, Konfiguration und Erzeugung anwendungsorientierter
Systeminstanzen.

Schlagwörter: anwendungsorientierte Betriebssysteme, parallele und eingebet-
tete Systeme, Softwarekomponenten, Domain Engineering, objektorientierter En-
twurf, familienbasierter Entwurf, generative Programmierung, Aspekt-orientierte
Programmierung, statische Metaprogrammierung.
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Chapter 1

Introduction

This chapter aims at establishing the context in which this dissertation has been
written by briefly introducing its theme, application-oriented operating systems.
Subsequently, the motivation and the goals defined for the scientific investigation
that culminated in dissertation are presented. The main contributions of this work
are then summarized, followed by an overview of the forthcoming chapters.

1.1 Prologue

A computational system, as the term suggests, exists to perform computations. Any
resource used for something else is wasted. Nevertheless, translating a complex
computation into boolean and arithmetic operations, regardless of sophisticated
compiling techniques, is not always convenient. Abstracting physical resources into
more easily usable logical entities has been accepted as an adequate alternative since
the early days of electronic computing, thus yielding a layer of software between
applications and hardware that we call the operating system.

Nowadays, when one thinks about an operating system, what usually comes to
mind is an all-purpose operating system running on a workstation. These generic
computing systems, however, count for just a small fraction of the total: according to
Tennenhouse [Ten00], roughly 2% of the 8 billion microprocessors manufactured in
the year 2000 found their way into a workstation, while dedicated systems, especially
embedded ones, took the larger share.

Dedicated computing systems are designed aiming at specific applications that
are known by the time the system is built. Therefore, delegating the resource man-
agement of such systems to generic operating systems, which are designed to support
virtually any kind of application, would be mostly inadequate. As Anderson [And92]
and Schröder-Preikschat [SP94b] emphasize, the adjectives generic and optimal can-
not be assigned to the same operating system, since each application has particular
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demands concerning run-time support that cannot be fully supplied by a generic sys-
tem. A specialized operating system can explore the proper means to precisely fulfill
the requirements of particular applications, while a generic one is usually fastened
to a compromise of making resources available to all applications.

Parallel computing is tied in with dedicated systems, not only because some par-
allel machines run a restricted set of applications that are known in advance, but
mainly because parallel applications run for long periods in exclusive mode, i.e. they
run alone in the set of nodes that has been assigned to them. Consequently, par-
allel execution environments can be seen as temporarily dedicated systems and can
benefit from specialized run-time support systems just like permanently dedicated
systems do. The time required to reconfigure the operating system in order to fulfill
the requirements of a particular parallel application, even if a full reinitialization is
needed, is easily compensated by the benefits such a system can bring.

Motivated by the large market of dedicated computing, several commodity oper-
ating system developers offer downgraded versions of their products. However, these
patched systems can seldom be considered under software quality metrics other than
performance, for their inflexibility prevents most structural enhancements. This is
mainly a consequence of the no less inflexible standardized application program
interfaces and protocols with which they have to comply. Even if such an oper-
ating system was able to achieve significant improvements internally, standardized
interfaces would probably prevent them from reaching applications [Pik00].

Nevertheless, compared to the interactive, graphic, web-aware applications tra-
ditionally executed on workstations [BDF+97], dedicated applications adhere to a
restricted set of standards. Parallel applications, for instance, usually implement
graphical user interface and parallel computation as separate programs that run
on different platforms. In this scenario, the user interface could be delegated to
an ordinary workstation running a full-fledged operating system, while the parallel
computation would take place on the nodes of a parallel machine supported by a
dedicated operating system. Such an operating system would only need to comply
with standard interfaces effectively used by the application. Furthermore, comply-
ing with standardized interfaces does not necessarily mean porting their traditional
implementations—mapping them to optimized implementations is usually possible.

Unfortunately, most operating systems, including those designed to support
large-scale customization, miss the case for dedicated computing when they asso-
ciate configurable features with hardware aspects and standard compliance, ignoring
further application requirements. Being able to configure the operating system to
benefit from special hardware features is certainly an important design decision,
but hardware-driven optimizations are useless for applications that do not need the
corresponding hardware features.

A customizable operating system that emphasizes application requirements while
defining its configuration mechanisms would be an ideal solution to support dedi-
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cated computing. Such an application-oriented operating system would only include
the functionality effectively needed to support a given application and would deliver
it in a way that is convenient for that application. The advantages of this kind
of system would not be restricted to performance and usability: by properly scal-
ing down the system, one could reduce its inherent complexity, improving software
quality in general and correctness in particular [CMSW94].

However, the degree of scalability necessary to achieve an application-oriented
operating system ruptures with the traditional view of system software architecture,
forcing the operating system to present itself in a variety of architectures. The choice
of a monolithic, µ-kernel-based, or embedded-into-the-application architecture be-
comes conditioned to application requirements. The barrier that usually separates
application and system becomes volatile, with system functionality floating from
one domain to another, or with both domains fusing into a single one [BFM+00].
Consequently, this kind of system calls for sophisticated software engineering tech-
niques.

The guidelines for the development of application-oriented operating systems
began to be established yet in the seventies, along with modular programming.
Dijkstra [Dij68] introduced the ideas of separation of concerns and levels of abstrac-
tion to bypass a monolithic design, while the concept of program families introduced
by Parnas [Par76] called for commonality and variability analysis. Identifying and
modeling commonality across software pieces enabled system designers to capture
common elements in reusable modules, while variability counted for system special-
ization (program family members). Another key contribution was the incremental
system design proposed by Habermann, Flon, and Cooprider [HFC76]. A system
designed following that proposal relies on a “minimal subset of system functions”
to define a platform of fundamental abstractions that can be used to implement
“minimal system extensions”. These extensions take place successively, with each
new level being a new minimal basis for higher-level system extensions, and the
application being the topmost extension.

Nevertheless, the modular programming from the seventies failed to deliver the
reusability level needed to achieve comprehensive program families—the full reuse of
modules implemented in the realm of old family members for the construction of new
ones was impracticable with the software engineering tools then available. There-
fore, system designers had often to choose between honoring family-based design and
implementing generic modules. At that time, a new software development paradigm
was emerging and would bring about answers to many of the questions raised by pro-
gram families: object-orientation. Wegner’s work on classification in object-oriented
systems [Weg86] played an important role on the forthcoming methodologies, pro-
gramming languages and tools, which could finally deliver the reusability demanded
by program families. The Peace system [SP94a] developed at GMD-FIRST for the
Suprenum [BGM86] parallel computer is a significant example of this period.
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The maturing of program families and object-orientation ultimately led to a
new software development strategy that promotes the reuse of software parts by
proper encapsulation, classification, and composition. Such software components
have the potential to enable software construction in a fashion similar to the tradi-
tional assembly lines of other industries, and are shaping new horizons for software
development.

Nevertheless, though component-based software engineering provides means to
achieve a truly application-oriented operating system, no such system has been in-
troduced to the scientific community so far. Perhaps, the biggest challenges to build
such a system originate from the necessity of bringing application and operating
system to interact during system configuration and generation. Appropriate mech-
anisms have to be made available to applications so they can express requirements
regarding the run-time support system. Means must also be provided to interpret
application requirements in order to select, adjust, and combine software compo-
nents to produce an application-oriented operating system instance.

1.2 Motivation and Goals

The recognition that dedicated computing, despite an impressive expansion in recent
years, is mostly deprived of proper run-time support means was an important mo-
tivational factor for the scientific investigation that culminated in this dissertation.
Even though the demand for customizable operating systems—that could efficiently
support the execution of dedicated applications—is unambiguous, and though some
of the means needed to fulfill this demand has been available for a long time (e.g.
family-based design), the field remains relatively unexplored. Indeed, the vast ma-
jority of dedicated systems continues to be developed relying on run-time support
systems that have to be haphazardly patched for each new application, often failing
to match up application expectations [And92, Mah94, DBM98].

Another determinant factor for this dissertation was the understanding that,
in what concerns operating system organization, parallel computing is a particular
case of dedicated computing with special emphasis on performance. The opportu-
nity to supply the demands of dedicated applications in the defying panorama of
parallel computing was extremely exciting and strongly encouraged this work. Ad-
ditionally, it was evident that many of the software engineering techniques needed
to accomplish the envisioned scenario of operating systems that can be tailored to
applications were still to be conceived. Hence the research would often leave the
realm of operating systems to venture into software engineering. Having a chance
to investigate the frontiers and intersections of these fundamental areas of computer
science was also stirring, especially when recalling the seminal work conducted on the
field by prominent computer scientists like Edsger Wybe Dijkstra, Charles Anthony
Richard Hoare, Per Brinch-Hansen, and David Lorge Parnas.
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Motivated by these factors, a full-time doctoral project was initiated, after one
year of preliminary studies, at the Research Institute for Computer Architecture and
Software Engineering (FIRST) of the German National Research Center for Informa-
tion Technology (GMD) in September 1997. The project also received support from
the Federal University of Santa Catarina (UFSC) and the Fundação Coordenação de
Aperfeiçoamento de Peossoal de Nı́vel Superior (CAPES) of the Brazilian Education
Ministry.

The goals of this doctoral project can be summarized as follows:

To study the conditions that surround the development of application-
oriented operating systems in the realm of dedicated computing, aiming
at defining a strategy to enable the systematic development of such sys-
tems.

Honoring the tradition in the operating system field, the approach chosen to
pursue these goals was experimentation. A design method to support the engineer-
ing of system-related domains as collections of software components that can be ar-
ranged according to the needs of particular applications in order to yield application-
oriented operating systems was elaborated simultaneously with an experimental op-
erating system. In this way, design concepts and techniques could be verified while
being refined to reflect the necessities of a real operating system project.

1.3 Contributions

The doctoral project delineate in the previous section was executed to its totality
and produced a series of results that will be presented throughout this dissertation.
Concisely, this dissertation proposes a novel operating system design method that
enables the development of run-time support systems that can be tailored to fulfill
the requirements of particular applications. Entitled Application-Oriented System
Design, this multiparadigm design method guides domain decomposition towards
families of scenario-independent system abstractions that can be reused to build a
variety of run-time support systems. Environmental dependencies observed during
domain decomposition are separately modeled as scenario aspects, which can be
transparently applied to system abstractions with the aid of scenario adapters. The
assembling of such software components to produce a functioning system is assisted
by component frameworks, which capture elements of reusable software architectures
identified in the course of domain engineering.

The correspondence between domain and design promoted by application-
oriented system design enables the construction of run-time support systems whose
features transcend standard compliance and hardware facets: application require-
ments develop into system features. Besides enabling the engineering of truly



6 � Chapter 1: Introduction

application-oriented operating systems, this relationship between requirements and
features makes it possible to tailor the operating system to applications automat-
ically. A strategy that allows applications to specify system requirements simply
by invoking well-known operations is another contribution of this dissertation. The
strategy consists of performing a syntax analysis of the application source code to
identify system invocations and draw a blueprint for the system that has to be
generated. Subsequently, the minimal combination of system abstractions and sce-
nario aspects that is able to support the application is compiled in the context of a
component framework to yield a tailored run-time support system.

Though conceived with system-level software in mind, application-oriented sys-
tem design is not restricted to this kind of software. Many of its concepts bear
answers to fundamental questions concerning the development of component-based
software, and therefore can be deployed in the construction of other kinds of software.
The specification of scenario aspects as independent constructs that can be transpar-
ently applied to abstractions; the organization of abstractions and scenario aspects
in families ; the factorization of families to yield common packages and configurable
features ; the unification of family members without implying in one being subtype
of another through inflated interfaces ; the representation of software architectures
through component frameworks that embed mechanisms to accomplish system-wide
(cross-component) features; the use of static metaprogramming to support efficient
component composition; are just some of the principles of application-oriented sys-
tem design that can be applied to the construction of component-based software in
general.

Besides the application-oriented system design method, this dissertation also
encompasses a detailed description of Epos, an experimental application-oriented
operating system developed to verify the software engineering concepts and tech-
niques proposed. Epos (Embedded Parallel Operating System) is the outcome of an
application-oriented decomposition of the high-performance dedicated computing
domain. It covers a large spectrum of issues concerning the construction of cus-
tomizable run-time support systems for embedded and parallel applications, from
hardware initialization to automatic system generation.

A prototype of Epos implemented for the Snow cluster of workstations ex-
tends the contributions of this dissertation over the field of cluster computing. The
prototype consists of a repository of software components that encapsulate sys-
tem abstractions and scenario aspects, a statically metaprogrammed component
framework, and a set of tools that is able to automatically select and configure
components to generate application-oriented system instances. In contrast to the
generic operating system typically deployed in the field, Epos instances include only
the components effectively used by applications, providing system services via an
application-oriented interface.
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1.4 Overview

In the next chapter, issues concerning the design and implementation of customiz-
able operating systems will be addressed in an attempt to establish what is currently
state-of-the-art in the field. Configuration mechanisms deployed by modern oper-
ating systems will be described, and their applicability for the construction of cus-
tomizable operating systems will be considered. Subsequently, the software design
methods that are able to guide the construction of such systems will be discussed.
The third part of the chapter covers the implementation of customizable operating
systems as arrangements of reusable software components. The chapter is illustrated
with examples of significant systems.

Chapter 3 presents application-oriented system design, a novel design strategy to
enable the construction of application-oriented operating system as arrangements of
software components. Firstly, the application-oriented domain decomposition strat-
egy is explained. It explores commonality and variability analysis to model families
of highly reusable, adaptable, application-ready abstractions, isolating scenario as-
pects and capturing fragments of reusable system architectures. The refinement of
design entities identified during domain analysis is subsequently approached, con-
sidering peculiarities in regard to the organization of abstractions in families, the
conciliation of family members under a common interface, the modeling of scenario
aspects that can be transparently applied, and representation of architectural as-
pects in component frameworks. Afterwards, considerations about the implementa-
tion of application-oriented system designs are stated, emphasizing implementations
in the C++ programming language.

Chapter 4 describes Epos, the experimental operating system developed in the
scope of this dissertation to validate the concepts and techniques introduced in chap-
ter 3. After an introduction of historical facts and fundamentals, the application-
oriented system design of Epos is presented, including families of system abstrac-
tions, scenario aspects, and system architectures that result from the decomposition
of the high-performance dedicated computing domain. Subsequently a strategy to
automatically configure the operating system according to the needs of particular
applications is presented.

Chapter 5 describes a prototype implementation of Epos for the Snow cluster
of workstations. This implementation was carried out with the aim of corroborat-
ing the application-oriented system design of Epos. The chapter begins with a
discussion about cluster computing, followed by a description of the Snow clus-
ter. Subsequently, the most relevant details of the prototype implementation are
discussed, including configuration tools and system utilities.

Chapter 6 is the conclusion of this dissertation. It presents a reasoning about
application-oriented system design and Epos, identifying their highlights and limi-
tations and comparing them with similar works. Finally, the perspectives for further
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development and deployment of the ideas proposed in this dissertation are consid-
ered.



Chapter 2

Customizable Operating Systems

This chapter addresses issues concerning the design and implementation of cus-
tomizable operating systems, i.e., systems that can be configured to satisfy specific
requirements dictated by the hardware, users, or applications. Firstly, mechanisms
deployed by modern operating systems to achieve configurability will be considered,
followed by software design methods that promote the construction of customizable
operating systems. Afterwards, the implementation of customizable systems as ar-
rangements of reusable components will be approached, covering recent advances in
the filed.

Whenever possible, topics will be illustrated with examples of significant systems.
However, most operating systems do not clear identify the methods that guided
their construction. Indeed, the dominant subject in the operating system literature,
despite the large amount of titles including the word “design”, is implementation.
This renders the operating system design scene poor in examples.

2.1 Configurability

An operating system is said to be configurable when it provides means by which
its features can be modified. Configurability is achieved either by modifying the
parameters that control the behavior of the system, or by including, excluding, and
replacing parts of the system. In this way, the system can be adjusted to meet the
demands of a particular user, application, or architecture .

Indeed, virtually all operating systems are somehow configurable. Even Mi-
crosoft Dos allows for some level of configurability as it interprets a configuration
file (config.sys) to obtain system parameters and decide which device drivers will
be loaded. Microsoft Windows explores configurability by highly parameterized
initialization (.ini files) and Dynamically Loadable Libraries (DLL) that extend
the functionality of the system as needed. Unix-like systems, in turn, tackle con-
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Figure 2.1: Stages in which an operating system can be configured.

figurability by means of device drivers that can be linked to the kernel and server
processes (daemons).

Nevertheless, the fact of operating system being configurable does not automat-
ically makes it customizable. Some systems try to improve on user-friendship and
automatically configure themselves. Such systems usually lack (or hide) the control
mechanisms that would allow users and applications to control the configuration
process according to their needs. For example, detecting and activating available
devices is a common practice that can hinder customizability, for the activated de-
vices may be useless to currently running applications. In a customizable system,
configuration must take place in such a way that users have the chance to select
which features are present in the system at a given time.

A configurable system can be classified according to the time it is configured
as static or dynamic (figure 2.1). In a statically configurable system, configuration
takes place before the system begins to execute, while in a dynamically configurable
system, it takes place during system execution. Static configuration has advantages
on performance and resource utilization, since no reconfiguration mechanism has to
be built into the running system. Dynamic configuration, in turn, has the benefit
of extensibility: if the system faces an execution condition that demands features
that have not been included in the initial configuration, it can reconfigure itself to
include them.

All-purpose operating systems designed to equip workstations have long made the
choice for dynamic configuration, since static configuration would be too restrictive
in this scenario. With the actual technology, it would be unacceptable to request a
workstation user to recompile the system, or even to reboot it, just because a new
feature is required.

The universe of dedicated computing systems, however, has plenty of situations
in which the requirements of applications that may come to run on the system are
known in advance. In these cases, a statically configurable system would be of higher
quality than a dynamically configurable one, since the absence of run-time reconfig-
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uration mechanisms would result in a lighter system, and the elimination of complex
reconfiguration operations would reduce the probability of crashes. Moreover, these
benefits could be achieved without compromising flexibility, whereas all the features
a dedicated application might demand from the operating system would be available
from the instant it begins executing.

Nevertheless, the boundary between static and dynamic configuration is not
always clear. A system could be statically configured to include some dynamic
elements, giving the impression the configuration was dynamic. For example, a
communication system could be statically configured to support a given network
architecture and a set of communication protocols that can be dynamically switched
at run-time. In this case, configuration continues to be static, since the set of
protocols was defined before the system begun to execute and there is no way to
include a new protocol afterwards. Another often observed case involves a statically
configured µ-kernel that supports dynamic process creation. Although statically
configured, such a system is open for dynamic extensions via server activation. That
is, the behavior of a statically configured system does not need to be static.

2.1.1 Static Configurability

Static configuration takes place in an operating system before it begins to execute.
Therefore, the criteria used to select which features will be included in the system
have to consider the requirements of all applications that might come to run on it. If
these criteria are not properly defined, applications may face “unavailable feature”
conditions that will certainly compromise their execution. Most traditionally, users
of a statically configurable system are requested to select features by hand and to
probe-run it. However, features that are seldom used (e.g., triggered by exceptions)
can easily be forgotten during the selection process, remaining unnoticed until they
are effectively required at run-time.

Independently of the criteria and tools used to configure the system, static config-
uration relies on mechanisms that can be deployed in one of the following moments:
link edition, compilation, or source code generation. Such mechanisms will be dis-
cussed next according to the time they are deployed. Static configuration could also
be carried out at boot-time, but technically it is either restricted to the selection of
a bootable image, or it falls in one of the other three cases.

Link-time: When implemented at link-time, static configuration is usually
achieved by selecting precompiled object files from a repository (usually a library).
The association of object files with system features supports configuration. The
process of linking device drivers to a Unix kernel follows this scheme [Bac87]. The
major restrictions in this approach arises from the fact that object files are rigid
structures, compiled in disregard of the conditions that will surround the execution
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of the resulting system. Moreover, several features cross the boundaries of object
files, in the same way that object files may enclose more than a single feature.

The Peace [SP94a] system developed at GMD-FIRST supports static configu-
ration of its nucleus at link-time by automatically isolating class methods in separate
object files. An ordinary link editor cares that only the methods that have been
referred are included in the resulting executable. The Harmony [Gen89] project at
the National Research Council of Canada uses a static table to describe which ob-
ject files are to be included in the resulting system. The Flux [FBB+97] operating
system toolkit at the University of Utah consists of a framework and a set of compo-
nents (object files) organized in libraries. In order to configure an operating system,
the user chooses between libraries and object files, which are then processed by a
conventional link editor. A new version of Flux [RFS+00] uses a custom language
to describe binary components as well as to control the linking process, overcoming
some of the restrictions imposed by ordinary libraries and link editors.

Compile-time: When static configuration is implemented at compile-time, it is
mostly realized by conditional compilation, by “makefile” customization, or by spe-
cial compilers. With conditional compilation, source code stretches are filtered out
by a preprocessor according to externally controllable flags. The customization of
“makefiles” can be used to select which source code units will be compiled, and
how they will be compiled. Tools such as GNU Autoconf and X11 Imake are
widely used for this purpose. Both mechanisms are often deployed in combination,
with “makefile” customization controlling the preprocessor that supports conditional
compilation.

The adoption of conditional compilation as a configuration mechanism is contro-
versial. Some authors believe it to be a source of complications, especially regarding
maintenance and correctness, because configuration elements get spread all over the
code [PPD+95]. Notwithstanding, some other researches believe that, when prop-
erly used along with other techniques, conditional compilation represents an effective
configuration mechanism, whereas it does not incur in run-time overhead [Cop98].
After all, systems that do not make use of conditional compilation at all are rare.

Static configuration at compile-time is explored in some systems by language
extensions or even by completely new languages. Configuration information is in-
cluded in the source code of the system by means of language specific constructs.
It is interpreted later during system compilation to yield a particular system con-
figuration. The Mars [KFG+93] project at the Technical University of Wien uses
the Modula/R language to support static configuration of the operating system
in this fashion.

Generation-time: Static configuration can take place in a system during the
generation of the corresponding source code. It can be accomplished by tools, by
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preprocessors, or by static metaprogramming. In the first case, tools are deployed
to modify the system source code, or to generate it from a higher-level description,
according to configuration information specified somewhere else. In the second case,
the source code is annotated with configuration information, which is interpreted
by a preprocessor to modify the associated code before it is fed into the compiler.
In both cases, the configuration information is usually expressed in a configuration
language. The third option utilizes the static metaprogramming [section 2.3.3.6]
features of the language in which the system has been written. Configuration infor-
mation is supplied as parameter to the metaprogram that, when executed, generates
the source code for the corresponding system configuration. Clearly, this approach
can only be used by systems written in languages that support static metaprogram-
ming.

Static configuration at generation-time is being explored in several novel op-
erating system projects, for it represents innumerable possibilities to achieve high
configurability with low overhead. The Pure [SSPSS98] system under development
at the University of Magdeburg focuses on deeply embedded applications. It defines
a feature-based configuration scheme and uses aspect-oriented programming [sec-
tion 2.2.5] techniques to manipulate the source code of system components. The
GeneSys [Bau99] project at the University of Kaiserslautern uses parameterization
in combination with generation techniques to fine-tune generic components in em-
bedded systems. The Epos system, which is the main experiment conducted in the
realm of this dissertation and will be described in details in chapter 4, uses tools
to identify the requirements of a given application and to select components that,
when arranged in a framework, yield an application-oriented operating system.

Unrestricted to configuration, the approach of automatically generating source
code is being studied in the realm of software development paradigms such as subject-
oriented programming [HO93], aspect-oriented programming [KLM+97], and gener-
ative programming [CE00]. These paradigms will be discussed later in section 2.2.

2.1.2 Dynamic Configurability

A system is considered dynamically configurable when its features can be changed
while it is being executed. General-purpose systems designed to persist the execution
of several distinct applications are the main motivation for dynamic configurability,
since each application may challenge the system for particular features that can-
not be determined in advance. As a dominant topic in operating system research,
dynamic configuration has been extensively investigated with different approaches.

Dynamic process creation: An often-employed strategy to support dynamic
configurability consists in implementing operating system duties outside the ker-
nel, with dynamically created processes. Such server processes are only set to run
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when the functionality they implement is requested by an application. They can
be implemented to share the operating system address space and run in supervisor-
mode, or as ordinary user-mode processes. Servers interact with applications using
means provided by the kernel, frequently communication channels or shared memory
segments.

This approach has been used in so many systems that choosing examples becomes
a challenge. Certainly one cannot forget the original Unix [TR74] system developed
at AT&T Bell Laboratories, which allowed some system services to be started on
demand. The Internet services implementation in the Berkeley System Dis-

tribution (BSD) of Unix [LMK89] dynamically starts up servers with the aid of
a kind of metaserver (inetd) that senses the network for the corresponding proto-
cols. Close derivatives of this implementation are still in use in many contemporary
systems.

The V-Kernel [Che84] at the Stanford University innovated on system config-
urability by pushing the file system outside the kernel, thus allowing for dynamic
reconfigurations. A similar strategy was used by the Mach system [ABB+86] at
the Carnegie-Mellon University to add on virtual memory and networking config-
urability. The AX system [Sch86] at the Technical University of Berlin supports
process scheduling outside the kernel. The Amoeba project [MT86] at the Vrije
Universiteit Amsterdam uses the concept of active objects to implement configurable
system services outside the kernel. The Chorus system [RAA+88], which was born
at INRIA and is now commercially available from Sun Microsystems, allows dynam-
ically created processes to run in supervisor-mode inside the address space of the
kernel.

Kernel extensions: Dynamic configuration can also be implemented by support-
ing dynamic extensions of the operating system kernel. It can be accomplished via
dynamic linking, on-the-fly compilation, or interpretation. In the first case, pre-
compiled modules are linked to the kernel similarly to dynamic linked libraries—the
attempt to access a module that has not yet been linked into the kernel invokes a
built-in dynamic linker to fetch and link the respective module [DSS90, Dra93]. In
the other two cases, the source code corresponding to the module, usually written in
a simplified language, is fetched and then compiled or interpreted inside the kernel.
The linker approach has performance advantages over the compiler or interpreter
ones, since a compiler has high startup times, and an interpreter has to reinterpret
the corresponding code every time it is invoked. Nevertheless, assuring safety in the
linker approach is more complicated [SESS96].

The historical Multics system [Org72] introduced the “trap-on-use” mecha-
nism to support dynamic system extensions. With this mechanism, only a small
subset of system functions is initially loaded, while the memory regions where the
remaining functions should have been loaded are configured to generate exceptions
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when accessed. The corresponding exception handler is able to load the missing
functions and restart the application that generated the exception. This mechanism
constitutes the basis for many other dynamic extension strategies.

Linux uses a kernel thread (kmod) to automatically load missing modules, which
adhere to the traditional Unix pseudo-file scheme and have their interface with the
kernel checked at load-time [Rub97]. Extension safety is delegated to the traditional
file access control mechanism of Unix. The Vino system [SS95] at the University
of Harvard uses fault isolation techniques to preserve integrity after precompiled
extensions, written in unspecified languages, are loaded into the kernel: all memory
references in an extension are checked to fall within the boundaries of the allocated
address space. The Spin system [BSP+95] at the University of Washington defines
a core and a set of dynamically loadable extensions written in Modula/3. The
core has a built-in linker that react to events in order to load extensions. Core and
extensions share the kernel address space in a protected domain scheme enforced
by the Modula/3 compiler. The Synthesis system [PMI88] at the Columbia
University uses an integrated compiler to generate specialized kernel services.

Reflection: A reflective operating system supports dynamic reconfigurations by
exporting the meta-information associated to its objects through a Meta-Object Pro-
tocol (MOP) [KdRB91]. By interacting with meta-objects via the MOP interface,
one can reconfigure the corresponding objects. Although very flexible, reflective
systems pay a high price on performance, since they have to maintain a meta-level
description of the whole system and to provide means to interact with it at run-time.

The Oberon programming environment [WG92] and the Ethos system [Szy92],
both developed at the Swiss Federal Institute of Technology, support reflection at
the level of modules, which can be dynamically adjusted to match a given configura-
tion. The Apertos system [Yok92] at Sony Computer Science Laboratory defines a
“metacore” that provides metaobject reflectors with the primitives needed to modify
the configuration of the corresponding objects at run-time.

2.2 Designing for Customizability

As described in the previous section, a customizable operating system can rely on a
variety of configuration mechanisms to support users and applications in selecting
the features that will be available in a given system configuration. However, those
mechanisms can only be deployed if the system as a whole is designed to endure
customization. This section focuses on design strategies that promote customizabil-
ity by enabling a system to be constructed as an assemblage of reusable parts. Such
a system would be customized by selecting the proper parts and arranging them
together.
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Actually, the search for design methods to enable the development of software in
a way similar to the assembly lines common to other industrial sectors has accom-
panied software engineering from the very beginning. It is true that the main moti-
vation of this pursuit was the cost-effective development of new systems by reusing
parts of preexisting ones, but the development of highly customizable systems can be
attained based on the same principles: primarily partitioning the problem domain
covered by the system in reusable and consistent units, and subsequently enabling
the assembly of these units in a functioning system.

Nevertheless, there are several obstacles to achieve high levels of customizability
in an operating system. Perhaps the most important one is the absence of design
methods that explicitly consider the inherent peculiarities of system-level software.
Although there are uncountable methodologies and tools that promote the reuse of
implementation, design, analysis, know-how, and whatever takes part in the software
development process, the vast majority of them have been proposed in terms of
applicative software and are difficult to deploy at system-level. The simple fact that
an operating system has nothing but the bare hardware to rely on is enough to
break down with many application-level assumptions about memory management
and synchronization. Altogether, system software has a particular compromise with
correctness and performance, since both errors and delays propagate exponentially
to the application-level.

Some design methods that promote customizability, and yet can meet the typical
demands of system-level software, will be discussed next.

2.2.1 Family-Based Design

The roots of Family-Based Design can be tracked back to concepts such as Dijkstra’s
separation of concerns [Dij69] and Wirth’s stepwise refinements [Wir71]; however, a
family-based design method was first introduced by Parnas in his work on program
families [Par76]. Family-based design is established around two complementary
concepts: commonality and variability [CHW98]. Commonality is the basic grouping
criterion, so entities that share common aspects considered relevant by the designer
are grouped together to shape families. Conversely, variability brings about the
differences that identify each of the members of a family. A family arises when the
commonalities between the members are more important than the variations. In
this context, Parnas defined a program family as follows:

“We consider a set of programs to be a program family if they have
so much in common that it pays to study their common aspects before
looking at the aspects that differentiate them.”

(David Lorge Parnas [Par76])
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Subsequently, Weiss extended this concept from “set of programs” to “collection
of abstractions”, giving origin to the Family-oriented Abstraction, Specification, and
Translation (FAST) method [Wei95, WL99]. This new concept encompasses, but
is not restricted to, class hierarchies in object-oriented design, with a base class
characterizing the family (abstraction) and subclasses capturing the variations that
distinguish family members. In the FAST method, commonalities are regarded
as “design secrets” that are hidden as soon as they are acquired in detriment of
variability, which effectively guides the design process. This design strategy is ide-
ally supported by Application-Oriented Languages (AOL) that feature constructs to
easily and quickly express the commonalities that are typical of the corresponding
domain. For example, an operating system could be designed relying on a process

construct that would gather the intrinsics of the process abstraction such as iden-
tity, creation, destruction, and execution. The design would then concentrate on
variations like scheduling policy, multithreading, grouping, coordination, etc. The
result would be a family of “processes”.

Family-based design can be applied to the development of a customizable oper-
ating system with commonalities being accounted for the families of available sys-
tem abstractions, and variability representing possible customizations. The system
would thus be customized by selecting proper members of each abstraction family.

2.2.1.1 Incremental System Design

Incremental System Design was introduced by Habermann, Flon, and Cooprider
[HFC76] to handle hierarchy in family-based design. Besides looking for common-
alities and variations to shape families, they propose the problem domain to be
organized in a hierarchical fashion. The most elementary functionality is gathered
in a minimal basis, to which successive minimal extensions are applied. Family
members, which in the original method were simply characterized by variations,
are now organized in levels of abstraction [Dij68, PHW76], with each level being a
substrate for the next, and the application being the final extension.

Figure 2.2 shows a family of scheduling algorithms modeled according to: (a)
the original family-based design method, and (b) the incremental system design
extension to that method. As it can be observed, incremental system design tends
to generate deeper hierarchies, since variations are organized one upon another, with
the most primordial closer to the root. Actually, the scheduler in this example is
modeled as an abstraction and not as an algorithm; it is an agent that implements
the operation “select next process to execute” in the realm of operating systems.

The minimal basis in figure 2.2(b) is a Cooperative scheduler, which indeed
does not implement any policy, but give the means to schedule a process. In or-
der to support different scheduling policies, members of the scheduler family en-
rich the abstraction accordingly. For example, the Priority member would proba-
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Figure 2.2: A family of scheduling algorithms modeled according to family-based
design (a) and incremental system design (b).

bly tag processes with a “priority” to support priority-based scheduling, while the
Round-Robin member would probably enrich the family with some sort of time keep-
ing engine to implement the round-robin scheduling algorithm. Therefore, it is not
the round-robin algorithm that is defined upon the priority-based, but the respective
abstractions. Once more the similarities between family-based and object-oriented
design become evident: incremental system design is for family-based design what
subclassing is for object-oriented design.

Incremental system design is especially appealing for the operating system area
because it gives the user a chance to select “how much he/she is willing to pay for
a service”. If performance is a major goal for an application, the programmer may
decide to give up some advanced functionality for the sake of it. This demand can
be easily accommodated in a system designed incrementally by selecting a family
member closer to the “minimal base”.

The Peace parallel operating system [SP94a] developed at GMD-FIRST follows
the guidelines of family-based and incremental system design. Peace first version,
developed for the Suprenum [BGM86] parallel computer, adopted a µ-kernel as the
”minimal basis” for system extensions, which were accomplished by a collection of
servers. A redesign for the Manna [GBSP96] parallel computer produced a version
of Peace that no longer requires a µ-kernel: single-process-per-node configurations
in which the operating system was completely embedded into the running application
became possible. Both versions have been implemented as program families, with
specialized family members for different classes of applications.
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2.2.2 Object-Oriented Design

Object-orientation emerged simultaneously in several areas of computer science and
was applied to software engineering in several approaches that culminated with
the object paradigm and the respective disciplines of programming (OOP), de-
sign (OOD), and analysis (OOA). The object paradigm has been evolving for over
20 years and, notwithstanding constant improvements, is now well established. Be-
cause it is such an intensively studied subject, covered by an extensive bibliography1,
object-oriented design will only be summarized here, focusing the development of
customizable operating systems.

Booch defines object-oriented design as follows:

“Object-oriented design is a method of design encompassing the process
of object-oriented decomposition and a notation for depicting both log-
ical and physical as well as static and dynamic models of the system
under design.”

(Grady Booch [Boo94])

This definition emphasizes object-oriented decomposition as the most fundamen-
tal process in object-oriented design, by which the problem domain is decomposed
in objects that abstract domain entities. These objects have well-defined behavior
and can be viewed either as autonomous agents that do things, or as things upon
which other objects act.

Figure 2.3 shows the object-oriented decomposition of a hypothetical file system.
In this example, object File validates its operations with the aid of object Key and
coordinate them with the aid of object Lock. Object Cache temporarily stores
in memory part of File’s state, which is normally maintained by object Disk.
Differently from what would happen in structured design, the algorithms that belong
to the semantics of this file system are not represented in the early phases of design.
They are implicitly designated by the operations of correspondent objects.

During decomposition, objects with similar responsibilities are grouped as to
form classes. In the example above, all files in the file system present the same
behavior and hence would be modeled by a single class. This grouping results from
commonality analysis. Nevertheless, if a new kind of file is to be supported by
this file system, for example files with data integrity verified via checksums, a new
subclass of file would be defined. Subclassing is used to express variability in the
design and naturally builds hierarchies [Weg86].

Commonality and variability are the main guidelines behind object-oriented de-
composition, making the process of identifying objects in a given domain very sim-

1Meyer [Mey88], Rumbaugh [RBLP91], Jacobson [JCJO93], and Booch [Boo94] cover object-
orientation in depth and bring comprehensive bibliographies.
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Figure 2.3: Object-oriented decomposition of a file system.

ilar to the processes of identifying families in family-based design. The resulting
logical model of this process is a “collection of cooperating objects, in which indi-
vidual objects are treated as instances of a class within a hierarchy of classes (Grady
Booch [Boo94])”. Classes are the constructs that specify the behavior and structure
of objects in object-oriented languages and therefore are accounted for the static
part of logical design, while their instances, the objects, correspond to the dynamic
part.

In addition to the logical model, object-oriented design outputs a physical model
for the system being modeled. This model is based on modules and processes.
Modules constitute a second level of decomposition, in which classes are grouped
according to the cohesion and coupling principles of structured design. A process
model completes the design with information about the coordination of objects at
run-time, including concurrency and synchronization. These four dimensions of
object-oriented design are represented in figure 2.4.

Object-oriented design constitutes an important advance for the development
of customizable operating systems. Being able to partition the operating system
domain in reusable abstractions, designers can construct a variety of systems simply
by arranging the proper components together. Furthermore, the task of arranging
them together can be largely facilitated by capturing a system architecture in an
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Class Object

dynamicstatic

Figure 2.4: The models of object-oriented design.
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object-oriented framework (see section 2.3.3.4). In practice however, object-oriented
operating systems have difficulties to leave the design level and reach acceptable
implementations. This happens mainly because of the following two factors:

1. Complexity due to high variability: although the operating system domain can
be decomposed into a relatively small set of abstractions, most of them well-
known conventions created by computer scientists, these abstractions usually
present a high level of variability. For example, one could easily think of
hundreds of variations for the communication abstraction, including aspects
such as buffering, flow control, error detection and correction, encryption,
and many others. High variability leads to complex class hierarchies that are
difficult to manage without proper tools. Therefore, many designers opt for
replacing a complex class hierarchy with a couple of generic abstractions that
encompass the most traditional features. Such arbitrary simplifications often
compromise customizability.

2. Programming languages: most object-oriented programming languages are not
adequate to build operating systems. Languages that automatically manage
the memory or that suppose all objects to be polymorphic are certainly not
a choice, not only for performance reasons, but also for lack of determinism.
Every operating system has to deal with asynchronous events generated by the
hardware, and it is very unlikely that such events could wait, for example, for
the completion of a garbage collection operation. The lack of proper object-
oriented programming languages for the operating system domain discourages
the use object-oriented design.

The Choices object-oriented operating system [CJR87] from the University of
Illinois at Urbana-Champaign has been designed as a hierarchy of object-oriented
frameworks and implemented in C++. Each framework corresponds to a subsystem
(e.g. virtual memory, file system, etc) that can be customized through the use of
inheritance [CIM92]. System resources, policies, and mechanisms are represented
as objects in the context of a framework. Several experiments have been conducted
with the file system framework, enabling Choices to mimic several commercial file
systems and corroborating its extensible design [MCRL89].

The Ethos operating system [Szy92] developed at the Swiss Federal Institute of
Technology covers extensible objected-oriented programming from the hardware up
to the applications. The main goal of the project was exactly to experiment with
object-orientation in the field of operating systems. The system has been modeled
as a strongly typed hierarchy of abstractions, for which default implementations
exist. High extensibility is achieved by restricting the use of inheritance in favor of
forwarding. Directory objects act as proxies to access extensions, enabling modules
to be dynamically loaded.
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2.2.3 Collaboration-Based Design

Collaboration-Based Design (CBD) [BC89, RAB+92, BO92, Hol93] Role-Based De-
sign, is a design method that extends object-oriented design to express that an
object may play different roles in a system, and that a cooperating suite of roles
(collaboration) can be a better unit of reuse and composition than a class. A collab-
oration is thus defined by a set of objects and an interaction protocol that specifies
their roles in the collaboration. Likewise, a role can be interpreted as the part of
an object that enforces the interaction protocol. Collaborations can be expressed
in collaboration diagrams similar to the one shown in figure 2.5, with roles in the
intersection of classes and collaborations.

In the hypothetical collaboration diagram depicted in figure 2.5, class queue

plays the role of a thread queue in the thread collaboration, which also leans on
class memory for the stack and on class timer for the preemption mechanism. Class
memory also plays the roles of a buffer in the mailbox collaboration and of a
cache in the file collaboration. Class timer does not collaborate in file, while
class memory does not play a role in semaphore. Besides playing the preempter

in collaboration thread, class timer also plays the role of a time-out engine for
collaborations mailbox and semaphore.

In a collaboration-based design, the system is expressed as a composition of in-
dependently definable collaborations. In this way, collaboration-based design has
the potentiality to guide the development of longed-for reusable components. How-
ever, as a design discipline, it does not dictate any particular strategy to implement
collaborations, neither to compose them. Implementation disciplines that promote
composition in collaboration-based design will be discussed in section 2.3.3.5.
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Figure 2.5: A collaboration diagram.
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2.2.4 Subject-Oriented Programming

Subject-Oriented Programming (SOP) was introduced by Harrison and Os-
sher [HO93, OKH+95] as an extension of the object-oriented paradigm to handle
a “multiplicity of subjective views” of objects been modeled. Subjective perspec-
tives of an object originate from the fact that some of its properties may be more
interesting to some programs than to others. For example, the process abstraction
in figure 2.6 could be viewed as a “schedulable subject” by the process scheduler,
with properties such as execution time and priority. It could also be viewed as an
“authenticable subject” by the security monitor, which would probably be more
interested on keys and protocols. Subject-oriented programming avoids this kind of
clash by allowing both perspectives to be independently, yet consistently, developed.

In subject-oriented programming, subjects are collections of classes, or class frag-
ments, that model a subjective view of a domain. These subjective views are later
reconciled during subject composition. The process of subject composition com-
bines class hierarchies to produce new subjects that incorporate functionality from
existing ones. In this way, subject-oriented programming enables decentralized de-
velopment and supports system extensions without requiring modifications in the
original source code.

Besides a design method, subject-oriented programming also features an im-
plementation discipline that can guide C++ implementations of subject-oriented
designs. It relies on an extended compiler to automatically derive abstract descrip-
tions of subjects, called subject labels, directly from their source code. Subject labels
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Figure 2.6: Subject-oriented composition.
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are then composed, according to composition rules written in a special declarative
language [OKK+96], to produce result labels that describe the composed subject.
Result labels can be used to guide the generation of the final system, or as input to
further composition.

The use of subject-oriented programming at the operating system level can bring
several benefits in regard to the subjective views it sustains. However, it may be a
problem to express relationships that crosscut subjects in this model. For instance,
the definition of priorities for the process subject may have implications for the
management of messages in the communication subsystem. This kind of collateral
effect, or system-wide property, is not easily expressible by means of subject-specific
composition rules.

2.2.5 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) was introduced by Kiczales [KLM+97] to deal
with non-functional properties of component-based systems. Most of the current
component-based development strategies concentrate on defining and composing
functional units, and do not properly address the representation of non-functional
properties captured during system design. In these strategies, properties such as
synchronization, error handling, and security are usually expressed as small code
fragments scattered over several components. Developing and maintaining such a
kind of entangled code constitutes one of the biggest problems in component-based
software engineering, for it ruptures with important concepts like encapsulation and
cohesion and compromises the software quality. Furthermore, a component that is
hardwired to a specific environment will hardly be reused in another.

Aspect-oriented programming captures non-functional properties in reusable
units called “aspects”. Aspects are specified in aspect-oriented languages and wo-
ven with components by aspect weavers to generate the target system (figure 2.7).

weaver

Program

Aspects Components

Figure 2.7: Aspect-oriented composition.
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This process of combining aspects and components is instrumented by join points,
which are elements of the component language semantics understood by the aspect
program and used for coordination.

One of the major problems with aspect-oriented programming is the difficulty of
separating aspects from components during design, and subsequently implementing
aspect-independent components. As mentioned before, some non-functional prop-
erties spontaneously emerge during design, but a true aspect-oriented program is
supposed to go much further in order to reach aspect independence. Moreover, an
aspect-oriented design method, that besides aspects also addresses the traditional
issues of functional components, is yet to be unveiled. Another open issue regards
the absence of mechanisms to check for semantic preservation during the weaving
process—depending on the complexity of join points, it is possible that accidental
semantic modifications occur [Szy97].

The Pure [BSPSS00] system at the University of Magdeburg uses aspect-
oriented programming to streamline the operating system, firstly getting rid of un-
necessary components, but also modifying the source code of components in order
to optimize them for the conditions established by users. For example, dynami-
cally bound references to objects that are known not to vary are replaced by static
binding.

2.2.6 Multiparadigm Design

More than a design method, Multiparadigm Design is the realization that no single
paradigm can cover all peculiarities of all domains: sometimes distinct paradigms
have to be combined in order to achieve a successful design. Innumerable combina-
tions of paradigms have been proposed for different domains [Hai86]; however, the
combinations that involve object-orientation are of special interest for this thesis.
Object-oriented design methods are suitable to model most elements in an operating
systems, but a few elements simply do not fit correctly in the object model.

Each designer has a particular opinion about which elements fit in the object
model and which are better represented in some other way. A few even insist that
“everything” fits in the object model. However, the representation of some op-
erating system elements is quite controversial. For example, when one considers
accessing the CPU’s control registers, sending a message to the CPU object sounds
just natural, but for the more generic perspective, the CPU is one of those ubiqui-
tous elements, that exists without needing to be represented. Another contentious
element is the process scheduler. Some designers model it as an object, some as a
class operation of class process, and some simply prefer to see it as an algorithm
outside the object world. Multiparadigm design gives designers a chance to combine
paradigms in order to solve this kind of conflict.
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Some programming languages have been conceived to support the implementa-
tion of multiparadigm designs, the most famous of them being C++. Although
commonly defined as an object-oriented language, C++ was introduced by Strous-
trup [Str86] as a multiparadigm language. Besides accommodating most object-
oriented concepts, multiple inheritance inclusive, C++ supports a variety of other
paradigms, including structured, family-based, generic programming, and static
metaprogramming.

Coplien [Cop98] explored the multiparadigm characteristics of C++ to define
a multiparadigm design method that fuses object-oriented design with family-based
and structured design. The method guides an implementation-aware design, reveal-
ing the language constructs that better match each paradigm.

2.3 Implementing Customizable Designs

The development of software as an assemblage of reusable components has been
sought for decades. Successive announcements have been made of methods that
could produce the desired reusable components, including modular programming in
the seventies, object-oriented programming in the eighties and uncountable exten-
sions to both paradigms in the nineties. Only recently, however, the construction
of software systems based on reusable, sometimes configurable, components began
to prove effective. Even so, software engineers still have to agree about a common
component-based software development methodology. For the time being, they have
to rely on a combination of methods and techniques, each contributing with elements
that apply better to this or that situation.

This section considers the implementation of customizable operating systems
based on reusable components, trying to identify the pros and cons of each method.

2.3.1 Software Components

The growing interest on the development of software systems as arrangements of
reusable components has recently raised an intense discussion about what a software
component is, and what it is not. Similar discussions seem to arise among the
software engineering community every time a technology achieves success, and forces
whoever adopts the term to state his/her opinion about the controversy. Next,
definitions for software component proposed by prominent authors are presented in
order to render a brief snapshot of the controversy.

“A reusable software component is a logically cohesive, loosely coupled
module that denotes a single abstraction.”

(Grady Booch [Boo87])
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“By components we mean already implemented units that we use to
enhance the programming language constructs. These are used during
programming and correspond to the components in the building indus-
try.”

(Ivar Jacobson [JCJO93])

“Reusable software components are self-contained, clearly identifiable
pieces that describe and/or perform specific functions, have clear inter-
faces, appropriate documentation, and a defined reuse status.”

(Johannes Sametinger [Sam97])

“A software component is a unit of composition with contractually spec-
ified interfaces and explicit context dependencies only. A software com-
ponent can be deployed independently and is subject to composition by
third parties.”

(Clemens Szyperski [Szy97])

Booch extends the traditional concept of module to include the object-oriented
notion of abstraction. For components in the realm of object-orientation, his defi-
nition also recognizes that a class is often an inadequate construct to encapsulate
a reusable abstraction (a module is adequate). Jacobson’s definition is quite vague
and concentrates on composition during system programming, at language level.
Sametinger’s definition is wider and includes not only pieces of software implemen-
tation, but of software description too. He also stresses the importance of clear
interfaces and proper documentation. Szyperski, among the selected authors, has
the most restrictive definition, whereas it requests a component to be independently
deployable and to be subject to composition by third parties. He also states that “a
corollary of this definition is that software components are ‘binary’ units that are
composed without modifications” [Szy97]. This excludes systems that adopt source
code generation techniques to configure and/or adapt components at deployment
time.

The discussion about the use of software components in the construction of
customizable operating system, as addressed in this dissertation, does not intend to
exclude this or that approach. Therefore, restrictive concepts are of little interest.
Booch’s and Sametinger’s definitions of reusable software component are in tune with
the author’s personal opinion, but, because they may also exclude some approaches
addressed by the operating system community, a wider dictionary definition will be
taken. The Oxford English Dictionary [Oxf92] defines a component as:

“any of the parts of which something is made”
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Despite the conceptual clash, the absence of a consensual definition for software
component does not seem to prevent the technology from being successfully used.
Other open questions seem to have greater impact, amongst them:

• What is the ideal size for a component?

• How should components be composed?

• How should components be adapted?

• How to grant that a component preserves its individual semantics after being
composed?

• How to grant that a component composition matches the requisites defined
for the system as a whole?

Notwithstanding several recent advances, none of these questions has been con-
clusively answered. They will be considered next in the realm of customizable op-
erating systems.

2.3.2 Component Granularity

Independently from the development methodology adopted, component granularity
always plays an important role, since it directly affects reusability. In order to be
successfully reused, a component must fulfill the user’s expectations about it, pri-
marily delivering the expected functionality, but also observing requirements such as
performance, usability, maintainability, and configurability. Component granularity
directly influences all these metrics. On the one hand, a coarse-grained component
will very likely include functionality that will not always be used, affecting perform-
ance and configurability (unused functionality often becomes overhead and yet has
to be configured for proper component deployment). On the other hand, a large set
of fine-grained components may escape the user’s ability to conduct composition,
affecting usability and maintainability [SP94b].

There is not, and probably there will never be, a rule to define the ideal granu-
larity of software components, but being aware of its implications may help to reach
a compromise between size and amount that will enable effective reuse2. The way
granularity influences other component characteristics is illustrated in figure 2.8.

Alternatives to handle the granularity compromise involve hierarchy and au-
tomation. Sometimes complex components can be built on simpler ones, leading

2Coplien [Cop98] remarks that extremely large components usually result from poor application
domain partitioning.
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Figure 2.8: Component characteristics versus granularity.

to hierarchical implementations and making the granularity issue more manage-
able [Szy97]. Moreover, the advent of tools that support automatic composition will
enable components to shrink in size and grow in number without affecting usability
and maintainability.

In the operating system scene, device driver modules and servers are still the
most common fashion of component deployment. Such components are usually
coarse and, despite of some configurability, are not specialized to any particular
operation mode. In other words, there are no special versions of these components
that implement specific functionality subsets. For example, if one wishes to use
an input/output device for output only, one is not only forced to take unnecessary
input functions, but also a non-optimized version of output functions (they are
not optimized because they have been implemented to operate in the presence of
input) [CSP91, And92, PAB+95].

As of today, there are few component-based operating systems. From them, two
have quite divergent opinions about component granularity. The component libraries
in the Flux operating system toolkit, developed at the University of Utah [FBB+97],
comprise relatively coarse components, basically device drivers and complete sub-
systems. Several of these coarse components have recognized performance flaws and
are aimed at “take off” support for new systems. Proper components are expected
to replace them as the system matures. In contrast, the Pure system at the Uni-
versity of Magdeburg [SSPSS98] defines a large set of fine-grained components that
can be composed to form low-level abstractions. Pure recognizes that configuring
such a large set of components is beyond most users’ grasp and is currently working
on tools to automate the process [BSPSS00].

2.3.3 Component Composition

Software components are of no value if they cannot be composed to yield a properly
functioning system. Achieving a properly functioning composition, in turn, demands
a predictable component interaction mechanism that ensures the preservation of
each component’s semantics in the presence of others. Several such mechanisms
have been proposed for applicative software, but few of them explicitly consider
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the peculiarities of composition at system-level, so adaptations are usually required.
Because the operating system constitutes the most elementary form of run-time
support, relying on advanced run-time language constructs for system composition
is usually not possible. Besides, the intrinsics of an operating system challenges
for composition strategies that are able to handle special circumstances such as the
enforcement of properties that cross-cut component boundaries, the interaction of
components that reside in different domains, the handling of asynchronous events
generated by the hardware, etc.

Subsequently, the most relevant composition mechanisms traditionally deployed
at the application-level will be described together with the implications of adopting
them at system-level.

2.3.3.1 Interfaces

The interface of a component gathers the signatures of the operations that can
be invoked on it, serving as a kind of “service contract” between its clients and
providers. On one side, such contracts define what clients can expect from a com-
ponent and how they can use it. On the other side, they define what providers have
to implement to meet the contracted services. Therefore, interfaces constitute the
most elementary mechanism to support component composition, upon which more
complex mechanisms can be built.

Interfaces on their on, however, are not enough to grant a properly functioning
composition, since they do not ensure semantic preservation in relation to external
dependencies. For example, a component conceived to interact in a single-threaded
environment might perform incorrectly in the presence of multiple threads, even
though the interface has been properly observed. Furthermore, the operations in
an interface are restricted to specify functional aspects of components. Concerns
about performance, availability, and other non-functional aspects are not adequately
expressible via interfaces.

2.3.3.2 Contracts

In the sense of object composition, a contract is a kind of extended interface that,
besides the syntactic part corresponding to operation signatures, also includes a
semantic part concerning behavioral aspects of components. The semantic annota-
tions in a contract may be formal or informal. Informal annotations are restricted
to document the semantics of a component, while formal annotations can be used
to validate a composition.

Helm [HHG90] and Holland [Hol92] consequently explored the utilization of for-
mal contracts as means to support object composition. In their approach, a contract
is defined as follows:
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“... a contract defines the behavioral composition of a set of communi-
cating participants. Each contract specifies the following important as-
pects of behavioral compositions. Firstly, it identifies the participants in
the behavioral composition and their contractual obligations. Contrac-
tual obligations consist of type obligations, where the participant must
support certain variables and external interface, and causal obligations,
where the participant must perform an ordered sequence of actions and
make certain conditions true in response to these messages. Through
causal obligations, contracts capture the behavioral dependencies be-
tween objects. Secondly, the contract defines invariants that participants
cooperate to maintain. It also defines what actions should be initiated to
resatisfy the invariant, which as a matter of course during program exe-
cution will become false. Lastly, the contract specifies preconditions on
participants to establish the contract and the methods which instantiate
the contract.”

(Richard Helm and Ian M. Holland [HHG90])

Although contracts have the benefit of generating object compositions that can
be formally verified, the effort demanded to formally specify components mostly
restricts its use to safety critical applications.

2.3.3.3 Design Patterns

Design patterns are catalogs of solutions to recurring problems in the object-
orientation scene, among them object composition. The widely accepted catalog
introduced by Gamma et al. [GHJV95] describes each design pattern with four at-
tributes: name, problem description, solution description, and the consequences of
adopting the respective solution. One important achievement of this catalog was
the establishment of a ”taxonomy” for object-oriented elementary architectures that
may ease the interaction between software developers. Patterns are also used in com-
bination with other strategies, in particular with component frameworks [Joh92], to
support composition.

The Adapter pattern (figure 2.9), for instance, can be used to adapt an exist-
ing component (Adaptee), which has the expected functionality but an incompatible
interface, to match the interface defined in a given framework (Target). Adapter

intercepts the messages exchanged between Client and Adaptee and makes the nec-
essary adjustments to support the correct interaction between them. Components
that otherwise would be incompatible can be properly composed in this way.

Another example is the Bridge pattern (figure 2.10), which can be used to
decouple abstraction from implementation so that both can be independently ex-
tended by subclassing. Bridges can be used to plug components (Implementor A and
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Implementor B) to a framework defined in terms of abstractions (Abstraction).

2.3.3.4 Frameworks

An object-oriented framework [JF88, Deu89] is an arrangement of classes that cap-
tures a reusable, usually domain-specific, design. Some of the classes in a framework
are abstract and open for implementation inheritance, while others are concrete and
encapsulate reusable implementations. Some frameworks also supply default imple-
mentations for abstract classes, so clients only have to implement the classes (or
methods) that do not fit.

In a whitebox framework, existing functionality is reused and extended by in-
heritance and overriding. It is so called because clients need to know the internal
structure of the framework in order to use it. Conversely, in a blackbox frame-
work [Joh97, Lar00], or component framework, the relationships between compo-
nents are defined exclusively in terms of their interfaces, so that components can
be reused without modifications. Composition is done by selecting and plugging
components to the framework (figure 2.11).

As Szyperski [SV98] observes, when compared to mechanisms in which com-
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Figure 2.11: A component framework.

ponents are simply “wired” together, a component framework has the important
advantage of being able to enforce system-wide properties like reliability, availabil-
ity, security, and scalability. Even if individual components present such properties,
arbitrary compositions will seldom preserve them. However, the inclusion of specific
elements in the framework can sustain this kind or property.

A component framework is an attractive alternative to support composition at
system-level. However, some component frameworks, especially those defined in
terms of design patterns, make extensive use of dynamic binding. In order to avoid
severely compromising performance, an operating system framework must rational-
ize the use of expensive language constructs, reserving them to imperative cases.

The Choices [CIM92] system at the University of Illinois at Urbana-Champaign
defines a collection of whitebox frameworks, one for each of its subsystems. Default
implementations for the abstractions on each framework are provided, facilitating
the construction of new systems. Default abstractions can be overridden or spe-
cialized through inheritance. The X-Kernel [HP91] at the University of Arizona
defines a framework for implementing network protocols in a similar way. A black-
box framework is used by the Flux project [FBB+97] at the University of Utah to
guide the linking of object files (components). A more elaborate kind of compo-
nent framework, that uses generative programming techniques, will be presented in
section 4.5.1.

2.3.3.5 Collaborations

Collaborations are the components in the realm of collaboration-based design [sec-
tion 2.2.3]. A collaboration is defined by a set of objects and an interaction protocol
that specifies the roles of each object in the collaboration. A collaboration-based
system is thus a composition of independently definable collaborations.

Several strategies have been proposed to implement collaborations in such a
way as to preserve the original design. VanHilst and Notkin [VN96b] express roles
as parameterized classes (C++ class templates), which are in turn composed to
yield the collaborating classes. The process is guided by class definitions analogous
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to the type equations used by Batory in the GenVoca model [BO92]. The use of
templates for composition considerably reduces the occurrence of dynamic binding
in the resulting system, hence enhancing performance. Scalability, however, is a
weak point in this approach, since the composition of each individual role has to be
specified.

Smaragdakis [Sma99] extended VanHilst and Notkin approach by mapping each
collaboration into a single parameterized class with a nested class for each of its roles.
Collaborations are composed in a hierarchical way by successively specifying one as
parameter to the next. This yields a composition scheme that directly matches
the type equations of GenVoca and requires less effort to specify compositions.
Mezini [ML98] work on adaptive plug-and-play components focuses on implementing
collaboration-based designs as component frameworks.

2.3.3.6 Static Metaprogramming

Metaprograms3 are programs that represent and manipulate other programs or them-
selves. A static metaprogram is a metaprogram that runs before the code it produces
is set to run. The most classical static metaprograms are compilers and preproces-
sors, which manipulate an input program in order to translate it into another lan-
guage or to modify its structure. Nevertheless, static metaprogramming is also used
in programming languages that support parts of the input program to be evaluated
at compile-time, the so-called multilevel languages [GJ97]. The C++ programming
language, for instance, supports static metaprogramming through mechanisms such
as class and function templates, expression evaluation in constant initialization, and
function inlining [Str97, Vel95, Pes97].

In order to illustrate the case for static metaprogramming using C++ templates,
the natural number factorial calculator used by Czarnecki [CEG+98] is reproduced
in figure 2.12. The template Factorial recursively multiplies its argument, while
the template specialization Factorial<0> finishes the recursion. When invoked, this
factorial function is executed by the compiler, which simply includes the function
result (an integer) in the generated code. Therefore, the code generated by the
compiler for the following two lines is identical:

cout << Factorial<7>::RET << ’\n’;
cout << 5040 << ’\n’;

In the context of component-based systems, static metaprogramming can be
used to support efficient composition when deployed in combination with some of
the strategies described previously in this section. A static metaprogram can take
components and composition rules as input and generate the corresponding pro-

3The Greek prefix “meta” stands for “after” or “beyond” and is used to denote a shift in level.
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template<int n>
struct Factorial { enum{ RET = Factorial<n − 1>::RET ∗ n }; };

template<>
struct Factorial <0> { enum { RET = 1 }; };

Figure 2.12: A statically metaprogrammed factorial calculator.

gram during the compilation process. When compared to composition assisted by
external tools, i.e., tools that are loosely integrated with the language used to spec-
ify components, a static metaprogram has two main advantages: performance and
correctness. A composition produced by a static metaprogram can perform better
than a tool-based composition because it is carried out along with the compilation
of components, extending the possibilities for optimizations. A carefully designed
composition scheme can avoid most run-time overhead. Composition conducted
by a static metaprogram also present benefits regarding correctness, whereas the
metaprogram is written in the same language as the components and is subject to
syntactic and semantic verifications by the same compiler.

As an example of how a static metaprogram can manipulate the input program,
consider the profiler in figure 2.13. It can be used to measure the lifetime of any

#include <package.h>

namespace Profiled Package
{

template<class Target>
class Profiler : public Target
{
public :

Profiler () { live (); }
˜ Profiler () { die (); }

private :
void live (); // t0 <− current time
void die (); // t <− current time − t0
Time t0;

};

typedef Profiler<Package::Class A> Class A;
// ...

typedef Profiler<Package::Class Z> Class Z;
}

Figure 2.13: A statically metaprogrammed profiler that measures the lifetime of
objects.
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object without modifying the respective classes. The parameterized class Profiler
takes class Target as parameter and specializes it in such a way that a timer is
started when objects are created and stopped when they are destroyed. One spe-
cialization of Profiler is created for each target class, but as it is handled at
compile-time, no extra code is generated but the necessary to measure the lifetime.

Modifications on the clients’ side could be avoided as well, for instance, with
the use of name spaces and conditional compilation4. If the original set of classes is
defined in one name space and the profiled one in another, then clients can select
the desired version by including the proper header file and “using” the proper name
space as shown bellow:

#ifdef PROFILED
#include ” profiled package .h”
using namespace Profiled Package;
#else
#include ”package.h”
using namespace Package;
#endif

Defining a component framework based on static metaprogramming techniques
could eliminate much of the overhead in conventional frameworks [SV98]. In-
deed, static metaprogramming has been explored to support component compo-
sition in several approaches other than frameworks, including collaboration-based
design [VN96a, ML98, Sma99] and subject-oriented programming [OKH+95]. It has
not been intensively explored in aspect-oriented programming probably due to the
presumption that aspects are written in aspect languages, but it could certainly be
an aid for an aspect weaver.

2.3.4 Component Configuration

The previous sections addressed the customization of operating systems by select-
ing specific components to take part in a system instance. This section considers
the possibilities of using generic programming techniques to customize every single
component in order to achieve the expected global configuration. Real systems will
more likely combine both approaches, first selecting a set of components and then
configuring each of them accordingly.

Generic Programming (GP) [MS89, Gog96, JLMS98, Aus99] is a programming
discipline that promotes reusability by means of parameterization. Perhaps the
most notorious example of generic programming is the C++ Standard Template
Library (STL) [Pla95], which decouples algorithms from the data structures on

4A class “wrapper” able to make Profiler fully transparent will be discussed later in sec-
tion 3.8.3.
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template<int n res, class Resource>
class Allocator
{
public :

Allocator ()
{ for( int i = 0; i < n res ; i++) used[i] = false ; }

Resource∗ alloc () {
int i ;
for( i = 0; ( i < n res) && used[i ]; i++);
return ( i == n res ) ? 0 : ( used[ i ] = true, &resource [ i ]);

}

void free (Resource∗ res ) {
int i ;
for( i = 0; ( i < n res) && (&resource[i ] != res ); i++);
if ( i != n res ) used[ i ] = false ;

}

private :
bool used[ n res ];
Resource resource [ n res ];

};

Figure 2.14: A simple generic resource allocator.

which they operate. STL orthogonal design allows programmers to use STL data
structures with their own algorithms, and to use STL algorithms with their own
data structures. As a template library, STL is mostly handled at compile-time, thus
profiting from numerous compiler optimizations.

Generic programming can also be used to make ordinary software components
more configurable. These generic components are able to adjust their behavior
according to externally defined parameters. Because generic components are instan-
tiated at compile-time, customizing them usually does not affect their efficiency.
When a generic component is instantiated with a particular set of parameters, a
concrete component is generated.

An example of generic component is depicted in figure 2.14. This simple resource
allocator is able to allocate and reclaim any kind of resource, as long as information
about the maximum number of units of that resource is supplied5. The parameter-
ized class Allocator takes two parameters: n res and Resource. The first stands

5An allocator with a fixed number of resources may look strange for an application programmer,
but is certainly in order for a system programmer. In an operating system there are plenty of cases
in which the maximum number of resources is known in advance (e.g., SCSI devices in a bus), or
in which the cost of dynamic allocation is not worth paying (e.g. i-nodes in a file system).
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for the maximum number of resources of the corresponding type, while the second
designates the resource type. A statically allocated array of resources resource is
created for later allocation, and the used bitmap tracks resource utilization.

Indeed, this example goes beyond parameterized programming and uses C++

static metaprogramming features to completely embed the allocator into the client
(no function calls are generated at all)6. A concrete allocator that allocates up to
16 buffers of 4 Kbytes could be instantiated as follows:

Allocator<16, char[4096]> allocator ;

Although not the only language to support generic programming, C++ has been
the choice for many generic component developers, which rely mostly on the template
mechanism. Template parameters in C++ are not restricted to types; they can
also be constants, data structures, or even stretches of code. This makes component
construction very flexible, but not without its price. The resulting source code
may become incomprehensible if many parameters are used, or if unconventional
parameters are used.

2.4 Summary

A customizable operating systems is constructed to be configured in accordance
with specific requirements dictated by the hardware, users, or applications. In such
a system, configuration must be explicitly controllable, so that clients can designate
the features that will be active in the system at a given time. This is usually achieved
with mechanisms that adjust system control parameters and/or manipulate system
parts.

The configuration mechanisms available to an operating system to accomplish
customizability can be classified as static or dynamic. Static configuration mech-
anisms are deployed to modify system characteristics before it begins to execute,
influencing the process of link edition, compilation, or source code generation. In
contrast, dynamic configuration mechanisms are deployed while the system is run-
ning. Common mechanisms include process creation, kernel extension, and reflec-
tion.

Static configuration mechanisms have advantages on performance and resource
utilization, for they are not included on the final system. On the other hand, dy-
namic configuration mechanisms confer the system a higher degree of flexibility,
for they support the system in reconfiguring itself to deal with unpredicted situa-

6If code replication becomes a problem, a set of allocation functions that ignores the type of
resource being allocated and operates solely on pointers and size information can be gathered in a
base class for the generic allocator.
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tions. In general, dynamic configurability agrees with generic computing systems,
in which applications are not known in advance, while static configurability matches
up dedicated computing systems, which comprise a small set of applications (often
a single one) whose requirements are understood in advance. Knowing applications
in advance allows dedicated systems to profit from static configuration mechanisms
without degrading flexibility, since the system can be pre-configured to include all
the features that will be needed by the application(s).

An operating system modeled as an arrangement of software components can
reach a high degree of customizability. Configuration is thus accomplished through
the selection, adaptation, and combination of software components. Methodolo-
gies such as family-based design, object-oriented design, collaboration-based design,
subject-oriented programming, aspect-oriented programming and multiparadigm
combinations of these have the potentiality to guide the design of customizable
operating systems by means of concepts like variability and commonality analysis,
domain decomposition, subjective views of domain, and aspect separation.

During the development of component-based software, the definition of compo-
nent interfaces is a fundamental activity. A component interface specifies the services
provided by a component, yielding a kind of service contract between its clients and
suppliers. Such software components can be composed with a variety of techniques,
including design patters, frameworks, and generative programming, while generic
programming techniques can assist internal configuration. Nevertheless, the devel-
opment of customizable operating systems as collections of components introduces
a series of new obstacles. Engineering software components of adequate granularity,
adaptability, and composability, as well as mechanisms to assemble them efficiently
and correctly, remains a challenge, indicating that more adequate design and imple-
mentation techniques are necessary.





Chapter 3

Application-Oriented System
Design

In chapter 2, several mechanisms to support the construction of customizable oper-
ating systems have been described. From that study, one could conclude that, by
adopting state-of-the-art software engineering techniques, it is possible to construct
run-time support systems with a high degree of customizability. In particular, ded-
icated systems could benefit from statically configurable components to achieve the
desired customizability without having to pay the high price of dynamic reconfigu-
ration.

Nevertheless, a repository of system-level components and a mechanism to ar-
range them together may not be enough to comply with the requirements of dedi-
cated computing systems. Ordinary run-time support systems frequently fail to de-
liver the expected services, or the expected service quality [And92, Mah94, DBM98].
Slicing one such a system in a set of components will certainly not improve the case
for applications.

This chapter presents a novel strategy to build component-based run-time sup-
port systems that can be tailored according to the requirements of particular ap-
plications. This strategy is defined around the Application-Oriented System Design
method, which covers the development of application-oriented operating system from
domain analysis to implementation.

3.1 The Case for Application-Orientation

Historically, operating systems have been constructed aiming at abstracting physical
resources in a way that is more convenient for the hardware than for applications.
Undoubtedly, the monolithic structure of early operating systems contributed to
this scenario, for it must have been very difficult, if not impracticable, to customize
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such systems in order to accomplish the demands of particular applications. The
notion that applications have to be adapted to the operating system was so estab-
lished. Since then, a succession of standardizations has been freezing application
program interfaces, thus helping to consolidate the situation. Contemporary oper-
ating systems are suffocated by thick layers of standards that keep the majority of
the conceivable improvements unreachable for applications [Pik00].

Besides failing to accompany the natural evolution of applications, many operat-
ing systems also fail to keep updated as regards software engineering. By comparing
articles published in acclaimed scientific journals of both fields, operating systems
and software engineering, one could even conclude that they do not concern the same
science. Perhaps this is also a consequence of extreme standardization, whereas there
is little room for new software engineering techniques in the constrained scenario of
operating systems. Astonishingly, this is a very complex software scenario, which
spans from hardware to applications, and would greatly profit from modern software
techniques. However, in reality, the obsolescence of the techniques deployed in some
systems comes out to impact applications.

Even modern operating systems that support customization have difficulties to
match up with application requirements. Mainly because they usually target the
design of configurable features, the heart of any customization strategy, on standard
compliance and on hardware aspects, and do not adequately address application
requirements. Hence, an application programmer may be invited to select features
such as Posix or TCP/IP compliance, or to select drivers for a certain hardware
device, but seldom will have the chance to express that traditional features such as
process and memory management are not needed. Interestingly, this is one of the
most typical operating modes for a dedicated computing system.

Building an operating system as an aggregate of reusable components has the
potentiality to considerably improve the situation, diminishing the gap between sys-
tem and applications. Nevertheless, component-based software engineering is just
a means to construct systems that can be customized to fulfill the demands of par-
ticular applications. Inadequately modeled components, or inadequate mechanisms
to select and combine components, may render the extra effort of building reusable
components unproductive. The goal of application-driven customization can only
be achieved if the system as a whole is designed considering the fulfillment of appli-
cation requirements.

Furthermore, the way customization is typically carried out in component-based
operating systems makes it difficult to pair with application requirements. As a rule,
customization in these systems is delegated to end users, which are assisted by some
sort of tool in selecting and combining components to produce an executable system.
In this case, successfully customizing the operating system becomes conditioned to
the knowledge the user has about the system. Hence, user-driven customization is
entangled in the balance of component granularity discussed in section 2.3.2:
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• If components are coarse-grained, the chance of an ordinary user, i.e., a user
without deep knowledge about the operating system, to successfully conduct
system customization grows, but the probability that components will meet
application requirements decreases proportionally.

• If components are fine-grained, the chance that the system will match applica-
tion requirement grows, but it is likely that users will not be able to understand
the peculiarities of such a large collection of components, and will probably
miss the proper configurations.

Improvements in user-driven configuration have been pursued by enabling com-
ponents to be selected indirectly. The Linux system, for instance, utilizes a mech-
anism to select kernel components through the features they implement. Instead
of pointing out which components shall be included in the system, users can select
the desired system features. Features, in turn, are interrelated by dependencies
and mapped into components. Nevertheless, even if Linux kernel components are
coarse-grained (they are mainly device drivers and subsystems) and will seldom sat-
isfy the specific requirements of individual applications, selecting features from a
list with approximately 700 options1 would be considered a sordid activity by most
users. A mechanism that allows applications themselves to guide the configuration
process would be more appropriate.

The considerations made so far relate to applications in general; the case for
dedicated computing systems is even worse. Dedicated systems execute specific sets
of applications that are defined in advance, so the requirements for the operating
systems are also known beforehand. Theoretically, this should enable the operat-
ing system to be rightly customized to support the application. However, when a
general-purpose operating system is in scene, what usually happens is that appli-
cations get uncountable services that are not needed, but still have to implement
much of what is needed.

Notwithstanding, software engineering seems to be now in such an advanced
stage that it should be possible to produce an operating system that, besides scaling
with the hardware, also scales with applications; that delivers all the functionality
required by applications in a form that is convenient for them; and that deduces
application requirements to automatically configure itself. Many of the related issues
have already been addressed in the context of all-purpose computing by reflective
systems. In order to comply with the requirements of high-performance dedicated
systems, the subject is approached in this thesis from the perspective of statically
configurable component-based systems.

1The number of Linux configurable kernel features has been estimated by execut-
ing the following command in a system based on kernel version 2.2.14: grep CONFIG
/usr/src/linux/configs/kernel-2.2.14-i386.config | wc -l.
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3.2 Application-Oriented Operating Systems

The expression application-oriented is being introduced here to characterize oper-
ating systems that are strongly compromised with applications. A customizable
operating system is said to be application-oriented if it can be customized to match
the requirements of particular applications, rather than simply being customized to
match standards or hardware aspects. The configurable features of such a system
are directly derived from application requirements, so that applications themselves
can drive the customization process.

The following enunciate unveils the foundations of an application-oriented oper-
ating system:

An application-oriented operating system is only defined with regard to
the corresponding application(s), for which it implements the necessary
run-time support that is delivered as requested.

It also yields the following corollaries:

• An application-oriented operating system, in contrast to an all-purpose one,
is always associated with a particular application (or with a particular set of
applications). This intentionally restricts the scope of the proposed definition
to dedicated computing systems, for which the corresponding applications are
known in advance. It also favors static configuration mechanisms in detriment
of dynamic ones.

• An application-oriented operating system has to implement the run-time fea-
tures that are necessary to support the application, neither less nor more. It
is straightforward to understand why the system should not implement less
than the necessary features, but for an application-oriented system, delivering
more than what is necessary should be avoided as well. Included features that
are not used by the application, besides affecting the average system quality
(performance, resource utilization, configurability, etc), may complicate the
matching with application requirements.

• The features implemented by an application-oriented operating system must
be delivered to the corresponding application as they have been requested.
Hence, externally visible interfaces must be defined in the context of applica-
tions to be realized in the context of the operating system with the necessary
internal adjustments.

The main contribution of this dissertation is a design method that addresses
the issues involved in the construction of application-oriented operating systems.
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The proposed design method, namely Application-Oriented System Design (AOSD),
covers the development of system-level software from domain analysis to implemen-
tation, reusing state-of-the-art software engineering concepts and techniques when
possible, and defining novel ones when necessary. A new design notation has been
suppressed in favor of the Unified Modeling Language (UML) [BRJ99], though ex-
tensions and simplifications to this language will be frequently practiced.

3.3 Domain Analysis and Decomposition

Although no design can go further than its perception of the corresponding prob-
lem domain, domain analysis and operating systems are subjects that seldom come
together. The fact that the operating system domain is basically made of con-
ventions, many of which established long ago in projects such as The [Dij68] and
Multics [Org72], seems to have fastened it to a “canonical” partitioning. This
partitioning includes abstractions such as process, file, and semaphore, and is taken
“as-is” by most designers. Indeed, it is now consolidated by standards on one side
and by the hardware on the other, leaving very little room for new interpretations.

Notwithstanding this, revisiting the problem domain during the design of a new
operating system would probably reveal abstractions that are better tuned with
contemporary applications. For example, the triple (process, file, message passing)
could be replaced by persistent communicating active objects. Actually, most run-
time platforms feature this perspective of the operating system domain through
a middleware layer such as Corba [OMG01] and Java [SUN01]. However, the
middleware approach goes the opposite direction of application-orientation, whereas
it further generalizes an already generic system.

Nevertheless, even if one endures domain analysis knowing that decomposition
will have to be carried out respecting the boundaries dictated by standards, pro-
gramming languages, and hardware, there is at least one important reason to do it:
to avoid the monolithic representation of abstractions. If an application-oriented
operating system is to be the output of design, capturing application-specific per-
spectives of each abstraction and modeling them as independently deployable units,
as suggested by subject-oriented programming [section 2.2.4], is far more adequate
than the monolithic approach. After all, the product of domain engineering is not
a single system, but a collection of reusable software artifacts that model domain
entities and can be used to build several systems.

3.3.1 Application-Oriented Domain Decomposition

An application-oriented decomposition of the problem domain can be obtained, in
principle, following the guidelines of object-oriented decomposition [section 2.2.2].
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However, some subtle yet important differences must be considered. First, object-
oriented decomposition gathers objects with similar behavior in class hierarchies by
applying variability analysis to identify how one entity specializes the other. Besides
leading to the famous “fragile base class” problem [MS98], this policy assumes that
specializations of an abstraction (i.e. subclasses) are only deployed in presence of
their more generic versions (i.e. superclasses).

Applying variability analysis in the sense of family-based design [section 2.2.1] to
produce independently deployable abstractions, modeled as members of a family, can
avoid this restriction and improve on application-orientation. Certainly, some family
members will still be modeled as specializations of others, as in incremental system
design [section 2.2.1.1], but this is no longer an imperative rule. For example, instead
of modeling connection-oriented as a specialization of connectionless communication
(or vice-versa), what would misuse a network that natively operates in the opposite
mode, one could model both as autonomous members of a family.

A second important difference between application-oriented and object-oriented
decomposition concerns environmental dependencies. Variability analysis, as carried
out in object-oriented decomposition, does not emphasizes the differentiation of
variations that belong to the essence of an abstraction from those that emanate
from the execution scenarios being considered for it. Abstractions that incorporate
environmental dependencies have a smaller chance of being reused in new scenarios,
and, given that an application-oriented operating system will be confronted with
a new scenario virtually every time a new application is defined, allowing such
dependencies could severely hamper the system.

Nevertheless, one can reduce such dependencies by applying the key concept of
aspect-oriented programming [section 2.2.5], i.e. aspect separation, to the decom-
position process. By doing so, one can tell variations that will shape new family
members from those that will yield scenario aspects2. For example, instead of model-
ing a new member for a family of communication mechanisms that is able to operate
in the presence of multiple threads, one could model multithreading as a scenario
aspect that, when activated, would lock the communication mechanism (or some of
its operations) in a critical section.

The phenomenon of mixing scenario aspects and abstractions seems to happen
spontaneously in most other design methods, so learning to avoid it may require
some practice. Perhaps the most critical point is the fact that the majority of
operating systems are conceived with an implementation platform in mind, which
is often better understood than the corresponding problem domain. In principle,
there is nothing wrong in studying the target platform in details before designing the
system, actually it may considerably save time, but designers tend to misrepresent
abstractions while considering how they will be implemented in the chosen platform.

2The representation of scenario aspects will be discussed later in section 3.5, for now it is only
important to avoid modeling unnecessary family members.
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In an application-oriented system design, this knowledge about implementation de-
tails should be driven to identify and isolate scenario aspects. In general, aspects
such as identification, sharing, synchronization, remote invocation, authentication,
access control, encryption, profiling, and debugging can be represented as scenario
aspects.

Building families of scenario-independent abstractions and identifying scenario
aspects are the main activities in application-oriented domain decomposition, but
certainly not the only ones. The primary strategy to add functionality to a family
of abstractions is the definition of new members, but sometimes it is desirable to
extend the behavior of all members at once. Specializing each member would double
the cardinality of the family. Application-oriented system design deals with cases
like this by modeling the extended functionality as a configurable feature. Just
like scenario aspects, configurable features modify the behavior of all members of a
family when activated, but, unlike those, are not transparent. One could say that
scenario aspects have “push” semantics, while configurable features have “pull”.

A configurable feature encapsulates common data structures and algorithms that
are useful to implement a family’s feature, but leave the actual implementation up
to each family member. Abstractions are free to reuse, extend, or override what is
provided in a configurable feature, but are requested to behave accordingly when
the feature is enabled.

The case for configurable features can be illustrated with a family of networks
and features such as multicasting, in-order delivery, and error detection. If new
family members were to be modeled for each such a feature, a family of 10 networks
subjected to 10 features could grow up to 1010 members. Modeling this kind of
feature as a scenario aspect is usually not possible either, since its implementation
would have to be specialized to consider particular network architectures.

Another relevant issue to be considered during domain decomposition is how
abstractions of different families interact. Capturing ad-hoc relationships between
families during design can be useful to model reusable software architectures, helping
to solve one of the biggest problems in component-based software engineering: how
to tell correct meaningful component compositions from unusable ones. A reusable
architecture avoids this question by only allowing predefined compositions to be
carried out. For example, one could determine that the members of a family of
process abstractions must use the family of memory to load code and data, avoiding
an erroneous composition with members of the file family. In application-oriented
system design, reusable architectures are captured in component frameworks that
define how abstractions of distinct families may interact. Although such frameworks
are defined much later in the design process, taking note of ad-hoc relationships
during domain decomposition can considerably ease that activity.

An overview of the process of application-oriented domain decomposition is pre-
sented in figure 3.1. In summary, it is a multiparadigm domain analysis method that
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Figure 3.1: An overview of application-oriented domain decomposition.

promotes the construction of application-oriented operating systems by decomposing
the corresponding domain in families of reusable, scenario-independent abstractions
and the respective scenario aspects. Reusable system architectures are envisioned
by the identification of inter-family relationships that will later build component
frameworks.

3.3.2 An Example of Domain Decomposition

In order to illustrate the process of application-oriented decomposition, the domain
of high-performance communication in clusters of workstations will be decomposed
next. This experiment has been realized with the collaboration of RWCP Laboratory
for Parallel and Distributed Systems at GMD that currently investigates means to
facilitate the construction of grid and mesh-based scientific applications [GGD01].
The members of this group played the role of domain experts for a simplified use
case analysis [JCJO93] that produced the vocabulary in table 3.1.

active messages ARMR/ARMW asynchronous send
ATM capability channel
collective operations datagram debugging support
DSM end-point Ethernet
group communication high bandwidth link
location transparency low latency mailbox
MPI multithreading Myrinet
port protection PVM
reliability SCI sharing
stream synchronous send user-level

Table 3.1: A vocabulary regarding the domain of high-performance communication
in clusters of workstations.

Based on this perception of the problem domain, application-oriented decompo-
sition begins by applying commonality/variability analysis to identify the families
of abstractions that build up the domain. For example, Myrinet, SCI, Ethernet,
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and ATM could be gathered in a family of networks, with a member for each net-
work technology. The family would abstract what these networks have in common
(e.g. the ability to transmit and receive data), while members would make evident
the technological differences among them that are relevant to applications. Simi-
larly, port and mailbox could start a family of communication end-points, while
datagram and stream could be gathered in a family of communication strategies.

Some of the keywords in table 3.1, however, clearly do not designate abstractions.
High bandwidth and low latency, for instance, are non-functional requirements
that have to be taken in consideration during the design of the system as a whole.
This kind of global property is quite different from those that can be enabled and
disabled at users’ wish. The support for multithreading, for instance, is a property
that affects all abstractions in the domain, but not permanently. It could be mod-
eled as a scenario aspect. Configurable properties that originate from an execution
scenario but that are only meaningful to specific families can be modeled as private
scenario aspects for those families. For example, an asynchronous communica-
tion system could be obtained exclusively by requiring the family of communication
strategies to join the “asynchronous scenario”. Properties such as reliability and
multicast, which regard the behavior of abstractions in the family of networks, are
too dependent from the physical network to be implemented as part of a scenario.
They are better modeled as configurable features.

From the keywords in table 3.1, three do not fit in the cases considered above:
user-level, MPI, and PVM. The first reveals the knowledge the contributing group of
experts has about the advantages of an implementation technique, while the other
two designate desired Application Program Interfaces (API). As long as possible,
these two last should be considered as what they really are: APIs. It should be
possible to design an adaptation layer to support these APIs on top of any well-
designed communication system, which could also offer more sophisticated native
APIs.

A schematic representation of the decomposed domain is presented in the follow-
ing diagrams. Figure 3.2 shows the topmost family diagram, including the families
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m−thread
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Figure 3.2: Families of abstractions and scenario aspects in the domain of high-
performance communication.
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Figure 3.3: A family of networks in the domain of high-performance communication.

of abstractions and scenario aspects that were identified during decomposition. Each
family of abstraction will be described subsequently. The multithread (m-thread),
multitask (m-task), and multiprocessor (SMP) scenario aspects concern the synchro-
nization of concurrent object invocation in the respective scenarios. The protected

scenario aspect enforces access control to abstractions, while the shared aspect co-
ordinates simultaneous access. The location transparent (loc.transp.) scenario
aspect imposes an indirect invocation mechanism that hides the location of abstrac-
tions. The debug scenario aspect produces run-time information about abstractions
that can be used to debug the application.

The family of networks is depicted in figure 3.3. It has four members: Ethernet,
ATM, Myrinet, and SCI. Two configurable features have been considered: multicast
and reliability. The first is enabled when the application requests for collective
operations, while the second is enabled to build a reliable scenario. It is important
to notice that, whatever construct is used to implement these configurable features,
it will likely have to be specialized for each family member, since architectural
differences between them may render portable solutions inefficient.

The family of communication strategies is shown in figure 3.4. It features
six members that support the following strategies: connectionless communication
(Datagram), connection-oriented communication (Stream), asynchronous write to a

ARMR

DSMAM

buffering

group
comm. Communication

Strategies

Datagram Stream ARMW

synchronous
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Figure 3.4: A family of communication strategies in the domain of high-performance
communication.
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memory region on a remote host (ARMW), the respective read operation (ARMR), active
messages (AM), and distributed shared memory (DSM). Both AM and DSM are modeled
in terms of ARMW. DSM also reuses ARMR. Two private scenario aspects have been mod-
eled for this family: synchronous and asynchronous. The first scenario modifies
the semantics of the communication mechanisms in such a way that the send op-
eration (or equivalent) only concludes when the destination application completely
receives the data, while the second implies in the send operation returning as soon
as possible. Besides, two configurable features have been modeled: group commu-
nication (group comm.) and buffering. The first is used to implement collective
operations, while the second supports the family in implementing the asynchronous
scenario.

The third family of abstractions is depicted in figure 3.5. It concerns end-points
for the family of communication strategies, thus being the family that will be used
more often by applications. It includes the following members: 1-to-1 channel
(Connection), n-to-1 channel (Port), n-to-n channel (Mailbox), active message
handler (AM Handler), and memory segments for asynchronous remote operations
(ARM Segment) and distributed shared memory (DSM Segment). No private scenario
aspects or configurable features were modeled.

During the decomposition of the domain of high-performance communication in
clusters of workstations, some fragments of reusable system architecture became ev-
ident: the family of communication strategies uses the family of networks, and both
are interfaced by the family of end-points. This would be recalled when defining a
component framework for the high-performance communication system in question.

The following sections describe how a preliminary design specification produced
during application-oriented domain decomposition can be refined to yield a detailed
specification that can be used to guide the implementation of an application-oriented
operating system.

AM
Handler

ARM
Segment

DSM
SegmentPort MailboxConnection

Communication
End−poits

Figure 3.5: A family of communication end-points in the domain of high-
performance communication.
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3.4 Families of Scenario-Independent Abstrac-

tions

During application-oriented domain decomposition, scenario-independent abstrac-
tions are identified and grouped in families according to what they have in common.
The subsequent phase in application-oriented system design is the refinement of
these abstractions in order to define the software components that will implement
them.

The first refinement to be performed is the adjustment of the magnitude of
components in relation to abstractions. The basic idea is to keep a 1-to-1 relation,
preserving conformity with the domain. However, it may happen that some entities
in the domain are too coarse-grained to be modeled as a single component (e.g.
a file system), or to primitive to be directly exposed to application programmers
(e.g. an FPU). As explained earlier, excessively large components will likely miss
the target on application-orientation, while excessively small components will likely
flop on user-friendship.

The balance “as simple as possible, but still application-ready” is the goal to
be pursued in this phase of design. Larger, more complex abstractions can be
implemented as an assemblage of components, while elementary entities, that do not
characterize abstractions, can be embedded in other components according to the
criterion of functional cohesion. Data structures and algorithms that are common
to several families of abstractions can be collected in utility classes to be reused
during the construction of actual components. Although a precise “algorithm” to
reach such a balance does not exist, chapter 4 brings an extensive case study on
application-oriented system design that shall elucidate many of the issues related to
abstraction granularity.

For all practical effects, components in an application-oriented system design
will always be seen as direct emanations of abstractions, hence some granularity
adjustments may have to be propagated back to the documents of domain analysis.
This correspondence between abstractions and components helps to assure that an
application programmer will never be called to interact with abstractions that are
not directly being used, nor confronted with the fact that unnecessary abstractions
have been included in the system. If a component encapsulates several abstractions
and the application makes use of a single one, it is likely that the programmer will
still have to configure the remaining abstractions, and that these extra abstractions
will consume resources that otherwise could be used by the application.

After components and abstractions have been matched, each family of abstrac-
tions can be refined considering details about the structure and behavior of its
members in order to ratify their interfaces. Ideally, application-orientated abstrac-
tions should be delivered as Abstract Data Types (ADT) [LZ74]. In this case, each
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Thread() is forkA_Thread (entry : Pointer = HERE,
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~A_Thread ()

A_Thread

implicit on return

Figure 3.6: The interface of a member of a family of thread abstractions.

abstraction would be exported through an interface that clearly identifies its respon-
sibilities. The definition of these interfaces is fundamental for a successful design,
whereas they constitute the main interaction point between system and application
programmers.

Some designers defend that interfaces should not specify constructors, since in
principle a class can realize several interfaces, possibly leading to conflicts. However,
the class that represents an abstraction in the realm of application-oriented system
design is a rather special one: it is conceived to collect the classes that implement
the abstraction in a construct that realizes the interface of that abstraction. These
classes always realize a single interface. Furthermore, some abstractions become con-
siderably easier to understand and to use when associated with distinct initialization
semantics, which could be expressed by constructors in their interfaces.

The interface of a member of a family of threads outlined in figure 3.6 illustrates
the case for constructors in interfaces. When creating an object of type A Thread, the
programmer can choose from a variety of initial states that differ on aspects such as
whether the thread is immediately eligible for execution or not, where the execution
will begin, and what priority it will have. In situations like this, application-oriented
designers are encouraged to specify constructors in abstraction’s interfaces.

Regarding the organization of abstractions in families, one of the first aspects
to be observed is whether the commonalities that substantiated the creation of the
family can be modeled as a basic abstraction from which all other abstractions
derive. If so, the family becomes a traditional object-oriented class hierarchy, with
the basic abstraction as a base class and the remaining members as specializations
of that. In this case, each family member defines a subtype of the basic abstract
data type, thus enabling the entire family to be handled as a single polymorphic
abstraction.
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Contrarily to what a “pure” object-oriented designer might suppose, this is not
the only (and sometimes not even an adequate) alternative to represent a family of
abstractions. Consider for instance a family of synchronization mechanisms compris-
ing two well-known abstractions: condition variables and semaphores. Does what
they have in common characterize a basic abstraction? Alternatively, should one
of them be taken as the basic abstraction? In any case, how would the drastic dif-
ferences between them be accommodated in the base class? As the term suggests,
polymorphism concerns the reconciliation of the multiple “forms” of an abstraction,
providing a single interface for entities of different types. However, what happens
if these multiple forms, though sharing semantic and functional aspects, do not fit
under a common type?

As a multiparadigm design method, application-oriented system design does not
presuppose abstractions in a family to be polymorphic. If the commonality of a
family does not spontaneously characterizes a basic abstraction, then it can be rep-
resented by classes collected in a “common package” and made available to be reused
by independently defined family members via aggregation or subclassing instead of
subtyping.

Some families of abstractions may feature members that are mutually exclusive,
i.e., that cannot be deployed at the same time. For example, a family of process
abstractions could feature a member to support a single thread per process and
another to support both single and multiple threads. These two abstractions would
likely be mutually exclusive, since the cost of dynamically switching between them
would be much higher than the cost of selecting the abstraction that supports multi-
threading and leaving the feature inactive for most of the time. This kind of family
excludes polymorphism even if the family derives from a common basic abstraction,
since only one of its multiple “forms” can be used at a time.

The construct used to encapsulate the common elements of a family is also the
ideal place to store the classes used to implement configurable features, since it is
always incorporated by all members. Configurable features dictate particular con-
ditions to abstractions, but unlike scenario aspects, are not transparent. When an
abstraction is notified that a configurable feature has been enabled, it has to modify
its behavior accordingly. Nevertheless, the implementation of such configurable fea-
tures across the members of a same family can usually be accomplished deploying
common data structures and algorithms, which can be modeled as classes in the
family’s common package. These classes can be reused, specialized, or overridden
by each family member.

A typical family of abstractions can be represented using the notation illustrated
in figure 3.7. The correspondence of abstractions and components in an application-
oriented system design allows family diagrams to fuse elements from both logical
and component view. A family is represented as a tree, with members connected
through dependency relationships, and themselves depending or specializing each
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Figure 3.7: Notation to represent a family of abstractions.

other. The family’s common package is implicitly represented, unless configurable
features have been modeled for the family. In this case, they appear connected to
the root of the tree by means of use relationships.

While refining the specification of families and their members, it is also impor-
tant to consider inter-family relationships. Families often rely on abstractions from
other families to deliver the contracted services. For example, a family of process
abstractions may rely on a family of synchronization abstractions to coordinate
concurrent execution. Whenever possible, inter-family relationships should be ex-
pressed without making the case for a particular member of the supplier family, so
that configurability is not constrained. If a family makes a superfluous choice for
a mutually exclusive member of another family, it implicitly configures that family,
preventing the application programmer from doing so, and reducing the number of
valid system configurations.

Suppose for instance that family B of figure 3.8 is mutually exclusive (i.e. only one
of B1, B2, and B3 can be used at a time). Defining relationship R2 would implicitly
exclude members B2 and B3 from been used when family A is deployed. Evidently,
this is not an issue if family A really depends on member B1. Indeed, failing to
represent this relationship would make room for erroneous configurations in this
case. However, it is important to carefully consider if a restrictive relationship like
this really holds for the whole family. For example, if the dependency on member B1
concerns exclusively to member A3, while other members of family A would behave
correctly with any member of family B, a relationship R1 could express the inter-
family dependency and be overridden by R3 for member A3.

Another situation that could bring families to interact is the identification of
common software artifacts that are of interest to several families. Containers such as
lists and queues, for instance, appear in a large number of system-level abstractions.
Modeling such artifacts in the context of one abstraction and establishing inter-
family relationships just for the sake of code sharing is certainly not an option: the
loss of quality due to improper coupling is eminent. Defining additional “utility
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Figure 3.8: Inter-family dependencies.

abstractions”, where common artifacts are collected for posterior reuse, is not an
alternative either, since such abstractions would break fidelity with the domain. A
satisfactory answer to the question would be to model these common artifacts as
utility classes that are stocked up in a library. In this way, they can be shared among
clients without setting up any relationship between them.

At this point, application-oriented system design converges into object-oriented
design to produce detailed specifications of each family’s common package, its mem-
bers, its configurable features, and class utilities. Among others, the methods pro-
posed by Rumbaugh [RBLP91], Jacobson [JCJO93], and Booch [Boo94] could be
used for this purpose.

3.5 Scenario Aspects

In the process of application-oriented domain decomposition, abstractions are spec-
ified avoiding dependencies from envisioned execution scenarios, while scenario as-
pects are captured in separated constructs. By doing so, an explosion of scenario-
dependent abstractions is avoided at the same time the degree of reusability of
abstractions is increased. However, for this scheme to be effective, the constructs
used to capture scenario aspects must be modeled in such a way that it becomes
possible to enforce abstractions the conditions dictated by a given scenario without
having to explicitly modify them.

One can think of a scenario as a construct that incorporates several scenario
aspects in the same way abstractions do with configurable features. Once the de-
sired scenario aspects have been selected, the scenario can be applied to abstrac-
tions with a scenario adapter. A scenario adapter is a kind of agent that engulfs a
scenario-independent abstraction in order to mediate its interaction with a scenario-
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Figure 3.9: The general structure of a scenario adapter.

dependent client (figure 3.9). In this way, abstractions acquire the properties needed
to perform in a given scenario without having to be modified.

In application-oriented system design, scenarios and the respective aspects are
represented in scenario diagrams. In principle, scenario adapters are defined on a
per-scenario/per-family basis, so it is unnecessary to represent them either in sce-
nario diagrams or in family diagrams. However, if some exotic families (or family
members) require scenario adapters to be specialized, then it is convenient to rep-
resent them in the corresponding family diagram. A scenario that only regards to a
single family is represented in the corresponding family diagram too.

Scenario aspects can be either structural or behavioral. The first kind modifies
the structure of abstractions, appending some scenario-specific data structure to
them. The unique global identifier that is assigned to abstractions in order to
support remote invocation in a distributed scenario is an example of structural
aspect. Such a kind of scenario aspect can be modeled as shown in figure 3.10,
with the structural aspect being first incorporated by the corresponding scenario
via aggregation and later by the scenario adapter via inheritance.

The second kind of scenario aspect modifies the behavior of abstractions, en-
forcing scenario-specific semantics on them. Attaching a lock to abstractions so
that concurrent invocations of their operations get coordinated is an example of
behavioral aspect. Abstractions would be locked just before an operation is invoked
and released just after it is concluded. A generic representation of behavioral as-
pects is shown in figure 3.11. Just like structural aspects, behavioral aspects are

n
Abstraction Scenario Structural Aspect

Scenario AdapterClient

Figure 3.10: The representation of a structural scenario aspect.
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Figure 3.11: The representation of a behavioral scenario aspect.

first incorporated by the corresponding scenario via aggregation and later by the
scenario adapter via inheritance. However, unlike the former, behavioral aspects
implement operations that are automatically invoked by the scenario adapter to
establish the conditions required by the scenario before the operation is invoked on
the abstraction. The corresponding operations of all behavioral aspects are usu-
ally called in-order when entering and leaving the scenario, but more sophisticated
schemes can be devised.

A new scenario, and consequently a new scenario adapter, has to be defined
for a family of abstractions only if incompatibilities among scenario aspects arise.
Otherwise, a set of scenario aspects can be simultaneously activated to shape an
execution scenario for the abstractions in the system.

3.6 Inflated Interfaces

In application-oriented system design, families of abstractions are sometimes han-
dled as single entities. Configurable features and scenario adapters, for instance, are
defined in terms of families and not of their members. Viewing a family as a single
entity may be convenient to application programmers as well, since it would enable
them to postpone the decision of which family member will be used until enough
arguments have been collected. Assigning each family a single interface, that rep-
resents all its members at once, would produce the desired single-view and would
enable programmers to write their applications with a higher degree of abstraction.
Adequate realizations of these interfaces could be selected just before generating the
application-oriented operating system.
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Figure 3.12: Partial (a) and selective (b) realization relationships.

Consider, for example, the case in which an application programmer first iden-
tifies a given member A of a family of abstractions as being the most adequate for
an application, but during implementation realizes that writing the application in
terms of a member B would have been more appropriate. Replacing each appearance
of A for B in the source code could be avoided if the programmer had written the
application in terms of an interface that congregates the services of both member A
and member B, and if both members had been implemented respecting the semantics
of this interface. In this case, binding the interface to member B would be enough
to produce the desired effect.

Therefore, besides exposing the individual interface of each member of a fam-
ily of abstractions, an application-oriented system also delivers an inflated interface
that exports the family as though a “super” component, that implements all re-
sponsibilities assigned to the family, was available. Theoretically, such an interface
can be obtained by merging the interfaces of individual family members. However,
if programmers are invited to write their applications based on these inflated inter-
faces, a strategy to transparently bind them to one of their realizations (i.e. a family
member) has to be devised.

In order to support design based on inflated interfaces, two new relationships
are being proposed: partial and selective realization. Both relationships take place
between an inflated interface and its realizations, being that a realization partici-
pating in a partial realization relationship implements only a specific subset of the
corresponding inflated interface, and selective realization means that only one of the
realizations can be bound to the inflated interface at a time. Both relationships are
depicted in figure 3.12.

Ideally, application programmers should be able to write applications entirely
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Figure 3.13: Categories of families of abstractions with regard to their inflated
interfaces.

in terms of inflated interfaces, delegating the burden of system configuration to
an automatic tool. Such a tool would syntactically analyze the source code of
the application in order to determine the inflated interface subsets that have been
effectively used. It could then bind each inflated interface to the lightest family
member that realizes the required subset3, thus producing an application-oriented
operating system. In order to achieve this scenario, inflated interfaces must be
carefully specified, taking in consideration the internal organization of families. In
this regard, there are four basic categories of families to be considered:

• Uniform: a family of abstractions in which all members share the same inter-
face;

• Incremental: a family of abstractions that has undergone an incremental de-
sign, with each member being an extension of the previous;

• Combined: a family of abstractions in which members show no intersection at
all, but that allows members to be automatically merged (e.g., via multiple
inheritance) to produce new members with the combined functionality;

• Dissociated: a family of abstractions that does not fit in one of the preceding
categories.

Figure 3.13 illustrates how the inflated interfaces of families of these four cat-
egories are produced. The inflated interface of a uniform family can be directly
derived from the interface of any of its members, since they are all equivalent. That
is, an inflated interface already exists by definition for this kind of family. Figure 3.14
shows a uniform family of CPU scheduling policies in which threads candidate to
execution are registered with the policy implementer by the thread manager. In or-
der to select a new thread to occupy the CPU, the method choose is invoked. The
information necessary to make a scheduling decision is obtained directly from the

3The complex task of ordering family members according to a cost model would have been
previously accomplished by the operating system designer.
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Figure 3.14: The inflated interface of a uniform family of CPU scheduling policies.

registered threads by invoking appropriate methods, thus enabling a uniform inter-
face for the policy implementers. If policies are allowed to be changed at run-time,
then the family should be implemented using polymorphism, making changes trans-
parent to the thread manager. In fact, uniform families are usually polymorphic,
since a common interface for the different types defined by each member abstraction
already exists.

A family of the incremental category has its inflated interface derived from the
member with the broadest interface, which encompasses all other members. An
example of this kind of family is presented in figure 3.15. Each member of this family
of thread abstractions adds functionality to the family by defining new operations.
Operations with the same signature also have the same semantics for all family
members. Member Priority is the most comprehensive one in the example, thus
characterizing the inflated interface of the family.

The inflated interface of a combined family can be produced by merging the indi-
vidual interfaces of all family members. This is the most flexible family organization
in what concerns configurability, since it enables an eventual binding tool to perform
arbitrary combinations of family members in order to match the required inflated
interface subsets. Nonetheless, this kind of family is extremely difficult to model,
since each member has to be designed considering the consequences of arbitrarily
combining it with all other members. During the design of Epos, the prototype
system developed to validate the concepts and techniques of application-oriented
system design, no families of this type have been identified.

The inflated interfaces of the former three categories, when designated by an
application, can always be bound, either to an existing realization or, in the case
of a combined family, to an implicitly derived one. The inflated interface of a
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Figure 3.15: The inflated interface of an incremental family of thread abstractions.

family in the dissociated category, however, may yield an adverse situation. Such an
interface would also be produced by merging the interfaces of all family members,
but binding to an appropriate realization may not be viable. Indeed, binding will
only be possible if the interface subset designated by the application is entirely
realized by a single member of the family, since members of this kind of family
cannot be automatically merged. The situation of not being able to bind an inflated
interface can be interpreted from two perspectives:

1. The application programmer misused the inflated interface, requesting for in-
compatible services that cannot be delivered by a single abstraction;

2. The abstraction that would realize the required inflated interface subset,
though coherent, has not yet been implemented.

The first situation happens when an application makes the case for a family
member and than requests an operation that cannot be performed on abstractions
of that type—writing to a read-only file, for instance. The inability to bind the
inflated interface, in this case, does not compromise the system, since it is a direct
consequence of a semantic flaw in the application program. Even if one considers
that the programmer was induced to error by the inflated interface, for example
because it showed the constructor of a read-only file and the write operation under
the same interface (figure 3.16), detecting such an error during system configuration
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Figure 3.16: The inflated interface of a dissociated family of file abstractions.

is an advance in regard to ordinary systems, which usually only detect this kind of
error at run-time4.

The second case, however, exposes a controversial aspect of inflated interfaces: an
application programmer, after having been invited to write an application in terms of
inflated interfaces, may be required to modify it because a needed (and announced)
component is not available. This situation can be observed in the family of I/O buses
depicted in figure 3.17. If an application invokes the method scan on an object of
type ISA, it implicitly requests for a realization that does not (yet) exist. However,
scanning an ISA bus is a logically correct operation that could be implemented either
by the ISA member itself or by a new Plug and Play ISA member. Situations like
this have to be taken in consideration during system design so as to decide, together
with users, whether the use of inflated interfaces for dissociated families is adequate
or not.

Nevertheless, incidents that require applications to be modified will be more fre-
quent in the early stages of system development, when many conceived abstractions
have not yet been implemented, fading away with time. Furthermore, when such
an incident happens, the operating system developers get a precise description of
the missing component, what can considerably accelerate the development of the
system as a whole. After all, this is not a peculiarity of application-oriented sys-

4The Posix system call open can be invoked to create a read-only file and nothing prevents the
system call write to be invoked on the same file, resulting in a run-time error.
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Figure 3.17: The inflated interface of a dissociated family of I/O buses.

tem design: the same problem would occur in a family-based design and in a pure
object-oriented design. It is intrinsic to giving a set of dissociated abstractions a
common interface.

3.7 Reusable System Architectures

Along with the specification of abstraction families and scenario aspects, an
application-oriented system design delivers specifications of reusable system archi-
tectures, which define how abstractions can be arranged together in a functioning
system. Reusable system architectures are usually defined considering the past ex-
perience with the building systems of a certain class. After having developed some
systems, or some versions of a system, for a certain problem domain, developers
begin to agree on how to implement the abstractions that build up the domain,
how they interact with each other, with the environment, and with applications,
and how the implied non-functional requirements can be accomplished. Such an
expertise can be captured in an architectural specification to be reused in upcoming
systems.

Capturing reusable system architectures in a component-based system is funda-
mental, since a pile of components, by itself, is nothing but a pile of components.
A component-based system is only achieved when components can be arranged to-
gether in an assemblage of predictable behavior. In application-oriented system
design, reusable architectures begin to be modeled yet during domain decomposi-
tion with the identification of relationships between families of abstractions. These
relationships are enriched by scenario constraints during the specification of sce-
nario aspects and serve as input for this phase, which aims at producing a detailed
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Figure 3.18: An application-oriented component framework.

specification of reusable system architectures in the form of component frameworks.

An application-oriented component framework captures a reusable architecture
by specifying the families of abstractions that take part in a certain kind of sys-
tem, as well as rules that guide their interaction. Systems produced by compo-
nent frameworks, when compared to arbitrary arrangements of components, are less
prone to misbehavior, since only compositions that have been predefined by sys-
tem architects are allowed. Although component frameworks are not the unique
alternative to capture reusable architectures—among others, aspect programs, sub-
jects, and collaborations could also be used for this purpose—they fit perfectly with
application-orientation’s notion of isolating scenario aspects from abstractions by
means of scenario adapters.

An application-oriented component framework could be defined as a collection of
interrelated scenario adapters as shown in figure 3.18. Each scenario adapter would
set up a “socket” for components of the corresponding family. Plugging components
into the framework would be accomplished by binding the inflated interface of every
used family to the desired family member. The way scenario adapters are arranged
in the framework would define the basic architecture of resultant systems, while
architectural elements that do not concern components could be hard-coded in the
framework.

A component framework defined in terms of scenario adapters would also present
advantages concerning system-wide properties, which could be modeled as scenario
aspects to be enforced on components by the respective scenario adapters [SV98].
Moreover, a component framework of this kind does not require complex tools to
manipulate the source code of components in order to generate a system. After all,
the representation of a component framework as a socket board to which components
can be plugged is well understood and accepted by users.

Figure 3.19 shows a schematic representation of a component framework that em-
bodies a plausible system architecture for the domain of high-performance communi-
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Figure 3.19: A component framework for the domain of high-performance commu-
nication.

cation in clusters of workstations used as example in section 3.3.1. It illustrates the
relationships between the three families of abstractions modeled: Communication

End-Point, Communication Strategy, and Network. Firstly, it shows a mutual
dependency between the families of strategies and end-points, i.e., by selecting a
certain strategy, one automatically selects the corresponding end-point, and vice-
versa. It also shows that a network is used by the members of the communication
strategy family. The respective sets of components are also shown to illustrate the
“select-and-plug” organization of the framework.

An overview of the application-oriented system design method is presented in
figure 3.20. In summary, it is a multiparadigm design method that promotes the
construction of application-oriented operating systems by applying the process of
application-oriented decomposition to engineer a domain as collection of families of
reusable, scenario-independent abstractions. Scenario dependencies are modeled as
scenario aspects that can be enforced on abstractions by means of scenario adapters.
Families are made visible to applications through inflated interfaces, which export
all members as though a comprehensive component was available. Reusable system
architectures are captured in component frameworks defined in terms of scenario
adapters.
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Figure 3.20: An overview of application-oriented system design.
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3.8 Implementation Considerations

A system designed according to the directives of application-oriented system de-
sign can be implemented using a variety of techniques. An application-oriented
system implementation discipline is not being proposed in this thesis because new
techniques to implement components are being steadily introduced. Attempting to
consolidate such an implementation discipline at this moment would certainly be
precipitate. Nonetheless, several implementation techniques have been identified
that can be useful to implement application-oriented system designs.

One aspect that is likely to be shared by application-oriented system implemen-
tations is the programming language. Not because there is something inherent to
the application-oriented system design method that depends on a programming lan-
guage, but because of the very own nature of an operating system implementation,
which demands full control over the underlying hardware. The C programming
language [KR84], also dubbed “the portable assembly”, supplies this demand and
has been extensively used to implement operating systems, however with known
deficiencies in what concerns reusability and maintainability [Bur95].

Application-oriented system design is a multiparadigm design method that has
object-orientation on its core. Hence, designs produced with this method would be
more smoothly implemented in a multiparadigm language defined around object-
orientation. As of today, the C++ programming language [Str86] is the non-
experimental language that better satisfies these requisites: it exposes the bare
hardware through its C subset, and it is a multiparadigm language centered on
object-orientation. Therefore, C++ is the most probable choice to implement
application-oriented operating systems and will be used in the examples throughout
this section.

It is also important to keep in mind that abstractions in an application-oriented
system design correspond to the components that are used to assemble a run-time
support system for a dedicated application, and that the decision of including a
component in a system configuration is taken before it is generated. Static config-
uration is a premise of application-oriented system design that originates from its
focus on dedicated computing systems, so components are not loaded or replaced
at run-time as in a reflective system (see section 3.1). This premise also calls for
efficient implementations.

3.8.1 Abstractions

Abstractions in an application-oriented system design are modeled to be indepen-
dent from execution scenario aspects and to be deployed independently of a specific
framework. The construct that enables such a degree of independence is the sce-
nario adapter, which engulfs an abstraction in order to mediate its interaction with
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a scenario dependent client. In this way, abstractions can be designed and imple-
mented without making any consideration about the scenario in which they will be
used or how they will be placed in a framework. A skillfully designed system can
be implemented in such a way that abstractions are “incorporated by the frame-
work” instead of themselves “incorporating framework elements” such as header
files and base classes. This counts for maximum reusability, allowing abstractions
to be reused even by non-application-oriented systems.

The assumption that the framework incorporates abstractions by means of sce-
nario adapters, and not the other way round, also enables the reuse of binary compo-
nents. A header file containing the interface of the abstraction realized by the com-
ponent should suffice to incorporate a binary component in an application-oriented
system. Nevertheless, some of the optimizations promoted by a statically metapro-
grammed framework, function call elimination for example, would be inhibited in
this case.

The condition that enables a source component to be incorporated in an
application-oriented framework is the same: a header file with the interface of the
class that realizes the abstraction. It does not mean however that an abstraction
has to be realized by a single class. It only means that there must be a class that
encapsulates all other classes used to implement the abstraction, constituting a unit
of instantiation for the framework.

However, the representation of such interfaces in a system implemented in C++

is complicated by the lack of a real interface construct in the language. Usually the
public part of a class declaration is regarded as its interface, but nothing prevents
data and functions from being defined at the same time they are declared. An-
other commonly deployed strategy is to use a “pure” class declaration, i.e. a class
declaration without definitions, to designate the abstraction’s interface and another
class to hold its implementation. Two variants of this mechanism are depicted in
figures 3.21 and 3.22. The first makes use of an abstract class declaration (virtual
functions initialized with zero), while the second uses a class declaration with a
protected default constructor. Both share the following characteristics:

• Interfaces are declared in a separate name space to avoid clashes;

• The illogical operation of instantiating an interface is properly prevented;

• The realize relationship is implemented by means of private inheritance, so that
no subtype relationship is established between interface and implementation5;

• Disagreements between interface and implementation are detected at compile
time.

5
C++ programmers sometimes mix up the concepts of interface and base class: the unique

meaningful relationship between a class and an interface is “realization”.
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namespace Interface
{

class Abstraction
{
public :

virtual int operation1(void) = 0;
virtual void operation2( int) = 0;

};
}

class Abstraction : private Interface :: Abstraction
{
public :

int operation1(void);
void operation2( int );

private :
// Implementation declarations

};

Figure 3.21: An abstraction interface as a C++ pure abstract class declaration.

They differ in three points: instantiation avoidance, compliance enforcement, and
resulting structure. The interface of figure 3.21 prevents instantiation by declaring
pure virtual operations, what also forces any class realizing the interface to imple-
ment them. The one of figure 3.22, on the other hand, prevents instantiation by
declaring the default constructor protected and enforces compliance by declaring
operations private, thus producing a compile-time error when a realization fails to
adhere to the interface. The latter variant has the advantage of avoiding the virtual
function call mechanism. This mechanism is not likely to be eliminated for the in-
terface that declares pure virtual operations, because syntactically it is identical to
a base class, and there is no way to tell the compiler the contrary.

Notwithstanding, both workarounds to specify abstraction interfaces in C++

have a strong negative effect on the corresponding implementations: specifying the
realize relationship between interface and implementation through inheritance mod-
ifies the implementation class. This happens as a side-effect of a language property
that guarantees two objects never to be allocated the same address in memory, what
is achieved by associating a size greater than zero to all classes, abstract ones that
cannot be instantiated and do not have data members inclusive.

Therefore, asking for sizeof(Interface::Abstraction) yields a number
greater than zero and sizeof(Abstraction) a number that corresponds to the
effective size of an instance of Abstraction plus the minimum size allocated to the
interface. This may be insignificant for many abstractions, but would have disas-
trous consequences for a system-level abstraction that is precisely mapped across
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namespace Interface
{

class Abstraction
{
protected:

Abstraction () {}

private :
int operation1(void);
void operation2( int );

};
}

class Abstraction : private Interface :: Abstraction
{
public :

int operation1(void);
void operation2( int );

private :
// Implementation declarations

};

Figure 3.22: An abstraction interface as a C++ class declaration with a protected
default constructor.

different storage units (main memory and memory on a PCI device for instance).
Hence, not representing realize relationships at all is sometimes a better alterna-
tive for C++ implementations. The extra interface classes are thus restricted to
document abstractions for users, while the public portion of the declaration of imple-
mentation classes assume the role of interfaces. In this way, problems with objects
being shifted in memory are avoided.

Another reason not to represent realize relationships concerns constructors. As
discussed in section 3.4, declaring constructors in interfaces may be convenient to
represent different initialization semantics for an abstraction. However, since C++

lacks an interface construct, expressing a constructor in one of the interfaces de-
scribed above would force the implementation class to forward arguments to the
interface, completely degenerating the notion of interface.

The common package of a family of abstractions is also ultimately delivered by
a single class that is incorporated, directly or indirectly, by all its members. The
most typical way to incorporate the common package in an abstraction is through
subclassing (private inheritance), so that members do not become a subtype of it.
Care must also be taken to avoid the replication of the common package throughout
the family. A member that derives from another that already has the common
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class Common
{
protected:

Common() {}

// Family commonalities
};

class Member A: protected Common
{
public :

virtual ˜Member A();
virtual int operation1(void);
virtual void operation2( int i );

private :
// Implementation declarations

};

class Member B: public Member A
{
public :

void operation2( int i );

private :
// Implementation declarations

};

Figure 3.23: An example of uniform family of abstractions implemented in C++.

package does not need to incorporate it again, and a member that derives from
multiple others expect these to have incorporated the common package using virtual
inheritance.

Concerning the implementation of abstractions in families, one has firstly to
consider the category in which the family falls: uniform, incremental, combined, or
dissociated. An example of uniform family of abstractions is depicted in figure 3.23.
Since uniform families are usually polymorphic [section 3.6], this example uses vir-
tual functions. The commonalities of this family are gathered in class Common, which
is incorporated by the family’s basic abstraction Member A (base class) via protected
inheritance (no subtyping). Member B specializes the family’s basic abstraction, in-
heriting Common and overriding its operations at convenience.

Figure 3.24 illustrates the case for incremental families. Every new member of
this kind of family adds functionality to a basic abstraction (Member A in the ex-
ample), often declaring new operations (like operation2 in Member B). Since the
basic abstraction usually does not bear an interface capable of representing all ab-
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class Common
{
protected:

Common() {}

// Family commonalities
};

class Member A: protected Common
{
public :

int operation1(void);

private :
// Implementation declarations

};

class Member B: public Member A
{
public :

void operation2( int i );

private :
// Implementation declarations

};

typedef Member B Member AB;

Figure 3.24: An example of incremental family of abstractions implemented in C++.

stractions in the family, polymorphism is mostly avoided. As with a uniform family,
commonalities are incorporated by the basic abstraction and are inherit by other
members. Since Member B extends Member A, it can also be claimed for Member AB

responsibilities.

An example of dissociated family of abstractions is presented in figure 3.25. The
unique syntactic aspect shared by the members of a dissociated family is its common
package (class Common in the example), which is individually incorporated by each
family member. The dissociated members of this family implement and export
operations in detriment of each other (Member B knows nothing about operation1).
Note that this does not rupture with the concept of family, since members can still
be strongly semantically connected (see discussion about inflated interface binding
in section 3.6).

Figure 3.26 presents a combined family of abstractions. At first glance it evokes
a dissociated family, however, members of this kind of family can be arbitrarily
combined in order to obtain an abstraction with the corresponding functionality.
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class Common
{
protected:

Common() {}

// Family commonalities
};

class Member A: protected Common
{
public :

int operation1(void);

private :
// Implementation declarations

};

class Member B: protected Common
{
public :

void operation2( int i );

private :
// Implementation declarations

};

Figure 3.25: An example of dissociated family of abstractions implemented in C++.

Member AB in the figure illustrates the case. Nevertheless, these combinations are
easier to assure structurally than semantically. In respect to structure, they are
enabled by having a default constructor in each member and deploying virtual in-
heritance to reuse Common. Regarding semantics, however, there is no simple strategy
that can be applied to assure the correctness of such arbitrary compositions.

Combined and dissociated families are seldom polymorphic, since the discrep-
ancies between the types of their members are difficult to conciliate. This fact is
usually evident already at early stages of a family design; however, some program-
mers familiarized with object-oriented programming may have difficulties to realize
it. Therefore the implementation of the synchronization mechanism used as example
in section 3.4 will be discussed next. That example was about two well-known syn-
chronization mechanisms: semaphores and condition variables. These abstractions,
though strongly connected by semantics, have no common operations and no conver-
sion operator (as for the domain of operating systems, converting a semaphore into
a condition variable, and vice-versa, is not defined). Forcing a common interface
through polymorphism, in this case, may have negative consequences, beginning
with a degenerated family organization.
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class Common
{
protected:

Common() {}

// Family commonalities
};

class Member A: virtual protected Common
{
public :

Member A();
int operation1(void);

private :
// Implementation declarations

};

class Member B: virtual protected Common
{
public :

Member B();
void operation2( int i );

private :
// Implementation declarations

};

class Member AB: public Member A, public Member B {};

Figure 3.26: An example of combined family of abstractions implemented in C++.
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Polymorphism degenerates the organization of the synchronizer family because
it forces unreal relationships between its members. There are four possible organi-
zations for a polymorphic synchronizer:

a) Member semaphore becomes the basic abstraction, with condition variable as
its subtype;

b) The other way round, i.e. condition variable becomes the basic abstraction,
and semaphore its subtype;

c) An extra abstract class gathering the operations of semaphore and condition
variable builds a basic type for the family;

d) An extra empty abstract class serves as supertype for semaphore and condition
variable.

Alternatives (a) and (b) clearly break the correspondence of abstractions with
the problem domain. Alternative (c) is depicted in figure 3.27. In order to build a
common interface, class Synchronizer has to declare all operations in the family.
However, because there is not a single operation that is common to all members,
it cannot declare pure virtual methods, having to resort to a protected constructor
as well as to ordinary method declarations. This is probably the worst of the four
solutions, since the operations declared in Synchronizer must also be defined and
would be suitable to be invoked by applications. That is, an application would get
no compiler error for invoking operation broadcast on a Semaphore if this was made
trough a Synchronizer *. Alternative (d) does not add much more value than a
void *. Therefore, none of these alternatives seems to be of any help for users.
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class Synchronizer
{
protected:

Synchronizer ();

public :
virtual ˜Synchronizer ();
virtual void p();
virtual void v ();
virtual void wait ();
virtual void signal ();
virtual void broadcast ();

};

class Semaphore: public Synchronizer
{
public :

Semaphore(int value = 1);
˜Semaphore();
void p();
void v ();

private :
// Implementation declarations

};

class Condition : public Synchronizer
{
public :

Condition ();
˜Condition ();
void wait ();
void signal ();
void broadcast ();

private :
// Implementation declarations

};

Figure 3.27: A polymorphic family of synchronization abstractions implemented in
C++.
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3.8.2 Inflated Interfaces

The inflated interface of a family differs considerably from those of its member ab-
stractions, for it is subject to the partial and selective realize relationships introduced
in section 3.6. These relationships between inflated interfaces and family members
are ultimately what enable an application-oriented operating system to be tailored
to an application. Nevertheless, they add to the problematic of representing inter-
faces. The partial realize relationship to which these interfaces are subject allows a
class to realize just a portion of an inflated interface, excluding the representation
of interfaces by means of constructs that enforce integral compliance. At the same
time, the selective realize relationship calls for a binding mechanism that can be
controlled externally and that assures a single realization is bound to an interface
at a time.

These conditions lead inflated interfaces to be represented in C++ by means of
ordinary class declarations similar to the one illustrated in figure 3.28. The interface
of this incremental family, represented by class Family, gathers all operations and
constructors defined throughout the family. An application (last program fragment
in the figure) could be written in terms of Family, thus postponing the choice of a
family member, or delegating it to a tool. In this simple example, Member B would
be the choice, since it is the unique member that implements operation2.

When the inflated interface is unbound, class Family is exported from the
Interface name space to the name space where realizations are declared, allow-
ing application to be compiled. When one realization is selected, Family is again
hidden in name space Interface, and the selected realization is renamed Family.
Both operations can be accomplished in C++ through the type definition mecha-
nism (typedef). If considered convenient by the designer, the binding of inflated
interfaces can be centralized in a single configuration table, which could look like
this:

// Forward declarations
class Member A;
class Member B;
namespace Interface { class Family; }
// Bindings
#if FAMILY == MEMBER A
typedef Member A Family;
#elif FAMILY == MEMBER B
typedef Member B Family;
#else
typedef Interface :: Family Family;
# endif

This is certainly a very simple example, but it serves to demonstrate the flexi-
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namespace Interface
{

class Family // Inflated interface
{
public :

Family ();
Family(int i );

int operation1(void);
void operation2( int i );

};
}

class Member A: protected Common // Partial realization
{
public :

int operation1(void);
// ...

};

class Member B: public Member A // Full realization
{
public :

Member B(int i = 0);
void operation2( int i );
// ...

};

Family instance ;
instance . operation1 ();
instance . operation2 (1);

Figure 3.28: An example of inflated interface implemented in C++.

bility delivered by the inflated interface mechanism. Application programs can be
written in terms of inflated interfaces, which are later bound to specific realizations
either manually by the programmer or automatically by a tool the performs a syn-
tactic analysis of the application so as to determine the best realization for each
inflated interface. One such a tool has been implemented for Epos, the prototype
operating system developed to validate the ideas in this thesis. It will be described
in section 4.6.
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3.8.3 Scenario Aspects

Execution scenario aspects identified and isolated during the process of application-
oriented system design can be implemented observing the same considerations stated
about abstractions. Indeed, scenario aspects are usually also organized in families
according to their commonalities. The inflated interface of these families is left
unbound until the execution scenario for a certain application becomes evident.
These aspects are then grouped by a scenario construct, and applied to abstractions
through a scenario adapter.

The implementation of a family of scenario aspects is illustrated in figure 3.29.
When the scenario aspects in this family are applied to an abstraction, they confer
its operations atomicity. This is accomplished by having the scenario adapter to
invoke lock and unlock operations so that the abstraction is trapped in a kind
of monitor [Hoa74]. The static versions of lock and unlock are used to provide
atomicity for class operations such as constructors6, destructors, and some built-in
operators. The Coarse Atomic aspect locks all abstractions with a single mutex,
while Fine Atomic utilizes an individual mutex for each abstraction.

Before being applied to abstractions, scenario aspects are grouped in a scenario,
which constitutes the first construct defined in the scope of an application-oriented
component framework. While abstractions and execution scenario aspects are de-
signed and implemented to be fully reusable independently of a specific framework,
scenarios and scenario adapters are specific to frameworks. In general, the scenario
construct incorporates selected scenario aspects via aggregation (which can also be
implemented in C++ using single inheritance). If scenario aspects are smoothly
applied to all abstractions, their inclusion in the scenario can be controlled using
simple conditional compilation techniques.

Nevertheless, generic programming techniques can be deployed to enable aspects
to be individually applied to abstractions. For instance the traits concept used in
the C++ standard library [Str97]. Traits are parameterized classes whose static
constant members describe the properties (the traits) of a certain type. An example
is shown in figure 3.30. The parameterized class Scenario Traits denotes the
properties of abstractions with regard to execution scenarios. It can represent a
pattern of properties that have to be supplied for each abstraction (private access
control, Member A in the figure), or it can itself represent default values for properties
(public access control, Member B in figure). The latter applies to any known type. If
traits are used, the scenario construct should also be implemented as a parameterized
class that relies on the Scenario Traits to decide which aspects have to be applied
to each abstraction.

Besides incorporating scenario aspects, a scenario construct usually also imple-

6Providing atomicity for object creation requires static lock to be called from the scenario
adapter operator new and static unlock from the scenario adapter constructor.
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namespace Interface
{

class Atomic
{
public :

void lock ();
void unlock ();
static void static lock ();
static void static unlock ();

};
}

class Atomic Common
{
protected:

Atomic Common() {}

public :
static void static lock () { static mutex . lock (); }
static void static unlock () { static mutex .unlock (); }

private :
static Mutex static mutex;

};

class Coarse Atomic: protected Atomic Common
{
public :

void lock () { Atomic Common::static lock(); }
void unlock () { Atomic Common::static unlock(); }
static void static lock () { Atomic Common::static lock(); }
static void static unlock () { Atomic Common::static unlock(); }

};

class Fine Atomic: protected Atomic Common
{
public :

void lock () { mutex.lock (); }
void unlock () { mutex.unlock(); }
static void static lock () { Atomic Common::static lock(); }
static void static unlock () { Atomic Common::static unlock(); }

private :
Mutex mutex;

};

Figure 3.29: A C++ example of scenario aspect.
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template<class T>
class Scenario Traits
{
//public : or private :

// ...
static const bool is atomic = false ;
static const bool is shared = false ;
static const bool is protected = false ;
// ...

};

template<>
class Scenario Traits <Member A>
{
public :

// ...
static const bool is atomic = true;
static const bool is shared = false ;
static const bool is protected = false ;
// ...

};

template<>
class Scenario Traits <Member B>:

public Scenario Traits <void>
{
public :

static const bool is atomic = true;
};

Figure 3.30: Traits of abstractions with regard to scenario aspects.

ments operations to establish the pre and post conditions required by the scenario
for each interaction between a client and a scenario-independent abstraction. These
operations have to consider arbitrary combinations of scenario aspects, enforcing
specializations when conflicts arise. A definitive characterization of a scenario, how-
ever, can only be formulated in the context of a specific framework.

Scenario adapters, which ultimately apply scenario aspects to abstractions, are
also highly depended from the framework in which they are defined. Nevertheless,
adapting an abstraction almost always implies in “wrapping” its operations so that
they are executed enclosed within a pair of primitives with enter and leave sce-
nario semantics. Several mechanisms to wrap objects and operations have been
proposed for the C++ programming language. The direct ancestor of C++, C

with Classes [Str94], allowed two special functions, namely call and return, to
be defined for a class. These functions were implicitly called respectively before and
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class A Class
{
public :

int ()A Class( int(A Class ::∗ function )( int ), int i ) {
enter ();
int ret = (this−>∗function)(i);
leave ();
return ret ;

}

int operation( int );
}

A Class∗ p = new A Class;
p−>operation(1); // p−>()A Class(&A Class::operation, 1);

Figure 3.31: Tiemann’s proposal to wrap member functions in C++.

after member functions of that class.

Tiemann [Tie88] proposed a language extension called “wrappers” that can be
used to wrap the invocations of member functions of a class. Such a wrapper is
identified by a pair of parentheses in front of the name of the class whose functions are
to be wrapped (figure 3.31). A particularly interesting property of this mechanism
is that it has access to arguments and to the return value of the function being
wrapped, being useful to implement Remote Procedure Call mechanisms [BN84].

Unfortunately, none of these proposals has been incorporated by the standard-
ized version of the language (ISO 14882). Nonetheless, some programming “tricks”
can be used to overcome this language deficiency. Stroustrup [Str00] summarizes
them in a parameterized class that wraps the methods of its argument class. This
mechanism is depicted in figure 3.32. The enter primitive is called by the overloaded
operator->, which returns a temporary object of type Call Proxy<T> containing
the pointer to the object on which the operation will be invoked. The leave prim-
itive is called when this temporary object is destroyed. Actually no extra objects
are created at all, since this metaprogrammed mechanism is completely resolved by
the compiler into something like (enter(); operation(); leave();). Another
advantage of this mechanism is that it is not intrusive, i.e. it does not require modi-
fications on the classes to which it applies. Its main disadvantage is that enter and
leave do not have access to arguments supplied to the wrapped function.
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template <class T>
class Call Proxy
{
public :

Call Proxy(T∗ pp) : p(pp) {}
˜Call Proxy () { leave (); }
T∗ operator−>() { return p; }

private :
T∗ p;

};

template <class T>
class Wrap
{
public :

Wrap(T∗ pp) : p(pp) {}
Call Proxy<T> operator−>()
{ enter (); return Call Proxy<T>(p); }

private :
T∗ p;

};

class A Class
{
public :

int operation1 ();
int operation2( int );

};

Wrap<A Class> obj(new A Class);
obj−>operation1();
obj−>operation2(2);

Figure 3.32: Stroustrup’s proposal to wrap member functions in C++.
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template<class OBJ, class RET> // no arguments
RET invoke(OBJ∗ obj, RET(OBJ:: ∗ func)())
{ enter (); RET r = (obj−>∗func)(); leave(); return r ; }

template<class OBJ> // no arguments, no return
void invoke(OBJ∗ obj, void (OBJ:: ∗ func )())
{ enter (); ( obj−>∗func)(); leave (); }

template<class OBJ, class RET, class ARG> // one argument
RET invoke(OBJ∗ obj, RET(OBJ:: ∗ func)(ARG), ARG arg)
{ enter (); RET r = (obj−>∗func)(arg); leave(); return r ; }

template<class OBJ, class ARG> // one argument, no return
void invoke(OBJ∗ obj, void(OBJ:: ∗ func)(ARG), ARG arg)
{ enter (); ( obj−>∗func)(arg); leave (); }

class A Class
{
public :

int operation1 ();
int operation2( int i );

};

A Class∗ obj = new A Class;
invoke(obj, &A Class :: operation1 );
invoke(obj, &A Class :: operation2 , 1);

Figure 3.33: An alternative to wrap member functions in C++.

A solution to the member function wrapping problem that allows arguments to
be accessed like in the Tiemann’s proposal can be devised using function templates.
The program fragments in figure 3.33 illustrate how. The first version of function
template invoke takes two parameters: the type of the object whose functions
are being wrapped, and the return type of the function being invoked. It then
“sandwiches” the function between enter and leave, taking care of the return
value. Function template invoke is specialized for functions that do not return any
value (void function()) in the second fragment, and is successively overloaded to
wrap functions that take a growing number of arguments (only the first overloading
is shown in figure). In order to wrap an operation, one has to invoke it using the
invoke function template, which has plain access to its arguments and return value.
The whole mechanism can be made transparent by a wrapper class, though with
considerable effort, since every operation defined for the wrapped class has to be
represented in the wrapper.
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3.9 Summary

Historically, applications have been adapted to the operating system, adhering to
standardized application program interfaces that covey uncountable useless services
(for each individual application), and yet fail to deliver much of what is necessary.
An application-oriented operating system ruptures with this notion, implementing
services that emanate from application requirements and delivering them as a set
of configurable components that can be assembled to produce application-tailored
system instances.

Such application-oriented operating systems can be constructed deploying the
application-oriented system design method to engineer the envisioned domain. In
this way, the domain is decomposed in abstractions that model application-specific
perspectives of each entity. These abstractions are gathered in families according to
what they have in common, with variability analysis being deployed to identify sub-
sequent members of each family. During this process, variations that belong to the
essence of abstractions are separated from those that emanate from execution sce-
narios, the former shaping family members, and the latter yielding scenario aspects.
This separation improves on reusability, for scenario-independent abstractions can
be reused in a larger variety of scenarios.

Maintainability in a component-based system is mainly a function of the number
of components and of the complexity of each component. The separation of abstrac-
tions and scenario aspects improves both factors. Scenario-independent abstractions
are less complex than their scenario-dependent counterparts, for they do not need to
deal with environmental particularities. At the same time, the number of modeled
software artifacts is reduced, since most scenario aspects apply to several abstrac-
tions (some even apply to all abstractions). Furthermore, not all of the variability
observed in a family of abstractions yields family members. Some designate op-
tional features that concern to several members at once. Instead of specializing each
abstraction to produce versions that include such features, application-oriented do-
main decomposition suggests generic implementations of these configurable features
to be modeled as constructs that can be reused by existing family members when
the corresponding feature is required. An explosion of abstraction specializations is
so avoided.

Still during domain decomposition, ad-hoc relationships between families of ab-
stractions are exploited to model reusable software architectures. Such architec-
tural specifications designate valid combinations of abstractions and scenario as-
pects that are subsequently materialized as component frameworks. In this way,
application-oriented system design advances in one of the most contentious aspects
of component-based software engineering: how to tell valid composites form invalid
ones.

Abstractions modeled during domain decomposition originate the software com-
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ponents of an application-oriented operating system on 1-to-1 relation. They are
delivered to users as abstract data types, with interfaces that clearly identify their re-
sponsibilities. Scenario aspects are maintained separately, being combined at user’s
wish to shape the execution scenario for a certain composite. They are applied
to abstractions by means of scenario adapters, which act as agents to mediate the
interaction of scenario-dependent clients with scenario-independent abstractions.

In order to enable applications to deal with families of abstractions as they were
single entities, an inflated interface is delivered for each family in an application-
oriented system design. Such an interface exports a family as though a “super”
component was available that implements all responsibilities assigned to the fam-
ily. The choice of specific family members can thus be postponed or even delegate
to a configuration tool. Such a tool would analyze the applications to determine
which subsets of each inflated interface have been used, binding them to the most
appropriate realization available.

The configurable system architectures modeled during domain analysis are de-
livered to users as component frameworks defined in terms of scenario adapters.
Each scenario adapter constitutes a placeholder for an abstraction, pre-establishing
relevant relationships. Abstractions are plugged to the framework via the inflated
interface binging mechanism, which is also used to select scenario aspects.

An application-oriented operating system designed according to the directives
of application-oriented system design can be implemented using a variety of tech-
niques. As of today, it is probable that the C++ will the choice for most implemen-
tations, because it is one of the few programming languages that completely expose
the underlying hardware, an essential condition for an operating system implemen-
tation. Furthermore, C++ supports multiple programming paradigms, including
static metaprogramming, that can be combined to achieve efficient implementations.





Chapter 4

The EPOS System

This chapter describes Epos, the experimental operating system developed in the
scope of this dissertation to validate the concepts and techniques introduced in chap-
ter 3. After an introduction of historical facts and fundamentals, the application-
oriented system design of Epos is presented, including the families of system ab-
stractions, scenario aspects, and system architectures that result from the decom-
position of the high-performance dedicated computing domain. Subsequently a
strategy to automatically configure the operating system according to the needs
of particular applications is presented.

4.1 A Bit of History

The Epos system was born in 1997 at the Research Institute for Computer Ar-
chitecture and Software Engineering (FIRST) of the German National Research
Center for Information Technology (GMD) as a project to experiment with the con-
cepts and mechanisms of application-oriented system design. Indeed, Epos and
application-oriented system design cannot be disassociated, since both have been
evolving together from the very beginning as the research substratum for this dis-
sertation.

The acronym Epos
1 stands for Embedded Parallel Operating System. It was

coined considering the main research goal established for the early system: to em-
bed the operating system in a parallel application. The strategy followed to achieve
this goal consisted in modeling the corresponding domain entities as a set of reusable

1The German word “epos” means “epic” in English, and, although suggesting that Epos is
an epic—about an academic operating system (a Portuguese sailor) that had to traverse a sea of
difficulties (of standardized application program interfaces), passing by Taprobana (the common-
sense defined by Unix and Microsoft Windows), to reach India (modern software engineering)—
would be too pretentious, the metaphors about the epic “Os Lusiadas” [dC72] are left for the
delight of readers (application programmers).
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and adaptable components, and developing a mechanism to allow parallel applica-
tions to easily specify constraints to guide the arrangement of these components in a
functioning system. As the system evolved, it became clear that this strategy could
be applied to a broader universe of applications. Concerning design and organiza-
tion, Epos is inherently tied with dedicated computing and static configurability,
but whether a platform is dedicated to an application temporarily (like in traditional
parallel systems) or permanently (like in most embedded systems) does not play a
significant role. Hence, Embedded Parallel Operating System can also be interpreted
as a system that targets both embedded and parallel applications.

Epos owes much of its philosophy to the Peace system [SP94a], from which
it inherited the notion that “generic” and “optimal” are adjectives that cannot be
simultaneously applied to the same operating system, besides a rich perception of
family-based design. Epos implementation for the Intel ix86 architecture reuses
some of the strategies adopted in Aboelha [FAPS96], a former research operating
system developed by the author. However, the design of Aboelha did not promote
reuse, so these strategies had to be completely remodeled for Epos.

4.2 Fundamentals

Epos was designed following the guidelines of application-oriented system design de-
scribed in chapter 3. Indeed, Epos has been created to experiment with application-
oriented system design, which in turn has been evolving to contemplate design is-
sues arisen by Epos. Consequently, the design of Epos is intrinsically application-
oriented.

The domain envisioned by Epos is that of high-performance dedicated com-
puting, which comprises applications that, besides running with exclusivity on the
respective platforms, require an efficient management of resources. It is important
to notice that both adjectives, dedicated and high-performance, can be interpreted
subjectively. As explained earlier in chapter 1, a dedicated system does not need
to be permanently dedicated, it can also be scheduled to serve diverse applications,
each of which gaining absolute control over the platform for a certain time. Simi-
larly, a high-performance system does not need to be always associated to billions
of floating point operations. In what concerns the operating system, a small, em-
bedded application that demands the absolute majority of the resources available in
the platform to accomplish its duties calls for a high-performance operating system
just like a parallel application does.

Aiming at supporting applications in the high-performance dedicated computing
domain, Epos was designed pursuing the following goals:

• Functionality: Epos shall deliver the functionality necessary to support the
execution of high-performance dedicated applications.
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• Customizability: Epos shall be highly customizable, so that system instances
can be tailored to specific applications; whenever possible, system tailoring
shall succeed automatically.

• Efficiency: Epos shall make resources available to applications with the lowest
possible overhead, besides being itself thrifty.

The domain of high-performance dedicated computing aimed by Epos is under
constant evolution, steadily assimilating technological innovations. As a product of
domain engineering, Epos had to consider the dynamics of the envisioned domain,
setting up an open and continuous domain analysis process that allows new entities
to be included in the design as they are incorporated by the domain. Families of
abstractions were thoroughly modeled, leaving room for upcoming members. Even
the hypothesis of completely new families being added to the system has been taken
in consideration.

The extreme scalability implied by these goals could only be achieved with a
meticulous separation of concerns. As suggested by application-oriented system de-
sign, abstractions were modeled independently of each other, of execution scenario
aspects, and of component frameworks. Consequently, Epos abstractions can be
extensively reused in a variety of scenarios. Furthermore, the framework can be
adjusted to accommodate forthcoming abstractions, or to build particular software
architectures, without affecting existing abstractions. In this way, Epos could de-
velop into an application-oriented operating system.

For the forthcoming discussion of Epos design, however, it is important to bear
in mind that the ultimate goal of Epos is the validation of application-oriented
system design concepts and techniques. Therefore, some complex domain entities
were specified only to the extent of corroborating application-oriented system de-
sign. Such entities would have to be further refined in order to sustain an actual
implementation.

4.3 System Abstractions

Epos families of abstractions result from the application-oriented decomposition of
the high-performance dedicated computing domain. Many of the entities in this
domain that concern the operating system are conventions defined by computer
scientists and system developers. Therefore, Epos resorted to traditional operating
system books (e.g. Tanenbaum [Tan92] and Silberschatz [SGP98]) as a reference
to the operating system domain vocabulary. This decision helped to make Epos

user-friendlier, since its abstractions have been named after the classic concepts they
represent, giving many of them a self-explanatory character. Systems that assign
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ethereal names to abstractions impose extra difficulties to users, which first have to
discover the name of abstractions they want to use.

Yet, many operating system abstractions stem from physical devices. These
abstractions are conventionally modeled considering the role physical devices play in
the operating system. However, as an application-oriented operating system, Epos

gives priority to the role they play in application programs. For example, the timer
physical resource is delivered as an abstraction capable of generating alarm events
for applications, though it is internally reused as the operating system time-keeping
device.

As proposed by application-oriented system design, Epos abstractions have been
modeled independently of execution scenario aspects and specific system architec-
tures. Consequently, Epos abstractions could reach a degree of reusability that
allows, for instance, the same abstraction of the Thread family to be deployed in
a single- or multitasking environment, as part of a µ-kernel or completely embed-
ded in an application. The protection barrier the eventually separates applications
from each other and from the operating system is not modeled in the context of
abstractions, but as an architectural aspect of Epos framework. Furthermore, the
separation of scenario aspects from abstractions considerably reduced the number of
components in Epos repository, whereas numerous scenario-specific specializations
could be suppressed.

Figure 4.1 shows a top-level representation of Epos families of abstractions.
Families were organized in six large groups: memory management, process man-
agement, process coordination, inter-process communication, time management, and
I/O management. Each one of these groups will be subsequently described in this
section, while applicable scenario aspects will be described in the next section. Ex-
ception is made to private or specialized scenario aspects, which are described in the
scope of the family (or abstraction) to which they regard. Non-portable abstrac-

Abstractions
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Process

nation
Coordi−

Time
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Figure 4.1: Groups of families of abstraction in Epos.
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tions, such as node and processor, were modeled in Epos as hardware mediators.
These abstractions will be separately described in section 4.5.2.2.

The inflated interface of each family of abstractions will not be explicitly pre-
sented, since this would bring little contribution to the reasoning on Epos design in
comparison to explosion of details it would trigger. Nevertheless, the category of each
family of abstractions—whether uniform, incremental, combined, or dissociated—
will be identified, thus revealing how their inflated interfaces have been specified.

4.3.1 Memory Management

Memory management in Epos is accomplished by the families of abstractions shown
in figure 4.2. The main memory available in the system is delivered to applications
through the concept of memory segment realized by the Segment family. In order
to be manipulated, a segment must first be attached to the address space of a
process, which is realized by the Address Space family. Besides supporting this
logical concept, the family of address spaces is the one that ultimately implements
a memory management policy for the system, since it controls the allocation and
mapping of the physical memory that effectively makes up a memory segment.

In the context of application-oriented operating systems, virtual memory is not
an autonomous domain entity, but a workaround to enable the execution of applica-
tions with memory requirements that exceed the available physical memory. That is,
applications do not directly demand virtual memory, they demand memory. How-
ever, currently available virtual memory mechanisms are mostly inadequate to sup-
port applications in the domain of high-performance dedicated computing, firstly
because many dedicated systems do not count on a secondary storage to extend
main memory, but also because such mechanisms do not sustain high-performance.
Therefore, no virtual memory strategy has been modeled for Epos at this time.

Segment

Memory Address
Space

Figure 4.2: Families of abstractions concerning memory management in Epos.
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4.3.1.1 Memory Segments

A memory segment is nothing but a chunk of main memory that can be used by
applications to store arbitrary code and data. The physical memory corresponding
to a memory segment is managed by the family of address spaces, thus keeping the
Segment family independent of a memory management policy. Figure 4.3 shows
Epos family of memory segments, which was designed in an incremental fashion.
The common aspects of the family are encapsulated in a package that is reused
by member Static, which is in turn extended by member Dynamic. The former is
responsible for memory segments that cannot be resized nor can have their properties
modified after having been attached, while the latter allows for these operations.

These abstractions could only be modeled as an incremental family because the
effective allocation and mapping of physical memory to build a segment is carried
out by the family of address spaces. Otherwise, differences in allocation policy
would have made this design impractical. Furthermore, the family was reduced to
only two members because sharing and protection were model as scenario aspects2.
The Shared scenario aspect profits from the memory mapping capabilities of the
Address Space family to support the sharing of segments among processes, while
the Protected aspect uses the mapping modes provided by that family to protect
segments against detrimental access.

Both abstractions in this family are mutually exclusive, since their dependen-
cies on the family of address spaces, itself mutually exclusive, cannot be accom-
modated simultaneously. In order to allow resizing, member Dynamic requires a
non-contiguous mapping of physical memory, which is only provided by the Paged

member of the Address Space family. Member Static has no requirements in this
regard and is able to operate properly with any kind of address space.

Dynamic

Static

Segment

Paged_AS

Address_Space
protected

shared

Figure 4.3: Epos family of memory segments.

2The Shared and Protected scenario aspects modeled here are specializations of global scenario
aspects described in section 4.4.
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4.3.1.2 Address Spaces

The address space of a process corresponds to the range of memory addresses it
can access. In order to support multitasking, most hardware architectures include
a Memory Management Unit (MMU) that enables the separation of logical and
physical address spaces. A process is thus said to have a logical address space,
which is mapped into the physical memory address space. The MMU supports a non-
contiguous mapping between these address spaces, enabling a rational use of memory
by multiple processes. Nevertheless, many dedicated applications are carried out by
a single process (on each node) and will not benefit from this mechanism. Moreover,
some dedicated applications are executed on platforms that do not feature a MMU.
Therefore, an address space abstraction for the dedicated computing domain must
consider both perspectives: with and without logical address mapping.

The concept of address space is realized in Epos by the dissociated family of
mutually exclusive abstractions shown in figure 4.4. These abstractions are not in-
tended to be directly used by application programmers. They are implicitly invoked
as a result of the memory and process management policies in force. The Flat

member is used when a single process (possibly multithreaded) executes alone in
the system. It implements a policy that pre-allocates all the memory available in
the system to this single process in a contiguous way, dispensing with a MMU and
allowing for an efficient application-level memory allocator (malloc). This allocator
would still have to keep track of the stretches of memory currently being used, but
would no longer need to perform physical memory allocation and mapping. The
contiguous property of the Flat address space also brings an important advantage
to processes that perform user-level I/O: since logical and physical address spaces
match, Direct Memory Access (DMA) transactions can be issued with logical ad-
dresses, thus eliminating translations and intermediate copies.

When the policy defined by the Flat abstraction is in force, the family of memory
segments becomes an informative connotation, since there is no practical reason for
a process to create a memory segment if it already possesses the whole memory and

Flat Paged

Address_Space

Segmented

Paged_Segmented

modes

allocs

Figure 4.4: Epos family of address spaces.
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there are no other processes with which to share that segment.

The Paged member of the Address Space family supports the mapping of logical
address spaces to main memory through paging [KHPS61, HK61]. This strategy
allows multiple processes to coexist in a rational way, since memory is allocated and
mapped to their address spaces on demand and is reclaimed when they terminate.

At least two other alternatives are there to handle memory management in multi-
tasking scenarios: segmentation [Den65] and paged segmentation [Org72]. However,
the hardware mechanisms necessary to support them are mostly unavailable in con-
temporary computers3, so they were not specified in Epos.

A set of memory mapping modes (e.g. read-only, cached, etc) has been modeled
as configurable features for the Address Space family. These modes have defaults
that apply to the whole address space, but can usually be dynamically overridden
for each memory segment. A set of allocation algorithms has been modeled as a
mutually exclusive configurable feature for the family.

4.3.2 Process Management

Process management in Epos is delegated to the families of abstractions shown in
figure 4.5. The concept of process is delivered to applications by two abstractions:
Task and Thread. If a process is thought of as a program in execution, then a
task corresponds to the activities specified in the program, while threads are the
entities that perform such activities. This separation of concerns enables a task to
be simultaneously executed by multiple threads. Threads are locally scheduled for
execution by a CPU Scheduler. Global schedulers to promote load balancing for
parallel applications were not yet specified for Epos. They shall inaugurate a new
family of abstractions in the future.

Process

Task Thread CPU
Scheduler

Figure 4.5: Families of abstractions concerning process management in Epos.

3The Intel ix86 architecture [Int95a] uses segmentation or segmentation plus paging, but it can
be configured to emulate pure paging.
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4.3.2.1 Tasks

A task comprises the code, global data, and resources of a process, thus, being
passively shared by its threads. A task constitutes the unit of distribution of a
parallel application. Tasks are realized in Epos by the Task family of abstractions
depicted in figure 4.6, which was modeled as a dissociated family with two mutually
exclusive members, namely Exclusive and Mutual. Abstractions in this family
were modeled to be deployed independently of a particular thread abstraction, so
both members can be used with a single or with multiple threads. Two instances
of the Segment abstraction are allocated to hold respectively the code and the data
associated with a Task.

The Exclusive member of the Task family was conceived to support a single
process that has absolute control over the resources available in the platform. Hence,
it pairs up with the Flat member of the Address Space family, which implements
a single contiguous address space. An exclusive task is set up in such a way that,
when the corresponding process begins execution, all needed physical resources,
including memory, are already allocated to it. This is one of the factors that enable
Epos to assume the embedded-into-the-application architecture, in which all system
services are implemented at user-level (see section 4.5.3.2 for more details about this
architecture).

The Mutual member of the Task family pairs up with the Paged member of
the Address Space family to accomplish a multitasking environment in which tasks
share available resources that are allocated on demand. The scenario aspects that
concern to this family (e.g. identification, location, protection, etc) have been mod-
eled as global aspects, for they also apply to other abstractions. They will be
described in section 4.4.

Task

Exclusive Mutual Paged_ASFlat_AS

Segment

Thread

Figure 4.6: Epos family of tasks.

4.3.2.2 Threads

Threads “execute a task”, thus they correspond to the active part of a process. The
resources of a task, including its data segment, are shared by all of its threads, but
each thread has its own local data segment (stack) and execution context. A thread
constitutes the unit of execution of an application. Threads are realized in Epos by
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Figure 4.7: Epos family of threads.

the Thread family of abstractions depicted in figure 4.7. This family was modeled
in an incremental fashion, with commonalities being captured in a package that is
reused by member Exclusive and inherited by other family members.

The Exclusive member of the Thread family was conceived to support a single-
threaded process that executes alone in the system. It depends on the Exclusive

member of the Task family, which ultimately shapes the single-tasking environ-
ment in which exclusive threads perform. Though primitive4, this process model
is sufficient to support a reasonable number of dedicated applications, and it has
expressive advantages over other models in what regards performance. Since all
resources available in the system are pre-allocated to this unique process during sys-
tem initialization, and also because no scheduling is necessary, this process model
can be achieved without any run-time overhead, i.e., all physical resources, including
CPU time, are entirely available to the application process.

Support for multithreading is the subsequent increment to the Thread family.
It is realized by the Cooperative family member, which covers the mechanisms
necessary for multiple threads to coexist in the system. This family member was
conceived to be independent of the task model in force, so no differentiation is made
between threads that execute the same task and threads of single-threaded tasks.
As stated before, the unit of execution in Epos is the thread, not the task. The
Cooperative thread abstraction addresses the issues relative to multiple threads
that share the processor in a collaborative way, dispensing with processor scheduling.
In this scenario, a thread voluntarily relinquishes the processor in favor of another
one; hence, one could say that cooperative threads are self-scheduling.

The Concurrent abstraction extends the Thread family so that threads are ex-

4Only three operations are valid on objects of type Exclusive Thread: self-referencing, status
reporting, and termination.
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ecuted concurrently. This family member relies on a family of processor schedulers,
each implementing a different scheduling policy, in order to multiplex the processor
among threads. According to the scheduling policy in force, the scheduler can be
invoked regularly to proof whether the running thread still fulfills the necessary con-
ditions to seize the processor, otherwise preempting it in favor of another thread.
Being an extension of cooperative threads, concurrent threads also have the possi-
bility to voluntarily relinquish the processor, either in benefit of another thread, or
causing the scheduler to be invoked.

4.3.2.3 Processor Schedulers

Processor scheduling is deployed in order to multiplex the processor for concur-
rent thread execution. Therefore, Epos only features a processor scheduler if the
Concurrent member of the Thread family is in use. In this case, the scheduler is
realized by the entities shown in figure 4.8. The CPU Scheduler abstraction realizes
the mechanisms that are necessary to suspend and resume the execution of threads
(i.e. context switching), invoking Policy to select a thread to occupy the processor
whenever it becomes idle. That is, Epos does not actually feature a family of sched-
ulers, but a family of scheduling policies that are enforced by a single CPU Scheduler

abstraction.

The isolation of scheduling policies was achieved by modeling Policy as a poly-
morphic uniform family of abstractions. In this way, CPU Scheduler can invoke
Policy without having to consider which policy is currently in force, and policies
can be changed at run-time. In order to configure the scheduler, one or more poli-
cies are selected at generation-time to be deployed at run-time. Since the processor
scheduler is an internal entity, invisible to applications, the selection of policies

preemption

idle_waiting

busy_waiting

affinity

RRFCFS Static_Priority User_Defined

Policy

CPU_Scheduler Alarm

Dynamic_Priority

Multilevel

Figure 4.8: Epos family of processor scheduling policies.
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at run-time is performed through operations provided by the Concurrent thread
abstraction.

If one of the scheduling policies selected for a given system configuration is
preemptive, the preemption configurable feature is enabled, causing the scheduler
to be periodically activated by the Alarm abstraction [section 4.3.5] to check for
policy compliance. A thread that voluntarily relinquishes the processor also causes
the scheduler to be activated. If the leaving thread indicates a candidate to replace
it on the processor, that thread temporarily assumes the scheduling characteristics
of the leaving one. For example, if static priority is the policy in force, then the
priority of the designated thread is raised to equal that of the designator until the
next scheduling event. Otherwise, a thread can relinquish the processor leaving the
decision of which thread shall substitute it to the policy enforcer.

A third situation in which the scheduler can be activated occurs when a concur-
rent thread goes waiting for an event, for example I/O completion. The traditional
approach of generic multitasking systems to deal with this situation is to block the
waiting thread and invoke the scheduler to select another thread to occupy the pro-
cessor. In this scheme, blocked threads are said to be “idle waiting”. Nevertheless,
this solution is not so straightforward for dedicated systems, which may be better
served if “busy waiting” is deployed. Several high-speed peripherals, including high-
speed networks, may imply in busy waiting cycles that are shorter than the time
needed to block the running thread and reschedule the processor. Therefore, busy
and idle waiting have been modeled as configurable features that can be selected
according to application needs.

The CPU Scheduler abstraction is also able to perform processor scheduling in
a Symmetric MultiProcessor (SMP) environment [JS80, TG89]. Regardless of the
number of processors, a single queue of threads ready to execute is maintained.
When a processor becomes idle, CPU Scheduler is invoked by that processor to
select a new thread to execute. Race conditions originated from parallel invocations
of the scheduler are prevented by activating one of the Locked members of the
Atomic scenario aspect (see section 4.4.6)5.

In multiprocessor environments, the configurable feature affinity can be en-
abled to request CPU Scheduler to consider processor affinity [TTG93] while choos-
ing a thread to occupy an idle processor, so that threads that were formerly executing
on that processor are given preference. If the scheduler cannot find a thread under
the affinity criterion, a thread formerly executed in another processor is selected.
Processor affinity is useful with short-term scheduling to promote cache locality,
since a thread returning to a processor it has recently seized may still find part of
its working-set of memory on that processor’s cache.

5The dependency of CPU Scheduler on Atomic is externally expressed as a composition rule [sec-
tion 4.5.1.2]. It can be easily suppressed for eventual scheduling algorithms that are able to cope
with non-blocking synchronization.
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The FCFS member of the Policy family realizes the first-come-first-served
scheduling policy. When concurrent threads operate under this policy, they ac-
quire several of the characteristics of a cooperative thread, for a thread only releases
the processor on its own free will. Nevertheless, if the idle waiting configurable
feature is enabled, a thread going into a waiting state releases the processor for
the next coming thread, retrieving it when it returns to the ready state. The RR

member of the Policy family realizes the round-robin processor scheduling policy.
With this policy, the processor is multiplexed on time among threads, so that each
thread is given an identical fraction of processing time (time-slice), after which it is
preempted and sent to the end of the ready queue.

The Static Priority member realizes a processor scheduling policy based on
statically assigned priorities [ZRS87]. When a thread is created, it is assigned a
priority that is used for scheduling decisions: higher priority threads are executed
first. Although applications are provided with means to redefine the priority of
a thread afterwards, the scheduler itself never takes this initiative. This policy
influences the handling of asynchronous events in Epos [section 4.3.6.3], since an
event only causes the processor to be preempted if the thread assigned to handle it
has a higher priority than the one currently being executed.

The Dynamic Priority member extends Static Priority and RR to accomplish
a policy that automatically adjusts the priority of threads to promote interactiveness.
The strategy used to build this policy consists in allowing a thread to seize the
processor for a certain time (usually greater than the time-slice defined for round-
robin), after which it is preempted and its priority is recalculated. Priorities are
recalculated as a function of the processing time effectively used, so threads that
voluntarily relinquish the processor before their time-slice is over have their priority
increased, while those that tend to monopolize the processor have their priority
decreased. This is basically the scheduling policy adopted in the Unix System V

operating system [Bac87]. It promotes interactiveness because interaction with users
is achieved via I/O operations, causing interactive threads to release the processor
prematurely and consequently raising their priority6.

In principle, a single processor scheduling policy is in force at a time. However,
the Multilevel member of the Policy family supports scheduling policies to be
combined by gathering threads in groups and applying distinct inter- and intra-
group policies. For example, threads could be gathered in three groups scheduled
with static priorities (i.e. the inter-group policy). The group with the highest
priority could again deploy static priorities to support a set of real-time threads; the
intermediate priority group, consisting of interactive threads, could deploy round-
robin; and the group with the lowest priority, comprised of batch threads, could be
subject to FCFS. Although such a complex scheduling scenario is improbable for a
dedicated system, some simpler combinations of scheduling policies may be useful.

6In order to achieve this effect in Epos, the idle waiting configurable feature must be enabled.
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User Defined, the last member of the Policy family of abstractions, allows
applications to specify their own processor scheduling policy. It is accomplished by
a multilevel scheme that assigns the highest priority to an application thread that
acts as the scheduler, while all other threads are assigned the same lower (than the
scheduler thread) priority. The scheduler thread implements the desired policy and
relinquishes the processor in benefit of the selected thread.

A preemptive user-level scheduler [ABLL92] can be accomplished in a variety of
ways, the simplest one implies in defining a round-robin policy for the high priority
group of threads, which comprises only the scheduler thread. This would grant
that the scheduler thread regains control over the processor on a regular basis. It
can then decide to reschedule the thread that originally occupied the processor, or
select another one. Nevertheless, the User Defined policy can considerably affect
performance if used to perform short-term scheduling, since it doubles the scheduling
overhead.

4.3.3 Process Coordination

The mechanisms available in Epos to coordinate the parallel execution of pro-
cesses are realized by the Synchronizer and Communicator families of abstractions
shown in figure 4.9. However, the Communicator family delivers coordination as
a side-effect of inter-process communication, and hence will be described later in
section 4.3.4. Nevertheless, it is important to observe that every time two processes
exchange a (possibly empty) message, they implicitly exchange status information
that can be used for coordination purposes. For example, when a process sends
a message to another, it signalizes the recipient process that it is ready with the
computation needed to produce that message. The set of possibilities to indirectly
coordinate processes through message exchange grows considerably if inter-process
communication implies in a rendezvous between the communicating processes. In
this case, sender and receiver are implicitly synchronized on each message exchange.

Synchro−
nizer nicator

Commu−

Coordi−
nation

Figure 4.9: Families of abstractions concerning process coordination in Epos.
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4.3.3.1 Synchronizers

Synchronizers are used to avoid race conditions during the execution of parallel
programs. A race condition occurs when a thread accesses a piece of data that is
being modified by another thread, obtaining an intermediate value and potentially
corrupting that piece of data. A synchronizer prevents such race conditions by
trapping sensible data in a critical section, which is exclusively executed by a single
thread at a time. Epos dissociated family of synchronizers is depicted in figure 4.10.

The Mutex member of the Synchronizer family implements a simple mutual
exclusion device that supplies two atomic operations: lock and unlock. Invok-
ing lock on a mutex locks it, so subsequent invocations cause the calling threads
to wait. When a thread invokes the operation unlock on a mutex and there are
threads waiting on it, the first thread put to wait is allowed to continue execution,
immediately locking the mutex. If no threads are waiting, the unlock operation has
no effect; it is not accumulated to match forthcoming lock operations. The mutex
mechanism is sometimes called a binary semaphore.

The Semaphore member of the Synchronizer family realizes a semaphore vari-
able [Dij65]. A semaphore variable is an integer variable whose value can only be
manipulated indirectly through the atomic operations p and v. Operation p atom-
ically decrements the value of a semaphore, and operating v atomically increments
it. Invoking p on a semaphore whose value is less than or equal to zero causes the
thread to wait until the value becomes positive again. A semaphore initialized with
“1” acquires the initial semantics of a mutex, but it can be initialized with any other
value to accomplish other synchronization semantics.

The Condition member of the Synchronizer family realizes a system abstrac-
tion inspired on the condition variable language concept [Hoa74], which allows a
thread to wait for a predicate on shared data to become true. Condition protects
the associated shared data in a critical section using the capabilities inherited from
Mutex. In order to wait for the assertion of a predicate, a thread invokes operation
wait, which implicitly unlocks the shared data and puts the thread to wait. Several

remote

atomic

Synchronizer

SemaphoreMutex

Condition

Figure 4.10: Epos family of synchronizers.
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threads can be waiting on the same condition. The assertion of a predicate can be
announced in two ways: operation signal announces it to the first waiting thread,
and operation broadcast announces it to all waiting threads. When a thread returns
from the wait operation, it implicitly regains control over the critical section.

The global scenario aspect remote, which will be described later in section 4.4.7,
provides a remote object invocation mechanism that shapes a distributed scenario for
abstractions. When used in this scenario, abstractions of the Synchronizer family
accomplish a centralized solution to coordinate processes of a parallel application.
The solution consists in having one of the processes to create the synchronizer locally,
while the remaining processes share it via the remote object invocation mechanism.
However, this mechanism was not designed focusing distributed coordination and
may cause a bottleneck in the parallel application7. Therefore, a specialization of
the remote scenario aspect has been considered for the Synchronizer family to
optimize this scenario. A fully distributed solution, however, can only be achieved
with the introduction of a new family member.

A negative specialization (cancellation) was specified for the atomic global sce-
nario aspect [section 4.4.6], since operations on synchronizers are inherently atomic.

4.3.4 Inter-Process Communication

Inter-process communication in Epos is delegated to the families of abstractions
shown in figure 4.11. Application processes communicate with each other using a
Communicator, which acts as an interface to a communication Channel implemented
over a Network. The messages sent through a Communicator can be specified as
sequences of bytes of a known length, or they can be covered by an Envelope.

Commu−
nication

Commu−
nicator Channel

Envelope

Network

Device

Figure 4.11: Families of abstractions concerning inter-process communication in
Epos.

7The node in which the synchronizer resides becomes a kind of “coordinator”, with which all
other processes have to communicate.
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4.3.4.1 Communicators

A communicator is an end-point for a communication channel that enables appli-
cation processes to exchange data with each other. Therefore, when an application
selects a communicator, it implicitly designates the kind of communication channel
that will be used. Communicators, like most other system abstractions, are assigned
to tasks, thus being shared by their threads. Communicators are realized in Epos by
the Communicator family of abstractions shown in figure 4.12, which was modeled
as a dissociated family whose members can be simultaneously deployed.

The Link member of the Communicator family realizes an end-point for logical
connections between processes that carry byte streams. The Port and Mailbox

members realize end-points for a communication channel in which datagrams flow,
but a port always belongs to a single task, while mailboxes can be shared among
tasks.

The ARM Segment (Asynchronous Remote Memory Segment) member of the
Communicator family realizes an end-point for a communication mechanism that
supports asynchronous access to a memory segment in a remote node. This mech-
anism is asynchronous because processes manipulating an ARM Segment are not im-
plicitly synchronized and can corrupt the data in that segment. Data read from a
remote segment becomes local and private to the reading process. If necessary, syn-
chronization has to be achieved by other means (e.g. distributed semaphores). In
order to use this communicator, a process specifies a memory segment on a remote
node that has been previously exported by its owner. It can then invoke operations
to read from and to write to this segment (asynchronous remote memory segments
are not mapped into the address space of processes).

The AM Handler (Active Message Handler) member of the Communicator family
realizes an end-point for active messages [vECGS92]. The basic idea behind this
concept is that a message, besides transporting data, also carries a reference to
a handler that is invoked, in the context of the receiving process, to handle the
message upon arrival. This kind of communication is sometimes called single-sided

ARM_SegmentPortLink

AM_Handler

Mailbox

Communicator

Segment

DSM_Segment

Channel

remote

Figure 4.12: Epos family of communicators.
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because the receive operation is not explicitly expressible. For this mechanism to
work properly, means must be provided to the sending process so it can specify a
handler that is valid in the context of the destination process. The most typical
answer to this issue is to deploy active messages in an SPMD (Single Program,
Multiple Data) environment, in which all processes have an equivalent address space.
However, indirection mechanisms and the exchange of handler references using other
communication mechanisms are also possible.

Active messages have been modeled in Epos in such a way that communication
is hidden behind a remote handler invocation, with messages being indirectly ex-
changed as arguments to the handler. When a process instantiates an AM Handler,
it supplies a reference to a handler on a remote process. Afterwards it can invoke
the handler supplying arguments that are transparently marshaled in a message and
delivered to the remote handler.

The DSM Segment member of the Communicator family, which would realize a
Distributed Shared Memory (DSM) mechanism for Epos, could have been modeled
as an extension of the ARM Segment communicator and of a member of the Segment

family of memory segments. Unlike an ARM Segment, however, a DSM Segment would
be attached to the address space of processes, dispensing with explicit read and write
operations. It would also implement a mechanism to grant data coherence. This
communicator would enable application programmers to write parallel applications
for distributed memory machines as if they were shared memory ones.

A negative specialization (cancellation) was specified for the remote global sce-
nario aspect [section 4.4.7], since a process is not allowed to exchange messages using
communicators created by other processes on remote nodes.

4.3.4.2 Channels

A communication channel is the entity effectively responsible for inter-process com-
munication in Epos. It uses network resources to build a logical communication
channel through which messages are exchanged. A channel implements a commu-
nication protocol that, according to the Basic Reference Model for Open Systems
Interconnection (ISO/OSI-RM) [ISO81], would be classified at level four (trans-
port). Epos family of communication channels is depicted in figure 4.13. It was
modeled as a dissociated family, whose members are indirectly accessed through the
corresponding members of the Communicator family.

A communication channel has an implicit capacity [Sha48]. Trying to insert a
message into a saturated channel causes the transmitter to wait until the channel
can accommodate the message. Likewise, the attempt the extract a message from
an empty channel causes the receiver to wait until a message is available. Whether a
thread waiting on a channel performs busy or idle waiting hinges on the related con-
figurable feature from the CPU Scheduler family [section 4.3.2.3]. Notwithstanding
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Figure 4.13: Epos family of communication channels.

this, a channel can have its capacity extended by enabling the buffering config-
urable feature. In this case, messages sent through a saturate channel are accumu-
lated for posterior handling.

Sometimes it is desirable to fork a channel, so that a transmitted message is
simultaneously multicasted to several receivers, or broadcasted to all receivers. The
collective operations used in many parallel applications could be considerably opti-
mized in this way. Epos allows a channel to be forked when the grouping config-
urable feature is enabled. In this case, special identifiers are supplied to designate a
group of communicators as the recipient of a message. The effect of buffering and
grouping configurable features on a channel is illustrated in figure 4.14.

The synchronous scenario aspect yields an execution scenario in which the op-
erations used to inject a message into a channel only conclude when the message is
extracted from the channel at the receiver’s side. In a synchronous communication
scenario, processes involved in a message exchange are said to make a “rendezvous”.
Conversely, the asynchronous scenario aspect modifies these operations so they
conclude as soon as the delivery of a message is negotiated. If the buffering con-
figurable feature is enabled, this is achieved by copying the message into a buffer
and scheduling it for delivery. Otherwise, the sender is supposed not to modify the
message until indicated to do so. An operation is provided that enables a process
to check for this condition.

The Stream member of the Channel family realizes a connection-oriented channel
that can be used to transfer streams of bytes. It pairs up with the Link commu-
nicator. The Datagram member realizes a channel that supports the transmission
of datagrams. It has two possible end-points: Port and Mailbox. Three members
concern asynchronous access to a remote memory segment: ARMR, ARMW, and ARMC.
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Figure 4.14: The effect of configurable features buffering and grouping on com-
munication channels.

They realize communication channels respectively for reading, writing, and copy-
ing (reading and writing) from/to a remote memory segment and are delivered to
applications through the ARM Segment communicator.

The AM (Active Message) channel specializes ARMW to introduce the concept of a
message handler that is automatically invoked when the message reaches its destina-
tion. It pairs up with the AM Handler communicator. The communication channel
used to support distributed shared memory would specialize the ARMC channel in
order to map it to the address space of processes.

4.3.4.3 Networks

A communication channel is, at last, an abstraction of a network, in that networks
provide the physical means to build logical channels. The idiosyncrasies of each
network technology, however, could require the members of the Channel family to
be specialized too often. This picture was prevented in Epos by modeling networks
as members of a uniform family of abstractions, so that all networks are equivalent
from the standpoint of channels.

The uniform design of the Network family, which is outlined in figure 4.15, should
not subdue special features delivered by a particular network, since abstractions in
this family implement high-level transport services that are seldom implemented by
the hardware. The virtual networks in this family can use special services provided
by the network to optimize the implementation of such transport services. Some of
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Figure 4.15: Epos family of networks.

these special features are used to implement the configurable features modeled for
the family.

The Network family features a member for each network technology supported
in the system (e.g. Fast Ethernet and Myrinet). Each member encapsulates
a physical network device that has been previously abstracted by the Device fam-
ily [section 4.3.6.2]. The family also features a Loop device that is used to establish a
communication channel between processes executing on the same node. In principle,
abstractions in this family are used indirectly through a communicator, but they
are also made available for the convenience of applications that need, for instance,
to implement special communication protocols.

A set of configurable features, corresponding to operational modes, was modeled
for the Network family. These features are interpreted as follows: ordering requires
messages sent through a network to be delivered at the destination in the same order
they were sent; flow control requires a network abstraction to implement flow
control; reliability requires a network to assure error-free delivery of messages;
broadcast enables the interpretation of broadcast addresses, so messages can be
broadcasted to all hosts in the local network; multicast enables the interpretation
of multicast addresses, causing a message to be delivered at multiple hosts. These
configurable features are usually specialized for each family member to profit from
eventual hardware support.

4.3.4.4 Message Envelopes

The members of the Communicator family can be used to exchange unstructured
messages in the form of sequences of bytes of a certain length. However, it might
be adequate for some applications to count on an envelope abstraction to cover a
message before it is sent. Such an envelope would be allocated from the operating
system, loaded with one or more messages, and then inserted into a communication
channel through a communicator. An envelope allocated by the operating system
would enable several optimizations, ranging from cache alignment to zero-copy pro-
cessing. Besides, additional information can be put in the envelope to describe
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Figure 4.16: Epos family of message envelopes.

and protect messages. After all, an envelope would enable a comfortable syntax to
express communication in object-oriented applications, for example:

Envelope envelope( recipient , length );
envelope << ”Hello world!”;
communicator << envelope ;

Epos supports the concept of message envelope through the Envelope uniform
family of abstractions represented in figure 4.16. The maximum length of message
that an envelope can hold is specified when it is instantiated, while the effective
length of the message(s) it contains is dynamically determined. An envelope must
be addressed before it is posted.

The Envelope family comprises two members: Untyped and Typed. The former
realizes a simple message envelope that can be used to gather messages before send-
ing, while the latter collects type information for each message inserted to enable
format conversions on heterogeneous systems. A secure envelope was not modeled
due to the characteristics of a dedicated computing system, which usually do not
require encryption nor authentication of messages8.

4.3.5 Time Management

Time is managed in Epos by the Timer family of dissociated abstractions shown in
figure 4.17. The Clock abstraction is responsible for keeping track of the current
time. It is only available on systems that feature a real-time clock device. The
Alarm abstraction can be used to put a thread to “sleep” for a certain time. It can
also be used to generate timed events. For this purpose, an application instantiates
an abstraction from the Interrup Handler family (see section 4.3.6.3) and registers
it with Alarm specifying a time interval and the number of times the handler object
is to be invoked9.

The Timer family is completed by the Chronometer abstraction, which is used
to perform time measurements. The unit of reference for these abstractions is the
second, with times and delays represented as real numbers. The precision of these

8A discussion about protection in dedicated systems is presented in section 4.4.4.
9This mechanism is also used to activate the process scheduler.
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Clock Alarm

Timer

Chronometer

Figure 4.17: Epos family of timers.

abstractions, however, depends on the hardware platform on which they are imple-
mented.

4.3.6 I/O Management

The interaction between applications and peripheral devices is managed in Epos by
the families of abstractions represented in figure 4.18. As a rule, peripheral devices
are abstracted in a way that is convenient to applications by the members of the
Device family. However, dedicated systems often deploy dedicated devices that will
not be found on this family. Therefore, Epos also delivers applications means to
directly interact with a peripheral device. In this context, the Bus family is responsi-
ble for detecting and activating devices connected to a bus, which are abstracted as
dynamically created members of the Device family. The Interrupt Handler family
of abstractions allows applications to handle interrupts generated by a device.

Device Handler
InterruptBus

I/O

Figure 4.18: Families of abstractions concerning I/O management in Epos.

4.3.6.1 Buses

Epos family of I/O bus abstractions is responsible for detecting and activating
physical devices connected to a bus. The Bus family sketched in figure 4.19 was
modeled as a dissociated family, with a member for each supported bus technology
(e.g. ISA, PCI, SCSI). When a member of the Bus family is invoked to activate a
device, it arranges for the application process to have total control over the device,
mapping eventual memory and I/O ports to its address space. According to the bus
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technology, operations are provided to further configure devices and sometimes the
bus itself.

Bus

bus_1 bus_n...

Figure 4.19: Epos family of buses.

4.3.6.2 Devices

From a historic perspective, device drivers are some of the most important pieces
of an operating system. From the beginning, operating systems have the duty of
hiding the peculiarities of each device from application programs, easing program-
ming and allowing them to survive steady upgrades. As an application-oriented
system, Epos extends the notion of device driver as a set of I/O routines, modeling
devices as abstractions organized in a family. The makeup of this family is depicted
in figure 4.20. Differently from the families of abstractions presented until now, the
commonalities of the Device family are not collected in a single package, but split
according to bus technologies (bus 1 dev through bus n dev on the diagram). Each
bus technology defines a dissociated subfamily of devices.

Device

dev_ndev_1dev_ndev_1

bus_1_dev bus_n_dev...

......

Figure 4.20: Epos family of device abstractions.

The decision for a dissociated family of devices defies the uniform organization
consolidated by Unix, in which all devices adhered to a common pseudo-file in-
terface [Tho78]. This interface has an “escape” operation, namely ioctl, that is
used to pack operations that cannot be represented under the file interface10. Epos

gives priority to the preservation of the individual characteristics of each device,
allowing them to define their own operations and eliminating the “hideous” ioctl

10
Linux ioctl list man page brings an incomplete list of ioctl operations valid on kernel

1.3.27. It comprises 412 operations.
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operation. Nevertheless, the lack of a common interface makes it more difficult to
add a device at run-time. Indeed, when an application invokes a member of the Bus

family to detect and activate a device, the returned device abstraction is supposed
to be handled at user-level in the scope of the calling process. All but bus-specific
operations for this device have to be implemented by the application itself. When
Epos is configured as a kernel, neither the kernel nor other processes know about
such a device. If sharing is required, a device “server” process has to be devised.

4.3.6.3 Interrupt Handlers

Epos allows application processes to handle hardware generated interrupts at user-
level via the Interrupt Handler family of abstractions depicted in figure 4.21.
The three members of this dissociated family can be used simultaneously. The
Function IH member assigns an ordinary function supplied by the application to
handle an interrupt. The system transforms such a function in an interrupt handler
that is invoked every time the associated interrupt is generated. In contrast, the
Thread IH member assigns a thread to handle an interrupt. Such a thread must
have been previously created by the application in the suspended state. It is then
resumed at every occurrence of the corresponding interrupt. After handling the in-
terrupt, the thread must return to the suspended state by invoking the respective
operation.

Nevertheless, these two members of the Interrupt Handler family may present
problems if an interrupt is successively generated while the associated handler is
active. The Function IH handler passes the issue on to the application, which must
either grant the handler is fast enough, or implement a reentrant function. The
Thread IH handler is even more restrict in this regard, since resuming an already
active thread has no effect.

The issue of interrupt loss is addressed by the Semaphore IH, which assigns a
semaphore, previously created by the application and initialized with zero, to an
interrupt. The operating system invokes operation v on this semaphore at every

Semaphore_IHThread_IHFunction_IH

Interrupt_Handler

Thread Semaphore

Figure 4.21: Epos family of interrupt handlers.
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interrupt, while the handling thread invokes operation p to wait for an interrupt. The
strategy gives interrupt handling a producer/consumer flavor and prevents interrupts
from being lost.

Nevertheless, preventing interrupts from being lost may not be enough to grant
that I/O data will not be lost. A device that generates a subsequent interrupt
while a former is still being handled must have memory to accumulate eventual
data. If this is not the case, a handler must be conceived that is able to match
up the device’s operational speed. Moreover, depending on the scheduling policy
in force, interrupts may not be handled immediately. For example, if the thread
responsible for handling an interrupt has a lower priority than the thread currently
being executed, the handler will be enqueued for later execution.

4.3.7 External Abstractions

Some of the system services offered by Epos are not implemented on the dedicated
computing system itself, but on an external server. For example, file services and
graphic output. In order to enable these services to be remotely accessed, Epos

communication system is emulated over an ordinary operating system. A computer
running this emulator becomes a gateway to an Epos-based environment that allows
external abstraction to be accessed via remote object invocation (see section 4.4.7).
This scheme is illustrated in figure 4.22 (Epos is represented in the figure on its
most typical architecture, i.e. fully embedded in the application).

The set of “stub” functions used to perform remote invocation can also be used
to give external services an Epos-flavor. For instance, Posix file operations can be
delivered through a file abstraction.

EPOS

application

EPOS Node

server

EPOSGeneric
OS

Server

network

Figure 4.22: Access to external abstractions in Epos.
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4.3.8 Summary of EPOS Abstractions

A summary of Epos abstractions is presented in tables 4.1 and 4.2. Families of
abstractions are grouped by category. A brief description of responsibilities, type,
and dependencies are given for each family and for each member of a family.

Family Responsibilities Type Dependencies

Memory Management

Segment logical memory segments ⊕ Address Space
Static not resizable, flags not changeable ♦? -
Dynamic resizable, remappable ♦? Paged

Address Space logical address space of a process 	 -
Flat single, contiguously mapped address space �? -
Paged multiple, paged address spaces �? -

Process Management

Task code, data, and resources of a process 	 Segment
Exclusive single-tasking ♦? Flat
Mutual multitasking ♦? Paged

Thread stack and context of a process ⊕ Segment
Exclusive single-threading ♦? Exclusive Task
Cooperative cooperative multithreading (no scheduler) ♦? -
Concurrent concurrent, scheduled multithreading ♦? CPU Scheduler

CPU Scheduler processor scheduling policies � Alarm
FCFS first-come-first-served �? -
RR round-robin �? -
Static Prio static priorities �? -
Dynamic Prio dynamic priorities �? RR,Static Prio
MultiLevel multiple policies � -
UserDef user defined policy ♦ -

Process Coordination

Synchronizer process coordination 	 -
Mutex mutual exclusion device ♦ -
Semaphore semaphore variable ♦ -
Condition condition variable ♦ -

Family types: ⊕ incremental, 	 dissociated, � uniform.
Member types: ♦ visible to applications, � invisible, ? mutually exclusive.

Table 4.1: Epos abstractions (part I).
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Family Responsibilities Type Dependencies

Inter-Process Communication

Communicator communication end-points 	 Channel
Link connection for streams ♦ Stream
Port non-sharable mailbox for datagrams ♦ Datagram
Mailbox sharable mailbox for datagrams ♦ Datagram
ARM Segment asynchronous remote memory segment ♦ ARMx
AM Handler active message handler ♦ AM

Channel communication channels 	 Network
Stream streams � -
Datagram datagrams � -
ARMR asynchronous remote memory read � -
ARMW asynchronous remote memory write � -
ARMC asynchronous remote memory copy � -
AM active messages � -

Network logical networks (OSI level 4) � Device
Several not covered in this table ♦

Envelope message envelopes � -
Untyped envelope for untyped messages ♦ -
Typed envelope for typed messages (heterogeneity) ♦ -

Time Management

Timer time keeping 	 -
Clock current time keeping ♦ -
Alarm timed event generation ♦ -
Chronometer time measurement ♦ -

I/O Management

Bus device detection and activation 	 -
Several not covered in this table ♦

Device physical device abstraction 	 -
Several not covered in this table ♦

Interrupt Handler interrupt handling 	 -
FunctionIH calls a handling function ♦ -
ThreadIH resumes a handling thread ♦ Thread
SemaphoreIH invokes v on a handling semaphore ♦ Semaphore

Family types: ⊕ incremental, 	 dissociated, � uniform.
Member types: ♦ visible to applications, � invisible, ? mutually exclusive.

Table 4.2: Epos abstractions (part II).
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4.4 Scenario Aspects

Application-oriented system design is particularly concerned with scenario indepen-
dence. When a domain entity is identified, considerations about its origin are made
in order to decide whether it will shape an abstraction or a scenario aspect. Epos

scenario aspects were modeled in accordance with this principle, yielding reusable
pieces of software that can be controllably applied to the system abstractions de-
scribed in the previous section.

Likewise system abstractions, Epos scenario aspects were organized in families
according to what they have in common. The commonalities of each family are
captured in a common package that is reused by member aspects. Accordingly,
families of aspects were classified as uniform, incremental, dissociated, or combined.

In order to build a scenario for an application, selected scenario aspects are
merged in a scenario construct and applied to abstractions by means of a scenario
adapter. These two constructs, however, will be described in the scope of Epos

component framework later in section 4.5.1.

4.4.1 Identification

“An object has state, behavior, and identity.”

(Grady Booch [Boo94])

This axiom of object-orientation, which evidently also applies to the instances
of system abstractions11, impart that an object has an identity that distinguishes it
from all the others. At programming language level, this identity is usually repre-
sented by the object’s address in memory (pointer). This form of identity is rather
adequate if objects are only manipulated in the scope of the process that created
them, but it is inadequate to identify objects that are shared by multiple processes.
In this case, the operating system has the duty of generating identifiers for sys-
tem objects that are able to distinguish them across all processes. If objects can
be shared in a distributed environment, identifiers must be extended to accomplish
unique identification across all nodes in the platform. This variability concerning
the identity property is typical of scenario aspects, for it affects the manifestation
of an abstraction in a scenario, but not its internal structure.

Therefore, the identity of system objects was modeled in Epos as an incremen-
tal family of scenario aspects. This family is represented in figure 4.23. Member
Pointer, the family’s basic aspect, simply reuses the fundamental identity of ob-
jects, i.e. their address in memory. Since this form of identifier is always relative

11Instances of system abstractions will be designated “system objects” hereafter, or simply “ob-
jects” when no confusion can arise. In this sense, an abstraction corresponds to a “class of system
objects”.
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Figure 4.23: Epos family of identification aspects.

to the address space of the process that created the object, it cannot be used for
inter-process interactions on objects. The Local member extends the Id family with
an identifier that consists of a pair (type, unit) and uniquely identifies a system
object in a stand-alone system configuration. The type field is obtained from the
traits of an abstraction [section 4.5.1], while unit represents the rank of an object
in the allocation table of its class. Hence, the first instance of a Myrinet network
abstraction would be identified as (Traits<Myrinet>::type, 0).

Member Global extends the Id family so that a network-wide identifier is as-
signed to system objects, allowing them to be remotely accessed. The structural
extension succeeded by this member consists of adding a logical host number to
identifiers, yielding the tuple (host, type, unit). Although embedding location
in identifiers complicates the migration of objects in a distributed environment,
Epos opted for this solution because it is efficient and fulfills the demands of most
parallel systems. Differently from distributed systems, dedicated parallel systems
seldom deploy object migration due to the high overhead associated. Other load
balancing techniques that do not conflict with the Global identifier, such as data
set partitioning and global scheduling, are often preferred [SP94b]. Nevertheless, the
logical ids realized by this family could be locally remapped to reflect the location
of migrated objects.

Local and Global identifiers have a lifetime that corresponds to the lifetime of
the system. That is, if a process creates a system object and later deletes it, a
newly created object may be assigned the same identifier formerly assigned to that
object. This, however, should not disturb applications, since Epos keeps a reference
counter that prevents objects in a shared scenario (i.e. a scenario for which the
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Shared aspect [section 4.4.2] has been enabled) from being deleted while there are
still processes using it. Nonetheless, flawed programming may cause a process to
keep on using an identifier after the respective system object has been destroyed,
inadvertently accessing another object. If these incidents are to be handled by
the operating system, the Capability identifier must be used, since its lifetime is
restricted to the lifetime of the object it identifies.

The Capability identifier extends the Id family by adding a randomly generated
number to the Global identifier. System objects are thus identified by the tuple
(host, type, unit, rand). The rand field makes identifiers sparse, reducing the
probability of an identifier being reused to a negligible level [MT86]. The exact
length of this field, however, depends on the quality of the random number generator
used and on the dynamics and lifetime of applications. Hence, it was modeled as a
configurable feature.

4.4.2 Sharing

There are many reasons that lead processes to share resources. Synchronizers are
shared to accomplish coordination, memory segments are shared as an intra-node
communication mechanism, mailboxes are shared to support sever replication, and
so forth. When system resources are shared, the operating system has to provide
means to preserve their integrity. For example, if a shared resource has its state
modified by one of the sharing processes, the remaining must be assured a coherent
view of it. In particular, when a shared resource is destroyed by one of the sharing
processes, subsequent operations invoked by the remaining processes have to be
handled accordingly.

Epos supports abstractions to be shared through the Shared incremental family
of scenario aspects depicted in figure 4.24. When this aspect is enabled, abstractions
are tagged with a reference counter by the Referenced family member, so that a
shared abstraction is actually only destroyed when the last sharing process releases
it. This scenario aspect is specialized for the family of memory segments [sec-

Referenced

Shared

Enrolled

Referenced<Segment>

Figure 4.24: Epos family of sharing aspects.
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tion 4.3.1.1] to provide adequate support for memory sharing.

The Enrolled member of the Shared family of aspects extends Referenced to
sustain multitasking configurations of Epos in which resources need to be reclaimed.
In this scenario, Epos takes note of which tasks are sharing each resource, so that
resources not returned by an exiting process can be reclaimed.

When the Shared aspect is enabled, system abstractions gain two extra construc-
tors12 that are used to designate sharing. The first is the ordinary copy constructor,
which takes a reference to an existing system object as argument and returns a share
to that object. This constructor is restricted to share abstractions inside the same
address space. The second constructor takes an identifier as argument and therefore
can be used independently of locality, inclusive to share remote objects. A C++

program could deploy these constructors as follows:

Abstraction instance ;
Abstraction share1( instance );
Abstraction share2(share1 . id ());

4.4.3 Allocation

In all-purpose operating systems, the memory internally used to store the state of
system-level abstractions is expected to be dynamically allocated, since it is im-
possible to predict which abstractions and how many instances of each abstraction
will be effectively required by forthcoming applications. Some dedicated comput-
ing systems, however, have a predictable demand for resources. In these cases,
pre-allocating resources may significantly enhance performance. For example, if a
process is known to spawn n threads, pre-allocating these threads—partially initial-
izing the associated control structures and allocating the corresponding stacks—may
eliminate a considerable fraction of the thread creation overhead.

A more imperative reason to avoid dynamic memory allocation can be observed
for abstractions that have (part of) their state stored outside main memory. Several
abstractions of physical devices fall in this category. If the device includes memory
that is shared with the main processor, or if it memory-maps control registers, then
the corresponding system abstraction will have part of its state mapped over the I/O
bus. A dynamic memory allocator unaware of such particularities would allocate
incoherent instances of the abstraction; making the memory allocator aware of them
would compromise portability, for device mapping is an operation that depends on
the I/O bus. Situations like this could be handled by an utility that would execute

12The term constructor is being used here independently from the C++ programming language
to designate a function used to instantiate an object. Applications written in programming lan-
guages that do not explicitly support the concept would be supplied operations with equivalent
semantics.
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Figure 4.25: Epos family of allocation aspects.

previously to the operating system to pre-allocate indicated abstractions, delivering
them later to the operating system. One such a setup utility was designed for Epos

and will be described later in section 4.5.2.1.

Epos supports two allocation scenarios for abstractions: Late and Ahead. Both
are modeled as members of the Allocated dissociated family of scenario aspects
presented in figure 4.25. The former member defines a scenario in which the memory
needed to hold the state of system abstractions is dynamically allocated as the
abstraction is instantiated, while the latter assumes it has been previously allocated.
The Ahead aspect relegates the allocation of many abstractions to marking instances
“busy”. Epos knows how many instances of an abstraction have been pre-allocated
consulting its traits.

A scenario in which the Late Allocated aspect is used with exclusivity is not
probable, since some abstractions (e.g. devices) will always be allocated in advance.
Therefore, the application of this scenario aspect must be evaluated individually for
each abstraction (consulting its traits).

4.4.4 Protection

In multitasking environments, various processes compete for memory, processor,
network, and other system resources. In such environments, a protection mechanism
to ensure that processes do not inappropriately interfere with one another’s activities
is desirable. In order to gain access to resources, processes would thus have to obtain
explicit authorization from the operating system.

Protection in generic systems tends to extend towards security, which concerns
preventing unauthorized users from interfering with ongoing computations. How-
ever, the mechanisms of authentication and encryption used in the scope of dis-
tributed and web-based computing to attain security are rarely required for dedi-
cated computing, because, as a matter of fact, dedicated systems are (temporary)
single-user systems. Therefore, Epos protection mechanisms are restricted to con-
trol access to resources. These mechanisms are modeled by the Protected incre-
mental family of scenario aspects depicted in figure 4.26.

The Checked aspect of the Protected family profits from the Capability iden-
tifier described in section 4.4.1 as a protection mechanism. That identifier uses a
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Figure 4.26: Epos family of protection aspects.

sparse random number to achieve identification uniqueness, which can also serve
protection purposes: in order to access a system object, a process has to know
its capability. The probability of gaining access to an object by betting can be
made insignificant if capabilities are sufficiently sparse, what is controlled by the
random length configurable feature of the Capability aspect. Lengths ranging
from 32 to 64 bits shall be in order for most systems.

The Permitted protection aspect extends Checked to build a protection scenario
in which operations on abstractions are individually authorized or denied for each
process [MT86]. In order to achieve this scenario, Permitted wraps the random
number generator used by the Capability, adding permission flags to the rand

field (the rand length configurable feature is adjusted to accommodate these extra
bits). A new operation on objects of type Capability is supplied that produces
restricted versions of a capability as a non-reversible function of the unrestricted
version (the owner capability). A list with owner capabilities corresponding to
the objects created by each process is maintained by the Enrolled sharing aspect.
Access control is thus enforced by the scenario adapter, which checks for permission
before allowing an operation to proceed.

This family of scenario aspects is specialized for the Segment abstraction [sec-
tion 4.3.1.2] to accomplish memory protection if the hardware so allows. In this way,
segments are attached to the address space of a process respecting the permissions
in the supplied capability. Memory protection is also useful in single-tasking en-
vironments: by properly protecting segments, programming mistakes such as “lost
pointers” can be detected, thus helping to debug applications. When protection is
violated, Epos produces a useful report of the circumstances. Besides, Epos always
protects its own memory segments when the Protected scenario is enabled.

4.4.5 Timing

A thread often goes waiting for events such as I/O completion, thread termination,
and message arrival. Some of these events, however, may suffer delays beyond
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Figure 4.27: Epos family of timing aspects.

acceptable limits; some may not occur at all. In some cases, it may be more adequate
for an application to lose a message sent over a jammed network than delaying a
computation to wait for it. Similarly, it may be better for a control application to
succeed a predefined action than missing a deadline waiting for user intervention.
Such situations can be managed by assigning a time limit to operations that may
cause a thread to wait. If the operation does not conclude within the specified
interval, it is terminated by the operating system with a failure status.

A mechanism to specify time-outs for operations was modeled in Epos as a
global scenario aspect. However, associating time-outs to operations that are not
eligible to suffer delays would add unnecessary overhead to the system. Therefore,
the Limited scenario aspect responsible for time-outs is only applied to abstractions
after consulting their traits [section 4.5.1]. This scenario aspect belongs to the Timed
dissociated family represented in figure 4.27. Limited relies on the Alarm timer to
implement time-outs.

A timing aspect that is less often deployed is realized by the Delayed member of
the Timed family. It supports operations on system abstractions to be delayed by a
certain time. It is useful, for instance, to migrate embedded applications with strict
timing dependencies to a faster hardware platform, or to achieve a homogeneous
execution time for processes of a parallel application running on heterogeneous speed
nodes.

4.4.6 Atomicity

Events in a parallel program are no longer strictly ordered as in sequential programs,
they can occur simultaneously. When multiple threads are allowed to execute in
parallel, it its possible that they simultaneously “enter” the operating system, i.e.
pass to execute operating system code to accomplish a system service. An operating
system that allows for this scenario is said to be reentrant and is itself subject to
race conditions. Reentrance is often approached in monolithic systems by properly
coordinating the execution of critical sections identified in the course of system
development. The dynamic architecture of an application-oriented operating system,
however, makes this solution impractical. The combination of abstraction, aspects,
and configurable features may have profound consequences on system architecture,
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Figure 4.28: Epos family of atomicity aspects.

invalidating some of the hand-made critical sections.

Therefore, Epos handles the synchronization pitfalls brought about by reen-
trance ensuring that system operations are atomic. In this way, transformations of
the state of system objects either occur completely or do not occur at all. The atom-
icity property was modeled to be orthogonal to abstractions, yielding the uniform
family of scenario aspects depicted in figure 4.28.

The Uninterrupted aspect achieves atomicity by disabling the generation of
hardware interrupts that could cause the processor to be preempted from a thread
in the middle of a system operation. This family member has a low overhead,
but it may also have undesirable side-effects on applications. Disabling interrupts
may spoil I/O subsystems due to delays in interrupt handling and cause “scheduling
skew”. Furthermore, the Uninterrupted scenario aspect is not suitable to be used in
multiprocessor environments, since threads executing in parallel can simultaneously
invoke system abstractions independently of interrupts.

Therefore, three other members were modeled for the Atomic family that do
not assume interrupts to be disabled. All three deploy the Mutex member of the
Synchronizer family of abstractions [section 4.3.3.1] to transform every system
operation in a critical section13. They also share similar run-time overheads, corre-
sponding to the invocation of Mutex methods to accomplish the mutually exclusive
execution of system operations. Besides, they lock unallocated system resources
under a single mutex, providing atomicity to constructors, destructors, and other
class operations.

These three members differ in the degree of parallelism they sustain. The
System Locked member uses a single mutex for all abstractions, yielding a scenario
in which a single thread is allowed to execute system operations at a time (null reen-

13When the idle waiting configurable feature of CPU Scheduler is enabled in an Atomic sce-
nario, the operation used to block a thread is modified so that blocked threads temporarily leave
the critical section, thus enabling other threads to invoke system operations. This modification
affects only the critical sections defined by the Atomic aspect; critical sections defined by the
application are not affected.
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trance). Reentrance is actually supported by the Class Locked and Object Locked

scenario aspects. The former assigns a different mutex to each class of system ob-
jects, so that operations on objects of different types can be invoked simultaneously.
The latter assigns each system object its own mutex, achieving the highest level of
reentrance14. Although the run-time overhead incurred by these scenario aspects
is equivalent, their consumption of synchronization resources is extremely diverse:
System Locked uses a single mutex, Class Locked uses a “global” mutex plus one
mutex for each abstraction configured for the system, and Object Locked uses one
mutex for each system object created plus the “global” one.

4.4.7 Remote Invocation

In a distributed environment, processes may need to access system resources re-
siding on remote nodes. In order to do so, an application would have to create
a process on each node containing useful resources and deploy a communicator to
interact with them. However, the burden of explicit message passing for accessing
remote resources can be eliminated by a Remote Procedure Call (RPC) [BN84] or,
in an object-oriented context, by a Remote Object Invocation (ROI) [LT91] mecha-
nism. These mechanisms hide inter-process communication behind ordinary method
invocations, so that processes can transparently access remote resources.

Epos supports remote object invocation as a scenario aspect that can be trans-
parently applied to virtually any abstraction. This aspect is realized by the Remote

scenario aspect represented in figure 4.29. It relies on the Port communicator for
message exchange, on the Global Id (or a derivative) scenario aspect for object
location, and on the Shared scenario aspect to control global sharing.

Global_Id

Shared

Remote

Port

ROI_threads

Figure 4.29: Epos remote invocation scenario aspect.

An object invocation in a Remote scenario is depicted in figure 4.30. The object
being remotely manipulated is represented in the client’s process domain by a
proxy, and mediated on its own domain by an agent. When an operation is invoked
on the object’s proxy, the arguments supplied are marshaled in a request message
and sent to the object’s agent. This message is addressed to a well-known ROI port
on the node on which object resides (which is designated by the host field of its
identifier). This port is listened by the agent using a private thread, thus preventing

14System abstractions that are intrinsically atomic, such as Mutex, are properly escaped by the
scenario adapter [section 4.5.1].
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Figure 4.30: A remote object invocation in the Remote scenario.

the blockage of ongoing computations. When the agent receives a request, it
unpacks the arguments and performs a local method invocation. The whole process
is then repeated in the opposite direction, producing a reply message that carries
eventual return arguments back to the client process.

The number of threads effectively created by the system to listen the ROI port is
controlled by the ROI threads configurable feature, with zero meaning that threads
are dynamically created for each invocation. The placement of the ROI port and ROI
agents, however, varies according to Epos resultant architecture. In the embedded-
in-the-application configuration, these entities belong to the single application pro-
cess, and, in the µ-kernel configuration, they belong to a separate ROI server process.

Applying the Remote scenario aspect to abstractions would require a special
scenario adapter, able to cope with proxies and agents. This could be a problem
for ordinary scenario adapters that are hand-written, since a new adapter would
have to be defined for every abstraction. This problem was eliminated by insert-
ing placeholders in Epos component framework to install ROI proxies and agents
(figure 4.31), which can be automatically generated from the interface of abstrac-
tions by a tool (see section 4.6 for a description of how Epos syntactical analyzer
can be used to obtain the operation signatures of all abstractions). These proxies
and agents would be arranged in the proper places when Remote is enabled, be-
ing replaced by metaprogrammed dummies, which are completely eliminated during
compilation, otherwise.

A remote object invocation is firstly expressed in a program using the extra
constructor defined by the Shared aspect for all system abstractions. A process
knowing the id of a remote object can use such a constructor to obtain a remote
share of the object. Subsequently, that process can invoke operations on the object
disregarding locality. For example, a remote thread could be suspended as follows:

AgentProxy Abstraction

Scenario Adapter

Client

Figure 4.31: The Remote scenario aspect adapter.



4.4 Scenario Aspects � 127

Thread thread(remote thread id );
thread.suspend ();

and a thread could be created on a remote node in this way:

Thread remote thread(remote task id , entry point , arguments ...);

The actual owner of this thread would be the ROI agent on the node where it was
created.

4.4.8 Debugging and Profiling

Being able to trace the invocation of system operations, or to watch the state of sys-
tem abstractions, can be useful to debug application programs. Likewise, being able
to summarize how much time an application spends with each system abstraction
may be a source of optimization.

Epos supports these features through the Debugged family of dissociated sce-
nario aspects depicted in figure 4.32. The device used to report debugging and
profiling information is selected through the outupt dev configurable feature. The
scenario aspects in this family are interpreted as follows: Watched causes the state
of a system object to be dumped every time it is modified; Traced causes every sys-
tem invocation to be signalized; and Profiled audits the time spent by a process
with each system operation, producing a report when the process terminates. The
amount of information produced for each abstraction is controlled by its traits.

Debuggedoutput_dev Device

TracedWatched Profiled Chronometer

Figure 4.32: Epos family of debugging and profiling aspects.
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4.4.9 Summary of EPOS Scenario Aspects

A summary of Epos scenario aspects is presented in table 4.3. A brief description
of responsibilities and dependencies are given for each family of scenario aspects and
for each member of a family.

Scenario Aspect Responsibilities Dependencies

Identification ?⊕ system object identification -
Pointer intra-process id -
Local local node id -
Global SAN-wide id -
Capability sparse SAN-wide id -

Sharing ?⊕ sharing of system objects among processes -
Referenced reference counter -
Enrolled clients list -

Allocation 	 memory allocation for system objects -
Late dynamic allocation -
Ahead pre-allocation Setup

Protection ?⊕ system object access control -
Checked id knowledge Capability
Permitted permitted operations Enrolled

Timing 	 system operations timing Alarm
Limited time-out -
Delayed delay -

Atomicity ?� system operations reentrance -
Uninterrupted interrupt disabling -
System Locked global monitor Mutex
Class Locked abstraction monitor Mutex
Object Locked system object monitor Mutex

Remote remote object invocation Port,
Global Id,
Shared

Debugging 	 system debugging and profiling Device
Watched system object watching -
Traced system operation tracing -
Profiled system operation profiling -

Aspect types: ⊕ incremental, 	 dissociated, � uniform. ? mutually exclusive.

Table 4.3: Epos scenario aspects.
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4.5 System Architectures

As an application-oriented operating system, Epos has a highly scalable architec-
ture that is molded to accomplish the needs of applications it supports. Ultimately,
Epos architecture results from the organization of the components selected for a
given system configuration. Distinct combinations of system abstractions and sce-
nario aspects lead to different software architectures, some of which are delivered as
a kernel, others are completely embedded in the application. Therefore, the compo-
nent framework represents the core of Epos software architecture, for it dictates how
abstractions can be combined considering the peculiarities of the target execution
scenario.

Notwithstanding the significance of a component framework to an application-
oriented system design, a thorough handling of portability and initialization issues is
fundamental to accomplish a scalable system architecture. If hardware architectural
aspects are absorbed by the operating system’s software architecture, porting it to
another platform could obliterate much of the flexibility offered by the component
framework. Besides, the bare hardware on which an operating system performs is
seldom prepared to deal with the high-level language constructs of a component
framework. The hardware platform has to be appropriately initialized to house a
composite of application-oriented system abstractions.

4.5.1 Component Framework

An application-oriented component framework captures elements of reusable sys-
tem architectures while defining how abstractions can be arranged together in a
functioning system. In this context, Epos component framework was modeled as
a collection of interrelated scenario adapters that build a “socket board” for sys-
tem abstractions and scenario aspects. These are “plugged” to the framework via
inflated interface binding.

Epos component framework is realized by a static metaprogram and a set of com-
position rules. The metaprogram is responsible for adapting system abstractions to
the selected execution scenario and arranging them together during the compila-
tion of an application-oriented version of Epos. Rules coordinate the operation of
the metaprogram, specifying constraints and dependencies for the composition of
system abstractions. Composition rules are not encoded in the metaprogram, but
specified externally. They are interpreted by composition tools in order to adjust
the parameters of the metaprogram.

The separation of composition rules from the framework metaprogram allows
a single framework to yield a variety of software architectures. Indeed, one could
say that Epos has many frameworks, each corresponding to the execution of the
metaprogram with a different set of arguments. Moreover, the use of static metapro-
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gramming to compose system abstractions does not incur in run-time overhead, thus
yielding composites whose performance is directly derived from their parts.

4.5.1.1 Framework Metaprogram

Epos component framework metaprogram is executed in the course of a system
instance compilation, adapting selected abstractions to coexist with each other and
with applications in the designated execution scenario. During this process, scenario-
independent abstractions have their original properties preserved, so that internal
compositions can be carried out before scenario adaptation. This is accomplished
having the framework metaprogram to import scenario-independent abstractions in
one namespace and export the corresponding scenario-adapted versions in another.

For example, the cascaded aggregation of Communicator, Channel, and
Network [section 4.3.4] takes place at the scenario-independent level. The resul-
tant composite is later adapted to the selected scenario as a whole. Similarly, the
Atomic scenario aspect instantiates a scenario-independent Mutex [section 4.4.6], i.e.
without the adaptations performed by the framework metaprogram, which might
have transformed it, for instance, in a remotely accessible, shared, and protected
abstraction to match up the scenario required by the application.

Figure 4.33 shows a top-view diagram of the component framework static
metaprogram. Each of the elements represented in the figure will be subsequently
described. A class diagram representing the Handle framework element is depicted
in figure 4.34. Like most other elements, parameterized class Handle takes a system
abstraction (class of system objects) as parameter. When instantiated, it acts as a
“handle” for the supplied abstraction, realizing its interface in order that invocations
of its methods are forwarded to Stub. Hence, system objects are manipulated by

Handle Stub

Interface

Client

<<msg>>

0..1

Id Aspect

Adapter

Proxy

Agent

ScenarioAbstraction

Figure 4.33: A top-view of Epos component framework metaprogram.
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return stub−>operation(args);

...

...
+remote

Handle

+Handle(...)
+Handle(Id)
+Handle(Handle)
+valid() : Boolean
+id() : Id
+operation(parms) : result

Client

+operation(parms) : result

Abs

Stub<Abs, Traits<Abs>::remote>

Abs
Traits

Abs

Figure 4.34: Epos framework: the Handle element.

applications via their “handles”.

Handle provides additional operations to check if a system object was success-
fully created15 and to obtain its id. Besides, when the Shared scenario aspect [sec-
tion 4.4.2] is enabled, Handle provides the extra constructors used to designate
sharing in that scenario. The aggregation relationship between Handle and Stub

enables the system to enforce allocation via a system allocator (instead of a pro-
gramming language one), thus allowing for the Allocated scenario aspect16.

The Stub framework element is depicted in figure 4.35. This parameterized class
is responsible for bridging Handle either with the abstraction’s scenario adapter or
with its proxy. It declares two formal parameters: an abstraction and a boolean
flag that designates whether the abstraction is local or remote to the address space
of the calling process. By default, Stub inherits the abstraction’s scenario adapter,
but it has a specialization, namely Stub<Abs, true>, that inherits the abstraction’s
proxy. Therefore, making Traits<Abstraction>::remote = false causes Handle
to take the scenario adapter as the Stub, while making it true causes Handle to
take the proxy.

The Proxy framework element is deployed when the remote scenario described in
section 4.4.7 is established. Proxy realizes the interface of the abstraction it repre-
sents, forwarding method invocations to its Agent (see figure 4.36). Each instance of

15The use of C++ exceptions as a mechanism to signalize system object creation failure was
avoided because it would make difficult the integration of Epos with applications written in other
programming languages.

16The allocator used with each abstraction is selected by Adapter after consulting
Traits<Abs>::allocated.
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Figure 4.35: Epos framework: the Stub element.

Proxy has a private ROI message, which is initialized in such a way that forthcom-
ing invocations only need to push parameters into the message. Moreover, because
Proxy is metaprogrammed, parameters are pushed directly into the message, with-
out being pushed into the stack first. Proxy operations invoke method invoke17 to
perform a message exchange with Agent, which, likewise Handle for a local scenario,
forwards invocations to the abstraction’s Adapter.

+get(...)
+put(...)

Message

+perform(message)
−invoke(method)
+operation(parms): result

reply();

result res = adapter−>operation(parms);
msg−>get(parms);

msg−>put(res, parms);

return res;

invoke(OPERATION);
msg−>put(parms);

msg−>get(res, parms);
result res;

+operation(parms): result

Abs

<<message exchange>>

Abs
Agent

Abs
Proxy

Abs
Adapter

Figure 4.36: Epos framework: Proxy and Agent elements.

The Adapter framework element is depicted in the figure 4.37. This parame-
terized class realizes a scenario adapter for the abstraction it takes as parameter,
adapting its instances to perform in the selected scenario. Adaptations are car-
ried out by wrapping the operations defined by the abstraction within the enter

and leave scenario primitives, and also by enforcing a scenario-specific semantics
for creating, sharing, and destroying its instances. The role of Adapter in Epos

framework is to apply the primitives supplied by Scenario to abstractions, without

17The semantics of the invoke method varies according to the selected configuration. In some
cases, it causes the application process to “trap” into the kernel, in others, it directly accesses a
communicator to perform a message exchange.
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+operation(parms): result

Abs

Abs

+enter()
+leave()

+share(Adapter *) : Adapter*
+share(Id) : Adapter*
+operator new()

+free(Adapter*)
+operation(parms): result enter();

leave();
return res;

Result res = Abs::operation(args);

Abs
Scenario

Abs
Adapter

Figure 4.37: Epos framework: the Adapter element.

making assumptions about the scenario aspects represented in these primitives. In
this way, Adapter is able to enforce any combination of scenario aspects.

The execution scenario for Epos abstractions is ultimately shaped by the
Scenario framework element depicted in figure 4.38. Each instance of parameter-
ized class Scenario delivers scenario primitives that are specific to the abstraction
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Figure 4.38: Epos framework: the Scenario element.
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supplied as parameter. Firstly, it incorporates the selected Id aspect, which is com-
mon to all abstractions in a scenario; then it consults the abstraction’s Traits to
determine which aspects apply to it, aggregating the corresponding scenario aspects.
The strategy to cancel an aggregation is similar to the one used with Stub, i.e. a
parameterized class that inherits the selected aspect by default, but is specialized
to inherit nothing in case the aspect is not selected for the abstraction.

Besides designating which scenario aspects apply to each abstraction, the pa-
rameterized class Traits maintains a comprehensive compile-time description of
abstractions that is used by the metaprogram whenever an abstraction-specific ele-
ment has to be configured.

4.5.1.2 Composition Rules

Epos component framework metaprogram is able to adapt and assemble selected
components to produce an application-oriented operating system. However, though
the metaprogram knows about particular characteristics of each system abstraction
from its traits, it does not know of relationships between abstractions and hence
cannot guarantee the consistency of the composites it produces. In order to generate
a meaningful instance of Epos, the metaprogram must be invoked with a coherent
parameter configuration.

Therefore, the operation of the framework metaprogram is coordinated by a
set of composition rules that express elements of reusable system architecture cap-
tured during design. A consistent instance of Epos comprises system abstractions,
scenario aspects, hardware mediators, configurable features, and non-functional re-
quirements. Composition rules specify dependencies and constraints on such ele-
ments, so that invalid configurations can be detected and rejected. Nevertheless,
guarantying that a composite of Epos elements is “correct” would depend on the
formal specification and validation of each element, what is outside the scope of this
research.

Sometimes, composition rules are implicitly expressed during the implementa-
tion of components. For example, by referring to the Datagram channel, the Port

communicator implicitly specifies a dependency rule that requires Datagram to be
included in the configuration whenever Port is deployed. However, most composi-
tion rules, especially those designating constraints on combining abstractions, can
only be expressed externally. For instance, the rule that expresses the inability of
the Flat address space to support the Mutual task abstraction must be explicitly
written.

In order to support the external specification of composition rules, Epos el-
ements are tagged with a configuration key. When a key is asserted, the corre-
sponding element is included in the configuration. Elements that are organized in
families are selected by assigning a member’s key to the family’s key, causing the
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family’s inflated interface to be bound to the designated realization. This mecha-
nism implements selective realize relationships [section 3.6] modeled during design.
For example, writing Synchronizer := Semaphore causes the inflated interface of
the Synchronizer family of abstractions to be bound to member Semaphore and
writing Id := Capability binds the Id scenario aspect to Capability. Elements
that do not belong to families have their keys asserted accordingly. For example,
writing Busy Waiting := True enables the Busy Waiting configurable feature if
the CPU Scheduler abstraction.

Composition rules are thus defined associating pre- and postconditions to con-
figuration keys. For instance, the following rule for the Task family of abstractions
requires the Paged address space to be selected before the Mutal task can be selected:

Mutual ⇒ pre: Address Space = Paged

Alternatively, this constraint could be expressed as a composition rule for the
Address Space family that selects the Exclusive task whenever the Flat address
space is selected:

Flat ⇒ pos: Task := Exclusive

Composition rules are intended to be automatically processed by configuration
tools. Hence, it is fundamental to keep them free of cycles. The following rule,
though understandable for a human, could bring a tool to deadlock:

A1 ⇒ pre: B = B1

B1 ⇒ pre: A = A1

In order to ensure that Epos composition rules build a direct acyclic graph, the
following directives were observed:

• Configuration keys are totally ordered according to an arbitrary criterion;

• Preconditions are restricted to expressions involving only preceding keys;

• Postconditions are restricted to assignments involving only succeeding keys.

Along with the traits of each abstraction, composition rules control the process
of tailoring Epos to a particular application. The set of configuration keys selected
by the user is validated and refined by means of composition rules, yielding a set of
elements that are subsequently assembled by the framework metaprogram consulting
the traits of abstractions.
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4.5.2 Portability

The steady evolution of computing systems makes it easy to predict that many ded-
icated applications will experience more than a single hardware platform along their
life cycles. From an application-oriented perspective, applications should transpar-
ently endure such hardware migrations, delegating portability issues to the run-time
support system and the compilation environment. Therefore, Epos visible elements
were designed in such a way as to conserve syntax and semantics when ported to
new hardware platforms. Elements may be unavailable in a platform because it does
not feature the necessary hardware support, but those available behave accordingly
in all platforms.

The extremely flexible architecture of Epos requires portability issues to be
dealt with consequently. If abstractions, scenario aspects, or component framework
elements incorporate hardware idiosyncrasies, porting them to a new hardware plat-
form could impair Epos and consequently applications running on it. Nevertheless,
as an operating system that aims at delivering a high-performance foundation to
dedicated applications, Epos has to ponder the implications that portability may
have on performance [Lie96].

Epos pursues the balance between portability and performance by means of
two artifacts: a setup utility and a set of hardware mediators. The setup utility
runs previous to the operating system to prepare the hardware platform to host a
mostly portable system. As the utility builds an elementary execution context for
Epos, it initializes numerous hardware components, setting the system free from a
main source of non-portability. The setup utility is itself highly dependent from the
hardware platform for which it is implemented and does not aim at being portable.

Non-portable hardware interactions after the initialization phase are avoided in
Epos whenever possible. Sometimes, non-portable hardware mechanisms are re-
placed by portable ones in software, as long as resources are not compromised. For
instance, the context switch operation available in some processors can usually be
replaced by a software routine without impairments. Nevertheless, some configu-
rations of Epos cannot escape non-portable interactions with the hardware. The
Paged address space abstraction, for instance, requires Epos to interact with the
MMU to create, destroy, and modify the address space of processes.

Architectural dependencies that cannot be handled by the setup utility are en-
capsulated in hardware mediators. When a system abstraction or a scenario aspect
needs to interact with the hardware, it does it via a mediator, thus promoting
portability. Hardware mediators, likewise the setup utility, are not portable; they
are specifically designed and implemented for each platform.
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4.5.2.1 The Setup Utility

Epos setup utility is a non-portable tool that executes previous to the operating
system to build an elementary execution context for it. The resources used by this
utility are completely released before the first application process is created, so it
can lessen on resource rationalization in benefit of an extensive setup procedure that
carefully validates each configuration step.

The setup utility receives a SysInfo structure from the bootstrap that describes
the relevant characteristics of the forthcoming Epos configuration, so it knows which
devices have to be activated and which elementary memory model has to be imple-
mented. As the utility proceeds with hardware setup, it updates and completes
SysInfo, including information about the physical resources configured, a memory
map describing how the operating system has been loaded, the node’s logical id, etc.
This structure is later delivered to the operating system to assist the initialization
of portable system components.

When the Ahead Allocated scenario aspect is enabled, the setup utility pre-
allocates indicated abstractions in the data segment of the operating system, relo-
cating the respective pointers. For instance, if an Fast Ethernet network adapter
is marked to be allocated in advance, the setup initializes the device, maps it to a
Network system object, and attaches it to the operating system’s list of resources.

Differently from what one could imagine, the setup utility is seldom a large and
complex software artifact. On the low-end of embedded systems, the setup may be
relegated to load the operating system, since many of the microcontrollers used in
such systems dispense further setup procedures. In contrast, the setup utility for the
high-end workstations of a cluster can usually rely on a built-in monitor to configure
the platform.

Besides promoting portability, the setup utility considerably reduces the com-
plexity of other Epos elements, for they no longer need to cope with hardware
initialization. A void configuration of Epos, i.e. a resulting system size of zero
bytes, becomes possible in this scenario: some applications only need to be loaded
on a pre-configured platform, dispensing with further operating system assistance.
Such extreme cases are on the summit of application-orientation, demanding the
highest degree of scalability from the operating system. They are only manage-
able in Epos due to the division of operating system responsibilities with the setup
utility.

4.5.2.2 Hardware Mediators

A hardware mediator abstracts elements of the hardware platform that are used by
system abstractions and scenario aspects. However, it is not the intention of these
mediators to building a “universal virtual machine” for Epos, but hiding the pe-
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Figure 4.39: Epos hardware mediator Node.

culiarities of some hardware components that are frequently used by the operating
system. For example, the memory management unit and the interrupt controller.
Mediators realize an operating system interface for these components, thus pre-
venting architectural dependencies from spreading over the system. Mediators are
themselves hardware dependent, being sometimes coded in assembly, using macros,
or static metaprogramming techniques.

The Node hardware mediator depicted in figure 4.39 yields a topmost abstraction
for the computer in which Epos executes, being its unique global object. The
Node comprises a set of other hardware mediators, including one or more processors
(CPU), an interrupt controller (IC), a timer (TMR), and a real-time clock (RTC). These
hardware mediators are only included in a system configuration if the equivalent
hardware components are available in the platform and if they were required by
some system abstraction or scenario aspect selected by the user. Additionally, Node
is associated with the CPU Scheduler.

A special realization of the Node hardware mediator is deployed for symmetric
multiprocessor nodes18 that is able to cope with the scheduling and synchronization
singularities of a parallel environment. This version of Node relies on the Atomic

scenario aspect [section 4.4.6] to coordinate parallel system invocations. Whether
processor affinity is considered for processor scheduling hinges on the corresponding
configurable feature of CPU Scheduler [section 4.3.2.3].

The CPU mediator depicted in figure 4.40 aggregates three other mediators: the
floating point unit (FPU), the memory management unit (MMU), and the time-stamp
counter (TSC). As explained earlier, these mediators are not aimed at simulating
the hardware components they represent, but to implement an operating system
interface for them. For instance, the MMU mediator is invoked to map physical
memory to a paged address space, allocating and plugging the necessary frames
to the designated page table.

18Asymmetric multiprocessing is handled in Epos with the ordinary Node mediator representing
the “main” processor and secondary processors being represented as devices.
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Figure 4.40: Epos hardware mediator CPU.

Besides acting as a hardware mediator, CPU implements operations to save and
restore the context of processes, and to perform the bus-locked read-and-write trans-
actions (Test and Set Lock) required by the Synchronizer family of abstractions.
It also holds a reference to the thread currently running on the processor.

Together with the setup utility, hardware mediators enable most of the abstrac-
tions and scenario aspects described earlier in this chapter to be transparently ported
to new hardware platforms. Only some abstractions that directly concern hardware
elements, such as Bus and some members of the Device family, are subject to porta-
bility pitfalls.

4.5.3 Initialization

Epos splits the initialization of the computing system it manages in two phases.
The first, which was described in the previous section, concerns the initialization
of the hardware platform, while the second concerns the initialization of system
data structures and the creation of the first (and possibly unique) application pro-
cess. Both procedures have been designed aiming at supporting the flexible system
architecture delivered by Epos component framework.

The procedure of system initialization uses many algorithms and temporary data
structures that are never used again during ordinary operation. The architecture of
Epos enables the resources allocated during this procedure, in particular memory, to
be returned to the pool of free resources, so they can be reused later by applications.
The first stage of Epos initialization, the setup utility, completely erases itself when
ready with its tasks, releasing all resources it had allocated. The second stage, the
init utility, is activated as the last activity of setup, receiving the update Sys Info

structure created by the bootstrap.

4.5.3.1 The Init Utility

Epos init utility is not a process, nor is it part of the operating system. It is just
a routine that has plain access to the address space of the operating system, thus
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Figure 4.41: An overview of Epos initialization.

being able to invoke system operations. The initialization procedure carried out
by the init utility consists in checking the traits of each abstraction to determine
whether it has been included in the current system configuration19, invoking the init
class method for present abstractions. Abstractions and hardware mediators are
requested to define this class method, which is responsible for initializing associated
operating system structures. Besides having access to the traits of the abstraction
it initializes, class method init also receives the Sys Info structure as parameter,
so it can consult the system description left by the setup utility. Furthermore, these
class methods undergo a special link-editing process that causes them to be linked
to the init utility rather than the operating system.

After having invoked the init class method for all present abstractions, the init
utility invokes Epos operations, which by now are fully operational, to create the
first process. If the dedicated application running on Epos is executed by a single
process (per node), then the process created by the init utility is the application’s
unique process. Otherwise, this process is a loader that subsequently creates ap-
plication processes in a multitasking environment. Before finishing, init releases all
resources it had allocated, leaving Epos alone with application processes.

An overview of Epos initialization is depicted in figure 4.41. After loading the
boot image, which includes a preliminary system description (Sys Info), the boot-
strap invokes the setup utility to configure the hardware platform. Considering the
specifications in Sys Info, the setup utility builds an elementary memory model,
configures required devices, loads Epos, pre-allocates Ahead Allocated abstrac-
tions, loads the init utility, and activates it. The init utility, in turn, invokes the

19Traits are compile-time structures, so consulting the traits of an abstraction that has not been
selected for a system configuration does not alter the configuration.
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init class method of every abstraction included in the system to initialize its logical
structure. It finishes loading the executable provided in the boot image to create
the first process.

4.5.3.2 System Organization

The initialization procedure described above causes Epos to assume one of the
organizations depicted in figure 4.42. If the embedded-in-the-application organization
is to be accomplished, the setup utility arranges for a single address space that is
shared by the operating system and the application process. Hence, this organization
implies the single-tasking environment realized by the Exclusive member of the
Task family.

dev
devEPOS
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−kernelµ

devdev

loader ROI

application

application

Embedded

application

dev
dev

EPOS
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Figure 4.42: Epos organizations: (a) embedded-in-the-application and (b) µ-kernel.

Though sharing the same address space, application and operating system are
not linked together when the embedded-in-the-application organization is selected.
Instead, the application is supplied a copy of the operating system’s symbol table
during linkage, thus enabling it to invoke system operations via ordinary proce-
dure calls20. This design decision enables the setup utility to adopt an operating
system loading procedure that is common to both organizations, embedded-in-the-
application and µ-kernel.

Furthermore, avoiding linking operating system and applications together en-
ables the portion of the address space in which the operating system resides to be
protected against misleading applications. This is useful, even in single-tasking envi-
ronments, to assist debugging applications. If the hardware platform permits, Epos

code segment is marked execute-only, while its data segment is marked accessible
only from the code segment. Access violations regarding this scheme are caught and
can be monitored activating the Debugged scenario aspect.

20
Epos component framework metaprogram is processed in the context of applications, therefore

a fraction of the operating system will always be embedded in the application. Moreover, some
elementary system operations may completely embed in the application (through inlining).



142 � Chapter 4: The EPOS System

If Epos is configured as a µ-kernel, the setup utility prepares two address spaces:
one for the kernel and one for the first process. In this case, the init utility is tem-
porarily loaded in the address space of the kernel. With the µ-kernel organization,
Epos features a system-call interface that is used by applications to interact with
system abstractions. This interface implies in the Remote scenario aspect being
enabled. The first process in this organization is the application loader, which ad-
ditionally starts the ROI server if the Global Id scenario aspect is enabled. Shared
devices are delivered through device servers, which are also created by the loader.
Since the loader is an ordinary user-level process, no modifications in the initializa-
tion procedure are necessary to accomplish this model.

4.6 Automatic Configuration

Epos application-oriented system design enables it to be tailored to match the re-
quirements of particular applications. By specifying configuration keys, users select
the system abstractions, scenario adapters, and hardware mediators that are neces-
sary to support a given application. Composition rules facilitate the task of tailoring
Epos, allowing users to specify a reduced number of configuration keys that are ex-
panded in a coherent system configuration. Moreover, a user-friendly visual tool can
be deployed to carry out this manual configuration process.

However, Epos comprises hundreds of configurable elements. Delivering appli-
cation programmers such a massive repository of components and a mechanism to
select and plug them in a component framework may be inadequate. Users can miss
the most appropriate system configuration for a given application simply because
there are excessive alternatives. Even if composition rules allow them to specify a
reduced number of configurable elements, it is possible that significant elements will
be relegated to inadequate default configurations. Fortunately, application-oriented
system design makes it possible to automate the system configuration process to
reduce the occurrence of such incidents.

For a component-based operating system like Epos, accomplishing an automated
“system factory” is mainly a matter of understanding application requirements. The
way Epos associates configuration keys to abstraction interfaces allows application
programmers to specify application requirements about the operation system simply
by writing down system invocations. If programmers are not sure about which
member of a family of abstractions should be used in a situation, or if they realize
the selection may need to be changed in the future, they can use the family’s inflated
interface instead. Afterwards, the application can be submitted to a pipeline of tools
that will tailor Epos to fit it.

A schematic representation of the process of automatic configuring Epos is pre-
sented in figure 4.43. The first step consists in performing a syntactical analysis of
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Figure 4.43: Epos automatic configuration tools.

the application’s source code to identify which system abstractions have been in-
voked by the application and how they have been invoked. This step is carried out
by the analyzer, which generates a preliminary configuration blueprint consisting of
family’s (inflated) and member’s interfaces.

The preliminary configuration blueprint produced by the analyzer is subsequently
passed to the configurator. This tool consults the catalog of composition rules and
the list of abstractions to refine the configuration blueprint. During this refinement,
some inflated interfaces are bound to satisfy dependencies and constraints. Those
that remain unbound are subsequently bound to their “lightest” realizations. The
output of this tool is a table of configuration keys that shapes a framework for the
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desired Epos configuration.

In order to support the proposed automatic configuration scheme, Epos abstrac-
tions and scenario aspects have been sorted in a cost model corresponding to their
intrinsic overhead. This ordering is revealed by the sequence in which abstractions
and scenario aspects have been introduced in their families along this chapter, i.e.
the Exclusive member of the Thread family has a lower estimated cost than mem-
ber Cooperative, and the Local member of the Id family has a lower estimated
cost than member Global.

The last step in the automatic configuration process is performed by the gen-
erator. This tool uses the set of configuration keys produced by the configurator
to compile an application-oriented version of Epos. Such Epos instances include

#include <iostream>
#include <synchronizer.h>
#include <thread.h>

using namespace System;
using namespace std;

Synchronizer fork [5];

int philosopher ( int n)
{

int first = (n < 4)? n : 0;
int second = (n < 4)? n + 1 : 4;
for (;;) {

cout << ”Philosopher ”<< n << ” thinking ...\n”;
fork [ first ]. lock (); // get first fork
fork [second]. lock (); // get second fork
cout << ”Philosopher ”<< n << ” eating ...\n”;
fork [ first ]. unlock (); // release first fork
fork [second].unlock (); // release second fork

}
}

int main()
{

Thread∗ phil [5];
for( int i = 0; i < 5; i++)

phil [ i ] = new Thread(&philosopher, i);

for (;;);
}

Figure 4.44: The dinning philosophers problem in Epos.
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only those elements that are necessary to support the execution of associated ap-
plications. Moreover, abstractions designated via inflated interfaces are selected as
to minimize the operating system overhead on resource management. An imple-
mentation of these configuration tools as a compiler front-end will be discussed in
section 5.3.3. Such implementation allows Epos to be transparently configured as
the application is compiled.

Nevertheless, Epos “operating system factory” cannot guarantee the tailored
system to be optimal, even if the application completely delegates configuration to
the presented tools by interacting with the system exclusively via inflated interfaces.
The inaccuracy of the automatic configuration process arises from the cost criterion
used to order abstractions in each family: overhead. The overhead criterion prop-
erly represents the cost of most abstractions, but in some cases, leads to non-optimal
configurations. The processor scheduling policy, for instance, can be wrongly esti-
mated under this criterion. Sometimes the higher inherent overhead of a scheduling
policy is compensated by producing a sequence of scheduling events that matches
the application’s execution flow.

Therefore, the set of automatic configuration tools was designed considering
interruptions after each phase, so users can invoke the manual configuration tool to
check and modify the automatically generated configuration before it is submitted
to the generator.

For an example of automatic system configuration, the program in figure 4.44 will
be considered. This is a valid Epos implementation of the classic dining philosophers
problem [Dij71]. It requires three system abstractions: Thread, Synchronizer, and
Console. The analyzer would identify these families, as well as the scope in which
they were used, and output a table with the signatures of used operations. Signatures
are known by the analyzer from the interfaces supplied in the system header files
included. The syntactical analysis of this program, ignoring the complex iostream

header, would look like the following:

global {
System:: Interface :: Synchronizer :: Synchronizer(void);
System:: Interface :: Synchronizer :: lock(void);
System:: Interface :: Synchronizer :: unlock(void);

}

main {
System:: Interface :: Thread::Thread(int (∗)( int ), int)

}

The analysis report reveals that objects of type Synchronizer have been created
in the global scope using the default constructor, and that operations lock and
unlock have been invoked on them. It also reveals that objects of type Thread have
been created in the scope of function main using a constructor that takes a pointer
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to a function and an integer as parameter.

The configurator would process this information considering the catalog of com-
position rules and the list of system abstractions. This would lead the Synchronizer
inflated interface to be bound to Mutex, for it supplies the required operations. Even
if Semaphore had declared a default constructor and operations lock and unlock as
synonyms for p and v, thus emulating a Mutex, the cost ordering would have made
Mutex the best choice.

The selection of a realization for the Thread inflated interface would be based on
a special composition rule that requires method pass, which hands processor control
over another thread, to be explicitly invoked in order that realization Cooperative

is selected. Since the Exclusive realization of Thread does not feature thread
creation, member Concurrent would be selected.

However, the Concurrent thread implies in the CPU Scheduler abstraction,
which in this case would adopt FCFS as the scheduling policy, for it incurs in the low-
est overhead. Nonetheless, this decision would only be adequate if the application
is executed in a node with five or more processors. Otherwise, some philosophers
would never execute. This reveals the limitations of Epos automatic configuration.
Though the number of processors on each node is available to configuration tools,
the decision of bypassing the cost model to select a different scheduling policy can-
not be taken automatically. If less than five processors are available in the indicated
node, the user would either have to manually correct the configuration, or modify
the ordering of scheduling policies in the cost model to define another default.

4.7 Summary

Epos (Embedded Parallel Operating System) is an experimental application-oriented
operating system developed in the scope of this dissertation to validate concepts and
techniques of application-oriented system design. The domain envisioned by Epos is
that of high-performance dedicated computing, which comprises applications that,
besides running with exclusivity on the respective platforms, require an efficient
management of resources. This domain comprises mainly embedded and parallel
applications.

In order to cope with the steady evolution of the envisioned domain, Epos

established an open and continuous domain analysis process that allows new entities
to be included in the design as they are identified in the domain. Domain entities
were modeled aiming at high scalability and reusability, so that Epos can be tailored
to particular applications. Abstractions are mostly independent of each other, of
execution scenario aspects, and of component frameworks. Consequently, they can
be extensively reused in a variety of scenarios. Furthermore, Epos component
framework can be adjusted to accommodate forthcoming abstractions, or to build
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particular software architectures, without affecting existing abstractions.

Epos captures the entities in the domain of high-performance dedicated com-
puting with application-oriented abstractions that realize mechanisms concerning
the management of memory, processes, coordination, communication, time, and
I/O. Besides, a remote object invocation mechanism allows for external abstrac-
tions, such as files and graphical display, to be transparently accessed. Entities with
strong architectural dependency, such as node and CPU, were separately modeled as
non-portable hardware mediators that realize a portable operating system interface.

Epos models the following properties of domain entities as scenario aspects:
identification, sharing, allocation, protection, timing, atomicity, remote invocation,
debugging, and profiling. An execution scenario for abstractions is shaped by com-
bining suitable scenario aspects, which are transparently applied to abstractions via
scenario adapters.

Epos component framework captures elements of reusable system architectures,
defining how abstractions can be composed. It was modeled as a collection of inter-
related scenario adapters that build a “socket board” for system abstractions and
scenario aspects, which are “plugged” via inflated interface binding. The framework
is realized by a static metaprogram and a set of externally defined composition rules.
The metaprogram is responsible for adapting abstractions to the selected execution
scenario and arranging them together during the compilation of an application-
oriented instance of Epos, while the rules coordinate the operation of the metapro-
gram, specifying constraints and dependencies for the composition of abstractions.

The scalable software architecture accomplished by the component framework is
sustained by the setup and init utilities. The former isolates architectural dependen-
cies concerning hardware initialization, while the latter isolates system initialization
procedures. In cooperation with the framework metaprogram, these utilities are able
to deliver an Epos instance either as a µ-kernel or fully embed it in a single-tasked
application.

Epos design allows for automatic configuration and generation. Abstraction
and family (inflated) interfaces referred to by an application can be collected by
Epos analyzer to yield a blueprint for the system that has to be generated. This
blueprint is subsequently processed by Epos configurator, which consults a catalog
of composition rules and a list of existing system abstractions to configure the com-
ponent framework according to application needs. At last, Epos generator compiles
an instance of Epos including the necessary abstractions, mediators, and scenario
aspects.





Chapter 5

EPOS Implementation for the
SNOW Cluster

The Epos system described in chapter 4 illustrates the deployment of application-
oriented system design to engineer the domain of high-performance dedicated com-
puting. That case study helped to corroborate the concepts and techniques of
application-oriented system design proposed in chapter 3. However, if Epos is
to be accepted as a validation of application-oriented system design, its design must
also be validated. Although many of Epos design decisions have been well sub-
stantiated, a design can hardly be positively evaluated before it is implemented to
a significant extent. Therefore, a prototype implementation of Epos for the Snow

cluster was carried out in the scope of this dissertation.

5.1 Why a Cluster of Workstations?

The idea of clustering commodity workstations as a cost-effective alternative to ex-
pensive Massively Parallel Processors (MPP) has now been explored for quite a
long time. Perhaps one of the first approaches has been the one in which the idle
time of ordinary workstations interconnected in a Local Area Network (LAN) was
collected to form a computational resource pool that could be used to support the
execution of parallel applications [HCG+82, Che84]. This idea has been around for
almost as long as the LAN itself and undoubtedly helped to open the way for cluster
computing. Nowadays, however, cluster computing is better associated with a pile
of workstations interconnected in a System Area Network (SAN) and completely
dedicated to support the execution of parallel applications. During this natural
evolution towards performance, cluster computing has reshaped the concept of com-
modity computing by triggering the migration of software and hardware concepts
from the supercomputer environment to the desktop.
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Undoubtedly, cost-effectiveness has been a key factor to boost the utilization
of clusters of workstations to support high-performance computing. However,
price/performance is not a metric when the problem to be solved, i.e. the parallel
application to be executed, demands performance figures that cannot be supplied
by a cost-effective cluster. That these FLOP famished applications are there, no
one questions, but the suggestion that an MPP is the only way to appease them, is
increasingly controversial. Recent developments suggest that clusters are going, in
the short term, to overcome MPPs also in absolute performance [TFC00, CPL+97].
This optimism is not accidental—it arises from simple market laws that favor large-
scale production. Improving performance of computational systems demands large
efforts on engineering and manufacturing, which are usually achieved at a very high
cost. While MPPs have to share these costs among a few produced units, clus-
ters can share them with the huge workstation market. This phenomenon has been
slowing the development of custom hardware, in favor of commodity components,
in such a way as to indicate that both technologies, MPPs and clusters, are about
to merge. The Intel ASCI Red MPP [San01] is a good example for this merge: its
processing elements are ordinary Intel Pentium Pro microprocessors normally found
in PCs, and the whole machine has only two non-commodity components in the
interconnection system.

Although the commodity workstation hardware scene looks bright, the same can-
not be stated about commodity software. The run-time support systems running on
ordinary workstations have not been designed with parallel computing in mind and
usually fail to deliver the functionality needed to execute a parallel application. The
commodity solution to this problem is to add a middleware layer, so that features
like location transparency, remote invocation, and synchronization are appended to
the system. However, this configuration often fails to achieve the performance level
demanded by the parallel application [NAS97, MT00].

Indeed, the need for specialized run-time support systems in order to sup-
port parallel computing on clusters of workstations has already been recognized
by the fraction of the cluster computing community compromised with high-
performance [ABLL92, Fel92, BRB98]. In this scene, modifications in the oper-
ating system kernel, customizations in run-time support libraries, and specialized
middleware implementations are common-practice, with user-level communication
being a frequently explored optimization. This can be observed in projects like U-

Net at Cornell University [WBvE96], Fast Messages (FM) at the University of
Illinois [PKC97], PM at the Real World Computing Partnership [THIS97], Basic

Interface for Parallelism (BIP) at the University of Lyon [PT98], and others.

However, run-time support system specializations for cluster computing are usu-
ally not customizable with regard to application requirements, focusing on improv-
ing performance by exploring particular architectural features. Especially regarding
communication, most solutions comprise a single protocol, disregarding the par-
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ticular characteristics of each application. In contrast, Epos was designed to be
customized according to application needs, delivering abstractions that can be ad-
justed and combined to produce a large variety of run-time systems. For example,
Epos communication subsystem [section 4.3.4] comprises six families of abstractions
and a number of configurable features that can be arranged to deliver applications
a tailored communication system.

5.2 The SNOW Cluster

The Snow cluster was assembled in 1997 at the Research Institute for Computer
Architecture and Software Engineering (FIRST) of the German National Research
Center for Information Technology (GMD). The cluster consists of 24 processing
nodes interconnected with a high-speed network and connected to a server through
a service network. These are all off-the-shelf components that have been separately
acquired and locally assembled by the institute staff.

A sketch of the Snow cluster from the perspective of Epos is presented in
figure 5.1. The server acts as a front-end to the cluster, from which parallel ap-
plications are started and monitored. While running Epos, processing nodes are
entirely managed from the server, which triggers a remote boot procedure to start
up a tailored Epos for each application session. The server also provides parallel
applications running on processing nodes with a persistent storage facility.

EPOS

application

EPOS

application

EPOS
LINUX

manager ...
Node 0 Node 23

Internet

service network

high−speed network

Server

FS

Figure 5.1: The Snow cluster from the perspective of Epos.

5.2.1 Processing Nodes

Snow processing nodes are diskless workstations, each comprising one or two Intel
P6 processors, main memory, and network interface cards (NIC) for the computing
(Myrinet) and service (Fast Ethernet) networks. A schematic of a Snow node
focusing on hardware components that are significant to Epos is shown in figure 5.2.
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Figure 5.2: A Snow node from the perspective of Epos.

Every hardware platform has its highs and lows. When used for a purpose
other than the originally conceived, it is natural that lows become more noticeable.
Commodity workstations are not constructed to support parallel computing and,
when used for this purpose, often fail to exhibit the properties anticipated by ap-
plications. Before beginning the implementation of Epos for the Snow cluster, a
series of experiments has been performed in order to identify hardware limitations
concerning high-performance computing that could be reduced by proper operating
system design. These experiments identified two major limitations:

1. Low memory bandwidth: Snow nodes, like most ix86-based workstations, are
equipped with low bandwidth memory subsystems. This deficiency is usually
not perceptible to the interactive applications that are traditionally executed
on such platforms thanks to a high-bandwidth cache mechanism that hides
main memory latency. Nevertheless, a parallel application performing short
computation cycles on large data sets can easily overflow such mechanism,
leading the processor to wait for the memory subsystem.

2. Interconnect on I/O bus: in contrast to MPP nodes, which usually integrate
interconnect mechanisms to the processor/memory path, clusters of commod-
ity workstations rely on ordinary network interface cards plugged in the I/O
bus (figure 5.2). As consequence, the path to the network is lengthened and
the overhead on inter-node communication increased. In the particular case
of Snow, the data transfer rate between main memory and the Myrinet

adapter is lower than between two Myrinet NICs on different nodes.

There is not much an operating system can do to overcome the first limitation.
Caring for cache-aligned memory allocation could help, but the operating system
cannot enforce cache-aligned memory access (a compiler could). Regarding the
second limitation, however, the experiments conducted with Snow helped to design
a pipelined communication subsystem that is able to hide a significant part of the
latency induced by the hardware architecture. This mechanism will be discussed
later in section 5.3.1.
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5.2.2 Interconnects

Snow processing nodes are interconnected by two networks: a service network used
for interactions with the server, and a computing network used for message exchange
between processes of parallel applications. The organization of these networks is de-
picted in figure 5.3. The service network consists of a full-switched, full-duplex Fast

Ethernet network with a Giga Ethernet link to the server. It was configured
to give each node an equally wide communication channel with the server.

The computing network consists of a Myricon Myrinet high-speed net-
work [BCF+95]. Myrinet has been chosen as the computing network for Snow

because its interfaces and protocols are open and published, and its network inter-
face cards are programmable. Indeed, the Myrinet NICs that equip Snow nodes
(figure 5.4) are embedded computing system, with own processor and memory. The
LANai processor on Myrinet NICs can be programmed to release the main pro-
cessor from most communication-related tasks.

Two architectural characteristics of Myrinet NICs are of special interest for an
operating system project:

• The memory on the NIC can be shared with the main processor, yielding an
asymmetric multiprocessor system;

• The DMA engines used to send and receive data to/from the network and to
transfer data between host and NIC can operate in parallel.

The asymmetric multiprocessor configuration enables the network to be mod-
eled as a bounded buffer, with application processes on the host producing outgoing
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Figure 5.3: The organization of Snow networks.
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Figure 5.4: The Myrinet network interface card from the perspective of Epos.

messages that are consumed by a process on the Myrinet NIC. Incoming mes-
sages are handled the other way round, with a Myrinet process playing the role
of producer and application processes on the host playing consumers. This asyn-
chronous communication model, in combination with the parallel operation of DMA
engines, allows a message (or a piece of a message) to be transferred between host
and Myrinet at the same time another one is being transferred over the network,
thus sustaining a communication pipeline

5.3 EPOS Implementation

Aiming at validating the domain engineering described in chapter 4, a prototype
of Epos was implemented for the Snow cluster. Emphasized were the software
engineering techniques introduced by application-oriented system design, such as
adaptable abstractions, scenario aspects, inflated interfaces, and component frame-
works. Classic operating system concepts, which have already been implemented in
numerous other systems, were given a lower priority. In particular, no support for
multiprocessor nodes has been included in this prototype.

The implementation of Epos prototype for Snow was conducted as a last refine-
ment of design, rather than an isolated phase with sporadic meeting points. Con-
stant feedback helped to enhance design specifications while yielding better support
for implementation decisions. This scheme, which reassembles eXtreme Program-
ming (XP) [Bec99], was only feasible because of the solid domain decomposition
guided by application-oriented system design. Cycling design to extend or correct
the functional specification of individual abstractions or include new abstractions
does not have major consequences on already implemented entities. In fact, con-
ducting a design to its finest level independently of implementation experiments is
seldom viable. However, a sloppy domain decomposition would have been exposed
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to deeper modifications, perhaps requiring abstractions and scenario aspects to be
repartitioned, thus compromising the software development process.

Epos prototype for Snow was mostly implemented in standard C++, with
some few hardware mediator methods written in assembly. Two versions of the
prototype have been produced: one runs “natively” on Snow, and the other as
a “guest operating system” on Linux. From the point of view of applications,
both versions are functionally equivalent, though the Linux-guest implementation
suffers performance impairments due to Linux memory and process management
strategies. Specifically, there is no way to disable multitasking and scheduling on
Unix-like systems, consequently affecting the execution of dedicated applications
that do not need such features.

Several of the Epos abstractions described in section 4.3 have been implemented
for Snow, including representatives of all modeled families. Particularly interesting
in the context of application-orientation, were those minimalist abstractions un-
available in general-purpose operating systems, such as the Flat Address Space,
the Exclusive Task, and the Exclusive Thread.

The Flat Address Space has a practically empty implementation, since the con-
figuration of the ix86’s MMU to simulate a flat address space is performed by the
setup utility1. The abstraction only features operations to assert the status of the
memory subsystem and to modifying memory-mapping modes (through the meth-
ods of the MMU hardware mediator). The Exclusive Task is also mostly realized by
the setup utility, which loads the task’s code segment in a ready-only portion of the
address space, assigning the remaining memory to the task’s data segment.

The Exclusive Thread implementation consists basically of status and termina-
tion operations. If the Alarm abstraction is not explicitly instantiated by the appli-
cation, timer interrupts remain disabled, since processor scheduling is not necessary
for this abstraction2. Together with Flat Address Space and Exclusive Task,
Exclusive Thread is able to produce an Epos instance of size zero: after hardware
and system initialization, absolutely all resources are delivered to the application
process.

The decomposition guided by application-oriented system design resulted in
relatively simple implementations even for Epos most complex abstractions.
For instance, a large number of entities pertaining the implementation of the
Paged Address Space, Mutual Task, and Concurrent Thread abstractions have
been separately implemented as hardware mediators and scenario aspects. Im-
plementing the Paged Address Space abstraction without having to consider the
idiosyncrasies of ix86’s MMU (and vice-versa) was undoubtedly more effective than
implementing a monolithic abstraction.

1Completely disabling the MMU of a ix86 processor is not possible, so the setup utility has to
arrange for a mapping in which logical and physical addresses match.

2Time operations performed with Clock and Chronometer do not depend from timer interrupts.
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Epos scenario aspects [section 4.4] have been modeled relying on the ability of
scenario adapters to autonomously enforce a scenario (i.e. a composition of struc-
tural and behavioral scenario aspects) to abstractions, thus eliminating eventual
dependencies from the component framework. Consequently, scenario aspects could
be implemented as autonomous objects that are aggregated to form a Scenario

object. This is subsequently applied to abstractions by the Adapter framework
element (see figure 4.33 in section 4.5.1).

Accomplishing an implementation of Epos component framework metapro-
gram [section 4.5.1] that respect the autonomy of system abstractions and scenario
aspects, i.e. that does not require them to incorporate specific framework elements,
was the most time-demanding activity during the implementation of Epos proto-
type. A precise realization of the design described in section 4.5.1 as a set of C++

templates could only be accomplished after a long streamline process. This process
exposed many pitfalls of static metaprogramming in C++, especially concerning
maintainability3. Achieving the expected functionality was not problematic, but
the first versions of the metaprogram were almost unintelligible.

Nevertheless, the resultant framework metaprogram, besides being able to handle
independently defined abstractions and scenario aspects, has a null intrinsic overhead
and is relatively easy to maintain.

5.3.1 The Myrinet Network Abstraction

A distinguished abstraction implemented for the Snow cluster is the Myrinet mem-
ber of the Network family. This abstraction was firstly implemented for the guest
version of Epos focusing on pipelining the communication system [Tie99]. Subse-
quently, a native version emphasizing aspects of application-oriented system design
was conducted [FTSP00].

A design diagram of the Myrinet abstraction is depicted in figure 5.5. Myrinet

uses the Myrinet NIC member of the Device family to realize the uniform inflated
interface of the Network family. The Myrinet NIC device abstraction deploys mech-
anisms provided by its family common package to map the control registers and the
memory of a Myrinet NIC to the address space of the main processor. In this way,
the state of a Myrinet NIC instance matches the state of the corresponding physical
NIC4. Myrinet subsequently uses Myrinet NIC to realize a member of the Network

family of abstractions, defining methods to send and receive packets of data to peer
nodes on the Myrinet system area network.

A configurable feature is more than a flag to control the inclusion of an optional

3The framework metaprogram is not exposed to end users.
4The setup utility pre-allocates one instace of Myrinet NIC for each Myrinet NIC installed in

the node.
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Figure 5.5: Epos Myrinet abstraction.

family feature; it also designates a generic implementation of the feature that can be
reused by family members. With regard to Myrinet, the ordering configurable
feature is permanently enabled, since the source routing strategy used by Myrinet

implicitly ensures in-order delivery. However, the generic implementations of con-
figurable features multicast and broadcast would be reused, since Myrinet does
not support them by design.

Nevertheless, a Myrinet NIC has its own processor and could itself implement
the hardware support that is missing to deliver the configurable features defined for
the Network family. Therefore, none of the generic implementations has been reused
by Myrinet, which relies on processes running on the NIC to realize them. Indeed,
most of the functionality of the Myrinet abstraction is delivered by such processes,
which perform in an asymmetric multiprocessor scenario with processes on the host.

The communication strategy implemented by the Myrinet abstraction consists
in writing message descriptors on the memory shared by NIC and host, designating
the address and length of outgoing messages and incoming message buffers, and
signalizing a process on the NIC to perform a message exchange. Two processes run
on the NIC in behalf of Myrinet: sender and receiver.

The Myrinet sender process (see the activity diagram in figure 5.6) waits for
a message descriptor to be signalized ready and then autonomously processes the
outgoing message. It first starts a DMA transaction to fetch the message from main
memory. Meanwhile, it generates a header for the outgoing message based on the
information present in the descriptor. When the completion of the DMA transfer
is signalized, a new DMA transaction is started to push the message, now with a
header, into the network. Finally, the descriptor is updated to signalize that the
message has been sent.

The Myrinet receiver process operates complementarily to sender. It is activated
by interrupt whenever a message arrives5, extracting it from the network with a
DMA transaction and storing it in a local buffer. Subsequently, receiver checks for a

5The LANai processor on Myrinet NICs is a dual-context processor, with context exchange
being automatically triggered by interrupts.
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Figure 5.6: Activity diagram of Epos Myrinet sender process.

message descriptor indicating that a process on the host is waiting for the message.
If one is available, it initiates a second DMA transaction to move the message
to the main memory location indicated by the descriptor, otherwise the sender
process will perform this step later when a receive descriptor becomes available.
On the eminence of buffer overflow, a flow control mechanism is activated if the
flow control configurable feature is enabled, otherwise messages are dropped.

This communication strategy was conceived considering the Flat member of the
Address Space family [section 4.3.1], for which logical and physical addresses do
match, since the LANai processor on the Myrinet NIC does not know of the
address translation scheme on the host. If the Paged Address Space is used, or if
Epos is running as guest on Linux, messages can be scattered across the memory
in frames that cannot be directly identified from their logical address. Therefore, an
intermediate copy to a contiguously allocated system buffer, of which the physical
address is known, has to be performed on the host. A message exchange over
Myrinet, including the additional copies, is depicted in figure 5.7.
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Figure 5.7: A message exchange with Myrinet.

The ability of a Myrinet NIC to simultaneously perform two DMA transfers
(each processor cycle comprises two memory cycles) was explored to transform the
steps represented in figure 5.7 in stages of a communication pipeline. Messages are
thus broken in small packets that move through the pipeline in parallel. In this
way, it is possible to start sending a message over the network while it is still being
fetched from main memory. When the pipeline is full, stages 2 and 3.1, as well as
stages 4 and 3.2, are overlapped. The delay between stages 3.1 and 3.2, i.e. the
physical network latency, is much smaller than the time spent by packets on other
pipeline stages, hence both stages can be merged to yield a single stage 3. If the
copy stages 1 and 5 are necessary, message descriptors are assigned on per-packet
basis, so the processes on the Myrinet NIC are not forced to wait for the copies
to be completed. However, stages 1 and 2, as well as stages 5 and 4, concur for the
same physical resource, namely memory, and will seldom overlap.

Furthermore, the proposed communication pipeline has a critical parameter: the
packet size. Adopting an excessively large packet size increases the pipeline’s setup
time, while excessively small packets exacerbate the pipeline’s internal overhead.
Furthermore, the influence of the packet size on the pipeline depends on the length
of the messages being transmitted. In order to estimate the optimal packet size
as a function of the message length, the bandwidth of each pipeline stage and the
latency experienced by packets on each stage were obtained. Applying a linear
cost model, the optimal packet size for different ranges of message lengths was
calculated [Tie99]. The result was used to implement an adaptive communication
pipeline that automatically switches to the best packet size for each message.

Although the communication pipeline has a low intrinsic overhead, programming
DMA controllers and synchronizing pipeline stages may be more onerous than using
programmed I/O for messages shorter than a certain length. Therefore, the pipeline
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Figure 5.8: One-way bandwidth achieved by the Myrinet Network abstraction on
Snow.

is bypassed for messages shorter than a definable threshold (256 bytes by default in
the current implementation).

The performance of the Myrinet Network abstraction implemented for the
Snow cluster was assessed sending messages of increasing length from one node
to another. Both the ix86-native (no copy) and the Linux-guest (copy) versions
were considered. Figures 5.8 and 5.9 show respectively the bandwidth and the la-
tency observed during the experiment. A bandwidth of 116 Mbytes/s for 64 Kbytes
messages represents roughly 90% of the bandwidth available to transfer data be-
tween main memory and the Myrinet NIC over the 32 bits/33 MHz PCI bus that
equips Snow nodes.

Figure 5.8 makes evident the contention for memory access between pipeline
stages 1 (copy) and 2 (host to NIC DMA) in the Linux-guest implementation. The
ix86-native version, which does not use stage 1, shows a growing advantage over
the guest version as the message length increases. Even if large messages are split
in small packages, the bursts of memory transactions performed by both stages
exceed the memory subsystem capacity. This phenomenon is direct evidence that
apparently harmless features of conventional operating systems that are enabled by
design (multitasking support in this case) do indeed impact applications that do not
need them.
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Figure 5.9: One-way latency measured for the Myrinet Network abstraction on
Snow.

5.3.2 Utilities

Epos setup utility [section 4.5.2.1] was implemented for Snow taking advantage
of the configuration capabilities of the service network. For ease of maintenance,
Snow computing nodes do not have disks. Hence, booting is accomplished by
each node downloading a boot image from the server over the service network.
This boot image includes a node-specific description of Epos—which among other
configuration information contains the node’s logical id—and the executable image
of the first process. In this manner, each node can be initialized with a distinct
application (and consequently a distinct configuration of Epos) or with distinct
processes of a task-parallel application.

The initialization of data-parallel applications in a Single Program, Multiple
Data (SPMD) configuration is accomplished with a single boot image that is down-
loaded from the server by all nodes. Subsequently, the setup utility replaces the
in-image description of Epos with a node-specific version obtained from the server
using the Dynamic Host Configuration Protocol (DHCP) [Dro93] capabilities of the
service network. Therefore, users can select the initialization strategy according to
the needs of each application.

Both setup and init utilities expect executable images, including the operating
system, to be in the Executable and Linking Format (ELF) [Int95b]. This enables
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ordinary compilation and linking tools on an ix86-based Linux workstation to be
used as a cross-compiling environment for Epos. The separation of the init util-
ity [section 4.5.3.1] from the operating system image is accomplished using these
tools. The init method of every abstraction is defined in a separate compilation
unit that is linked with the init utility. Undefined references to Epos addresses are
then resolved by the linker consulting (but not linking) Epos ELF image.

5.3.3 Tools

A simplified version of Epos syntax analyzer was implemented for Snow. This
analyzer is able to identify abstractions that are necessary to support the execution
of applications written in C++. It invokes the compiler indicated by the user to
compile the application with all inflated interfaces left unbound. If libraries are sup-
plied, incremental linking is performed in order to collect further references to Epos

abstractions contained in those libraries. The output of this compilation/linking
process is an object file whose symbol table contains undefined references to Epos

abstractions designated by the application (directly or indirectly).

The symbol table is subsequently manipulated by the analyzer to produce a
list of operations invoked for each Epos abstraction. Abstractions that are directly
referenced, i.e. that are not referenced through the inflated interface of their families,
are also included in the analysis to substantiate further configuration decisions. For
example, an application can directly designate a system abstraction that constrains
the binding of other inflated interfaces.

Submitting the dinning philosophers program presented in section 4.6 to the
syntax analyzer produces the following results:

Synchronizer {
constructor (void);
lock(void);
unlock(void);

}

Thread {
constructor ( int (∗)( int ), int );

}

In comparison to a full-fledged Epos analyzer, this implementation misses de-
tailed scope information. Instead of functions, compilation units are used as scope
delimiters. In the example above, the information that Synchronizer was instan-
tiated in the global context, and that Thread was instantiated in the context of
function main was lost. Nevertheless, using the compiler to parse applications on
behalf of Epos analyzer brings two important advantages: first, conflicts between
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analyzer and compiler due to subjective parsing strategies are eliminated; second,
the syntactical information output by compilers on object files represents the in-
put program after the execution of eventual static metaprograms (i.e. templates
are instantiated, static constant data members and inline member functions are re-
solved). It would be extremely difficult for an autonomous syntax analyzer to deliver
these characteristics, especially with regard to static metaprograms that optimize
the input program.

An ideal implementation of Epos analyzer could be obtained with a compiler
that output the parse tree and the flow graph of programs as they are compiled. Such
a compiler would retain the qualities of the current implementation while attaining
more detailed scope information. Unfortunately, none of the compilers available for
Snow offers this feature.

The results of the syntactical analysis are subsequently processed by Epos con-
figurator. This tool relies on a catalog of composition rules to select the components
that better match the requirements collected by the analyzer. This catalog em-
beds a list of existing Epos abstractions and a description of the target platform
that serve as additional constraints for the configuration procedure. In the current
implementation, composition rules are represented in the eXtensible Markup Lan-
guage (XML) [W3C98]. An associated Document Type Definition (DTD) enables a
flexible use of the rules catalog by diverse tools.

Some fragments of the rule catalog concerning the dinning philosophers program
analyzed earlier are depicted in figure 5.10. Families of abstractions are declared with
the family element, while family members are declared with the member element in
the scope of their families. Attribute default of the family element designates the
family member to be used in case the configurator does not have enough arguments
to make a selection.

The order in which members are declared in a family designates their cost, the
first being the cheapest. Setting the type attribute of a member element to “Sole” in-
dicates that the member cannot be used simultaneously with other family members.
In the case of Thread, however, the type attribute of family set to “Incremental”
allows the configurator to replace a cheaper member with a more expensive one. For
example, if a compilation unit is satisfied with the “Exclusive” member, but another
requires “Cooperative”, the latter is used for the entire application.

Both family and member elements can be assigned composition rules in the form
described in section 4.5.1.2. Attributes pre and pos are used for this purpose. In
figure 5.10, member “Exclusive” of the “Thread” family depends on the member
with the same name from the “Task” family, and family “CPU Scheduler” requires
the “Concurrent” member of the “Thread” family.

An interpreter for this configuration language was implemented in the context
of a graphical front-end for Epos configuration tools [Röm01]. Besides being able
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<?xml version=”1.0”?>
<!DOCTYPE EPOSConfig SYSTEM ”eposconfig.dtd”>
<EPOSConfig>
...

<family id=”Thread” type=”Incremental” default=”Exclusive”>
<member id=”Exclusive” type=”Sole” pre=”Task=Exclusive”/>
<member id=”Concurrent” type=”Sole”/>
<member id=”Cooperative” type=”Sole”/>

</family>
...

<family id=”CPU Scheduler” type=”Uniform” default=”FCFS”
pre=”Thread=Concurrent”>

...
<family id=”Synchronizer” type=”Dissociated” default=”Mutex”>

<member id=”Mutex”/>
<member id=”Semaphore”/>
<member id=”Condition”/>

</family>
...
</EPOSConfig>

Figure 5.10: Fragments of Epos catalog of composition rules.

to guide the process of tailoring Epos to a particular application, this visual tool
delivers a feature-based interface to manually configure Epos. It shall be extended
in the future to accomplish a management console for Snow, from which hardware
and software maintenance tasks will be performed.

The interfaces of the abstractions listed in the catalog of composition rules are
automatically collected in a catalog of system interfaces applying the syntax analyzer
to Epos component repository. A stretch of Epos catalog of system interfaces is
depicted in figure 5.11. The special interface Framework comprises operations that
are implicitly supplied by the component framework to all abstractions. This entity
is manually inserted in the catalog.

In order to select the best realization for each inflated interface referenced by the
application, the configurator crosses the output of the syntactical analysis with the
catalog of interfaces. Realizations with interfaces that contain the required signa-
tures are probed considering the order specified in the catalog of composition rules.
When one is found that matches the required signatures, the respective composition
rules are checked. If no conflicts are detected, the inflated interface is bound to
that realization, otherwise, the search continues. As explained in section 3.6, the
impossibility to find an adequate realization reveals either an application flaw, or a
member of a dissociated family that has not yet been implemented.

Regarding the dinning philosophers program, Synchronizer would be bound to
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Framework {
constructor (Id const &);
constructor (Framework const &);
id(void);
valid (void);

}
...

Mutex {
constructor (void);
lock(void);
unlock(void);

}

Semaphore {
constructor ( int );
p(void);
v(void);

}

Condition {
constructor (void);
lock(void);
unlock(void);
wait(void);
signal (void);
broadcast(void);

}
...

Figure 5.11: Fragments of Epos catalog of system interfaces.

the cheapest realization that features a default constructor and includes methods
lock and unlock, that is, Mutex. In turn, the Thread inflated interface would be
bound to Concurrent, since Exclusive does not provide the required constructor.
As explained in section 4.6, the Cooperative member of the Thread family has a
lower overhead than Concurrent, but it is solely elected by method pass, which is
not realized by Concurrent (this was arranged reversing the order of both abstrac-
tions in the catalog of composition rules).

A configuration produced by Epos configurator consists of selective realize keys,
which designate the binding of inflated interfaces of abstractions and scenario as-
pects, and configurable feature keys that designate the configurable features that
must be enabled for abstractions and scenario aspects. This set of keys is translated
by Epos generator to typedefs and Traits structures that control the operation
of the component framework metaprogram throughout the compilation of an Epos

instance. Indeed, the generator cannot be considered separately from the compiler,
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since actual generative tasks, such as the adaptation of abstractions to scenarios
and the composition of abstractions, are performed by the compiler as it executes
the metaprogram.

5.4 Summary

Clustering commodity workstations as a cost-effective alternative to expensive mas-
sively parallel processors has been explored for quite a long time. Recently, im-
provements on commodity microprocessors and interconnects begun to make clus-
ters competitive also in absolute performance, suggesting that both hardware tech-
nologies are about to merge. Regarding software, however, the dedicated run-time
support systems used on MPPs show considerable advantages over the commodity
workstation operating systems typically used on clusters. In order to compensate
the difference, commodity systems are often patched with specialized subsystems,
in particular user-level communication. However, the inflexible structure of such
operating systems severely restricts optimizations.

The prototype implementation of Epos, which aims firstly at verifying design
decisions, was strongly motivated by the possibility of introducing an application-
oriented operating system to the high-performance cluster computing scene, hence
the decision of implementing it for the Snow cluster of workstations. This cluster
consists of 24 Intel ix86-based processing nodes interconnected with a Myrinet

high-speed network and connected to a server through an Fast Ethernet service
network.

The implementation of Epos for Snow was conducted as a last refinement of
design, rather than an isolated phase. Constant feedback helped to enhance design
specifications while yielding better support for implementation decisions. Abstrac-
tions, hardware mediators, scenario aspects, component framework, setup and init
utilities, and configuration tools were implemented to produce two versions of the
prototype: one that runs “natively” on Snow, and the other that runs as a “guest
operating system” on Linux.

The implementation of the Myrinet Network abstraction benefited from the
LANai processor on the Myrinet interface card to shape an asymmetric mul-
tiprocessor configuration with the main processor, enabling the network to be mod-
eled as a bounded buffer. In order to communicate, application processes write
message descriptors on the memory shared by both processors. Messages are then
autonomously processed by the portion of Myrinet Network abstraction that runs
on the NIC, which profits from the parallel operation of Myrinet hardware com-
ponents to implement a communication pipeline.

The syntax analyzer implemented for Snow is able to identify Epos abstractions
that are needed to support the execution of applications written in C++. It uses the
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compiler indicated by the user to compile the application with all inflated interfaces
left unbound, thus producing a symbol table with undefined references to Epos

abstractions. The symbol table is subsequently processed to produce a list of the
operations invoked for each abstraction.

The catalog of composition rules used by Epos configurator was written in XML,
with and associated DTD supporting a flexible use by diverse tools. By consulting
this catalog, which embeds the relative cost of abstractions, the configurator is
able to select the components that better match the requirements collected by the
analyzer. The output of this configuration process are selective realize and con-
figurable feature keys, which are subsequently translated in typedefs and Traits

structures by the generator. The fact that Epos generator does not manipulate the
source code of abstractions and scenario aspects directly—the component framework
metaprogram does it in behalf of the generator—allowed this simple implementa-
tion. However, working together, generator and framework are able to adapt and
compose selected abstractions to produce application-oriented instances.





Chapter 6

Discussion

This chapter discusses application-oriented system design, identifying its highlights
and limitations. Comparisons with related design strategies will be made, and the
possibilities of deploying it to support the design of other kinds of software than
application-oriented operating systems will be considered. A similar study is sub-
sequently presented for the Epos system. The chapter is closed with a discussion
about the perspectives of further development and deployment of the ideas proposed
in this dissertation.

6.1 Application-Oriented System Design in the

Realm of Software Engineering

Application-oriented system design is a software development methodology that ad-
dresses issues concerning the engineering of statically configurable system-level soft-
ware, in particular application-oriented operating systems. The method approaches
static configurability by guiding the decomposition of the envisioned domain into
software components that can be assembled to produce system instances accord-
ing to the needs of particular applications, thus filling the gap left by all-purpose
operating systems.

As a methodology specially conceived to support the development of system-
level software, application-oriented system design presents many advantages when
compared to less specific methodologies. One important factor ignored by other
methodologies is that operating system abstractions often enclose entities that span
three different domains: hardware, operating system, and application. If these
domains are not properly bridged, a situation may arise in which system compo-
nents exhibit excellence at one level, but disappoint at another. By considering
application-specific views of domain entities and separating scenario aspects from
abstractions, application-oriented system design consistently addresses this issue.
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Regarding operating system design peculiarities, many conventional design
methodologies presuppose a single paradigm. At the begging of the “object revolu-
tion”, it was often claimed that object-oriented methods that could prevent “design
slips toward other paradigms” were able to produce better designs. Nowadays, the
combination of paradigms is commonly practiced by software designers, which profit
from each paradigm’s strengths to deal with distinct design issues. System-level soft-
ware makes the limitations of a single paradigm more evident, since modeling some
physical devices, in particular with regard to synchronization and timing, challenges
any individual paradigm. Aware of this, application-oriented system design com-
bines techniques from different paradigms (e.g. aspect separation and variability
analysis), as well as making room for spontaneous combinations.

Several design methods are being used to guide the development of component-
based software, but not many of them have been conceived explicitly for this pur-
pose. The most common deficiency of such methods is the absence of a domain
analysis and decomposition strategy. Consequently, many software components are
being defined in the scope of specific systems (instead of a domain) and do not
achieve the expected degree of reusability. Application-oriented system design fea-
tures a well-defined process to decompose a domain into abstractions that capture
application-specific perspectives of each domain entity. Instead of modeling mono-
lithic abstractions, commonality and variability analysis build families of abstrac-
tions. Abstractions strongly connected by commonalities are gathered in the same
family, while variability analysis renders the particular characteristics of each family
member.

Another common deficiency of those design methods is the inability to guide
the separation of scenario aspects from abstractions. Scenario-specific abstractions
usually can only be deployed within the scenario for which they have been conceived,
limiting reusability. Application-oriented system design emphasizes the separations
of execution scenario aspects from abstractions, extending variability analysis to
determine whether a variation is inherent to the family or whether it originates
from one of the execution scenarios considered. Scenario-independent abstractions—
which can be reused in a variety of scenarios—are the outcome of this procedure.

Another important advantage of application-oriented system design is that it
fosters the definition of software components during domain decomposition, while
most other methods cover the issue later during the specification of a physical model.
Complications to match abstractions and components often arise with those meth-
ods, especially with regard to cross-component properties and excessively large com-
ponents. Therefore, each application-ready abstraction in an application-oriented
system design is modeled to yield exactly one software component that can be in-
dependently deployed. System-wide properties that crosscut component boundaries
are modeled separately as scenario aspects.

The separation of concerns promoted by application-oriented system design helps
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to produce less complex software artifacts, improving most software quality metrics.
However, the subdivision of abstractions into families could affect maintainability,
since the number of software artifacts produced can be quite high. Nevertheless,
modeling scenario aspects, each of which applies to several abstractions, and config-
urable features that replace the specialization of all individual members of a family
by a single construct, should keep the number of elements in an application-oriented
system design at manageable levels.

A large number of components could also impair usability, for application pro-
grammers might not be able to select and compose so many items. Therefore,
application-oriented system design assigns every family an inflated interface, which
allows whole families to be used as single abstractions. Furthermore, application-
oriented system design exploits inter-family relationships to model reusable software
architectures in the form of component frameworks. These frameworks prevent users
from carrying out erroneous compositions.

The scenario adapter concept is another strength of application-oriented sys-
tem design. It provides a controllable mechanism to apply scenario aspects to ab-
stractions, sustaining the separation of concerns pursued during domain decomposi-
tion. Scenario adapters act as agents that mediate the interaction between scenario-
dependent clients and scenario-independent abstractions. These constructs can be
implemented with static metaprogramming techniques to yield a low-overhead adap-
tation and composition mechanism that can be used to build component frameworks.

An application-oriented operating system designed according to the guidelines of
application-oriented system design can be tailored to particular applications through
the selection of abstractions, scenario aspects, and configurable features that are
arranged in a component framework. In addition, the inflated interface binding
mechanism used to select system parts can be controlled externally, allowing for the
automation of the tailoring process. Tools can analyze applications and available
system components to determine the most adequate system configurations.

Notwithstanding the robustness of its concepts, application-oriented system de-
sign certainly has limitations. Noticeably, application-oriented system design re-
quires users to be familiarized with object-oriented design, from which it inherits a
series of concepts, but then defies some of its basic notions with scenario aspects and
inflated interfaces. This might bring confusion to the mind of some designers. Con-
cepts such as families of abstractions and component frameworks are more intuitive
and should be easily accepted.

Nevertheless, conflicts between object-oriented design and application-oriented
system design are insignificant when compared to what may be caused by inviting
an operating system designer to consider application-orientation. Typical operating
system designs are strongly constrained between hardware and standardized appli-
cation program interfaces, rendering many software engineering techniques inappli-
cable. The removal of the superior “lid” by application-oriented system design may
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leave some designers aimless. In this situation, the higher complexity of application-
oriented system design concepts may be unmanageable.

Indeed, the complexity of an application-oriented system design may exceed that
of designs produced with other methodologies, for high scalability is achieved with
a considerable increase in the number of software artifacts. These artifacts are indi-
vidually simpler than those otherwise produced, being easier to specify, implement,
and maintain. However, the complexity of the system as a whole will certainly
exceed that of a monolithic design. Nevertheless, the adoption of UML as design
notation enables application-oriented system design to be conducted with the aid of
a variety of CASE tools that feature powerful mechanisms to manage complex sets
of software artifacts.

6.1.1 Comparison with other Methodologies

Application-oriented system design will be subsequently compared with the design
methods discussed in chapter 2. Although some of those methods do not envision
domain engineering, and do not explicitly address issues concerning operating sys-
tem design, they feature techniques that can be used to build application-oriented
operating systems. This comparative study aims at identifying similarities, advan-
tages, and disadvantages of application-oriented system design with regard to those
methods.

Family-based design: Application-oriented system design shares several com-
mon aspects with family-based design [section 2.2.1]. Both methodologies emphasize
separation of concerns, deploying commonality and variability analysis as the ba-
sic domain decomposition strategy. Domain entities whose commonalities are more
significant than variations are grouped in families.

However, family-based design and application-oriented system design disagree
on some important points. Family-based design does not put limits on what family
members can be. A family-based design could come up with families of elemen-
tary functions alongside families of complex abstractions. This seeming flexibility
makes it difficult to match logical and physical design models in the context of
a component-based system, for some logical entities yield an excessive number of
components, while others cross component boundaries. Application-oriented system
design copes with this issue guiding the specification of application-ready abstrac-
tions that directly correspond to components.

Furthermore, family-based design does not emphasize the separation of scenario
aspects, interpreting them as ordinary variability that yields new family members.
This severely affects the reuse of a family in new scenarios, besides complicating
maintenance with a substantial increase in the number of family members.
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Application-orientation is addressed in the context of family-based design by
incremental system design [section 2.2.1.1], which fosters the modeling of families
with a minimal basis to which successive minimal extensions are applied all through
the application. In comparison to application-oriented system design, this strategy
has a major shortcoming: the minimal criterion for extensions, in addition to the
lack of scenario aspect separation, can result in a family containing an exaggerated
number of elements. Consequently, management and use become complicated, and
matching the application’s needs impractical. For instance, the thread family tree
could comprise dozens of levels from its patriarch co-routine to a remotely accessible,
multiprocessor- and multitask-ready descendant.

Compared to the family-oriented abstraction, specification, and translation vari-
ant of family-based design, application-oriented system design is in disadvantage in
what regards the representation of commonalities. That method utilizes application-
oriented languages to quickly specify commonalities, which are subsequently re-
garded as design secrets. In this way, domain decomposition can concentrate on
variability analysis. Application-oriented system design does not contemplate such
languages, so the modeling of commonalities demands more effort. Nevertheless,
specifying such languages in advance to domain decomposition can be a defying
task.

Object-oriented design: Application-oriented system design is a multiparadigm
design method centered on object-orientation. Therefore, many object-oriented de-
sign [section 2.2.2] techniques are reused in an application-oriented system design.
Besides common aspects inherited from family-based design, both methodologies
abstract domain entities as objects. Commonalities lead objects to be gathered in
classes, while variability builds class hierarchies.

Nevertheless, class hierarchies constitute just one of the strategies to build a
family in the realm of application-oriented system design. Representing a dissoci-
ated family—whose members are usually strongly connected by semantics, but lack
a common structure—as a class hierarchy leads advanced family members to incor-
porate unnecessary elements, consequently compromising application-orientation.
Moreover, the fragile base class of such an hierarchy often fails to carry on family
extensions, having to be reformulated to accommodate members not initially consid-
ered, sometimes even affecting other family members. In contrast, the factorization
of a dissociated family as guided by application-oriented system design causes com-
monalities to be gathered in a common package (instead of a base class). Elements
of a common package are individually reused by each family member.

Both methodologies recognize the importance of giving different members of a
family a common interface, so it can be handled as a single abstraction. How-
ever, object-oriented design’s answer to the question, polymorphism, has consider-
able shortcomings when compared to application-oriented system design’s inflated
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interfaces. First of all, the inflated interface concept does not exclude polymorphism.
An inflated interface allows the designer to decide whether the common interface
assigned to a family of abstractions implies in subtyping relationships between their
members or not. This is especially important to preserve domain correspondence
in dissociated families, whose members define independent types. Polymorphism
would require such families to be modeled as a class hierarchy with an artificial
base class that is not sustained by the organization of corresponding entities in the
domain.

Considering implementation, representing the common interface of a family as an
inflated interface, instead of a polymorphic abstraction, has two main advantages:

• Inflated interfaces result in less run-time overhead and better memory uti-
lization, for no indirect procedure call mechanisms are necessary and only
effectively used family members are included in a system configuration (the
exact type of a polymorphic object is only defined at run-time, so all connected
types have to be included).

• Inflated interfaces can be externally bound at compile-time without modifica-
tions to the source code, while polymorphism shifts issues concerning family
member selection to run-time. Selecting a family member at run-time, how-
ever, may require complex pieces of configuration tools be embedded in the
application.

Another significant difference between application-oriented system design and
object-oriented design concerns scenario aspects. While application-oriented sys-
tem design isolates them from abstractions, object-oriented design models scenario-
specific specializations of abstractions. Such specializations can seldom be reused in
a different scenario. Moreover, if the implementation of a scenario aspect needs to
be modified, the corresponding specializations of all families of abstractions designed
to perform in that scenario have to modified. A single element would be modified
in an application-oriented system design.

Replacing the modules of an object-oriented design’s physical model with com-
ponents can usually be straightforwardly accomplished. However, object-oriented
design does not directly address inter-family relationships that cross the boundaries
of modules, so achieving components that can be individually reused may require a
large effort from designers. Likewise, object-oriented design does not feature tech-
niques to specify how components can be composed to yield a concrete system.
Application-oriented system design addressed both issues with component frame-
works, which model reusable system architectures that emanate from inter-family
relationships.
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Collaboration-based design: One important concept of collaboration-based de-
sign [section 2.2.3] incorporated by application-oriented system design is that ab-
stractions can play different roles in different contexts. However, this concept is
deployed quite differently in both methodologies. In collaboration-based design,
objects are explicitly modeled considering the roles they can play in predicted col-
laborations. Application-oriented system design explores the concept to model vari-
ations in the behavior of abstractions that originate from different execution sce-
narios. Therefore, scenario aspects can be understood as externally defined roles of
abstractions. When a scenario aspect is applied to an abstraction with a scenario
adapter, the abstraction “starts to play the corresponding role”, thus collaborating
in a scenario.

When a software development methodology is deployed to engineer a domain,
instead of a single system, reusability assumes a broader connotation. Predicting
which fractions of a domain will be covered by each system is usually not possi-
ble, therefore domain entities must be modeled to be reused in disregard of each
other, yielding independently deployable components. Collaboration-based design
was one of the first methodologies to acknowledge this necessity, guiding the spec-
ification of independently deployable collaborations. Application-oriented system
design extends this notion to model independently deployable abstractions.

The design of Epos described in chapter 4 covers abstractions and scenario as-
pects in the domain of high-performance dedicated computing. The engineering of
such a complex domain revealed that specifying independently deployable abstrac-
tions, more than a source of improvements, is a necessity. Modeling abstractions
to be reused independently of each other, independently of scenario aspects, and
independently of predefined system architectures, drastically simplifies their design,
improving overall quality.

When Epos begun to be designed, it was not clear that such a level of inde-
pendence could be achieved, so more traditional designs were first considered. For
instance, an object-oriented framework, in which abstractions extend framework
entities. Such a design would have created unnecessary dependencies that would
complicate reusability. Another possibility considered was to deploy external tools,
much in the sense of aspect-oriented programming, to modify Epos components in
order to enable them to be reused in specific scenarios. Such tools became superflu-
ous for Epos, partially because of the static metaprogramming techniques adopted,
but mainly because of the degree of independence promoted by application-oriented
system design, which allowed abstractions to be adapted without external manipu-
lation.

Subject-oriented programming: Comparing subject-oriented program-
ming [section 2.2.4] with application-oriented system design would make little
sense, for both methods cover very different segments of the software engineering
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spectrum. While application-oriented system design targets the engineering of the
operating system domain as a collection of reusable abstractions that can be molded
to match the requirements of specific applications, subject-oriented programming
extends object-oriented programming to handle issues concerning the extension
of existing software without modifying the original source, and the decentralized
development of classes.

Nevertheless, the subject-oriented programming observation that different clients
may be interested on different aspects of a class, leading to subjective views of it,
meets application-oriented system design domain decomposition strategy, with sub-
jects being represented either as members of a family of abstractions or as scenario
aspects, and scenario adapters reconciling subjective views much like subject com-
position does in subject-oriented programming.

It would be more appropriate to compare subject-oriented programming tools to
those introduced by Epos to support automatic configuration [section 4.6]. Clearly,
the subject-oriented programming project at IBM Research [IBM01] is a much larger
project than this dissertation, with tools that are far more elaborate. Nonetheless,
both set of tools rely on externally defined composition rules and deploy statically
metaprogramming techniques. Subject-oriented programming C++ support is able
to derive abstract description of components (subject labels) from their source code.
A similar description is obtained for Epos applying the syntactical analyzer to
the component repository. Labels are subsequently composed, in accordance with
composition rules written in a specific declarative language, to produce a result
label that describes the composed subject. Epos relies on a catalog of rules written
in XML for the same purpose. Both processes end with a generator processing a
composite description.

Nonetheless, subject-oriented programming tools were conceived to operate with
arbitrarily designed systems, while Epos tools are intrinsically dependent from an
application-oriented system design. This allows Epos tools to analyze target ap-
plications in order to select the components that better serve them, an unknown
notion to subject-oriented programming tools.

Aspect-oriented programming: Similar to subject-oriented programming,
aspect-oriented programming [section 2.2.5] does not really feature a design method-
ology. The idea of isolating non-functional aspects in reusable constructs is not
sustained by a systematic domain decomposition strategy. Moreover, functional as-
pects are given secondary importance by aspect-oriented programming techniques.
Nevertheless, aspect-oriented programming emphasis on aspect separation is upheld
by application-oriented system design.

Furthermore, aspect-oriented programming techniques and tools can be useful
to implement application-oriented system designs. In this case, aspects would im-
plement scenario aspects, and weavers would play the role of scenario adapters.
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This would bring one major advantage over the original scheme: describing aspects
with special aspect languages could considerably reduce efforts and improve correct-
ness. However, the effort to implement such tools and to specify an aspect language
would only be worthwhile in the long term. Besides, the correctness enhancements
obtained by specifying aspects with a more adequate language can vanish in the face
of the nuisance of congregating different languages, processed by different tools, at
generation-time.

6.1.2 Support for other Kinds of Design

Application-oriented system design has been conceived aiming at engineering
application-oriented operating system as a collection of statically configurable soft-
ware components. However, many of the concepts introduced by application-
oriented system design can be useful to design other kinds of software as well.

Dynamic configurable operating systems: Application-oriented system de-
sign does not exclude dynamic configurability. Some statically composed abstrac-
tions include dynamically reconfigurable elements, as with Epos CPU Scheduler

abstraction described in section 4.3.2.3. Deploying application-oriented system de-
sign to model a full-dynamically reconfigurable system would also be possible, but
some important issues regarding this kind of system are not covered by the method.

Apparently, deploying application-oriented system design as-is, and following a
particular implementation discipline could achieve the desired effect. Inflated in-
terfaces would be implemented as abstract base classes, and abstractions would be
implemented as subtypes of their family’s interface. A framework element, simi-
lar to handle in the context of Epos (see section 4.5.1), would build an abstract
factory [GHJV95] for abstractions, allowing different members of a family to be
dynamically created. In this context, all abstractions would be included in the sys-
tem at compilation-time to be freely deployed at run-time. If incremental loading is
desirable, a strategy similar to the one explained in [DSS90] could be easily devised
thanks to the degree of independence of abstractions.

However, supporting dynamic reconfiguration in the style of reflective systems
would be a major challenge, since application-oriented system design does not ad-
dress some important issues concerning the subject. In order to support the sys-
tematic construction of reflective operating systems, a design method would have to
guide the modeling of abstractions considering their meta-level representation and
the meta-level interactions that drive dynamic reconfiguration.

All-purpose operating systems: Deploying application-oriented system design
to model an all-purpose operating systems should be straightforward. Application-
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oriented system design could be applied to engineer an all-purpose operating system
as if it was an application-oriented operating system, differentiating only during the
generation of a system instance. In other words, any application-oriented operat-
ing system can be configured to perform as an all-purpose operating system. Such
instances would be generated including all members of uniform and dissociated fam-
ilies plus the most comprehensive members of incremental families and full merged
members of combined families. Likewise, all scenario aspects and configurable fea-
tures would be activated. In this way, all the functionality modeled for the system
would be available to generic applications.

Although such a system would not be distinguishable from a generic operating
system from the application point of view, engineering it according to application-
oriented system design directives would bring system developers all the advantages
of component-based software, especially reusability and maintainability.

Applicative software: Application-oriented system design could also be used
to model applicative software, conferring it the same scalability of an application-
oriented operating system and all the benefits of a component-based realization.
However, some concepts of application-oriented system design originate from the
necessity of bridging hardware entities with application abstractions. This does not
hold for applicative software. It is likely that an application design would comprise
less dissociated families and more uniform ones, for many dissociated families arise
from hardware idiosyncrasies. Furthermore, a slightly different criterion to identify
scenario aspects and configurable features would be necessary in this case, since
environmental and built-in properties might be difficult to distinguish in a smoother
scenario (i.e. a scenario that does not span distinct domains). This has also been
acknowledged by aspect-oriented programming [MLTK97].

6.2 EPOS in the Realm of Operating Systems

Epos (Embedded Parallel Operating System), the experimental application-oriented
operating system developed in the scope of this dissertation, is the outcome of an
application-oriented decomposition of the high-performance dedicated computing
domain. It consists of a collection of abstractions and scenario aspects that can be
arranged in a component framework to produce system instances according to the
necessities of particular applications.

Notwithstanding the intricacy of the target domain, the separation of concerns
promoted by application-oriented system design greatly simplified the specification
of Epos individual elements, much in a “divide and conquer” strategy. The imple-
mentation of a prototype for the Snow cluster made it clear that the increase in
complexity resulting from successive partitioning is well worth paying. Compared
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to Aboelha
1, Epos is far more flexible and maintainable. Aboelha’s µ-kernel has

been designed to be quite compact, suggesting that further decomposition was not
necessary. However, its monolithic, scenario-dependent abstractions are extremely
difficult to maintain. Often, minor modifications in one abstraction trigger undesir-
able side-effects on other “apparently independent” abstractions, causing the whole
system to undergo a new extensive test phase.

Having followed the directives of application-oriented system design to decom-
pose the domain of high-performance dedicated computing, Epos was able to specify
autonomous families of abstractions. These abstractions concentrate on essentials
of the domain entities they abstract, while environment-related properties were sep-
arately captured as scenario aspects. In addition, a factorization process collected
family commonalities in common packages and configurable features. This thorough
partitioning produced software components that can be independently deployed and
maintained, hence minimizing adverse side-effects.

Capturing elements of reusable software architectures in a component frame-
work also contributed to make Epos highly scalable. Unlike traditional object-
oriented frameworks, the Epos component framework does not require abstractions
to conform to specific implementation directives, or to incorporate special constructs.
This design allowed the framework static metaprogram to be successively stream-
lined without affecting abstractions and scenario aspects. The resultant component
framework is more intelligible, has a null intrinsic overhead, and sustains a scal-
able software architecture that enables Epos to support applications of assorted
complexity.

Another fundamental design decision was the isolation of non-portable elements
within the sphere of hardware mediators and the setup utility. This isolation allowed
abstractions that interact with hardware, such as Thread and Address Space, to
be modeled in multiple levels, each one dealing with specific issues. Even though
Epos has not yet been ported to other hardware platforms, the guest-level imple-
mentation for Linux corroborated many design aspects concerning portability, since
most hardware mediators were redefined for that implementation with no impact on
abstractions and scenario aspects.

As a domain engineering venture, Epos aspires reaching out to “all” entities
in the target domain. This aspiration, however, is definitely unachievable, since an
application domain is not an exact concept that can be absolutely characterized, but
a subjective set of entities, concepts, techniques, etc. Although Epos features an
ample perspective of the high-performance dedicated computing domain, certainly
many particularities have not yet been covered. For instance, the extensive set of
abstractions, hardware mediators, and scenario aspects that makes up the process
abstraction in Epos, when subjected to the criticism of other system designers,

1
Aboelha is a former operating system developed by the author [FAPS96]. It was designed

around a µ-kernel that constitutes a run-time support substrate for distributed objects.
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revealed deficiencies in regard to some particular application use-cases.

As currently modeled, Epos is unable to deliver the benefits of the
Exclusive Thread abstraction [section 4.3.2.2] to applications executed by a sin-
gle thread per processor on a multiprocessor node (it presupposes a single thread
per node). However, suppressing memory management and scheduling would be
possible in such cases and would considerably enhance performance. Fortunately,
the application-oriented system design of Epos allows for extensions. The Thread

family could be enriched with a Processor Exclusive member that would extend
Exclusive to provide for the missing support. The Task family could be simi-
larly extended to allow multiple single-threaded tasks to benefit from the proposed
optimizations2.

Epos features a set of configuration tools that are able to automatically tailor the
system to specific applications, identifying and configuring necessary abstractions
and scenario aspects and subsequently generating a customized system instance.
This automatic configuration strategy is of great value for users, who are freed
from much of the burden of system configuration. Nevertheless, it is restricted
to application requirements that can be expressed through syntax, falling back to
manual configuration otherwise. Compared to systems that only support manual
configuration, this is an advance, but Epos configuration tools could be extended
to support more sophisticated approaches.

Complementing the syntactical analysis of applications with data-flow analysis,
for example, could render more accurate application requirements. Some system
operations explicitly invoked by the application, especially regarding synchroniza-
tion, could be proven unnecessary by such analysis. They could be automatically
suppressed.

Another aspect of the existing configuration tool set that could be improved
is the tie-break criterion: when application requirements are fulfilled by two or
more members of a family of abstractions, the one with the lowest overhead is
taken. This cost model disregards significant properties of abstractions that could
lead to better configurations. The uniform family of scheduling policies maintained
by CPU Scheduler [section 4.3.2.3] is particularly affected by the adopted model,
because, being a uniform family, its members are syntactically equivalent. Some
applications give syntactical hints about the scheduling policy that should be used
(e.g. explicitly assigning priorities to threads, changing the time-slice length, desig-
nating a user-defined thread to perform the role of scheduler), but many do not. In
such cases, the overhead criterion elects FCFS as the scheduling policy, since it has
the lowest run-time overhead. Obviously, this arbitrary decision is often inadequate.
Evaluating the configuration as a whole to collect “hints” about tied abstractions

2In platforms that do not provide address relocation mechanisms, the abstraction
Processor Exclusive Task would be assisted by the configuration tools to issue appropriate base
addresses for tasks, thus shaping a Mutual Flat member for the Address Space family.
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would increase the ratio of optimal configurations. For instance, evidences of con-
currency, such as task creation and memory sharing, could increase the cost of FCFS,
eventually electing another policy.

6.2.1 Comparison with other Systems

Few operating systems describe the more abstract levels of their designs, usually
concentrating on details about outstanding services. In this context, identifying
systems that emphasize application-orientation becomes difficult. Nonetheless, some
operating systems have been identified that render an interesting comparative study
with Epos.

CHOICES The Choices object-oriented operating system [CJR87, CIM92] at
the University of Illinois at Urbana-Champaign has been designed as a hierarchy
of object-oriented frameworks and implemented in C++. Each of Choices frame-
works corresponds to a subsystem (e.g. virtual memory, file system, etc) that can
be customized through the use of inheritance. System resources, policies, and mech-
anisms are represented as objects in the context of the corresponding framework.

Choices embodies the notion of customizing the operating system to support
particular hardware configurations and applications. However, compared to Epos,
Choices components are large and not very customizable. Indeed, Choices would
be better understood from the perspective of all-purpose operating systems, since
its complex subsystems are not specialized with regard to applications needs. More-
over, Choices monolithic abstractions are difficult to reuse separately, because they
incorporate framework elements and scenario aspects.

ETHOS The Ethos reflective operating system [Szy92] at the Swiss Federal Insti-
tute of Technology covers extensible objected-oriented programming from the hard-
ware up to the applications. It has been modeled as a strongly typed hierarchy of
abstractions, for which default implementations exist.

While Ethos explores dynamic configurability, Epos is essentially a statically
configurable system. Nevertheless, both systems agree about the limitations of inher-
itance to implement a customizable design. Ethos pursues extensibility restricting
the use of inheritance in favor of forwarding, with directory objects acting as prox-
ies to extensions. In this way, extensions (modules) can be dynamically loaded.
Epos uses a similar forwarding strategy with its statically metaprogrammed sce-
nario adapters, so that abstractions incorporate scenario aspects without having
to inherit them. Furthermore, application-oriented system design supplies Epos

with a range of alternatives to traditional class hierarchies, including dissociated
families, scenario aspects, and static metaprogramming. Combined, they prevent
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unnecessary dependencies and foster independent deployability.

PEACE The Peace parallel operating system [SP94a] at GMD-FIRST follows
the guidelines of family-based design. Peace embodies the notion of application-
orientation as it embraces a particular domain, namely parallel computing, with
a set of predefined configurations aimed at particular application classes. The
high-performance demanded by parallel applications was supplied by Peace with a
thrifty implementation concerned in making resources available to applications with
as little overhead as possible. Several of these concepts have been reused in Epos.

Nevertheless, Peace design is essentially incremental, exporting a large number
of elements that result from the successive extension of primordial ones. Selecting
the proper elements to assemble an application-oriented operating system is a major
difficulty in this context. Indeed, Peace’s ability to match up application require-
ments hinges on an intricate set of conditional compilation flags, in practice being
restricted to a small set of predefined configurations. Application-oriented system
design allows Epos to reach a similar degree of configurability at the application
side while keeping the number of exported elements (abstractions and scenario as-
pects) at manageable levels. Furthermore, inflated interfaces and scenario adapters
mostly dispense with conditional compilation flags.

FLUX The Flux [FBB+97] operating system toolkit at the University of Utah
consists of a blackbox framework and a set of components (object files) organized
in libraries. In order to configure an operating system, users choose between li-
braries and object files, which are subsequently linked to produce a system instance.
Therefore, Flux emphasizes the reuse of unmodified binary components.

The notions of non-invasive framework and independent reuse explored by Flux

are upheld by Epos. However, the preference for binary components diverges from
application-oriented system design, since it prevents many customizations and hin-
ders important concepts such as scenario aspect separation and functional factor-
ization. Furthermore, Flux components are relatively coarse, comprising device
drivers and complete subsystems (e.g. file system), and can hardly be reused out-
side the scope of all-purpose computing.

PURE The Pure [SSPSS98] system at the University of Magdeburg defines a
large set of fine-grained components that can be arranged to build system abstrac-
tions in the realm of embedded computing. Consequently, it shares many goals with
Epos as regards application-orientation and dedicated computing. However, Pure

pursues such goals in essentially different ways.

Pure is mostly a family-based design, whose incremental families of abstractions
are realized as class hierarchies. This strategy was inherited from Peace [SP94a]
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and brings about the configurability and usability pitfalls discussed earlier: Pure

exposes its internal structure to applications, delivering intermediate abstractions
that are not application-ready. Pure recognizes that managing such a large set of
components is beyond most users’ grasp and is currently working on user-driven,
feature-based tools to automate the process [BSPSS00]. Epos, on the other hand,
bets on application-driven configuration, delivering a set of tools that is able to
configure application-specific instances automatically. However, this improvement
in usability and maintainability is achieved at the expense of granularity3: Epos

does not match Pure’s degree of configurability.

6.3 Perspectives

The application-oriented system design method proposed in this dissertation is able
to guide the construction of highly customizable run-time support systems as an ar-
rangement of adaptable software components. Such application-oriented operating
systems can be tailored to specific applications through the selection of appropriate
system abstractions that are adapted to match the environment in which applica-
tions perform, and subsequently “plugged” into a component framework.

The adequacy of application-oriented system design to conduct the design of
application-oriented operating systems was corroborated by Epos with the engi-
neering of the high-performance dedicated computing domain. Application-oriented
system design made it possible to decompose that domain into an extensive set of
application-ready abstractions, which can be reused to build a variety of run-time
support systems. Indeed, Epos attested that managing a complex set of small
software artifacts that preserves domain correspondence is more productive than
managing a small set of complex monolithic artifacts.

However, both application-oriented system design and Epos are open projects
with interesting possibilities for further research. In the realm of software engineer-
ing, CASE tools could be explored to increase the efficiency of application-oriented
system design. Many elements of an application-oriented system design result from
the detailing of the same domain entity, leading to mechanical replication that could
be carried out automatically by such tools. For instance, the operations declared for
each Epos abstraction appear on a number of constructs, including the abstraction’s
interface, its family’s inflated interface, scenario adapter, proxy, and agent. Ideally,
these constructs should be automatically generated from an abstract description4,
which would also serve configuration purposes.

If such abstract descriptions of an application-oriented operating system compo-
nents are boosted towards formal methods, verifying the correctness of component

3A reasoning about component granularity is presented in section 2.3.2.
4
Epos currently deploys a loose set of awk scripts to generate a skeleton for new abstractions.
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assemblages could be supported. The partitioning promoted by application-oriented
system design yields individually simpler components that are more suitable to for-
mal specification than conventional operating systems “components”. Furthermore,
formal methods could guide automatic configuration tools towards the optimal sys-
tem configuration for an application.

In the realm of operating systems, an extensive implementation of Epos would
deliver dedicated applications services of unprecedented quality, whereas they orig-
inate from an application-oriented perspective of the dedicated computing domain.
Moreover, Epos scalable design allows for the quick incorporation of novel ideas,
thus providing an ideal platform to experiment with operating systems.

Outside the scientific ring, however, the possibilities for application-oriented op-
erating systems are not as promising. Besides the resistance of users to new ideas
in the operating system field, many existing applications have little chance to profit
from the advances of an application-oriented operating system. This became ev-
ident with the attempt to bring existing parallel applications to execute on the
Snow cluster under the control of Epos. The dependencies of such applications
on all-purpose operating systems are so deeply rooted that porting them to Epos

would have resulted in porting so many services that Epos would degenerate into
an all-purpose operating system [Pik00].

Curiously, there are no apparent reason for a parallel application, and dedicated
applications in general, to show such dependencies. A deeper insight on an ordinary
MPI application, such as those in the NAS Parallel Benchmark [NAS97], elucidates
the issue. Applying Epos analyzer to those applications with the aid of a “dummy”
MPI implementation—that only designates Epos abstractions needed to implement
each service without actually implementing them—produces a very restricted set of
abstractions: Flat Address Space (no memory management), Exclusive Task and
Exclusive Thread (no process management), Communicator, Chronometer, and
Console. However, after compiling those abstractions (most of them are written
in Fortran) and linking them against the MPI library, the list of dependencies
grows close to a full Posix system, including dynamic memory management, process
management, and file I/O.

Therefore, enabling existing applications to profit from an application-oriented
operating system would result in redesigning countless standardized application in-
terface implementations from the perspective of application-orientation. To com-
plicate things even more, many applications have been designed considering the
low-quality services delivered by ordinary operating systems, and would not ben-
efit from an application-oriented operating system even if all required APIs were
available. A typical example would be applications that reorganize algorithms to
cope with the high latency associated with ordinary system services. Supplying such
applications with a low-latency system would be of no help.

Deploying application-oriented operating systems to give run-time support to
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domain-specific and application-oriented languages could be an alternative to break
the kernel of standardized interfaces that suffocate the operating system. Nonethe-
less, such languages seem to be trapped in a similar paradox: though recognizably
superior than all-purpose languages to handle specific applications, they seldom win
the race against established all-purpose languages such as C++ and Java. It is
probable that forthcoming commercial applications will only benefit from the ad-
vances of an application-oriented operating system if they succeed in reducing the
dependencies on standardized application program interfaces.

Nevertheless, a new “strong partner” might be soon embracing the “fight”
for application-orientation together with operating systems and programming lan-
guages. Highly customizable processors, and hardware in general, are about to
reach the market [WTS+97, Har01]. Such processors are able to undergo extensive
reconfiguration procedures to optimize the path between functional units, to create
new instructions, and even to “instantiate” functional units according to applica-
tion needs. In this scenario, a handheld could assume the form of several devices
simply by loading the appropriate application. When used as a mobile phone, the
corresponding application would be loaded with its embedded application-oriented
operating system, pushing the processor towards a digital signal processor. Using it
as a digital TV set would reconfigure the hardware to include support for stream de-
coding and image rendering. However, such sophisticated features will be underused
in the realm of general-purpose operating systems, since their plurality prevents or-
dinary features from being deactivated for the benefit of those actually needed by
applications.
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Spinczyk, and Ute Spinczyk. On Architecture Transparency in Oper-
ating Systems. In Proceedings of the 9th SIGOPS European Workshop
“Beyond the PC: New Challenges for the Operating System”, pages 147–
152, Kolding, Denmark, September 2000.

[BGM86] Peter Behr, Wolfgang Giloi, and W. Mühlenbein. Rationale and Con-
cepts for the SUPRENUM Supercomputer Architecture. In Proceedings
of the IFIP Working Conference on Highly Parallel Compters for Nu-
merical and Signal Processing Aplications, Nice, France, March 1986.

[BN84] Andrew D. Birrell and Bruce Jay Nelson. Implementing Remote Pro-
cedure Calls. ACM Transactions on Computer Systems, 2(1):39–59,
February 1984.

[BO92] Don Batory and Sean O’Malley. The Design and Implementation of Hi-
erarchical Software Systems with Reusable Components. ACM Transac-
tions on Software Engineering and Methodology, 1(4):355–398, October
1992.

[Boo87] Grady Booch. Software Components with Ada: Structures, Tools, and
Subsystems. Benjaming-Cummings, 1987.

[Boo94] Grady Booch. Object-Oriented Analysis and Design with Applications.
Addison-Wesley, 2 edition, 1994.
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MANNA: Prototype of a Distributed Memory Architecture With Max-
imized Sustained Performance. In Proceedings of the Euromicro PDP96
Workshop, 1996.

[Gen89] W. M. Gentleman. Managing Configurability in Multi-installation Re-
altime Programs. In Proceedings of the Canadian Conference on Elec-
trical and Computer Engineering, pages 823–827, Vancouver, Canada,
November 1989.

[GGD01] Jens Gerlach, Peter Gottschling, and Uwe Der. A Generic C++ Frame-
work for Parallel Mesh Based Scientific Applications. In Proceedings
of the 6th International Workshop on High-Level Parallel Programming
Models and Supportive Environments, Lecture Notes in Computer Sci-
ence, San Francisco, U.S.A., April 2001. Springer.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[GJ97] Robert Glück and Jesper Jørgensen. An Automatic Program Gener-
ator for Multi-Level Specialization. Lisp and Symbolic Computation,
10(2):113–158, July 1997.



192 � BIBLIOGRAPHY

[Gog96] Joseph A. Goguen. Parameterized Programming and Software Architec-
ture. In Proceedings of the Fourth International Conference on Software
Reuse, pages 2–11, Orlando, U.S.A., April 1996.

[Hai86] Brent Hailpern. Multiparadigm Languages and Environments. IEEE
Software, 3(1):6–9, January 1986.

[Har01] Reiner W. Hartenstein. Coarse Grain Reconfigurable Architectures.
In Proceedings of the Sixth Asia and South Pacific Design Automation
Conference 2001, Yokohama, Japan, January 2001.

[HCG+82] K. Hwang, W. J. Croft, G. H. Goble, B. W. Wah, F. A. Briggs, W. R.
Simmons, and C. L. Coates. A Unix-based Local Computer Network
with Load Balancing. IEEE Computer, 15(4):55–66, April 1982.

[HFC76] A. Nico Habermann, Lawrence Flon, and Lee W. Cooprider. Modular-
ization and Hierarchy in a Family of Operating Systems. Communica-
tions of the ACM, 19(5):266–272, 1976.

[HHG90] Richard Helm, Ian M. Holland, and Dipayan Gangopadhyay. Contracts:
Specifying Behavioral Compositions in Object-oriented Systems. ACM
SIGPLAN Notices, 25(10):169–180, October 1990.

[HK61] David J. Howarth and Tom Kilburn. The Manchester University At-
las Operating System, Part II: User’s Description. Computer Jorunal,
4(3):226–229, October 1961.

[HO93] William H. Harrison and Harold Ossher. Subject-oriented Programming
(a Critique of Pure Objects). In In Proceedings of the 8th Conference
on Object-oriented Programming Systems, Languages and Applications,
pages 411–428, Washington, U.S.A., September 1993.

[Hoa74] Charles Anthony Richard Hoare. Monitors: An Operating System
Structuring Concept. Communications of the ACM, 17(10):549–557,
October 1974.

[Hol92] Ian M. Holland. Specifying Reusable Components Using Contracts.
In Proceedings of the European Conference on Object-oriented Program-
ming, volume 615 of Lecture Notes in Computer Science, pages 287–308,
Utrecht, The Netherlands, June 1992. Springer.

[Hol93] Ian M. Holland. The Design and Representation of Object-oriented
Components. PhD thesis, Northeastern University, Boston, U.S.A.,
1993.



BIBLIOGRAPHY � 193

[HP91] Norman C. Hutchinson and Larry L. Peterson. The x -Kernel: An Ar-
chitecture for Implementing Network Protocols. IEEE Transactions on
Software Engineering, 17(1):64–76, January 1991.

[IBM01] IBM Research. Subject-Oriented Programming, online edition, May
2001. [http://www.research.ibm.com/sop/].

[Int95a] Intel. Pentium Pro Family Developer’s Manual, December 1995.

[Int95b] Intel. Tool Interface Standard: Executable and Linking Format Specifi-
cation (version 1.2), May 1995.

[ISO81] International Organization for Standardization. Open Systems Inter-
connection - Basic Reference Model, August 1981. ISO/TC 97/SC 16
N 719.

[JCJO93] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar Oev-
ergaard. Object-oriented Software Engineering: a Use Case Driven Ap-
proach. Addison-Wesley, 1993.

[JF88] Ralph E. Johnson and Brian Foote. Designing Reusable Classes. Journal
of Object-Oriented Programming, 1(2):22–35, June 1988.
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