# Schlussbericht

der Forschungsstelle(n)

Nr. 1, Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS)

zu dem über die



im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung und -entwicklung (IGF)

> vom Bundesministerium für Wirtschaft und Technologie aufgrund eines Beschlusses des Deutschen Bundestages

> > geförderten Vorhaben 15983 BG

# Kohlenstoffbasierte Beschichtungen für tribologische Anwendungen im Vakuum und in trockenen Atmosphären

(Bewilligungszeitraum: 01.03.2009 - 30.06.2011)

der AiF-Forschungsvereinigung

Europäische Forschungsgesellschaft Dünne Schichten e.V.

Dresden, 12.10.2011 Ort, Datum Dr. Volker Weihnacht

Name und Unterschrift des/der Projektleiter(s) an der/den Forschungsstelle(n)

Gefördert durch:



Bundesministerium für Wirtschaft und Technologie

1

aufgrund eines Beschlusses des Deutschen Bundestages

# Schlussbericht

der Forschungsstelle(n)

Nr. 2, Fraunhofer-Institut für Produktionstechnik und Automatisierung (IPA)

zu dem über die



im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung und -entwicklung (IGF)

> vom Bundesministerium für Wirtschaft und Technologie aufgrund eines Beschlusses des Deutschen Bundestages

> > geförderten Vorhaben 15983 BG

# Kohlenstoffbasierte Beschichtungen für tribologische Anwendungen im Vakuum und in trockenen Atmosphären

(Bewilligungszeitraum: 01.03.2009 - 30.06.2011)

der AiF-Forschungsvereinigung

Europäische Forschungsgesellschaft Dünne Schichten e.V.

Ort, Datum 574. 30, 0.9. 20.11

Dr. Udo Gommel 🦯 🦯

a

Name und Unterschrift des/der Projektleiter(s) an der/den Forschungsstelle(n)

Gefördert durch:



Bundesministerium für Wirtschaft und Technologie

aufgrund eines Beschlusses des Deutschen Bundestages

## **Schlussbericht**

der Forschungsstelle(n)

Nr. 3, Bundesanstalt für Materialforschung und -prüfung (BAM)

zu dem über die



im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung und -entwicklung (IGF)

> vom Bundesministerium für Wirtschaft und Technologie aufgrund eines Beschlusses des Deutschen Bundestages

> > geförderten Vorhaben 15983 BG

#### Kohlenstoffbasierte Beschichtungen für tribologische Anwendungen im Vakuum und in trockenen Atmosphären

(Bewilligungszeitraum: 01.03.2009 - 30.06.2011)

der AiF-Forschungsvereinigung

Europäische Forschungsgesellschaft Dünne Schichten e.V.

Ort, Datum Berlin, 10.10.2011 Ort, Datum

BAM Bundesanstalt für Materialforschung und -präfung Unter den Eichen 87 12205 Berlin

Dr. Thomas Gradt Name und Unterschrift des/der Projektleiter(s) an der/den Forschungsstelle(n)

#### Gefördert durch:

Som

1



Bundesministerium für Wirtschaft und Technologie

aufgrund eines Beschlusses des Deutschen Bundestages

## Ausführende Forschungsstellen und Projektmitarbeiter:

<u>Forschungsstelle 1:</u> Fraunhofer Institut Werkstoff- und Strahltechnik (IWS), Dresden Projektleiter: Dr.-Ing. Volker Weihnacht Projektmitarbeiter: Dipl.-Ing. Andreas Brückner

<u>Forschungsstelle 2:</u> Fraunhofer Institut Produktionstechnik und Automatisierung (IPA), Stuttgart Projektleiter: Dr.-Ing. Udo Gommel Projektmitarbeiter: Dipl.-Ing. (FH) Frank Friedrich Bürger

<u>Forschungsstelle 3:</u> Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin Projektleiter: Dr. rer. nat. Thomas Gradt Projektmitarbeiter: Dr.-Ing. Geraldine Theiler

## Zusammenfassung

Hintergrund des Projektes war das Konzept die guten Eigenschaften von diamantartigen Kohlenstoffschichten und Festschmierstoffen in einem Schichtsystem zu verbinden. Kohlenstoffund Festschmierstoffschichten weisen ein komplementäres Eigenschaftsprofil dahingehend auf, das erstere unter atmosphärischen Bedingungen und letztere unter Vakuumbedingungen sehr gut funktionieren, aber umgekehrt eher ungünstige Eigenschaften aufweisen. Die Kombination der Schichten wurde innerhalb des Projektes durch verschiedene Konzepte wie Ko-Abscheidung, Multilagenaufbau, Mikrostrukturierung sowie gestapelten Schichtaufbau umgesetzt. An allen Schichtvarianten erfolgten Reibungs- und Verschleißmessungen im Hochvakuumtribometer, an ausgewählten Schichten auch Tests am Ultrahochvakuumtribometer. Ergänzt wurden die Messungen durch Versuche an einem Hochvakuumtribometer mit Analyse der partikulären Emission.

Alle Beschichtungen wurden in einer PVD-Beschichtungsanlage mithilfe des Laser-Arc-Verfahrens durchgeführt. In der ersten Projektphase standen die Arbeiten zur Ko-Abscheidung von Kohlenstoffschichten (ta-C) und MoS<sub>2</sub> im Mittelpunkt. Des Weiteren wurden reine ta-C Schichten hergestellt, mittels Laserbearbeitung mikrostrukturiert und die Vertiefungen mit MoS<sub>2</sub> gefüllt. Mit diesen beiden Varianten konnten keine signifikanten Reibungs- und Verschleißvorteile gegenüber reinen ta-C Schichten beobachtet werden. Daher wurde der Schwerpunkt im weiteren Verlauf auf Multilagenschichten und insbesondere einfach gestapelte Schichten von ta-C und MoS<sub>2</sub> gelegt. Während die Multilagenschichten wenig erfolgversprechend waren, zeigten die tribologischen Versuche an den Doppelschichten ta-C/MoS<sub>2</sub> ein vielversprechendes Verhalten. Zum einen konnten auf Anhieb die bekannten niedrigen Reibkoeffizienten sorgfältig präparierter MoS<sub>2</sub>-Schichten unter Hochvakuumbedingungen im Langzeitversuch erreicht werden. Zum anderen wies eine Schichtvariante mit dickerer ta-C Basisschicht eine niedrige Reibungszahl an Luft auf, nachdem das MoS<sub>2</sub> abgerieben wurde, was den Vorteil des ta-C Basisschicht unterstreicht. Mit einem optimierten Schichtaufbau konnte eine bemerkenswerte Lebensdauer von über 5 x 10<sup>5</sup> Zyklen im Langzeittest erreicht werden.

Überraschenderweise schnitten auch die reinen ta-C-Schichten in den tribologischen Untersuchungen im Hochvakuum zum Teil günstig ab. Es zeigte sich, dass bei zumindest einer ta-C Variante ein deutlich günstigeres Reibungs- und Verschleißverhalten gegenüber kommerziell angebotenen DLC-Schichten im Hochvakuum auftritt. Allerdings konnte dieses Verhalten nicht mit allen ta-C Schichtvarianten reproduziert werden.

Mit den Mitgliedern des projektbegleitenden Ausschusses wurde ein intensiver Austausch über die Verwertbarkeit der Ergebnisse geführt und potenzielle Komponenten für zukünftige Anwendungen ausgewählt. Mit den im Projekt erreichten Ergebnissen wurde außerdem eine Vielzahl wertvoller Erkenntnisse zu Zusammenhängen von Schichtart und -aufbau und deren tribologischem Verhalten im Vakuum gewonnen. Mit dem neu entwickelten Schichtsystem ta-C/MoS<sub>2</sub> steht für viele vakuumtribologische Anwendung eine aussichtsreiche Lösung für Reib-/Gleitpaarungen im Vakuum zur Verfügung. Durch die neue Abscheidetechnologie können diese Schichten mit hoher Effektivität hergestellt werden. Das im Rahmen des Projektes errichtete tribologische Messsystem zur Erfassung partikulärer Emission von Materialpaarungen im Vakuum ist bei zahlreichen Unternehmen auf großes Interesse gestoßen.

#### Das Ziel des Vorhabens wurde erreicht.

## Wissenschaftlich-technischer Nutzen

Für viele vakuumtribologische Anwendungen dienen Festschmierstoffschichten, meist MoS<sub>2</sub>, als einzige funktionierende Lösung. Obwohl sich dies für viele Einsatzfälle bewährt hat, gibt es noch eine Reihe von Unklarheiten bezüglich des Schichtverhaltens und die Herstellung hochwertiger Schichten ist bisher sehr aufwändig. Die in diesem Projekt mittels Laser-Arc-Technologie mit deutliche höherer Beschichtungsrate hergestellten MoS<sub>2</sub>-Schichten zeigten auf Anhieb ein sehr gutes Reib-/Gleitverhalten. Dabei deuten die Untersuchungen darauf hin, dass im Gegensatz zu sonstigen gesputterten MoS<sub>2</sub>-Schichten keine kristallografische Ausrichtung der Gleitebenen in der Schicht nötig ist, da die Schichten amorph aufwachsen und sich erst im tribologischen Kontakt ausrichten. Neben dem wissenschaftlichen Erkenntnisgewinn ist dies auch von technischem Nutzen, da die Herstellung dieser amorphen Schichten viel effektiver und robuster möglich ist.

Diamantartige Kohlenstoffschichten (DLC, bzw. a-C:H und ta-C basierte Schichten) eignen sich prinzipiell unter trockenen atmosphärischen Bedingungen, verlieren aber ihre guten Eigenschaften meist im Vakuum. Mit den innerhalb des Projektes hergestellten ta-C Schichten wurden z. T. auch im Hochvakuum günstige Reibungs- und Verschleißeigenschaften gemessen. Dieses interessante Phänomen muss noch genauer untersucht werden, zeigt aber das Potenzial von Kohlenstoffschichten auch für vakuumtribologische Anwendungen. Das im Rahmen des Projektes errichtete tribologische Messsystem zur Erfassung partikulärer Emission von Materialpaarungen im Vakuum stellt eine neue Methodik dar, die in dieser Form bisher nicht verfügbar war. Das Testverfahren ist eine wichtige Ergänzung zu klassischen tribologischen Untersuchungen, vor allem hinsichtlich des Verständnisses von Verschleißpro-

#### zessen im Vakuum.

## Wirtschaftlicher Nutzen

Tribologische Kontaktstellen im Vakuum werden in der Regel vermieden. Wo dies nicht möglich ist, z. B. bei Anwendungen im Weltraum, werden aufwändige und teure Beschichtungen auf Basis von Festschmierstoffen appliziert. Wegen der relativ hohen Kosten und geometrischen Einschränkungen besteht ein großer Bedarf an neuen langlebigeren Festschmierstoffschichten. Mit den in diesem Projekt entwickelten ta-C/MoS2-Schichten steht ein robustes Schichtsystem zur Verfügung, das mit hoher Rate und Effizienz auf verschiedenste Bauteile und Komponenten aufgebracht werden kann. Dabei verleiht die ta-C Unterschicht eine zusätzliche Langlebigkeit des Schichtsystems. Neben den klassischen Anwendungen, z. B. Getriebe und Gleitführungen für Raumfahrtanwendungen, wird damit auch die Anwendung auf Komponenten im technischen Vakuum, wie Getriebe und Lager von Vakuumpumpen und bewegten Komponenten in Beschichtungsanlagen möglich. Die Anwender der Schichten sind somit in der Lage, hochwertiger Produkte bzw. funktional verbesserte Produkte auf den Markt zu bringen und sich hierüber einen Marktvorteil zu verschaffen. Da es sich in diesen Anwendungsbereichen in der Regel um spezialisierte, hochwertige und meist nur in kleinen und mittleren Stückzahlen eingesetzte Teile handelt, werden zum großen Teil in KMU's hergestellt. Daher resultiert der besondere Nutzen der in diesem Projekt entstanden Ergebnisse für KMU.

## Veröffentlichung der Ergebnisse

- Vortrag auf 12th International PSE-Conference in Garmisch-Partenkirchen, Sept. 2010: "A systematic study of friction and wear behaviour of DLC coatings under various testing conditions"
- Vortrag auf Jahrestagung der Gesellschaft für Tribologie in Göttingen, Sept. 2011: "Tribologie und Anwendung trocken laufender ta-C Schichten"
- Vortrag auf Vakuum-Beschichtung und Plasma-Oberflächentechnik V2011 in Dresden, Okt. 2011: "Kombinierte ta C/MoS<sub>2</sub>-Schichten für vakuumtribologische Komponenten"
- Vortrag auf DGM-Tagung Friction, Wear and Wear Protection in Karlsruhe, Okt. 2011: "MoS<sub>2</sub>/ta-C coating for Tribological Applications in Vacuum"
- Pressemeldung "Partikelemsission unter Vakuumbedingungen" auf der Homepage des Fraunhofer IPA http://www.ipa.fraunhofer.de/fileadmin/www.ipa.fhg.de/Presse/Interaktiv/interaktiv\_2011\_1. pdf

## Förderung

Das Forschungsvorhaben 15983 BG der Foschungsvereinigung Europäische Forschungsgesellschaft Dünne Schichten e.V. (EFDS) wurde im Programm zur Förderung der Industriellen Gemeinschaftforschung (IGF) vom Bundesministerium für Wirtschaft und Technologie (BMWi) über die Arbeitsgemeinschaft industrieller Forschungsvereinigungen (AiF) finanziert.

## Inhalt

| 1   | DARSTELLUNG DER ERZIELTEN ERGEBNISSE                                  | 5  |
|-----|-----------------------------------------------------------------------|----|
| 1.1 | AP 1 – Auswahl repräsentativer Komponenten und Referenzbeschichtungen | 5  |
| 1.2 | AP 2 – Entwicklung angepasster Schichtsysteme                         | 6  |
| 1.3 | AP 3 – Entwicklung angepasster tribologischer Prüfmethoden            | 9  |
| 1.4 | AP 4 – Tribologische Testung der beschichteten Komponenten            | 11 |
| 1   | .4.1 Experiment im Ultrahochvakuum                                    | 11 |
| 1   | .4.2 Experiment im Hochvakuum                                         | 12 |
|     | 1.4.2.1 ta-C-Schichten (VTB)                                          | 12 |
|     | 1.4.2.2 DLC Schichten (VTD)                                           | 14 |
|     | 1.4.2.3 ta-C Schicht auf Kugellager (von der Firma Cerobear)          | 15 |
|     | 1.4.2.4 ta-C/MoS <sub>2</sub> -Schichten (VTC)                        | 15 |
| 1   | .4.3 MoS <sub>2</sub> /ta-C-Multilayer-Schicht (VTE-1)                | 19 |
| 1.5 | AP 5 – Oberflächenanalyse der Verschleißpartner                       | 19 |
| 1   | .5.1 Oberflächenanalysen der ta-C-Schichten                           | 19 |
|     | 1.5.1.1 Oberflächenanalysen der ta-C-Schichten                        | 19 |
| 1   | .5.2 Oberflächenanalysen der MoS <sub>2</sub> -Schichten              | 22 |
|     | 1.5.2.1 Verschleißbild der Reibpaarungen                              | 22 |
|     | 1.5.2.2 TEM Analysen der MoS <sub>2</sub> Schichten                   | 26 |
| 1   | .5.3 Bestimmung partikulärer Emissionen                               | 28 |
| 2   | EINSATZ VON WISSENSCHAFTLICHEM PERSONAL, GERÄTEN UND                  |    |
|     | LEISTUNGEN DRITTER                                                    | 32 |
| 2.1 | Fraunhofer-IWS                                                        | 32 |
| 2.2 | Fraunhofer-IPA                                                        | 32 |
| 2.3 | Bundesanstalt für Materialforschung und -prüfung                      | 32 |
| 3   | PLAN ZUM ERGEBNISTRANSFER IN DIE WIRTSCHAFT                           | 33 |

## 1 Darstellung der erzielten Ergebnisse

#### 1.1 AP 1 – Auswahl repräsentativer Komponenten und Referenzbeschichtungen

Zu Beginn des Projektes wurden in Abstimmung mit den Firmen des projektbegleitenden Ausschusses folgende grundsätzlich geeignete Komponenten für die Beschichtung geeigneter Gleitschichten ausgewählt:

| Firma                        | Komponenten                            | Anwendung / Bedingungen                                                                                      |  |
|------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------|--|
| Feinmess Dresden GmbH        | Spindel und Spindel-<br>mutter         | Kugelumlaufspindeln für Präzisions-<br>Positioniersysteme in UHV, trockener<br>Stickstoff <5 ppm, Atmosphäre |  |
| Cerobear GmbH                | Wälzlager (Hybridlager)                | Luft und Raumfahrtsysteme in UHV, trockener Stickstoff                                                       |  |
| Oerlikon Leybold Vacuum GmbH | Lager, Dichtelemente,<br>Druckscheiben | Vakuumpumpen / Turbomolekular-<br>pumpen                                                                     |  |

Tabelle 1. Zusammenstellung der untersuchten Schichtvarianten und deren Herstellung.

Als Versuchsträger für die grundlegenden tribologischen Untersuchungen wurden zwei verschiedene Varianten aus gehärtetem 100Cr6-Stahl festgelegt:

- Bosch-Pumpenflügel 10x8x3 mm<sup>3</sup>, feingeschliffen
- INA-Wellenscheiben 60/30 mm (Außen-/Innendurchmesser) x 6 mm, feingeschliffen
- Kugeln ø 6 bzw. 10 mm, poliert



Abbildung 1. Versuchsträger nach erfolgter ta-C/MoS<sub>2</sub>-Beschichtung.

Für die Übertragung der Ergebnisse auf eine reale Komponente und deren Testung im angepassten Tribometer wurde ein Rillenkugellager (Hybridlager) vom Typ 6001 der Firma Cerobear ausgewählt. Dieser Lagertyp soll sowohl unbeschichtet als auch mit zwei optimierten Schichttypen versehen in tribologischen Tests sowohl bei der Fa. Cerobear, der Fa. Tetra und beim Projektpartner BAM getestet werden.

Im Berichtszeitraum wurden neben den Schichten des Projektpartners IWS drei kommerzielle Schichttypen der Hersteller Hauzer Techno Coating sowie Sulzer Metco (ehemalige Firma Bekaert Advanced Coatings) als Referenzschichten auf Versuchträgern zur Verfügung gestellt und getestet.

### 1.2 AP 2 – Entwicklung angepasster Schichtsysteme

Den Ausgangspunkt der Beschichtungsauswahl bildet die Standardschicht des IWS für konventionelle, d. h. nicht-vakuumtribologische Anwendungen, der tetraedrische amorphe Kohlenstoff (ta-C). Diese härteste Kohlenstoffschichtvariante unter der Vielfalt der DLC-Schichten hat an Luft einen extrem niedrigen Verschleiß und einen sehr geringen Trockenreibkoeffizienten, kann diese Eigenschaften im Vakuum aber offenbar nicht entfalten. Daher sollen im Projekt geeignete Modifizierungsvarianten gefunden werden. Dazu zählt in erster Linie eine Modifizierung im Sinne eines Mehrphasensystems mit harter Matrix + Festschmierstoffphase. Dies wurde zum einen über eine Ko-Abscheidung von ta-C und MoS<sub>2</sub> mit dem Laser-Arc-Verfahren erreicht, wobei es hier zu einer fast atomaren Durchmischung von ta-C- und MoS<sub>2</sub>-Schichtlagen kommt. Ziel hierbei ist ein nanoskaliger Schichtverbund mit amorpher ta-C-Phase und nanokristalliner MoS<sub>2</sub>-Phase. Sowohl die Standard ta-C-Schichten als auch die ta-C/MoS<sub>2</sub>-Mischschichten sind im abgeschiedenen Zustand relativ rau. Um den Einfluss der Rauheit – insbesondere auf den Gegenkörperverschleiß – zu minimieren, wurden die Schichten z. T. mechanisch geglättet. Im Bericht werden die Schichten entsprechend als "rau" bzw. "geglättet" bezeichnet.

Eine weitere Variante ist die am IWS durchgeführte Mikrostrukturierung mittels Laser-Mikrolinsenarry und nachfolgender Füllung der Vertiefungsstruktur mit MoS<sub>2</sub>-Pulver im Sinne eines Festschmierstoff-Reservoirs.

Schließlich erfolgte auch eine Dotierung von ta-C Schichten mit Wasserstoff durch eine Implantationsbehandlung am Institut für Ionenstrahlphysik und Materialforschung des Forschungszentrums Dresden-Rossendorf. Hierbei wurde eine ca. 0,3 - 0,5 µm dicke Deckschicht der insgesamt 2,5 µm ta-C Schicht mit verschiedenen H-Konzentrationen angereichert. Diese ta-C-Grundschicht mit ta-C:H-Deckschicht wird im Folgenden mit "ta-C/:H" bezeichnet.

Die verschiedenen hergestellten Schichtvarianten sowie deren Herstellung sind in Tab. 2 zusammengefasst.

Schlussbericht zum Forschungsvorhaben "Kohlenstoffbasierte Beschichtungen für tribologische Anwendungen im Vakuum und in trockenen Atmosphären"

| Bezeich-<br>nung                               | Schichtart             | Herstellung                                                                                                                               |
|------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| VTA ta-C+MoS2                                  |                        | Ko-Verdampfung von Grafit und MoS <sub>2</sub> -Verdampfung mit ge-<br>pulstem Vakuumbogen (Laser-Arc)                                    |
|                                                | ta-C                   | Grafitverdampfung mit gepulstem Vakuumbogen (Laser-Arc)                                                                                   |
| VTB                                            | ta-C_mikrostrukturiert | s.o., anschließend Laserstrukturierung (Mikrolinsen-Array) + manuelles Auftragen von MoS <sub>2</sub> -Pulver                             |
|                                                | ta-C/:H-implaniert     | s.o., anschließend H-Implantation am Helmholtzzentrum Dres-<br>den-Rossendorf                                                             |
| VTC (ta-C)/MoS <sub>2</sub> Stapelse gefolgt v |                        | Stapelschicht: zunächst Laser-Arc-Verdampfung von Grafit gefolgt von Laser-Arc-Verdampfung von MoS <sub>2</sub> bzw. nur MoS <sub>2</sub> |
| VTD                                            | a-C:H/a-C:H:X          | kommerziell angebotene DLC-Schichten (ext. Firmen)                                                                                        |
| VTE                                            | ta-C//MoS <sub>2</sub> | Multilagenschicht: periodische Laser-Arc-Verdampfung von<br>Grafit und MoS <sub>2</sub> im Nanometer-Bereich                              |

Tabelle 2. Zusammenstellung der untersuchten Schichtvarianten und deren Herstellung.

Die Laser-Arc Schichtherstellung basiert auf dem lasergezündeten Puls-Arc-Verfahren. Hierbei wird das für die Zündung der gepulsten Bogenentladung erforderliche Startplasma durch einen intensiven Laser-Puls erzeugt. Durch Verschiebung des Laserstrahls wird die als lange rotierende Walze ausgebildete Kathode periodisch abgescannt. Durch die hervorragende Steuerbarkeit des Lasers in Kombination mit der hohen Beschichtungsrate des Vakuumbogens ergibt sich eine Quasi-Linienquelle mit ausgezeichneter Homogenität bei gleichzeitig hoher Beschichtungseffektivität. Gleichzeitig erlaubt die Methode eine sehr einfache Herstellung von Multilagen- bzw. Ko-abgeschiedenen Schichten durch einen periodischen schnellen Wechsel des Laser-Auftreffpunktes, d. h. Zündort des Arc-Plasmas auf der Kathodenwalze. Durch ein Scannerystem können so im schnellen Wechsel verschiedene Materialien verdampft werden. Im Falle der in diesem Projekt herzustellenden Schichten wurde die Kathodenwalze aus einer Grafit- und einer MoS<sub>2</sub>-Walze aufgebaut (siehe Abb. 2).



Abbildung 2. Schematische Darstellung der Laser-Arc-Verdampfung mit mehreren Materialien (links) und Foto einer Kathodenwalze mit Grafit und  $MoS_2$  für Ko-Verdampfung (rechts).

Die Ergebnisse der Beschichtungsvorversuche lassen sich wie folgt zusammenfassen:

- MoS<sub>2</sub> kann durch Laser-Arc-Verdampfung stöchiometrisch abgeschieden werden, wenn eine eingebrannte MoS<sub>2</sub>-Kathode mit Mo-angereicherter Oberfläche vorliegt. Es bilden sich leitfähige Pfade in der Kathode. Es wachsen Molybdänkrater aus der Kathoden-Rückseite.
- Eine unabhängige Bogenzündung auf einer MoS<sub>2</sub>- und einer Grafitwalze ist nur bei räumlicher Trennung der Walzen möglich.
- Die entstehenden Schichten sind weitgehend (röntgen)amorph mit kleinen Anzeichen für kristalline Phasen.

Es wurden folgende in Tab. 3 zusammengefassten Schichtvarianten hergestellt und zur tribologischen Testung versandt.

| Bezeich-<br>nung Schichttyp                                |                                           | Dicke                                    | Substrat                                                     | Nachbehandlung                             | Analyse                     |
|------------------------------------------------------------|-------------------------------------------|------------------------------------------|--------------------------------------------------------------|--------------------------------------------|-----------------------------|
| VTB1                                                       | ta-C                                      | 5 µm                                     | Pumpenflügel, Lager-<br>scheiben, Kugeln                     | poliert bzw. poliert<br>+laserstrukturiert |                             |
| VTB5                                                       | ta-C                                      | 5 µm                                     | Pumpenflügel,<br>Lagerscheiben                               | poliert                                    | Härte ca. 40 GPa            |
| VTB7                                                       | ta-C                                      | 5 µm                                     | Pumpenflügel , Lager-<br>scheiben, Kugeln                    | poliert                                    | Härte ca. 60 GPa            |
| VTD1                                                       | DLC<br>(a-C:H:Me/<br>a-C:H)<br>ext. Firma | :Me/ 2,3 μm Lagerscheiben,<br>Kugeln     |                                                              | -                                          | Härte ca. 22 GPa            |
| VTD2<br>VTD2<br>OLC<br>(a-C:H/<br>a-C:H:Si:O)<br>a-t Firma |                                           | 3 - 4 µm                                 | Lagerscheiben, Kugeln                                        | -                                          | Härte ca. 15 GPa            |
| VTD3 DLC<br>(a-C:H)<br>ext. Firma                          |                                           | 3 - 4 µm                                 | Lagerscheiben, Kugeln                                        | -                                          | Härte ca. 21 GPa            |
| VTC1                                                       | ta-C/MoS <sub>2</sub>                     | 0,5/0,5<br>µm                            | Pumpenflügel, Silizi-<br>umwafer, Lagerschei-<br>ben, Kugeln | -                                          |                             |
| VTC2 ta-C/MoS <sub>2</sub>                                 |                                           | 0,1/0,3<br>µm                            | Pumpenflügel, Silizi-<br>umwafer, Lagerschei-<br>ben, Kugeln | -                                          | RBS:<br>33%at Mo<br>66%at S |
| VTC3                                                       | MoS <sub>2</sub>                          | 0,15 µm                                  | Pumpenflügel, Lager-<br>scheiben, Kugeln                     | -                                          |                             |
| VTC4 ta-C/MoS <sub>2</sub>                                 |                                           | 3/2 µm                                   | Pumpenflügel, Lager-<br>scheiben, Kugeln                     | -                                          |                             |
| VTC5 ta-C/MoS <sub>2</sub>                                 |                                           | 0,5/0,5<br>µm                            | Pumpenflügel, Lager-<br>scheiben, Kugeln                     | -                                          | · ·                         |
| VTC6 ta-C/MoS <sub>2</sub> 0,5/1,5 um                      |                                           | Pumpenflügel, Lager-<br>scheiben, Kugeln | -                                                            |                                            |                             |
| VTC7 <b>MoS</b> <sub>2</sub> 0,5 μm                        |                                           | 0,5 µm                                   | Pumpenflügel, Lager-<br>scheiben, Kugeln                     | -                                          |                             |
| VTE1                                                       | 2x5 taC/MoS <sub>2</sub>                  | 0,5 µm                                   | Pumpenflügel, Lager-<br>scheiben, Kugeln                     | -                                          |                             |

Tabelle 3. Zusammenstellung der im Berichtszeitraum hergestellten Schichtvarianten.

#### **1.3** AP 3 – Entwicklung angepasster tribologischer Prüfmethoden

Am Fraunhofer IPA wurde eine neue Versuchsanlage zur Bestimmung partikulärer Emissionen an Werkstoffpaarungen unter Vakuumbedingungen (bis 10<sup>-6</sup> / 10<sup>-7</sup> mbar) konzipiert und aufgebaut. Die Versuchsanlage ist so konzipiert, dass Werkstoffpaarungen in einem Scheibe/Kugelstiftverfahren mechanisch belastet werden. Dabei können die Prüfparameter wie zum Beispiel die Größe der Normalkraft, die Drehzahl der Scheibe, die Vakuumqualität und die Temperatur der Prüfkammer variiert und erfasst werden. Darüber hinaus kann das Belüften der Kammer mit Reinstgasen erfolgen. Die entstehenden partikulären Emissionen werden auf extrem reinen sowie polierten Siliziumsubstraten abgeschieden und stehen damit für die messtechnische Untersuchung zur Verfügung. Die Siliziumsubstrate können in drei verschieden Größen in der Versuchsanlage zur Probenherstellung verwendet werden, somit können Vorversuche zur Partikelsedimentation unter Vakuumbedingungen sowie geeignete Probengrößen für verschiedene messtechnische Analysen erfolgen. Aufgrund der verwendeten Substrate sind Laserpartikelscanner (kleinste detektierbare Partikelgröße: 67 nm), Streulichtverfahren, optische Mikroskope und ein Rasterelektronenmikroskop (ERM) mit EDX-Einheit direkt anwendbar. Diese Mess- und Analysetechnik ermöglicht die Bestimmung partikulärer Kontaminationen hinsichtlich der Anzahl, der Größenverteilung, der örtlichen Verteilung und der Elementanalyse einzelner Partikel. Die Reibkörper können für vergleichende Untersuchungen ebenfalls mit optischen Mikroskopen bzw. REM untersucht werden. Die Aufstellung der Versuchsanlage in einem Referenzreinraum als Klasse 1 nach ISO 14644-1 mit turbulenzarmer Verdrängungsströmung und die örtliche Nähe zur oben genannten Messtechnik gewährleisten die Vermeidung der Fremdkontamination von Proben.

Die Bedienung der Anlage erfolgt über eine Software, sie basiert auf dem Programm Labview. Zur Anlagensteuerung sind alle Stellglieder der Versuchsanlage elektronisch einstellbar. Die Aufnahme der Prüfparameter erfolgt entweder direkt über verschiedene Sensoren oder indirekt über Kenngrößen. Der Vergleich von Soll- und Istwerten sowie die Speicherung der Prüfparameter und der gemessenen Reibkraft erfolgt ebenfalls in Labview. Die Gestaltung der Sensortechnik zur Aufnahme der Normal- und Reibkraft in der Vakuumkammer ist aus technischer Sicht aufwendig. Die Baugruppe zur Sensorintegration sowie die Vakuumdurchführung werden aktuell in der Versuchsanlage integriert. Die Projektverlängerung wird zur Komplettierung der Versuchsanlage genutzt.



Abbildung 3: Vakuumkammer mit Drehdurchführung, Lineardurchführung und Sensortechnik; rechts: Innenraum Prüfkammer mit Belastungskollektiv und Abscheidesubstrat (Siliziumwafer).



Abbildung 4. Links: Bedienoberfläche der Anlage; rechts: Zeichnungen Krafteinleiteinrichtungen und Vakuumkammer.

Die durchgeführten Voruntersuchungen ohne Erfassung der Normal- und Reibkraft zeigen ein sehr gutes Sedimentationsverhalten der generierten partikulären Emissionen.

Das Fraunhofer IPA hat aufgrund dieses Projektes bisher einige Industrieanfragen und Aufträge erhalten um das Partikelemissionsverhalten von Werkstoffpaarungen unter Vakuumbedingungen zu untersuchen.

An der BAM wurde die Umrüstung des Hochvakuum-Tribometers wurde bereits im ersten Jahr des Projektes abgeschlossen.

#### 1.4 AP 4 – Tribologische Testung der beschichteten Komponenten

An der BAM wurden 14 Schichten in dem Hochvakuum-Tribometer VT1 untersucht (siehe Tabelle 2). Darüber hinaus wurden einige zusätzliche Versuche im Ultrahochvakuum-Tribometer (UHV-T) durchgeführt. Tabelle 4 und Tabelle 5 zeigen die ausgewählten Versuchsparameter.

| Restdruck Geschwindigkeit |       | Belastung Hertzsche Pres- |               | Versuchs- Reibweg |              |
|---------------------------|-------|---------------------------|---------------|-------------------|--------------|
| [mbar]                    | [m/s] | [N]                       | sung* [MPa]   | dauer [h]         | [m]          |
| 10 <sup>-5</sup>          | 0,1   | 5                         | Pmittel = 535 | 2,4,16            | 720 bis 5760 |
| 10 <sup>-5</sup> 0,1 10   |       | Pmittel = 673             | 2,4,16        | 720 bis 5760      |              |
| 10 <sup>-5</sup>          | 0,5   | 20                        | Pmittel = 835 | Leben             | sdauer       |

Tabelle 4. Parameter für Messungen im Hochvakuum (kontinuierliche Gleitreibung, Tribometer VT1).

| Tabelle 5. Parame | ter für Messunge                       | n im Ultrahochvakuur | n (reversierende | Gleitreibung, | Tribometer UHV- | T) |
|-------------------|----------------------------------------|----------------------|------------------|---------------|-----------------|----|
|                   | ······································ |                      |                  | 0,            |                 |    |

| Restdruck        | v <sub>max</sub> | Frequenz | Belastung | Hertzsche Pres- | Zyklen | Reibweg |
|------------------|------------------|----------|-----------|-----------------|--------|---------|
| [mbar]           | [m/s]            | [Hz]     | [N]       | sung* [MPa]     |        | [m]     |
| 10 <sup>-9</sup> | 0,001            | 0,16     | 2         | Pmittel = 545   | 6000   | 36      |

\* zu Beginn des Versuchs

#### 1.4.1 Experiment im Ultrahochvakuum

Im Ultrahochvakuum wurden reine (glatte und raue) ta-C Schichten, eine Doppel-Schicht ta-C/MoS2 (VTC1) sowie mit MoS<sub>2</sub>-modifizierte Varianten (VTA6), teilweise mit Laser-Strukturierung und eine H-ionenimplantierte ta-C Schicht (ta-C/:H) untersucht. Weiterhin wurde zum Vergleich eine Schicht von der Firma Sulzer getestet. In Abb. 5 sind die stationären Reibungszahlen dargestellt. Dabei ist deutlich zu erkennen, dass die MoS<sub>2</sub>-Schicht gegen 100Cr6 im Vakuum (erster blauer Balken) und ta-C gegen ta-C an Luft (letzter rosa Balken) wie erwartet sehr gut sind.



Abbildung 5. Reibungszahlen bei reversierender Gleitreibung in Ultrahochvakuum ( $v_{max}$  = 0,001 m/s; Hub: ± 1,5 mm;  $F_N$  = 2 N)

#### 1.4.2 Experiment im Hochvakuum

#### 1.4.2.1 ta-C-Schichten (VTB)

Die Abb. 6 zeigt Reibungsverläufe über 4 Stunden für VTB-1-Schichten gegen beschichtete (links) bzw. unbeschichtete 100Cr6-Kugeln (rechts) in Hochvakuum und an Luft. Nicht zu erwarten war, dass die Reibungszahl in Hochvakuum zwar relativ niedrig ( $\mu$  = 0,1), an Luft jedoch höher ( $\mu$  = 0,2) und unstabiler ist, insbesondere gegen eine beschichtete 100Cr6-Kugel. Die Abb. 7 zeigt die Reibverläufe der Schichtvariante VTB5 (links) und VTB7 (rechts), die ebenfalls ein sehr unstabiles Verhalten auch gegen ta-C beschichtete Kugel zeigten.



Abbildung 6. Reibungsverläufe von VTB-1 Schichten gegen beschichtete und unbeschichtete Kugeln in Hochvakuum und an Luft (v = 0,1 m/s).



Abbildung 7. Reibungsverläufe von VTB-5 und VTB-7 Schichten gegen beschichtete und unbeschichtete Kugeln in Hochvakuum und an Luft (v = 0,1 m/s).

Durch Laserstrukturierung konnte die Unstabilität der Reibverläufe nur an Luft geringfügig reduziert werden (Abb. 8). Die strukturierte VTB1 Schicht (VTB1-LS) hat aber sowohl an Luft als auch in HV eine Reibungszahl von 0,3, was nicht vergleichbar mit den ersten VTB1-Ergebnissen ist.



Abbildung 8. Reibungsverläufe von VTB-1 LS und VTB-7-LS Schichten gegen beschichtete und unbeschichtete Kugeln in Hochvakuum und an Luft (v = 0,1 m/s).

Abb. 9 zeigt die Verschleißraten der beschichteten und unbeschichteten Kugeln gegen die VTB1-, VTB5-, VTB7 bzw. gegen die VTB1-LS und VTB7-LS-Schicht. Auch hier sind die niedrigeren Werte für VTB1- und VTB5-Schichten in Hochvakuum im Vergleich zu den Ergebnissen an Luft unerwartet. Die Ergebnisse von VTB7 sind allerdings widersprüchlich und nicht vergleichbar mit denen der VTB1-Schicht. Einige Änderungen im Abscheidungsprozess könnten die Ursache dafür sein.



Abbildung 9. Verschleißraten von beschichteten (links) und unbeschichteten (rechts) Kugeln gegen ta-C -Schichten in Hochvakuum und an Luft (4 Stunden, v = 0,1 m/s).

#### 1.4.2.2 DLC Schichten (VTD)

Der Reibungsverlauf an Luft über 4 Stunden von DLC-Schichten gegen DLC-beschichtete Kugeln ist in Abb. 10 zu sehen. An Luft liegen die Reibungszahlen der VTD- (a-C:H) Schichten bei 0,08 bis 0,17. Im Hochvakuum sind die Reibungszahlen der VTD-1 und VTD-2 Schichten deutlich höher ( $\mu$ = 0,5). Im Vergleich zu diesen Varianten ist die Reibungszahl der VTD-3-Schicht zwar niedrig aber unstabil.



Abbildung 10. Reibungsverlauf an Luft (links) und im HV (rechts) für VTB1, VTB5, VTD1, VTD2, VTD3 (F<sub>N</sub> = 5 N).

Die Verschleißraten der beschichteten Kugeln gegen VTB1, VTD1, VTD2 und VTD3 sind in Abb. 11 gezeigt. Während sich die Ergebnisse an Luft nicht wesentlich unterscheiden, ist die Verschleißrate der VTB1-beschichteten Kugel im Vakuum deutlich niedriger als die der VTD-(a-C:H-) Schichten.



Abbildung 11. Verschleißraten in Hochvakuum und an Luft von beschichteten Kugeln gegen VTB1, VTD1, VTD2 und VTD3 ( $F_N = 5 \text{ N}$ , Versuchsdauer: 4 Stunden).

#### 1.4.2.3 ta-C Schicht auf Kugellager (von der Firma Cerobear)

ta-C beschichtete Si<sub>3</sub>N<sub>4</sub> Kugellager der Fa. Cerobear wurden an Luft und in Vakuum getestet. Während das unbeschichtete Kugellager 1 Million Zyklen einwandfrei gelaufen ist, hat das ta-C beschichtete Kugellager sehr hohen Verschleiß in Vakuum. An Luft ist der Verschleiß deutlich geringer als in Hochvakuum.



Abbildung 12. Limikroskopie-Aufnahme der Kugellager nach 1 Million Zyklen bei 100 N; a) unbeschichtetes Kugellager in HV; b) ta-C beschichtetes Kugellager in HV; c) ta-C beschichtetes Kugellager an Luft

#### 1.4.2.4 ta-C/MoS<sub>2</sub>-Schichten (VTC)

Die Abb. 13 zeigt den Reibungsverlauf über 16 Stunden für die ta-C/MoS<sub>2</sub>-Schicht (VTC) gegen eine unbeschichtete 100Cr6-Kugel an Luft. Die Reibungszahl liegt zwischen 0,2 und 0,4 und zeigt eine große Schwankungsbreite (zum Teil wurde der geglättete Reibungsverlauf dargestellt).



Abbildung 13. Reibungsverlauf an Luft; kontinuierliche Gleitreibung (v = 0,1 m/s, 16 Stunden).

In Hochvakuum (Abb.14) ist die Reibungszahl wie erwartet sehr niedrig und liegt für die meisten ta-C/MoS<sub>2</sub> Schichten auch nach 16 Stunden zwischen 0,005 und 0,05. Eine Ausnahme ist die VTC4-Schicht, die ein gutes (VTC4-a) und ein schlechteres (VTC4-b) Reibverhalten hat. Diese Schicht zeigt eine unerwartet hohe Reibungszahl von 0,15.





Um den Einfluss der ta-C Schicht zu bestimmen, wurden zwei reine  $MoS_2$  Schichten hergestellt. VTC3 (0,15 µm  $MoS_2$ ) wurde ohne Oberflächenreinigung auf dem Stahlsubstrat abgeschieden, während eine Ar- und Cr- Plasma Reinigung vor der VTC7-Abscheidung (0,5  $\mu$ m MoS<sub>2</sub>) durchgeführt wurde. In Abb.15 ist deutlich zu erkennen, dass die reinen MoS<sub>2</sub>- Schichten bei 10 N und v = 0.1 m/s gegen eine 100Cr6 Kugel sehr früh versagen.



Abbildung 15. Vergleich mit reinen MoS<sub>2</sub>-Schichten. Links: VTC2 (0,3  $\mu$ m MoS<sub>2</sub> /ta-C) vs. VTC3 (0,15  $\mu$ m MoS<sub>2</sub>). Rechts: VTC1, VTC5 (0,5  $\mu$ m MoS<sub>2</sub>/ta-C) vs. VTC7 (0,5  $\mu$ m MoS<sub>2</sub>). Reibungsverlauf in HV, 10 N; kontinuierliche Gleitreibung (v = 0,1 m/s)

Die Lebensdauer der VTC-Schichten wurde nun unter verschärften Bedingungen in einem Langzeitversuch bei v = 0,5 m/s und 20 N untersucht (Abb. 16). Für VTC1 wurde der Versuch nach 8, 16 und 24 Stunden gestoppt und danach neu gestartet, weshalb einzelne Peaks zu sehen sind. Unter diesen Bedingungen zeigen alle  $MoS_2/ta-C-Schichten$  eine sehr niedrige Reibungszahl, die Lebensdauern sind allerdings sehr unterschiedlich.

Die 2 µm dicke  $MoS_2$ -Schicht VTC4 hat eine Lebensdauer von 500 000 und ist damit die beste Schicht, allerdings nur nach einer Einlaufphase. Die gute Überrollenbeständigkeit von VTC1 (über 340 000 Zyklen) könnte leider nicht mit der gleichen Schichtvariante VTC5 wiederholt werden. Auch die 1,5µm dicke  $MoS_2$ -Schicht VTC6 konnte trotz Einlaufsphase nur 74 500 Zyklen erreichen.

Beim Vergleich zwischen VTC3 und VTC2 sowie zwischen VTC1 und VTC7, könnte man vermuten, dass die ta-C Zwischenschicht die Lebensdauer günstig beeinflusst. Das bestätigt sich jedoch nicht beim Vergleich zwischen VTC5 und VTC7.



Abbildung 16. Lebensdauerversuch in HV, 20 N; kontinuierliche Gleitreibung (v = 0,5 m/s); (\* Einlaufphase erst 20 min bei v = 0.1 m/s, dann 10 min bei 0.2 m/s, und schließlich 0.5 m/s).

Die Verschleißraten der 100Cr6 Kugeln gegen die VTC-Schichten in Hochvakuum und an Luft sind in Abb. 17 dargestellt. An Luft sind die Verschleißraten deutlich höher als in Vakuum. Abb. 18 zeigt die Verschleißraten der Kugel gegen VTC1 und VTC4 abhängig von der Belastung. Hier ist zu erkennen, dass die Verschleißrate mit zunehmender Belastung abnimmt.



Abbildung 17. Verschleißrate der 100Cr6 Kugeln gegen VTC1-Schicht in Hochvakuum und an Luft.



VTC1 und VTC4 gegen 100Cr6 Kugelverschleiß

Abbildung 18. Verschleißrate der 100Cr6 Kugeln gegen VTC1-und VTC4 Schichten in Hochvakuum und an Luft.

### 1.4.3 MoS<sub>2</sub>/ta-C-Multilayer-Schicht (VTE-1)

Eine Multilayer-Schicht wurde aus je 5 Lagen ta-C und  $MoS_2$  mit je ~ 60 nm Dicke hergestellt. In dieser Form ist diese Schicht allerdings nicht für Vakuum geeignet. Die Reibungszahl liegt weit über 1,0 und die Schicht ist völlig durchgerieben. An Luft ist die Reibungszahl zwar viel niedriger aber eher unstabil. An den 100Cr6-Kugeln verursacht die Multilayer-Variante zwar den geringsten Verschleiß an Luft, in Vakuumumgebung ist dieser jedoch um mehr als zwei Größenordnungen höher als z. B. bei VTC-2.

### 1.5 AP 5 – Oberflächenanalyse der Verschleißpartner

#### 1.5.1 Oberflächenanalysen der ta-C-Schichten

#### 1.5.1.1 Oberflächenanalysen der ta-C-Schichten

Abb. 19 und 20 zeigen die Aufnahmen und Tastschnittprofile quer zur Verschleißspur nach den Versuchen in Hochvakuum und an Luft der VTB1-Schicht (ta-C) gegen mit VTB1 beschichtete und unbeschichtete 100Cr6-Kugeln.

Man erkennt, dass die ta-C-Schicht auf der Scheibe sowohl an Luft als auch in Hochvakuum kaum Verschleiß gegen eine ta-C-beschichtete Kugel hat. An Luft ist der Verschleiß der beschichteten Kugel sogar etwas größer als in Hochvakuum (Abb. 19).



Abbildung 19. VTB1/VTB1 in Hochvakuum und an Luft, 10 N, Versuchsdauer: 4 Stunden.

Gegen unbeschichtetes 100Cr6 hat die ta-C Schicht allerdings einen höheren Verschleiß in Hochvakuum als an Luft. Im Gegensatz dazu ist die 100Cr6-Kugel an Luft deutlich mehr abgerieben (Abb. 20).



Abbildung 20. VTB1/100Cr6 in HV und an Luft, 10 N, Versuchsdauer: 4 Stunden.

Die Verschleißspur der VTB5 und VTB7 sind in Abbildungen 21 und 22 dargestellt. Hier ist zu erkennen, dass VTB7 einen viel höheren Verschleiß als VTB5 verursacht. Eine Erklärung ist die höhere Rauheit der VTB7 Schicht im Vergleich zu VTB1 und VTB5. Eine andere Ursache könnte der große Anteil an Fe an der Oberfläche von VTB7 sein, der durch das Polieren in die ta-C Schicht eindringt (Abb. 23)



VTB5/VTB4, HV, 10N

VTB5/100Cr6, HV, 10N

Abbildung 21. VTB5/VTB4 und VTB5/100Cr6 in HV, 10 N, Versuchsdauer: 16 Stunden



Abbildung 22. VTB7/VTB7 in HV(oben) und an Luft (unten), 10 N, Versuchsdauer: 16 Stunden.



Abbildung 23. EDX Aufnahme der VTB7 Oberflächen (vor dem Versuch).

#### 1.5.2 Oberflächenanalysen der MoS<sub>2</sub>-Schichten

#### 1.5.2.1 Verschleißbild der Reibpaarungen

Die Lichtmikroskopie-Aufnahmen der Reibfläche MoS<sub>2</sub>/ta-C Doppel-Schicht vs. 100Cr6 nach den Versuchen in Hochvakuum und an Luft sind in Abb. 24 bis 28 abgebildet. Im Vergleich zu den Experimenten in Hochvakuum sind die Reibspuren an Luft deutlich breiter. Die MoS<sub>2</sub>-Schicht ist an Luft weitgehend abgetragen. Auch die reinen MoS<sub>2</sub>-Schichten (VTC3 und VTC7, Abb. 29 und 30) zeigen einen eher niedrigen Schicht-Verschleiß nach 16 Stunden in HV bei 10 N, was mit den niedrigen Reibungszahlen überallstimmt.

Eine Ausnahme ist die VTC-4 Schicht, die viel Verschleiß auch in HV verursacht, insbesondere bei dem Versuch 1861.



Abbildung 24. Profil quer zur Verschleißspur und Mikroskopbild der Reibpaarung VTC1 gegen 100Cr6 Kugel in Hochvakuum bei 10 N (16 h).



Abbildung 25. Profil quer zur Verschleißspur und Mikroskopbild der Reibpaarung VTC2 gegen 100Cr6 Oben: HV, Unten Luft; 10 N, 0,1 m/s; 16 Stunden



Abbildung 26. Profil quer zur Verschleißspur und Mikroskopbild der Reibpaarung VTC4 vs. 100Cr6. Oben: HV (V1837,  $\mu$  = 0,05), Mitte: HV (1861,  $\mu$  = 0,15), unter Luft; 10 N, 0,1 m/s; 16 Stunden

Schlussbericht zum Forschungsvorhaben "Kohlenstoffbasierte Beschichtungen für tribologische Anwendungen im Vakuum und in trockenen Atmosphären"



Abbildung 27. Profil quer zur Verschleißspur und Mikroskopbild der Reibpaarung VTC5 vs.100Cr6. Oben: HV, unter Luft; 10 N, 0,1 m/s; 16 Stunden



Abbildung 28. Profil quer zur Verschleißspur und Mikroskopbild der Reibpaarung VTC6 vs. 100Cr6. Oben: HV, unter Luft; 10 N, 0,1 m/s; 16 Stunden



Abbildung 29. Profil quer zur Verschleißspur und Mikroskopbild der Reibpaarung VTC3 (reine MoS2) vs. 100Cr6 in HV, 10 N, 0,1 m/s; 16 Stunden



Abbildung 30. 28 Profil quer zur Verschleißspur und Mikroskopbild der Reibpaarung VTC7 (reine MoS2) vs. 100Cr6 HV, 10 N, 0,1 m/s; 16 Stunden

Abb. 31 zeigt beispielwiese EDX-Aufnahmen der Reibfläche einer VTC1-Schicht und der 100Cr6-Kugel nach einem Versuch in Hochvakuum bei einer Last von 10 N. Es ist deutlich zu sehen, dass die MoS<sub>2</sub> Schicht durchgerieben ist.



Abbildung 31. EDX-Aufnahmen der MoS<sub>2</sub>-Schicht und der 100Cr6-Kugel nach dem Versuch in HV bei 10 N.

Das unstabile Reibverhalten der MoS<sub>2</sub>/ta-C Schicht an Luft liegt daran, dass zunächst die MoS<sub>2</sub>-Schicht abgetragen wurde und danach die ta-C-Schicht in Kontakt kommt. Erst dann wird die Reibungszahl niedrig und stabil. Die folgenden EDX-Aufnahmen (Abb. 31) zeigen beispielweise das Verschleißbild zweier Versuche mit VTC1-Schichten an Luft: Im Versuch V1643 ist auf der Kugel ein relativ dicker MoS<sub>2</sub>-Transfer zu sehen. Im Gegensatz dazu ist in der Spur kein MoS<sub>2</sub> mehr, sondern nur Kohlenstoff vorhanden. Die Kontaktflächen bestehen damit aus MoS<sub>2</sub> gegen Kohlenstoff, was eine Reibungszahl von MoS<sub>2</sub> an Luft ( $\mu$  = 0,2 - 0,3) ergibt.

Im Versuch V1644 ist auf der Kugel hauptsächlich Kohlenstoff und kaum MoS<sub>2</sub> vorhanden. In der Spur auf der Scheibe ist ebenfalls keine MoS<sub>2</sub>-Schicht mehr, aber Kohlenstoff vorhanden. In diesem Fall bestehen beide Kontaktflächen wahrscheinlich aus Kohlenstoff, was eine niedrigere Reibungszahl verursacht hat.



Abbildung 32. EDX Aufnahmen der Kugel und der Scheibe nach den Versuchen an Luft bei 5 N, oben V1644, unten V1643.

#### 1.5.2.2 TEM Analysen der MoS<sub>2</sub> Schichten

TEM-Analysen der Verschleißspur der VTC1 und VTC4 (V1837) wurden durchgeführt, um die Struktur der MoS<sub>2</sub> vor und nach dem Versuch zu bestimmen.

Die TEM-Aufnahme der Verschleißspur der VTC1 (Abb. 33) zeigt die amorphe Kohlenstoffschicht (hellgrau) und die teilweise amorphe teilweise kristalline  $MoS_2$  Schicht. Das SAED-Pattern weist auf eine (0002) Orientierung des  $MoS_2$  hin. Es ist deshalb davon auszugehen, dass die  $MoS_2$ -Schicht zunächst amorph abgeschieden wird und durch die Beanspruchung teilweise kristallisiert. Allerdings ist auch zu sehen, dass sich die  $MoS_2$ -Schicht nach dem 16-Stunden-Versuch ablöst. Deshalb sollte die Haftung von  $MoS_2$  an der ta-C-Schicht untersucht werden, bzw. durch Dotierung der  $MoS_2$ -Schicht verbessert werden.



Abbildung 33. TEM Aufnahme und SAED Pattern der  $MoS_2$  Schicht VTC1 nach dem Versuch in HV bei 10 N, unten: bei höherer Vergrößerung.

Die TEM-Untersuchung an VTC4 wurde nach den Versuchen in HV bei 10 N an V1837 durchgeführt, da eine höhere Reibungszahl ( $\mu$  = 0,15) bei diesem Versuch festgestellt wurde. Die FIB-Querschnittabbildung (Abb. 34) außerhalb und innerhalb der Verschleißspur zeigen keine wesentlichen Unterschiede. Durch Reibung wurde die Oberfläche nur eingeebnet. Ansonsten ist die äußere Schicht fast vollständig erhalten geblieben.

Die TEM-Abbildung am  $MoS_2$ -Pt-Interface zeigt Mikrorisse und dunklere Kontraste, die auf Kristallisation hinweisen. Das SAED-Beugungsmuster zeigt einen Ring mit Intensitätsschwankungen, der  $MoS_2$ -Basisebenen zugeordnet werden kann, ferner einen sehr schwachen Ring von  $MoS_2$  (100). Die restlichen Ringe können als aufgesputtertes Fe bedeutet werden (Artefakt durch Präparation), was auch durch EDX bestätigt wurde.



FIB-Querschnittabbildung a) ohne Reibung, b) in der Reibspur



Abbildung 35. TEM Aufnahme und SAED Pattern der  $MoS_2$  Schicht VTC4, Versuch V1837 nach dem Versuch in HV bei 10 N, unten: bei höherer Vergrößerung.

#### 1.5.3 Bestimmung partikulärer Emissionen

Der im Kapitel 1.2 beschriebene Versuchstand wurde genutzt um das Partikelemissionsverhalten von Werkstoffpaarungen unter Vakuumbedingungen zu untersuchen. Die messtechnische Bestimmung der Werkstoffpaarungen hinsichtlich deren Partikelabgabe unter tribologischer Belastung erfolgte über das Abscheiden der erzeugten Partikel auf hochreinen Siliziumscheiben (300 mm Wafer). Die Differenz der Partikelbelegung der Wafer vor und nach der tribologischen Belastung ist dabei ein Maß für Partikelgenerierung der Werkstoffpaarungen. Als Messsystem wurde der Waferscanner Reflex AF der Fa. NanoPhotonics verwendet. Aus den verschiedenen Untersuchungen wurden repräsentative und interessante Messergebisse ausgewählt und im Folgenden dargestellt. Die partikuläre Grundbelastung der Wafer vor den Untersuchungen kann im relevanten Größenbereich der Partikel mit Null angegeben werden. Damit können alle auf den Wafern befindlichen Partikel den Werkstoffpaarungen zugeordnet werden.



Abbildung 36. Werkstoffpaarung 100Cr6/100Cr6, Versuchsbedingungen und Messergebnisse

Die Werkstoffpaarung **100Cr6/100Cr6** wurde zum Vergleich der Spezialschichten herangezogen, da hierfür keine verfügbaren Ergebnisse unter Vakuumbedingungen existieren. Das Sedimentationsverhalten der Partikel unter den oben genannten Vakuumbedingungen ist gut sichtbar, die örtliche Verteilung auf dem 300 mm Wafer ist dabei vergleichsweise homogen. Auffallend ist die Häufigkeit der einzelnen Partikelgrößen, speziell die Bereiche 0,2 µm und 1,2 µm weisen eine deutliche Häufung auf. Die Gesamtzahl der erzeugten Partikel beträgt 1055, bei einer Belastungswiederholungszahl 100.



Abbildung 37. Werkstoffpaarung ta-C 5µm poliert/ta-C poliert, Versuchsbedingungen und Messergebnisse

Die Werkstoffpaarung **ta-C 5µm poliert/ta-C poliert** wurde stellvertretend für die Spezialschichten herangezogen. Das Sedimentationsverhalten der Partikel unter den oben genannten Vakuumbedingungen ist gut sichtbar, die örtliche Verteilung auf dem 300 mm Wafer ist ebenfalls vergleichsweise homogen. Auffallend ist wieder die Häufigkeit der einzelnen Partikelgrößen, speziell die Bereiche 0,2 µm und 1,2 µm weisen eine deutliche Häufung auf. Die Gesamtzahl der erzeugten Partikel beträgt 306, damit ist die Partikelemission um den Faktor drei geringer als bei der Werkstoffpaarung 100Cr6/100Cr6.



Abbildung 38. Werkstoffpaarung 100CR6/taC poliert, Versuchsbedingungen und Messergebnisse

Die Werkstoffpaarung **100Cr6/taC poliert** wurde ausgewählt, um das Partikelemissionsverhalten von Kombinationen aus Standardwerkstoffen und Spezialschichten zu untersuchen. Das Sedimentationsverhalten der Partikel unter den oben genannten Vakuumbedingungen ist gut sichtbar, die örtliche Verteilung auf dem 300 mm Wafer ist ebenfalls vergleichsweise homogen. Auffallend ist wieder die Häufigkeit der einzelnen Partikelgrößen, speziell die Bereiche 0,2 µm und 1,2 µm weisen eine deutliche Häufung auf. Die Gesamtzahl der erzeugten Partikel beträgt 10.893, damit ist die Partikelemission um den Faktor zehn höher als bei der Werkstoffpaarung 100Cr6/100Cr6 und etwa Faktor 30 höher als bei Werkstoffpaarung ta-C 5µm poliert/ta-C poliert. Die Untersuchungen zur Emission von Partikeln an Werkstoffpaarungen unter Vakuumbedingungen zeigen eine deutliche Abhängigkeit der Anzahl von der gewählten Werkstoffpaarung. Die Größenverteilung der erzeugten Partikel scheint charakteristisch für die untersuchten Stichproben. Die Anzahl der Belastungswiederholungszahl wurde mit 100 relativ klein gewählt, da die Partikelmesstechnik sehr sensitiv ist und höhere Partikeldichten auf den Wafern mit erhöhten Messabweichungen verbunden sind. Die Ergebnisse zeigen deutliche Potenziale bei der Werkstoffauswahl für den reinen Anlagenbau unter Vakuumbedingungen. Für weitergehende Untersuchungen der einzelnen Partikel kann die Analyse mit REM-EDX und Ramanspektrometer erfolgen, die verwendeten Substrate (Wafer) sind prinzipiell dafür geeignet.

2 Einsatz von wissenschaftlichem Personal, Geräten und Leistungen Dritter

### 2.1 Fraunhofer-IWS

Für die Bearbeitung wurden wie geplant ein wissenschaftlicher Mitarbeiter (ca. 15 MM) sowie ein Techniker (ca. 6 MM) eingesetzt. Die Aufgaben des Wissenschaftlers beinhalteten insbesondere die Planung der Beschichtungsversuche, die Modifizierung der Beschichtungsanlage für Abscheidungen gestapelter Schichten sowie die Auswertung der Beschichtungsversuche inklusive strukturelle/mechanische/tribologische Schichtcharakterisierung.

### 2.2 Fraunhofer-IPA

Für die Bearbeitung wurden wie geplant ein wissenschaftlicher Mitarbeiter (ca. 10 MM) sowie studentische Hilfskräfte (ca. 19 MM) eingesetzt. Die Aufgaben des Wissenschaftlers beinhalteten insbesondere die Planung und Konzeption des Versuchsstandes. Des Weiteren erfolgte die Beschaffung von Sensorik-Komponenten für das Vakuumtribometer.

#### 2.3 Bundesanstalt für Materialforschung und -prüfung

Für die Durchführung des Projekts wurde wie geplant eine wissenschaftliche Mitarbeiterin ab (Teilzeit 50 %) mit insgesamt 12 MM eingesetzt. Ihre Aufgabe bestand darin, die Planung und Auswertung von tribologischen Experimenten an Dünnschicht- und Werkstoffsysteme in Hochund Ultrahochvakuum, sowie die Charakterisierung der Reibfläche mittels verschiedener Oberflächenanalytik zu übernehmen.

## 3 Plan zum Ergebnistransfer in die Wirtschaft

In der Projektlaufzeit entstanden eine Vielzahl von wissenschaftlichen und methodischen Erkenntnissen sowie direkt verwertbare Schichtsysteme, die für spezielle tribologische Anwendungen auf Bauteile und Komponenten übertragen werden können. Der Transfer der Ergebnisse erfolgt direkt durch die drei beteiligten Forschungsstellen IWS, IPA und BAM sowie über die bewährten Instrumente der Forschungsvereinigung EFDS. Bereits jetzt sind durch die Verbreitung der Ergebnisse auf Messen und Konferenzen sowie Publikation interessierte Firmen mit konkreten Problemstellungen an die Projektpartner herangetreten. So erfolgten bereits Bemusterungen mit den neuen Schichtsystemen auf Kundenteile. Für das im Projekt aufgebaute Tribometer mit Erfassung der Partikelemission im Vakuum hat es ebenfalls erste Beauftragung durch Unternehmen mit speziellen Fragestellungen zu Verhalten bestimmter Materialpaarungen gegeben. In der folgenden Tabelle sind die bereits erfolgten oder noch anstehenden Maßnahmen zur Verbreitung der Ergebnisse in die Wirtschaft aufgelistet.

|               | Zeitraum     | Maßnahme                                                                                                                                                                | Ziel/Bemerkung                                                                                                                          |
|---------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
|               | halbjährlich | Beratung des projektbegleitenden<br>Ausschusses                                                                                                                         | Abstimmung der Tests mit realen Kom-<br>ponenten/Bauteilen                                                                              |
| :011)         | laufend      | Veranstaltungen des Industriever-<br>bundes "Reinraumtaugliche Werk-<br>stoffe" (IPA)                                                                                   | Bekanntmachung der Forschungsergeb-<br>nisse in der Branche der Reinraumtech-<br>nologie                                                |
| 009 - 06/2    | laufend      | Beratungsgespräche bei Anfragen<br>innerhalb des Nanotechnologie-<br>Innovationsclusters "nano for pro-<br>duction" (IWS)                                               | Einbeziehung der neuesten For-<br>schungsergebnisse in Lösungsvorschlä-<br>ge bei konkreten Kundenanfragen an<br>das Innovationscluster |
| aufzeit (03/2 | 09/2010      | Vortrag auf 12th International<br>PSE-Conference: "A systematic<br>study of friction and wear behav-<br>iour of DLC coatings under various<br>testing conditions" (IWS) | Bekanntmachung der Forschungsergeb-<br>nisse zu bei Beschichtern und Schicht-<br>anwendern                                              |
| id der L      | 04/2011      | Ausstellung auf Hannovermesse<br>Industrie, Fraunhofer Gemein-<br>schaftsstand Oberflächentechnik                                                                       | Kontaktanbahnung zu potenziellen Inte-<br>ressenten an vakuumtauglichen tribolo-<br>gischen Beschichtungen                              |
| währen        | laufend      | Pressemeldung "Partikelemsission<br>unter Vakuumbedingungen" auf<br>Homepage des Fraunhofer IPA                                                                         | Bekanntmachung einer neuen Apparatur<br>und Methode für industrielle Anwender                                                           |
|               | laufend      | Lehrveranstaltungen des Instituts<br>für Oberflächentechnik und Ferti-<br>gungstechnik der TU Dresden                                                                   | Vermittlung der Forschungsergebnisse<br>an zukünftige Ingenieure                                                                        |
|               | 10/2011      | Abschlussbericht und Poster                                                                                                                                             | Zusammenstellung der Forschungser-<br>gebnisse                                                                                          |
| hluss         | 09/2011      | Vortrag auf Jahrestagung der Ge-<br>sellschaft für Tribologie<br>(IWS+BAM) "Tribologie und An-<br>wendung trocken laufender ta-C<br>Schichten"                          | Verbreitung der Forschungsergebnisse<br>in der Tribologie-Community und indus-<br>triellen Anwendern                                    |
| Projektabsc   | 10/2011      | Vortrag auf Vakuum-Beschichtung<br>und Plasma-Oberflächentechnik<br>V2011, Dresden, "Kombinierte<br>ta-C/MoS2-Schichten für vaku-<br>umtribologische Komponenten"       | Verbreitung der Forschungsergebnisse<br>in der Beschichterszene und Anwender<br>von PVD-Technologien                                    |
| nach          | 10/2011      | Vortrag auf DGM-Tagung Friction,<br>Wear and Wear Protection, Karls-<br>ruhe, "MoS <sub>2</sub> /ta-C coating for Tri-<br>bological Applications in Vacuum"             | Verbreitung der Forschungsergebnisse<br>in der Tribologie- und Materialfor-<br>schungs-Community                                        |
|               | 2011; 2012   | mindestens eine Veröffentlichung<br>in Fachzeitschrift                                                                                                                  | Verbreitung der Forschungsergebnisse<br>in der Beschichterszene und Anwender<br>von PVD-Technologien                                    |