
Maintaining Fine-grained Code Metadata Regardless of Moving, Copying and
Merging

Christian R. Prause
Fraunhofer FIT

Schloss Birlinghoven
Sankt Augustin, Germany

christian.prause@fit.fraunhofer.de

Abstract

Source code metadata on a file-level granularity is too
coarse for certain applications. But fine-grained metadata
(e.g. line-by-line authorship) easily gets lost due to changes
like merging, moving or copying code. Enabling metadata
to survive code evolution provides valuable insights into
program source code. This helps developers to understand
the sources and opens up opportunities for advanced tools.

We present a concept that utilizes different search heuris-
tics to identify probable ancestors of source documents, and
pair this with clone detection to locate origins of inserted
code. Arbitrary kinds of metadata can then be linked to code
sections and be preserved automatically while code evolves.
We evaluate our approach using code from the Hydra and
FreeCol projects, and sketch prospective applications.

1. Introduction

Metadata is data about other data. While metadata is
structured in a machine readable way, the data it is about
may be of an arbitrary kind in any media. Metadata provides
a context for data and is used to facilitate its understanding.
Metadata may include descriptive information about context,
quality and condition, or characteristics of the data, and can
be recorded with high or low granularity.

Code metadata is data about source code. Such metadata
would typically include descriptions of the content (e.g.
name, size, type, ...), author (developer) and creation date
of a source item; usually a file. But often code is developed
collaboratively and evolves over years. Pieces of a collec-
tively created source entity (be it a file, function or comment)
have entirely different historical contexts. We cannot lump
together everything at entity level granularity because we
would not be able to eliminate obsolete information later.
Here code metadata with a higher, sub-entity granularity is
required. Such fine-grained metadata is also called markup.

For example, identification of expertise in software code
is an important problem. Origin analysis and ownership
determination are hence important aspects. Knowing where

code came from and who was involved in its genesis is
considered a huge point of interest [1].

Yet the origins of code become blurred as code evolves.
Simple renaming (or moving) of an artifact is easy to detect,
as is detecting changes in an artifact. But renaming plus
changing is not [2]. It is not sufficient to look at the evolution
of a single file. Likewise the picture is incomplete when
neglecting parallel developments in branches. Data from
some versioning systems (like CVS) even lacks change set
information of files that changed at the same time. By
not providing information on where a file came from, i.e.
what previous names it had, some revision tools further
complicate preprocessing steps (Section 2).

In consequence we present a concept (Section 3) that
treats past and present code files alike, ignoring their names.
Instead, we construct an all-encompassing unique version
history. This enables fine-grained metadata capable of car-
rying arbitrary information, e.g. the original author of code,
but also semi-automatically or manually generated metadata.

A high-level description of an algorithm with seven pro-
cessing steps is given. The algorithm harnesses a line-based
Levenshtein [3] distance function to reconstruct editing
operations between two revisions, a search for the nearest
neighbor of an artifact (Section 4), and a clone detection to
enable transferring of markup of copied code (Section 5).

After that we provide facts and figures in Section 6. We
start with a description of the characteristics of two projects:
Hydra, a multi-national research project, and FreeCol, an
open-source game. Code from these projects is then used
as test corpus for evaluating our tool. Finally, we relate our
work to other works in the field (Section 7) and conclude
with Section 8, where we sum up and present future work.

A note on the nomenclature in this paper: We use the word
artifact to refer to one specific revision of a source code file.
Artifacts are kept in a database that is independent of the
revision repository; except for the fact that source code is
copied from the repository to the database. To clarify the
distinction between both stores, we speak of the database
when we mean the store where artifacts (also including their
respective metadata) are held, while repository denotes the

2009 Ninth IEEE International Working Conference on Source Code Analysis and Manipulation

978-0-7695-3793-1/09 $25.00 © 2009 IEEE

DOI 10.1109/SCAM.2009.20

109

2009 Ninth IEEE International Working Conference on Source Code Analysis and Manipulation

978-0-7695-3793-1/09 $26.00 © 2009 IEEE

DOI 10.1109/SCAM.2009.20

109

Authorized licensed use limited to: Fraunhofer-Informationszentrum Raum und Bau. Downloaded on November 4, 2009 at 01:20 from IEEE Xplore. Restrictions apply.

version control repository where source text comes from and
that developers work with.

2. Crude Change Information

Source code stored in a revision repository is managed in
two dimensions: space (code in diverse directories and files)
and time (evolution of each file from revision to revision)
[4]. Versioning tools like Subversion help navigating through
this space in discrete steps. Many applications slice the space
either vertically, which means looking at the software con-
figuration at one discrete moment in time, or horizontally,
which means looking at the evolution of an artifact.

Even without branches that add further dimensions, both
slicing approaches are limited. Without time information, on
the one hand, it is impossible, for instance, to determine by
whom, when or why code was introduced into the repository.
On the other hand, evolution information is incomplete
when ignoring parallel developments in other parts (meaning
in other files or branches) of the software. For a deeper
understanding a different view is necessary.

Further problems arise depending on the versioning tool
and its correct usage. Subversion does provide the original
name of a file when the file was renamed with Subversion’s
rename facility, but only then. CVS does not record file
name changes at all, which leads to misinterpretations [5].
For example, Subversion’s blame command is useful when
origins of code are needed. It annotates each line of code
with its respective author and since when it is there. But
if two developers use different indentation characters (space
vs. tab characters) and their IDE automatically reformats
code, Subversion is mislead. Also, the command relies on
file names and has problems when a file is renamed without
indicating that to Subversion. It is inevitable to deal with file
name changes to get correct results. If that is not guaranteed
then preprocessing is required.

Still, even if renaming is dealt with, if one developer
merely merges files or branches then merge results are
completely attributed to the new revision. Origins of the
code, which may be in some other file written a long time
ago, are neglected. This is especially problematic as large
commits are often merges [6]. Even without merges, simply
renaming a file results in all code being attributed to the
developer who renamed the file.

Atomic commits combine several modifications to differ-
ent files into one change set. This ensures the coherence
of a logical change with its local manifestation in source
files. If not supported by the versioning tool, again change
information must be preprocessed to find the change sets
first. Based on change set information and using the informa-
tion retrieval vector model, methods for distinguishing code
moves from true additions and deletions exist [7]. However,
knowing that code was moved without recognizing the actual
change impact on code is not enough.

What happens to code that was deleted at some time, and
at some later time is brought back into the current version
of code? Undoing changes of a previous revision with a new
revision is a problem when looking only at change sets.

Assume that the problems of origin detection are solved,
this still does not allow to add fine-grained metadata to code.
The blame command, for example, determines author meta-
data from the revision since when code is in the repository.
Adding arbitrary metadata to code would only be possible by
linking it to the origin revision. Selectively adding metadata
only to parts of the code or only to revisions after the one
with the first appearance of the code is impossible. A method
for carrying fine-grained metadata over from revision to
revision — no matter in which revision the metadata was
first added — is needed.

Therefore, it is necessary to not only monitor the evolution
of individual artifacts. Also, the origins of mutations on a
sub-artifact/code-text level that developers apply to the code
may not be neglected. To overcome the limitations first a
new view on source evolution is required. In this view we
consider the inheritance relations between source artifacts
and how they bequeath code to each other. But this space is
much more complex.

3. Fine-grained Code Metadata

We restructure the change space to treat all artifacts
equally; no matter if the artifact is in a different branch,
obsolete or renamed. New structure is given to this space
by a tree graph based on each artifact’s ancestor relation
to another artifact. This structure is needed so that artifacts
can inherit fine-grained metadata from their ancestors. Dif-
ferences to this ancestor are either inherited from further
artifacts, or are new to the artifact and the whole code base.
Before presenting an algorithm for passing on metadata, we
first present a way for storing it.

3.1. Code Metadata

We want to have additional metadata associated with areas
of source code. Artifact-level granularity, where metadata is
linked to an entire artifact, would be too crude. We therefore
store metadata in markup layers that invisibly (meaning
stored somewhere else) overlie plain text source code. Every
single character is thus associable with additional informa-
tion of any kind and amount.

An example of fine-grained code metadata that we use
throughout this paper is a reference to the original author,
who added the respective code to the repository. Author
information is cheap to generate automatically from commit
logs. But it is helpful, too, because implementation expertise
can be derived from it [8]. A practical advantage of author
metadata is that Subversion also provides it and hence results
are comparable. Of course, using other kinds of metadata is

110110

Authorized licensed use limited to: Fraunhofer-Informationszentrum Raum und Bau. Downloaded on November 4, 2009 at 01:20 from IEEE Xplore. Restrictions apply.

Figure 1. Metadata (e.g. author) as obtained by our tool (left) and svn blame (right) for visual comparison

possible. Saving metadata linked as markup to code yields
the ability to keep it even if code is moved to a different
artifact. It complements artifact-level log information that
describes the history of the artifact. Figure 1 shows code
with author markup. Different authors renamed, modified,
and copied code from another source file. Additionally, one
author removed code in one revision which is later reinserted
by another author, undoing the previous change. Subversion
outputs author/revision information, too, but is less accurate.

Markup sticks to the code it was attached to. When
code moves around the markup moves with it. If code gets
duplicated its markup is so, too. Analogously the markup
disappears when code is deleted. Markup is edited in the
same way as the source code.

3.2. Passing on Markup – an Algorithm

Versioning systems like popular CVS or Subversion only
make weak assumptions about the artifacts they manage.
They only assume that objects they version are files, and that
updates are committed to the repository in short intervals
to be as precise and small as possible. Obtaining fine-
grained and useful change information therefore involves
heavy preprocessing steps [9].

We present an algorithm for enhancing artifacts so that
artifact evolution in the context of other evolving artifacts is
reconstructed from versioning system data. The basic idea
is that each artifact has one ancestor from which it inherits
everything except for some minor modifications that either
come from other artifacts or are all new. Inserting an artifact
into the tool’s internal database means to copy the artifact’s

plain text from the repository, and then refining it with
markup before it gets stored. This process is made up of
seven steps:

1) Get artifact’s plain text from the revision repository.
2) Find the most closely related artifact in the database to

minimize the number of insert operations. This artifact
becomes the new artifact’s ancestor.

3) Determine an edit script (or patch) that transforms the
ancestor into the new artifact.

4) Apply the patch to the source code and its markup.
5) For partial strings inserted by the patch determine their

origins to maintain markup of copied code.
6) (If applicable) generate new markup for strings where

no origin was found; this is new text.
7) Add the new artifact to the database.
We briefly go through all of the algorithm’s seven steps in

the next paragraphs to give you a better impression of what
they do. Steps 2) and 5) are more complex and are therefore
explained in the two following sections.

3.2.1. Step 1: Retrieve the Artifact. Retrieving the next
artifact from a revision repository is straightforward: Just
go through all revisions. For each revision’s changes identify
changed files and iterate through all files. When the file does
not match a certain filter, e.g. if it is not a Java file, insertion
is skipped.

3.2.2. Step 2: Find closely related Artifact. This will be
the artifact’s ancestor. The edit or Levenshtein distance is a
metric for the similarity of strings [3]. We employ a modified
Levenshtein edit distance that adds or removes entire lines of

111111

Authorized licensed use limited to: Fraunhofer-Informationszentrum Raum und Bau. Downloaded on November 4, 2009 at 01:20 from IEEE Xplore. Restrictions apply.

code, and assigns different costs to edit operations depending
on the number of characters in a respective line.

Finding a close relative of an artifact is a computationally
expensive problem due to the sheer amount of comparisons
(see Section 4). We discuss this in the next section and
present heuristics that find an approximate result with sig-
nificantly less comparisons than an exhaustive search.

3.2.3. Step 3: Determine Edit Script. An edit script pro-
vides a list of insertions and deletions that — when applied
in the correct order — transforms one string into another.
The script usually denotes the shortest (or least expensive)
such list of edit operations. For reasons of computational
complexity we only allow insertion and deletion of an entire
line of code. The edit script reconstructs the developer’s
editing operations.

3.2.4. Step 4: Apply Edit Script. Next, the developer’s
reconstructed edit operations are applied to the nearest
neighbor (ancestor) from Step 2. This effectively transforms
its text into the text of the new artifact. But more importantly
the edit script also updates the artifact’s markup so that the
markup of the new artifact is again consistent with its text
content. Markup disappears when characters are deleted, or
moves when the characters it is attached to move.

3.2.5. Step 5: Handle Copied Code. If text is inserted by
an edit operation this text does not yet have markup. We try
to find out if this code is cloned from another place and, if
yes, also clone the missing markup from there. The details
are addressed in Section 5. This step handles maintaining
code markup if code is copied.

3.2.6. Step 6: Markup New Code. Code is considered
totally new if it was not cloned, i.e. no origin from where
it has been copied was found. These areas are enriched
with newly inserted markup. If possible, new metadata can
be generated and replace markup of the new areas. In our
example where different authors are marked we would assign
the current revision’s author from the version repository’s
log to the code.

3.2.7. Step 7: Add to Database. Finally, the artifact is
added to the database. At the same time its text is split into
lines to update the inverted index of steps two and five.

4. Finding an Artifact’s Ancestor

This section describes how we find a closely related
artifact in the database for a given new artifact from the
revision repository. The aim is to find the artifact in the
database that is most closely related to the new artifact,
because the amount of work for subsequent processing steps
is smaller the more closely both artifacts are related. A better

match here means less work in subsequent processing steps.
This also reduces the chance to make a mistake in the later
step of finding the origins of code. Finding the best matching
artifact is equivalent to solving the nearest neighbor problem
for a Euclidian similarity metric in a high dimensional space.

4.1. Artifact Distance Metric

Before searching for a nearest neighbor we need to define
the distance between two artifacts. The search task is then
to minimize this distance. In information retrieval a typical
distance model is the vector model that compares term
frequencies in two texts (or strings) through vector multi-
plication. This distance aims at semantic or deep similarity.

The similarity of the surface representation — the string
itself — not its content is more interesting here because
developers write, copy and move lines and characters, not
necessarily whole semantic code blocks. This is also the
reason why we decided against using tree edit distances.
For plain strings the edit or Levenshtein distance is a metric
based on the number of edit operations (insertions, dele-
tions and substitutions of single characters) that transform
one string into the other. Computation of the Levenshtein
distance of strings A and B has space complexity O(|A|)
and time complexity O(|A| × |B|) [10]. Assuming that two
artifacts under comparison are of equal length, this algorithm
is O(|A|2) = O(|B|2). This is problematic with long texts
or if calculating lots of distances.

Cleverly devised optimizations exist for approximating
character-level edit distances. But we also need the edit
script. Therefore we simplify the distance computation by
not editing on character granularity, but substring granu-
larity. Some characters like the newline character appear
very regularly in source code and make a good separator
for substrings, but any other character (like ’;’) would also
function. A line also has some limited expressiveness on
the amount of functionality in code; remember infamous
lines of code (LOC) metric. We therefore approximate the
Levenshtein distance by splitting a full source text into lines.

We allow insertion and deletion of full lines only. The cost
for inserting a line equals its length, while deleting costs half
the line’s length. Substitutions are permitted to change the
indentation of lines at a reduced cost. This leads to edit
scripts somewhat similar to the ones known from common
diff tools, and is a sufficiently fast metric for determining
distances for the nearest neighbor problem.

4.2. Nearest Neighbor Heuristics

In recent years many solutions to the nearest neighbor
problem were developed, but they all suffer from poor
performance in high dimensional spaces [11]. The set of pos-
sible strings is such high dimensional space. A correct result
is not required for our concept, though, and an approximate

112112

Authorized licensed use limited to: Fraunhofer-Informationszentrum Raum und Bau. Downloaded on November 4, 2009 at 01:20 from IEEE Xplore. Restrictions apply.

Occurrences of each line (w/o leading &
trailing whitespace) in different artifacts, i.e.
low number means high distinctiveness

Percentage of different
lines from a total of x
unique different lines
159,580 86,621

1 occurrence 30.3% 5.4%
2 occurrences 15.2% 4.5%
3 occurrences 12.5% 3.8%
4 to 9 occurrences 26.7% 17.9%
10 to 99 occurrences 14.0% 54.0%
100 to 10,000 occurrences 0.1% 14.5%
10,000 or more occurrences (abs.) 7 (abs.) 15
247,356 (or 962,972 resp.) (abs.) 1 (abs.) 1

Table 1. Line recurrences in Hydra/FreeCol artifacts

result suffices. There is no need to do an exhaustive search
or to guarantee that the result is correct. An important aspect
that further simplifies the neighbors problem is that only one
result is needed; not many or even a pairwise similarity of all
artifacts. Next, we present heuristics that are used to reduce
the number of artifact comparisons.

4.2.1. Similar Names. Artifacts in a revision repository
are files and files have a name. From this observation we
derive three heuristics: There is a chance that the ancestor
of an artifact has the same name (SMNAME). Among these
the most recently added one is very a probable candidate
(SNGLPRDCSSR). Other candidates are files with similar
names, especially with those names that differ only in their
directory prefix (SIMNAME). It is obvious that cost C(x)

C(SNGLPRDCSSR) ≤ C(SMNAME) ≤ C(SIMNAME)

and for recall R(x)

R(SNGLPRDCSSR) ≤ R(SMNAME) ≤ R(SIMNAME)

hold. So we must trade cost off against recall.

4.2.2. Inverted Index Heuristic. It is possible to seriously
reduce the set of potential ancestors for the artifact with an
inverted index [12]. We build an inverted index where we
store the lines of all artifacts (see Section 5.1). Each line is
linked to the artifacts in which it appears. Next, only those
artifacts that share similar lines need to be compared.

Source code of computer programs tends to repeat trivial
lines, i.e. lines that are easy to write or are automatically
generated by an IDE. In C-like languages, a typical example
of a highly recurrent line is “}” (with an arbitrary amount
of white-space) or the blank line. Actually, only those lines
with an occurrence count 1 < coccur(x) < n for some small
n are suitable. Therefore, trivial lines do not provide good
hints on what artifacts might be closely related.

But then source code also has lots of lines, which occur
rather seldom (see Table 1). A line with only a single occur-
rence in other artifacts has much expressiveness. Therefore,
we first pick lines that are very characteristic. Of course,

such line can be so distinctive that it does not appear in any
other artifact, which means that it is useless, too.

4.2.3. Tree Search Heuristic. All artifacts in the database
(except for the first one) have an ancestor. Adding artifacts
one by one to the database implies that all artifacts are
integrated in a single finite tree structure. Each leaf (or node)
of the tree thus represents one artifact.

The TREESEARCH heuristic exploits this structure: It
starts out at the root of the tree. This is the current search
node. Then it compares the distances between the search
node and its children. If the distance between search node
and new artifact is minimal then the artifact is added to this
node. Otherwise the search continues with the child that has
the minimum distance to the new artifact. Figure 2 illustrates
how the TREESEARCH finds a node in three iterations using
eight comparisons in total.

5. Filling the Gaps

In the previous section you saw how we find the nearest
neighbor for an artifact among all other known artifacts.
After that we create an edit script that transforms a known
artifact into a new one. We apply the edit script. Strings it
inserts are without metadata markup. Such string may either
have been copied from some other artifact, or it is all new.
We call inserted areas (markup) gaps as there is no markup
assigned to them yet. Dealing with gaps is twofold:
• decide if gap contents are all new, and
• if not, determine where the string was taken from.
Every string for which we cannot determine an origin for

is assumed all new. If there is more than one possible origin
for a line then its context should be honored.

5.1. Line Index

The INVERTEDINDEXn heuristic (Section 4.2.2) relies on
an inverted index. Before continuing with the description of
how markup gaps are filled, we explain further aspects of
the Line Index in this section. The reason is that the same
index is used to find the origins of a line of code in a gap.

Figure 2. Three iterations of a tree search

113113

Authorized licensed use limited to: Fraunhofer-Informationszentrum Raum und Bau. Downloaded on November 4, 2009 at 01:20 from IEEE Xplore. Restrictions apply.

String xoccur t(x)

new Limbo(".", new File(argv[0])); 1 0.999
new File(directory).mkdirs(); 93 0.992
return (java.lang.String) org.ap[...] 143 0.987

final String name = owlModel.get[...] 222 0.980
import java.io.IOException; 1069 0.907

*/ 20612 0.153
} 247356 0.000

Table 2. Examples for normalized distinctivenesses

There are advanced methods for identifying copied code
that rely on fuzzy algorithms to abstract from superficial
changes. As well on a crude file level as on the finer
code level [13]. Different approaches were researched and
developed, also including tree models (AST) that identify
change types and find similar code [14].

Copy detection always involves a transformation step to
bring code into an internal representation [15]. We chose a
simple method that only omits leading and trailing white-
space when determining origins of a line. With many
modern programming languages indentation is automatically
changed by the IDE when code moves to a new code block.
All remaining formatting of a line is considered the line’s
fingerprint and helps distinguishing one line from another.

We do not want to find origins for trivial lines because
these lines are rather re-written anew every time instead
of being copied. A line is considered trivial if its t-value
(normalized distinctiveness) is less than threshold T :

t(x) = 2−
xoccur

|A| < T = 0.55

We begin with the number of appearances divided by total
number of artifacts xoccur

|A| > 0. Here y = 1 − xoccur

|A| with

−∞ < y ≤ 1 so that
{

y → 1 for rare
y → −∞ for frequent

}
lines.

Hence z = 0 < 2y/2 = 2y−1 ≤ 1 with z → 0 for frequent
lines and z → 1 for rare lines.

The threshold T = 0.55 was chosen by looking at the dis-
tinctivenesses of lines. This corresponds to a distinctiveness
of 0.85, which means the line has about 15 appearances in
100 artifacts. Though the optimal value varies for a different
source corpus, we hold the view it need not be adapted
individually. Table 2 lists some distinctiveness examples of
different lines.

5.2. Origins of Copied Code

When the edit script transforms an already inserted artifact
into a new one it inserts code at several positions, thereby
creating several disjunct gaps. We treat the gaps separately
as this reduces the computational effort when dealing with
each of the smaller gaps.

In each gap we need to find a mapping between lines
in the new artifact and lines in old artifacts. We identify

Figure 3. Selecting origin by size of footprint

the individual lines in the gap and, for each line, retrieve
possible origins from the inverted index. Next, we let each
of the coverings grow to also include the next/previous line
in the gap, but only if the mapped original line can also
grow by consuming its successor/predecessor. If two origin
mappings interfere the bigger one prevails.

In Figure 3 you see four potential sources for content of
a gap. Although “Source 1” has a match it is overridden by
“Source 2” because this is a longer mapping. The second
line of the mapping from “Source 2” is in turn overridden
by “Source 4” because it is even longer. Notice that the
indentation of “Hello World!” does not matter.

In a final step when optimal covering was found markup
is copied from the identified origins. Code that has been
found to not have an origin is associated with newly created
markup if metadata can be generated automatically, e.g. from
author information of the Subversion log. Otherwise the user
can be requested to provide new metadata, or we leave the
markup gap open.

6. Evaluation

A comparable method for maintaining code metadata on
a similar level of granularity is not known to the authors.
When considering code authorship Subversion provides at
least some comparable functionality with its blame method.
Therefore, besides reporting on the nearest neighbor search
and general findings from applying our tool to the two
repositories, we compare our approach to Subversion’s
svn blame.

6.1. The Source Corpus

In this section we characterize the projects where we took
code from for our analysis. We make a point of that the
entire development history beginning from the first revision
is available, that several developers are involved, that the
code base is not too small/large, and that the projects differ
in their nature (not both Free/Libre Open Source Software
(FLOSS) projects).

114114

Authorized licensed use limited to: Fraunhofer-Informationszentrum Raum und Bau. Downloaded on November 4, 2009 at 01:20 from IEEE Xplore. Restrictions apply.

6.1.1. Hydra Subversion Repository. Hydra1 is a research
project co-funded by the European Commission. It develops
a middleware for networked embedded systems. The project
duration is four years and involves several developers from
commercial and scientific partners from various European
countries. At the end of the project sources will be published
open source. Yet for now, Hydra has different motivational
and social characteristics than a typical FLOSS project [16]:
there are no volunteers, no co-developers, no users besides
the developers themselves, and developers get paid for their
work and know each other from face to face.

The results presented in this section are based on the
source corpus in the Hydra development repository after
30 months since project start. It encompasses 350,000 Java
Source Lines of Code (SLOC, excluding white-space and
comment only lines). At the time of study the repository
contained more than 1600 revisions. Hence, an average of
214 SLOC are added with each commit.

6.1.2. FreeCol Subversion Repository. FreeCol2 is an open
source game project at SourceForge.net3. 57 developers have
contributed to it since 2002 when Java development replaced
more and more of its original C code. It was project of the
month at SourceForge in February 2007.

The code base is mature and well-established, and the
development team is large and active. 70% (or 114KLOC) of
its 123KLOC are Java code4. The repository contains over
5300 revisions. Thus the average commit adds 21 SLOC,
which is only one 10th of Hydra. Compared to Hydra this
can mean that commits are finer and less work happens
between two commits.

6.2. Analysis of Neighbor Search Heuristics

The closer the distance between a new artifact and its
supposed ancestor, the less and smaller string insertions by
the edit script. This reduces the chance of making a mistake
during subsequent clone detection. As the exhaustive search
is too expensive, we introduced several heuristics (Section
4.2) that do not guarantee finding the nearest neighbor, but
deliver good results with significantly less effort.

For the analysis of the different heuristics we added 7500
Hydra (or FreeCol, respectively) artifacts to the database.
When adding a new artifact to the database we ran all
different heuristics and the exhaustive search in parallel.
After that we checked which heuristics found the same
artifact as the exhaustive search (or another one with the
same distance, of course). Due to the exhaustive search it
was not possible to add all artifacts without spending days
waiting for results.

1. http://www.hydramiddleware.eu/news.php
2. http://www.freecol.org/
3. http://sourceforge.net/projects/freecol/
4. http://www.ohloh.net/p/3938/analyses/latest

Table 3 lists the results for Hydra/FreeCol: Hits is the
number of correct nearest neighbors found by the heuristic,
Recall is this number divided by the total number of inser-
tions, Badness is the average factor by which the suspected
nearest neighbor’s distance is off of the distance to the
optimal one, and Comparisons is the average number of
comparisons done per insertion.

Relying on the inverted index is most promising. But
there is only a small increase in the accuracy of INVERTED-
INDEXn for greater sample sizes. We studied what sample
sizes are required to include the correct result and found that
INVERTEDINDEXn becomes worse than random sampling
for big sample sizes. It seems that lines with medium
certainties are even misleading. Hence, it does not make
sense to stick to the inverted index heuristic alone as the
tradeoff between precision and speed gets unfavorable soon.

It is possible to increase hit rates by combining different
heuristics. We analyzed correlations of heuristics’ hits and
misses. If it were possible to find negatively correlated
heuristics then we could run them in parallel with a good
chance to achieve better results. As expected the INVERTED-
INDEXn heuristics correlate strongly with about 0.5 (for
very different sample sizes, e.g. INVERTEDINDEX1 and
INVERTEDINDEX200) to 0.95 (e.g. INVERTEDINDEX100
and INVERTEDINDEX200). The name based heuristics
have a strong correlation of 0.95 for SNGLPRDCSSR and
SMNAME, and about 0.45 for SMNAME/SNGLPRDCSSR
and SIMNAME. Correlations with INVERTEDINDEXn are
stronger for smaller n ≤ 10 (∼ 0.7) and weaker for
bigger n ≥ 50 (∼ 0.3). For Hydra all correlations are non-
negative, though, and we were unable to find a correlation
between TREESEARCH and any other heuristic. For FreeCol
there is a correlation of about -0.2 between TREESEARCH,
and INVERTEDINDEXn and name based heuristics. Running
different heuristics in parallel does not guarantee better
results, but INVERTEDINDEX100 and SNGLPRDCSSR seem
to work sufficiently well together. We found a better recall
for TREESEARCH (similar to that for FreeCol) for Hydra
revisions until about revision 1000, but did not further
investigate this heuristic because of its bad database access
characteristics.

6.3. Overall results

Figure 1 shows the results of applying our tool to a test
repository. The code was moved to another file, recovered
from an obsolete revision, modified by different authors,
merged with contents from other files and indentation was
changed. As you have seen before, these are the features that
our tool can handle. Hence, this leads to different results
between our approach and Subversion.

We compared the results for all non-obsolete artifacts in
Hydra (revision 1653): Current Hydra artifacts total 927,305
lines including white-space and comments. For 336,965 lines

115115

Authorized licensed use limited to: Fraunhofer-Informationszentrum Raum und Bau. Downloaded on November 4, 2009 at 01:20 from IEEE Xplore. Restrictions apply.

Hydra FreeCol
Heuristic Hits Recall Badness Comparisons Hits Recall Badness Comparisons
TREESEARCH 149 2% 91.5 18.1 2333 31% 132.9 94.3
SNGLPRDCSSR 1533 20% 96.8 1.0 1307 17% 161.2 1.0
SMNAME 1612 21% 91.1 2.0 7144 94% 3.1 27.2
SIMNAME 4360 57% 1.8 7.1 7242 95% 1.1 43.8
INVERTEDINDEX1 4628 61% 4.9 1.0 5977 78% 9.6 1.0
INVERTEDINDEX2 5054 66% 3.1 2.0 6713 88% 2.3 2.0
INVERTEDINDEX5 5414 71% 1.7 4.9 7107 93% 2.2 5.0
INVERTEDINDEX10 5624 74% 1.4 9.8 7182 95% 1.2 9.9
INVERTEDINDEX20 5790 76% 1.1 19.0 7220 95% 1.1 19.7
INVERTEDINDEX50 5995 79% 1.1 48.0 7253 95% 1.1 24.3
INVERTEDINDEX75 6092 80% 1.1 70.4 7275 96% 1.1 50.9
INVERTEDINDEX100 6150 81% 1.1 86.3 7285 96% 1.1 70.2
INVERTEDINDEX200 6299 83% 1.1 101.5 7315 96% 1.1 87.7
All combined 6307 83% 1.1 - 7588 99% -

Table 3. Comparison of nearest neighbor heuristics

or 36% a different author is reported (of 33 million charac-
ters 12 million or 37% did not match). First, this number
appears quite high. Subversion does not detect clones, and as
20% to 30% clones have been reported for projects [17] this
can be the primary reason of the differences. We manually
checked results for sanity and found that about 14% of the
code are auto-generated from WSDLs using Axis and that
most areas are therefore attributed to the same other who
checked in the first such artifact. Besides this we identified
many files that had been moved around without notifying
Subversion so that the history was lost.

The average distance between two artifacts is 2172 char-
acters; or 2231 characters if only non-obsolete artifacts are
considered. 57% of all artifacts are non-obsolete artifacts,
which means that many artifacts are still in their early
forms. A high number of 1763 artifacts (40%) have a
distance of 0 to their nearest neighbor. We attribute this
phenomenon mainly to reorganizations of the repository and
to branching, which leads to new file names in subversion.
This is supported by the observation that the number is
almost cut in half (949 or 21%) when only non-obsolete
artifacts are considered. The average number of different
authors per artifact is 4.49, or 3.58 if the authors of trivial
lines are not considered. Trivial lines are not copied if not in
the context of a non-trivial line. Thus the difference indicates
that cloning of non-trivial lines was successfully identified.
If obsolete artifacts are not considered we get 4.37 and 3.56
respectively. Obsolete artifacts are early artifacts and their
history is therefore not so colorful. In Hydra the two main
contributors for artifacts usually contribute 85% and 11%
(considering only non-obsolete artifacts: 86% and 9%) For
results from Subversion there is a shift even more towards
the main author. Obviously, there is strong code ownership
or not much collaboration.

Non-obsolete FreeCol artifacts total 269,981 lines
(9,603,912 characters) including white-space and comments.
For 88,848 lines or 33% a different author is reported

(2,955,080 characters or 31% did not match). This is
quite similar to the results for Hydra, so we also checked
manually. One major factor is that the multi-line license
information contained in each file is attributed to the same
author by our tool. But the biggest difference comes from
code reformatting that is not handled by Subversion.

In FreeCol (until revision 3173) the average distance
between an artifact and its parent is 1025 (483 for current
artifacts). There are 10581 artifacts of which 868 (or 8%) are
non-obsolete, thus artifacts have been revised several times.
690 artifacts are not different from their ancestor (branches
and renames) and 227 are not yet obsolete. The average
document has 6.66 contributors (6.35 excluding trivial lines).
When including obsolete artifacts we get 7.44 (7.03 exclud-
ing trivial lines) contributors. This could mean that either
track of some origins was lost or that a few individuals
reworked the code. Two main developers normally contribute
65% and 18% to an artifact (59% and 21% for non-obsolete
artifacts only). The average document is moved, renamed or
branched 4.24 times.

6.4. Threats to Validity and Lessons Learned

We did extensive testing to verify that our implementation
does what it should do: we have unit tests, a test repository
with chosen features (like file renaming, code copy, code
revival, indentation changes) and manually studied results
for two true repositories Hydra and FreeCol. The problem
is that defining what correct behavior is, is difficult: We built
a system capable of efficiently finding a nearest neighbor,
but we cannot guarantee that this is the one the user based
his new version on. This information is irrecoverably lost
due to the way common versioning systems work. On the
one hand you do not want to see trivial lines attributed to
the same author. For example, the first author that introduces
the line “}” into an artifact should not always be recorded
as the author of this line. So the line has to be recognized

116116

Authorized licensed use limited to: Fraunhofer-Informationszentrum Raum und Bau. Downloaded on November 4, 2009 at 01:20 from IEEE Xplore. Restrictions apply.

as trivial. On the other hand considering too many lines as
trivial would not detect code areas that are moved from one
artifact to the other. We solve this with an occurrence statistic
which is only a crude mechanism, but it is efficient and also
works for unformatted source passages like comments.

From looking at code snapshots (revisions) we cannot find
out if code was copied from somewhere else or if it was
written anew. Whenever results between Subversion and our
approach differ it is probable that Subversion errs, but there
is no guarantee that this holds true in all cases or that there
is not a third author involved that both tools did not identify.

Starting at revision 1928 (in FreeCol) a new developer
committed several revisions after reformatting with his IDE.
As opposed to Subversion our technique is able to cope with
resulting indentation differences. Yet it also has problems
with lines that are split into two.

Though it is bad practice to commit artifacts that can
be auto-generated, the Hydra repository contains several of
these. Auto-generated code has a tendency to look homoge-
neous, which means that there are few very distinctive lines
but lots of semi-distinctive ones, resulting in long search
times. Furthermore, until identified as trivial code, large parts
of these files will appear cloned and be attributed to the
developer who checked them in for the first time.

7. Related Work

If changes to the code were tracked in the IDE they could
immediately be applied to the markup as well. For example,
Omori and Maruyama propose to record edit operations
in the IDE, while the developer is working with the code
[9]. This approach provides perfectly accurate information
with ease. However, doing this is currently not feasible,
because often only an off-the-shelf version control system
like Subversion is available for obtaining the data. Addi-
tionally, depending on your organization it can be difficult to
convince developers to install and use such plug-ins. Imagine
multi-national research consortium with different developing
partners and flat hierarchies. Therefore we must recover
a fine-grained edit script from artifact snapshots instead
of recording changes as they happen. Robbes proposes to
use a change-based software repository integrated into the
IDE to overcome this limitation [18]. Same problem: such
repositories are not yet common. Similarly, the decision to
write a new tool instead of modifying an existing version
control system was a practical one, driven by the need to
analyze an existing repository in productive use.

Godfrey and Zou first analyze source code syntax to
obtain structured information (e.g. function names) and
fingerprints. From the fingerprints they infer merging and
splitting of source entities. Their semiautomatic approach
(user interaction is required) is similar to the one presented
here because it also uses fingerprints [2]. The difference,
however, is that we build the fingerprint from a sequence

of lines, ignoring semantic structure. Our aim is to recover
edit operations on a text level so we can maintain the code
metadata. Similarly Weißgerber and Diehl use a fingerprint
method to classify revision control transactions into refac-
torings and changes [19].

That is also why we do not use tree edit distances:
A tree edit distance is a metric that describes how one
tree can be transformed into another one. Tree editing is
interesting for observing the semantic evolution of code
because computer program source code has a strict syn-
tax and is thus transformable into an abstract syntax tree
(AST). This enables code reuse through finding code with
similar functionality [20], or tracking structural evolution of
functions by exploiting the observation that function names
change rather seldom [21]. But we need text edit operations.

To find the origins of possibly copied code we rely on
a very basic form of clone detection similar to the islands-
and-water metaphor of Cordy et al. [22]. Clone detection
is a research field of its own with many approaches (see
[17]) that increase efficiency and add fuzzy matching. For
purposes of this paper the inverted index is efficient enough,
though. While fuzzyness increases recall, the precision —
which is so crucial for our method — is probable to decline.

8. Conclusion

We have presented a concept for associating fine-grained
metadata with code. This is opposed to storing metadata on
a crude file-level granularity which loses information when
code is moved from one file to another. File-level metadata
also leads to obsolete information if code disappears from
a file but the file itself remains. Our tool considers parallel
branches of code, and “dead” code in artifacts that are no
longer active. It is aware of the full history of code and does
not lose information if an artifact temporarily disappears.
Character-based edit scripts allow keeping code metadata
synchronized with code while the code evolves.

A modified Levenshtein distance is employed to compute
distances between artifacts (i.e. whole source files) in order
to find closest relatives and generate short edit scripts. The
necessary nearest neighbor search is facilitated by search
heuristics, which we compared to each other. Code inserted
by the generated edit script is classified into code copied
from somewhere else (including deleted files), and new code.
It is essential to discriminate between these two kinds of
insertions. Our basic clone detection ignores indentation and
favors long consecutive blocks. We do not analyze changes
on a semantic level but on a character-based genetic one to
reconstruct the origins of (not reasons for) code mutations.

We have studied two projects of rather different natures:
an European research project and an open source game. The
evaluation shows that projects can be very different and that
we cannot claim representativeness of our results for other
projects. But we analyzed two quite different projects and

117117

Authorized licensed use limited to: Fraunhofer-Informationszentrum Raum und Bau. Downloaded on November 4, 2009 at 01:20 from IEEE Xplore. Restrictions apply.

showed that our approach has potential to provide valuable
insights into software source code.

In the future we are going to analyze the sources of other
projects. We will look for a way to combine our clone
detection technique with more advanced methods that use
code semantics or fuzziness. It should be possible to improve
recall and precision. Additionally, we want to use our
algorithms as an improved svn blame to make developers
statistically responsible for their code and hence reduce the
amount of cowboy coding in certain software projects, where
this is a problem [23]. And we might investigate something
like metadata based code Post-it notes.

We also want to pursue other areas of application. Using
our algorithm in the opposite direction, for instance, we
mark an area of code in an early revision of a file, and
see which parts survive and where they move. We plan to
apply the algorithm to less structured artifacts like human
language, e.g. texts in a versioned Wiki.

Acknowledgment

The research reported here was supported by the HYDRA
EU project (IST-2005-034891). Comments from anonymous
reviewers greatly improved this paper.

References

[1] O. Alonso, P. T. Devanbu, and M. Gertz, “Expertise identi-
fication and visualization from cvs,” in Proceedings of the
2008 international working conference on Mining software
repositories. New York, NY, USA: ACM, 2008.

[2] L. Zou and M. W. Godfrey, “Using origin analysis to detect
merging and splitting of source code entities,” IEEE Trans.
Softw. Eng., vol. 31, no. 2, pp. 166–181, 2005.

[3] V. I. Levenshtein, “Binary codes capable of correcting
deletions, insertions, and reversals,” Soviet Physics-Doklady,
vol. 10, no. 8, pp. 707–710, February 1966.

[4] D. Spinellis, Code Reading – The Open Source Perspective.
Addison Wesley, 2003.

[5] C. Thomson and M. Holcombe, “Correctness of data mined
from cvs,” in Proceedings of the 2008 international working
conference on Mining software repositories. New York, NY,
USA: ACM, 2008, pp. 117–120.

[6] A. Hindle, D. M. German, and R. Holt, “What do large
commits tell us? - a taxonomical study of large commits,” in
Proceedings of the 2008 international workshop on Mining
software repositories. ACM New York, NY, USA, 2008.

[7] G. Canfora, L. Cerulo, and M. D. Penta, “Identifying changed
source code lines from version repositories,” in International
Workshop on Mining Software Repositories. IEEE, 2007.

[8] J. Anvik and G. C. Murphy, “Determining implementation
expertise from bug reports,” in Proceedings of the Fourth
International Workshop on Mining Software Repositories.
IEEE Computer Society Washington, DC, USA, 2007.

[9] O. Takayuki and M. Katsuhisa, “A change-aware development
environment by recording editing operations of source code,”
in International working conference on Mining Software
Repositories. New York, NY, USA: ACM, 2008.

[10] R. A. Wagner and M. J. Fischer, “The string-to-string correc-
tion problem,” JournalACM, vol. 21, no. 1, 1974.

[11] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions,” Commun.
ACM, vol. 51, no. 1, pp. 117–122, 2008.

[12] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information
Retrieval. Addison-Wesley, 1999.

[13] H.-F. Chang and A. Mockus, “Evaluation of source code copy
detection,” in International working conference on Mining
Software Repositories. New York, NY, USA: ACM, 2008.

[14] B. Fluri, M. Wursch, M. Pinzger, and H. C. Gall, “Change
distilling: Tree differencing for fine-grained source code
change extraction,” IEEE Transactions on Software Engineer-
ing, vol. 33, no. 11, pp. 725–743, 2007.

[15] S. Ducasse, M. Rieger, and S. Demeyer, “A language indepen-
dent approach for detecting duplicated code,” in International
Conference on Software Maintenance. Los Alamitos, CA,
USA: IEEE Computer Society, 1999, p. 109.

[16] K. Crowston and J. Howison, “The social structure of free and
open source software development,” First Monday, vol. 10,
no. 2, February 2005.

[17] H. A. Basit and S. Jarzabek, “Efficient token based clone
detection with flexible tokenization,” in Proceedings of the
6th joint meeting of the European software engineering
conference and the symposium on Foundations of software
engineering. New York, NY, USA: ACM, 2007.

[18] R. Robbes, “Mining a change-based software repository,”
in International Workshop on Mining Software Repositories.
IEEE Computer Society Washington, DC, USA, 2007.

[19] P. Weißgerber and S. Diehl, “Identifying refactorings from
source-code changes,” in Proceedings of the 21st IEEE/ACM
International Conference on Automated Software Engineer-
ing. Washington, DC, USA: IEEE Computer Society, 2006.

[20] T. Sager, A. Bernstein, M. Pinzger, and C. Kiefer, “Detecting
similar java classes using tree algorithms,” in Proceedings
of the 2006 international workshop on Mining software
repositories. New York, NY, USA: ACM, 2006.

[21] I. Neamtiu, J. S. Foster, and M. Hicks, “Understanding
source code evolution using abstract syntax tree matching,”
in Proceedings of the 2005 international workshop on Mining
Software Repositories. New York, NY, USA: ACM, 2005.

[22] J. R. Cordy, T. R. Dean, and N. Synytskyy, “Practical
language-independent detection of near-miss clones,” in Pro-
ceedings of the 2004 conference of the Centre for Advanced
Studies on Collaborative research. IBM Press, 2004.

[23] C. R. Prause and S. Apelt, “An approach for continuous
inspection of source code,” in Proceedings of the Sixth
International Workshop on Software quality (WoSQ). New
York, NY, USA: ACM, 2008.

118118

Authorized licensed use limited to: Fraunhofer-Informationszentrum Raum und Bau. Downloaded on November 4, 2009 at 01:20 from IEEE Xplore. Restrictions apply.

