C-STRÖME
Material- und Energieströme des
nichtenergetischen Verbrauchs über den
Lebenszyklus
und CO₂-Minderung durch Produkte der
Chemischen Industrie
- Stand und Perspektiven

Band II: Einfluß des Einsatzes von Kunststoffen auf den Energiebedarf und die energiebedingten CO₂-Emissionen im Bereich der Wärmedämmung

im Auftrag von VKE und APME

Fraunhofer-Institut für Systemtechnik und Innovationsforschung (FhG-ISI)

Breslauer Str. 48, D-76139 Karlsruhe,

Tel.: +49-721-6809-0

Fax: +49-721-6809-272

e-mail: mw@isi.fhg.de

http://www.isi.fhg.de/german.htm

Frank Marscheider-Weidemann Jürgen Reichert

Karlsruhe, Juni 1999

Inhalt:

		Seite
	Summary	1
	Zusammenfassung	3
1	Ziel der Untersuchung	5
2	Methodik	6
3	Dämmstoffproduktion	9
4	Energieeinsatz zur Produktion der Dämmstoffe	10
	 4.1 Herstellung von Schaumstoffen aus XPS 4.2 Herstellung von Partikelschaumstoffen aus EPS 4.3 Herstellung von Hartschaumstoffen aus Polyurethan 	10 12 13
5	Annahmen zur Berechnung der Energieeinsparung durch Dämmstoffe	15
6	Berechnung der Energieeinsparung durch Dämmstoffe	22
7	Einsatz von FCKW/HFCKW als Schäummittel	27
8	Aussicht auf die Entwicklung bis zu den Jahren 2005 und 2020	30
9	Literatur	33
10	Critical Review	36
Anh	ang 1	38
Anh	ang 2	40

Summary

The aim of this study is to analyse the net balances with regard to energy and CO₂ for plastic foams used in thermal insulation. To this end, the *energy demand* required to produce the foams is determined first of all, and a calculation is then made of the amount of *energy saved* through the reduction in heat demand. By calculating the difference between these two totals the net balance is established. By analogy, the net CO₂ emissions are also determined.

All calculations are based on the total annual sales volumes in Germany of polyurethane foam (PUR), expanded polystyrene foam (EPS) and polystyrene extruder foam (XPS). Data published by the Association of Plastics Manufacturers in Europe (APME) are used to calculate the energy needed to manufacture these foams. To determine the amount of energy saved by using these insulating materials, the sales volumes in cubic metres (m³) are first of all converted to square metres (m²) based on the average insulation thicknesses as published in the literature. Subsequently, the various insulation materials are allocated first of all to different types of buildings and then to a specific application, i.e. walls, roof or cellar. By using average values for heat conduction (both with and without insulation) a calculation is finally made of the energy saving and reduction in emissions of CO₂ that have been achieved from applying the foams. Because of their historical relevance in environmental policy, the use of CFCs as foaming agents has also been taken into account in this study.

The main definitions and simplifying assumptions are:

- In order to keep the calculations manageable, buildings are modelled on the
 basis of three elements only: the walls, the roof and the cellar. Standard profiles
 have been assumed for these three components, i.e. interactions in the vicinity of
 windows and doors are not taken into account; nor is the influence of the length
 of the heating period.
- Neither the size and efficiency of the heating system, nor the indirect effects of the insulation on energy losses from ventilation are taken into consideration.
- No distinction is made between old and new buildings with regard to non-insulated components; an average value is assumed.
- Average data for Western Europe are used to calculate the energy required to produce the insulating foams.
- It is assumed that the specific energy consumption for foam production remains constant over the whole time period analysed.
- Regional and climatic differences in Germany are not taken into consideration.
- To calculate the CO₂ emissions, an average fuel mix of 47% natural gas and 53% fuel oil is assumed for all heating systems in Germany.
- Apart from energy consumption and CO₂ emissions, no further parameters of environmental interest have been examined (e.g. the formation of NO_x is not analysed).

• Where there was any element of uncertainty, the assumptions were chosen in a such way as would underestimate the energy savings.

The main findings are:

- The energy consumption required to produce the insulating foams shows a payback period (in terms of energy) of less than one year.
- For the period between 1980 and 1995 the calculations show gross energy savings of approximately 3,000 PJ1.
- For the investigated period, the reduction in greenhouse gas emissions amounted to:
- 208 Mt, when taking only CO₂ into account;
- 110 Mt CO₂ equivalents, when including the greenhouse gas potential of the foaming agent CFC, which was used in the past.
 - (These figures can be compared to the emissions of households and small consumers. In Germany this was 192 Mt of CO₂ in 1995.)
- On the basis of assumptions on the future demand for insulating materials the total savings for the time period 1980-2020 were estimated. These will amount to:
- for energy: 24,000 26,000 PJ. (In comparison: in 1995, the demand for primary energy in Germany was 14,300 PJ.)
- for CO₂ only: 1,600-1,700 Mt
- including the greenhouse gas potential of the foaming agent CFC: 1,500-1,600 Mt of CO₂ equivalents. (The sum of all energy-related CO₂ emissions in Germany can be used for comparison; this was 870 Mt in 1995.)

This study is a part of the overall project C-STREAMS² conducted by the Fraunhofer Institute ISI. The C-STREAMS project was funded by the BMBF (German Federal Ministry of Education and Research), VCI (German Association of Chemical Industry), VKE (German Association of the Plastics Manufacturers) and APME (Association of Plastics Manufacturers in Europe).

¹ PJ equals 10¹⁵ Joule; some authors use the expression "cumulative energy demand" instead of "gross energy requirements".

² C-STREAMS: Material and energy flows of non-energy use throughout the life cycle, and CO₂ abatement by products of the chemical industry - Current situation and perspectives.

Zusammenfassung

Der Energieverbrauch bei der Produktion von Kunststoffschäumen einerseits und die Energieeinsparung beim Einsatz dieser Materialien zur Wärmedämmung im Hochbau andererseits werden untersucht, und die jeweils damit verbundenen Emissionen an CO₂ bilanziert.

3

Die Arbeit ist Bestandteil der Studie C-STRÖME³, welche am Fraunhofer Institut ISI für das BMBF durchgeführt wird und deren Ziel es ist, den Stofffluß nichtenergetisch genutzter Primärenergieträger zu untersuchen und Optimierungsmöglichkeiten zu identifizieren.

Die Berechnungen zu den polymeren Wärmedämmstoffen basieren auf den Produktionszahlen des Dämmstoffvolumens in Deutschland, die über die jeweils gültigen gesetzlichen Regelungen in Dämmstoffdicken und daraus resultierend in verfügbare Flächen von Dämmaterial umgerechnet werden. Diese Flächen werden einem Set von Typgebäuden und typischen Anwendungsfällen zugeordnet. Aus der Differenz des Wärmebedarfs zum ungedämmten Zustand läßt sich die Energieeinsparung durch das eingesetzte Dämmaterial und schließlich die Nettobilanz für CO₂ berechnen. Zusätzlich wird die Wirkung der früher als Treibmittel eingesetzten Halogenkohlenwasserstoffe auf die Bilanz des Treibhauseffektes der Dämmstoffe untersucht.

Die wesentlichen Festlegungen und vereinfachenden Annahmen sind:

- Die gesamte dämmbare Gebäudefläche wird vereinfachend über drei repräsentative Bauteile, nämlich Dach, Fassade und Kellerdecke modelliert.
- Für die genannten Bauteile wird nur der Regelquerschnitt betrachtet. Daher wird die Rückwirkung der Wärmedämmung auf die Verluste der nicht betrachteten Bauteile wie Fenster und Türen sowie die Länge der Heizperiode etc. nicht berücksichtigt. Auch Rückwirkungen der Wärmedämmung auf die Lüftungsverluste sowie Auslegung und Effizienz der Heizungsanlage werden nicht berücksichtigt.
- Die ungedämmten Referenzbauteile repräsentieren einen Mittelwert von Neubauten und Altbaubestand, d. h. bei den Dämmwerten wird nicht zwischen Neuund Altbau unterschieden.
- Als Energieaufwendung für die Produktion der Dämmaterialien werden gemittelte westeuropäische Zahlen verwendet.
- Der spezifische Energieverbrauch für die Produktion bleibt konstant über den Berechnungszeitraum.

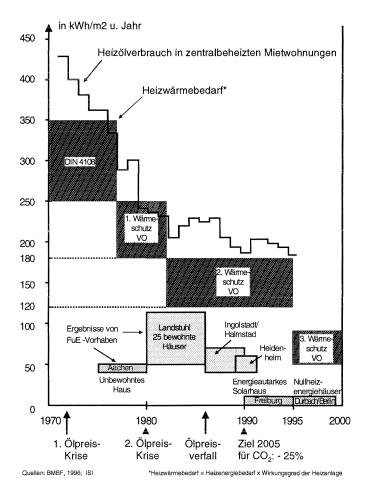
³ C-STRÖME: Material- und Energieströme des nichtenergetischen Verbrauchs über den Lebenszyklus und CO₂-Minderung durch Produkte der Chemischen Industrie- Stand und Perspektiven. Endbericht im Frühjahr 1999

- Regionale, klimatische Unterschiede in Deutschland werden nicht berücksichtigt.
- Der zur Berechnung der CO₂-Emissionen angenommene Brennstoffmix für die Heizanlagen liegt bei 47 % Gas und 53 % Öl.
- Insgesamt wurden die Abschätzungen in Zweifelsfällen so gewählt, daß die Energieeinsparungen eher unterschätzt werden.
- Neben CO₂- und Treibmittelemissionen werden keine weiteren umweltrelevanten Aspekte, wie z. B. die Bildung von NO_x in Heizanlagen, untersucht.

Die wichtigsten Ergebnisse sind:

- Der Energiebedarf für die Produktion der polymeren Wärmedämmstoffe amortisiert sich energetisch bereits im ersten Jahr der Nutzung.
- Für die im Zeitraum zwischen 1980 und 1995 in Deutschland eingebauten polymeren Wärmedämmstoffe errechnet sich eine kumulierte Energieeinsparung über die gesamte untersuchte Periode in Höhe von ca. 3.000 PJ⁴.
- Die kumulierte Einsparung von Treibhausgasen lag zwischen 1980 und 1995
 - bei 208 Mio. t, wenn man nur das CO₂ berechnet
 - bei 110 Mio. t CO₂-Äquivalenten unter Einbeziehung des Treibhauspotentials der eingesetzten Treibmittel (FCKW, HFCKW).

Diese Werte können mit den CO₂-Emissionen der Haushalte und des Kleinverbrauchssektors in Deutschland verglichen werden, welche bei ca. 192 Mio. t liegen (in 1995).


- Auf der Grundlage von Abschätzungen zum zukünftigen Dämmstoffbedarf wurden auch die kumulierten Einsparungen für die Periode 1980-2020 ermittelt. Diese liegen
 - für Energie bei 24.000 26.000 PJ; zum Vergleich: der gesamte Primärenergiebedarf Deutschlands betrug im Jahr 1995 14.300 PJ.
 - nur für CO₂ bei 1.600-1.700 Mio. t
 - bei Einbeziehnung des Treibhauspotentials der eingesetzten Treibmittel (FCKW, HFCKW) bei 1.500-1.600 Mio. t CO₂-Äquivalente. Einen Vergleichsmaßstab für die Ergebnisse der Emissionsberechnungen stellt die Summe aller energiebedingten CO₂-Emissionen in Deutschland dar, die 1995 bei 870 Mio. t lagen.

^{4 1} PJ sind 10¹⁵ Joule

1 Ziel der Untersuchung

Ziel der vorliegenden Studie war es, mögliche Einsparungen zu analysieren, die durch den Einsatz von fossilen Energieträgern bei der Produktion von Kunststoffen (nichtenergetischer Verbrauch von Energierohstoffen) möglich sind. Dazu wurde der Energieverbrauch der Produktion von Kunststoffschäumen und die Energieeinsparung beim Einsatz dieser Schäume bei der Wärmedämmung im Hochbau untersucht und die damit jeweils verbundenen CO₂-Emissionen bilanziert. Diese Studie ist Teil eines Gesamtvorhabens⁵, welches am Fraunhofer Institut ISI für das BMBF durchgeführt wird und dessen Ziel es ist, den Stofffluß nichtenergetisch genutzter Primärenergieträger zu untersuchen. In einem weiteren Studienteil wurde auch der Einsatz von Kunststoffen als Leichtbaukomponente in Pkws detailliert untersucht und Nettobilanzen für den Energieeinsatz und CO₂-Emissionen berechnet.

Abbildung 1-1: Entwicklung von Heizenergieverbrauch und Anforderungen der Wärmeschutzverordnung im Vergleich

Material- und Energieströme des nichtenergetischen Verbrauchs über den Lebenszyklus und CO₂-Minderung durch Produkte der Chemischen Industrie- Stand und Perspektiven. Endbericht März 1999

2 Methodik

Eine solche Betrachtung des Energieeinsatzes und die Berechnung der CO₂-Nettobilanz durch die Verwendung von Dämmstoffen kann nur in einer stark vereinfachenden Form vorgenommen werden, da bei einer genaueren Betrachtung einerseits bald erhebliche Datenlücken auftauchen, andererseits der erreichbare Zugewinn an Genauigkeit nur mit unverhältnismäßig hohem Arbeitsaufwand verbunden wäre.

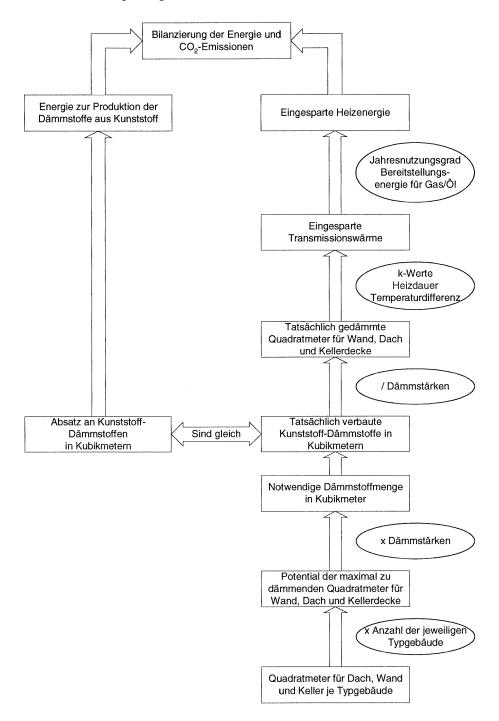
Die Berechnungen basieren auf den Produktionszahlen des Dämmstoffvolumens aus Polymeren in Deutschland, die über die jeweils gültigen gesetzlichen Regelungen (WSVO) in Dämmstoffdicken und daraus resultierend in verfügbare Flächen von Dämmaterial umgerechnet werden. Diese Flächen werden einem Set von Typgebäuden und typischen Anwendungsfällen zugeordnet. Aus der Differenz zum vorigen Zustand läßt sich die Energieeinsparung durch das eingesetzte Dämmaterial und schließlich die Nettobilanz für CO₂ berechnen. Die wesentlichen Vereinfachungen sind in Tabelle 2-1 zusammengestellt.

Tabelle 2-1: Zusammenstellung der wichtigsten vereinfachenden Annahmen, die den Berechnungen der Studie zugrunde liegen

Vereinfachende Annahmen:

- Die gesamte dämmbare Gebäudefläche wird vereinfachend über drei repräsentative Bauteile, nämlich Dach, Fassade und Kellerdecke modelliert.
- Für die genannten Bauteile wird nur der Regelquerschnitt betrachtet. Daher wird die Rückwirkung der Wärmedämmung auf die Verluste der nicht betrachteten Bauteile wie Fenster und Türen sowie die Länge der Heizperiode etc. nicht berücksichtigt. Auch Rückwirkungen der Wärmedämmung auf die Lüftungsverluste sowie Auslegung und Effizienz der Heizungsanlage werden nicht berücksichtigt.
- Die ungedämmten Referenzbauteile repräsentieren einen **Mittelwert von Neubauten und Altbaubestand**, d. h. bei den Dämmwerten wird nicht zwischen Neu- und Altbau unterschieden.
- Als Energieaufwendung für die **Produktion der Dämmaterialien** werden **gemittelte westeuropäische Zahlen** verwendet.
- Der spezifische Energieverbrauch für die Produktion bleibt konstant über den Berechnungszeitraum.
- Bestehende regionale, klimatische Unterschiede in Deutschland werden nicht berücksichtigt.
- Der zur Berechnung der CO₂ –Emissionen verwendete **Mix der Heizanlagen** liegt **bei 47** % **Gas und 53** % Öl.

Im einzelnen wird in folgenden Arbeitsschritten vorgegangen (vergl. Abb. 2-1):


- Die Produktion von expandierten Polystyrol-Hartschäumen (EPS), Polyurethan-Hartschäumen (PUR), Polystyrol-Extruderschaumstoffen (XPS) in Deutschland (in 1000 m³) wird als Zeitreihe für die Jahre 1980 bis 1995 aufgestellt /GDI, o.J./. Die Betrachtung beginnt 1980, da ab etwa dieser Zeit mit der ersten Wärmeschutzverordnung (die am 1.11.1977 in Kraft trat) erstmals Vorgaben über den Dämmstandard vorliegen, vergleiche Abbildung 1-1.
- Die für die Herstellung der Dämmaterialien notwendige Energie und die damit verbundenen CO₂-Emissionen werden berechnet. Als Datengrundlage werden hierbei Daten des Europäischen Verbandes der Kunststoffhersteller (APME) und der Vereinigung der Europäischen Isocyanatproduzenten (ISOPA) verwendet, die das System "Rohstoffquelle bis Fabriktor" (Cradle to Factory Gate) beschreiben /APME, 1997/, /ISOPA, 1997/. Diese Daten für die neunziger Jahre wurden für alle Berechnungsjahre verwendet. Nur im Falle des Polyurethan enthalten diese Daten die Energie zur Herstellung des Schäummittels. Für die Fertigprodukte wurde kein Energieeinsatz für Transporte, Verarbeitung an der Baustelle und der Entsorgung berücksichtigt.
- Zur Berechnung der Energieeinsparung durch Dämmaterialien werden die eingebauten Mengen in den verschiedenen Anwendungsfeldern, und zwar der Wand-, Dach- und Kellerdämmung, bestimmt. Hierzu werden unter Verwendung der amtlichen Wohnungsbaustatistik Zeitreihen zur Neubautätigkeit, zum Abbruch und zum Bestand verschiedener Gebäudetypen (z.B. Reihenhäuser) zusammengestellt /Stabu, o.J./. Unter Nutzung der IKARUS-Datenbank⁶ werden den Gebäudetypen standardisierte Dimensionen der zu dämmenden Bauteile (z. B. Außenwandflächen) zugeordnet /Reiß u.a., 1992/. Diese Aufteilung nach Altund Neubauten dient nur zur Bestimmung der zu dämmenden Flächen und damit des Potentials.
- Mittels der für die jeweiligen Jahre und Anwendungen in der Literatur veröffentlichten durchschnittlichen Isolierstärken /EURIMA, 1996/, /IWU, 1990/ und der Produktionsstatistik des GDI lassen sich die eingebauten Mengen an Dämmstoffen für die verschiedenen Bauteile Wand, Dach und Kellerdecke berechnen. Unter Annahme mittlerer Temperaturdifferenzen zwischen innen und außen über die Heizperiode kann daraus die durch die Dämmung eingesparte Wärme berechnet werden. Diese Betrachtung beschränkt sich auf den Regelquerschnitt einzelner Bauteile, ohne deren Vernetzung in einem realen Gebäude zu berücksichtigen. Dies bedeutet, daß Effekte wie Verkürzung der Heizperiode, Änderung der Lüftungsverluste und größere Behaglichkeit durch höhere Wand-

¹⁶ IKARUS: Instrumente für Klimagasreduktionsstrategien. Titel eines BMBF Vorhabens, dessen Ziel die Erstellung einer Datenbasis ist, die die Bundesregierung für ihre Entscheidungen zur Reduktion der Treibhausgase benötigt. Hierzu werden in allen Sektoren (Haushalte, Kleinverbrauch, Industrie, Verkehr und Umwandlungssektor) technische und wirtschaftliche Daten erhoben und in einer Datenbank abgelegt. Außerdem werden die Daten in ein Simulations- und Optimierungsmodell übertragen, mit deren Hilfe Szenarien für die Jahre 2005 und 2020 erstellt werden können.

temperaturen durch die erhöhte Dämmung **nicht** eingerechnet werden. Die Neuund Altbauten werden außerdem gleich behandelt, da beide im Urzustand ungedämmt sind. Entwicklungen der Referenzbauteile über die Zeit werden nicht betrachtet.

- Die eingesparte Wärme wird über den Wirkungsgrad der Heizung und unter Berücksichtigung der Vorkette zur Bereitstellung der Heizenergieträger in Heizenergie und eingesparte CO₂-Emissionen umgerechnet. Das Ergebnis wird dann dem Energieaufwand und den Emissionen bei der Herstellung der Dämmaterialien gegenübergestellt. Als Heizenergieträger werden zu 47 % Gas und zu 53 % Heizöl unterstellt.
- Insgesamt wurden die Abschätzungen nach Möglichkeit so gewählt, daß die Energieeinsparungen eher unterschätzt werden (z. B. relativ hoher Wirkungsgrad der Heizungen).
- Die CO₂-Bilanzen werden ergänzt durch Kalkulationen zum Treibhauspotential unter Berücksichtigung der früher als Treibmittel eingesetzten FCKW. Andere umweltrelevante Aspekte werden nicht untersucht.

Abbildung 2-1: Schematische Darstellung der Bilanzierung der Energie und CO₂ - Einsparung

3 Dämmstoffproduktion

Der Gesamtverband Dämmstoffindustrie (GDI) veröffentlicht auf jährlicher Basis eine Baumarktstatistik, in welcher Zahlen von 95 % der Produktgruppen dargestellt

sind. Der Außenhandel ist nicht berücksichtigt. Die Entwicklung ist in Tabelle 3-1 dargestellt.

Tabelle 3-1: Inlandsproduktion von Dämmstoffen im Hochbau, Deutschland 1980 - 1995 /nach GDI, o.J./

			021, 0.0.		
1.1.		[Dämmstoffe	[1.000 m ³]	
Jahr	EPS	PUR	XPS	Hartschaum	Gesamter
	Hartschaum	Hartschaum	Hartschaum ¹	gesamt	Dämmstoffmarkt ^{2, 3}
1980	5,700	720	346	6,800	17,320
1981	5,500	720	358	6,600	15,625
1982	5,060	720	357	6,100	14,808
1983	4,970	752	373	6,100	15,636
1984	4,732	750	379	5,900	14,400
1985	4,750	713	396	5,900	14,035
1986	4,900	749	425	6,100	14,029
1987	4,925	753	443	6,100	14,504
1988	4,928	813	455	6,200	14,804
1989	5,050	854	501	6,400	15,627
1990	5,162	888	538	6,600	17,205
1991	6,131	977	591	7,700	20,323
1992	6,405	1,022	688	8,100	22,133
1993	7,354	1,134	766	9,300	25,026
1994	8,773	1,253	890	10,900	28,329
1995	9,071	1,291	957	11,300	30,069

¹ Zum Teil berechnete Daten. Für XPS sind erst Daten ab 1987 verfügbar.

4 Energieeinsatz zur Produktion der Dämmstoffe

Als Grundlage zur Berechnung des Energieeinsatzes wurden Daten des Europäischen Verbandes der Kunststoffhersteller (APME) und der Vereinigung der Isocyanatproduzenten (ISOPA) genutzt. Diese Daten für die neunziger Jahre wurden für alle Berechnungsjahre verwendet. Die Angaben liegen als Brennwert vor und berücksichtigen nur im Falle des Polyurethans die Energie zur Schäumung und zur Herstellung des Schäummittels. Im Falle des Extrudiertem und des expandierbaren Polystyrols waren keine Daten zum Schäumen erhältlich. Weitere energetische Aufwendungen für die Transporte, für die Verarbeitung an der Baustelle und der Entsorgung werden nicht berücksichtigt.

4.1 Herstellung von Schaumstoffen aus Extrudiertem Polystyrol (XPS)

Zur Herstellung von XPS wird treibmittelfreies Polystyrolgranulat in einem Extruder aufgeschmolzen. Als Treibmittel wird CO₂ unter hohem Druck in den Extruder

Es wurde ein konstantes Verhältnis zu den anderen Dämmstoffen vorausgesetzt.

² Ab 1990 Gesamtdeutschland

³ Inklusive Mineralfasern u.a.

eingespritzt und gelöst. Beim Austritt der treibmittelhaltigen Schmelze über eine Breitschlitzdüse verdampft das Treibmittel infolge des Druckabfalls, und das Polystyrol schäumt in Bandform auf.

Der entstehende Schaumstoff ist homogen und geschlossenzellig, mit Zellen von 0,06 bis 0,3 mm und Zellwanddicken von ca. 0,001 mm. Diese Zellstruktur verleiht dem XPS seine charakteristischen Eigenschaften. XPS ist hoch druckfest und trotzdem elastisch. Durch eine Brandschutzausrüstung wird das brennbare Material schwerentflammbar eingestellt. Aus dem abgekühlten, extrudierten Schaumband werden die Dämmplatten konfektioniert.

Für die Herstellung von XPS wurden APME Zahlen für Polystyrol⁷ herangezogen, vergleiche Tabelle 4-1 und 4-2 /APME, 1997/.

Tabelle 4-1: Kumulierter Energieaufwand⁸ (KEA) für die Produktion von 1 t Polystyrol in GJ (gemittelte europäische Angaben) /APME, 1997/

	Bereitstellung der Energieträger	Energie- verbrauch	Transport	Energie des Rohstoffes	Gesamt- energie
Elektrizität	2,7	1,2	0,0	0,0	3,9
Öl	1,2	20,8	0,3	32,8	55,1
Andere	2,5	11,3	0,1	13,5	27,3
Gesamt	6,3	33,3	0,4	46,2	86,3

Tabelle 4-2: Kumulierte CO₂-Emissionen bei der Produktion von 1 t Polystyrol in kg (gemittelte europäische Angaben) /APME, 1997/

	Bereitstellung der Energieträger	Energie- verbrauch	Transport	Prozeß	Gesamt
Kohlen- dioxid (CO ₂)	470	2.100	21	4	2.600

⁷ In der Veröffentlichung der APME: "General Purpose Polystyrene, GPPS"

Der kumulierte Energieaufwand (KEA) gibt die Gesamtheit des primärenergetisch bewerteten Aufwands an, der im Zusammenhang mit der Herstellung entsteht bzw. diesem ursächlich zugewiesen werden kann (VDI 4600, 1997).

4.2 Herstellung von Partikelschaumstoffen aus expandierbarem Polystyrol (EPS)

Die Verfahren zur Herstellung von EPS und dessen Weiterverarbeitung wurden Ende der 40er Jahre von der BASF entwickelt, die den neuen Schaumstoff unter dem geschützten Namen *Styropor*[®] in den Markt einführte.

EPS wird durch Suspensionspolymerisation von Styrol unter Zugabe von Treibmitteln hergestellt und je nach Verwendungszweck zu Typen verschiedener Perlgrößenbereiche aufbereitet.

Grundstoff sind neben reinem Polystyrol auch Polystyrol-Mischpolymerisate, die sich durch bessere chemische Beständigkeit auszeichnen. Treibmittel sind niedrigsiedende Kohlenwasserstoffe, vor allem Pentanisomere, in unterschiedlichen Mischungen daraus, die in Mengen von als 4 bis 6 % in EPS enthalten sind; FCKW oder HFCW werden nicht verwendet.

Der Schaumstoff wird aus EPS in drei Schritten erhalten: Vorschäumen, Zwischenlagern und Ausschäumen.

Beim *Vorschäumen* werden die Partikel mit Wasserdampf erhitzt, das Polystyrol erweicht, das darin enthaltene Treibmittel verdampft zu rasch wachsenden Bläschen. Beim Vorschäumen stellt man durch die Schüttdichte bereits die Rohdichte des herzustellenden Schaumstoffteiles ein. Der Perldurchmesser vergrößert sich dabei etwa um das Dreißache, das Perlen-Schüttvolumen etwa um das Dreißigfache.

Vor dem Ausschäumen zu Schaumstoffblöcken, -platten oder -formteilen ist eine Zwischenlagerung der Perlen erforderlich, damit Luft in die einzelnen Zellen diffundieren kann. Sie ist für das anschließende Ausschäumen einerseits als zusätzliches Blähmittel erforderlich, andererseits aber auch um das zunächst noch weiche Zellgerüst zu stabilisieren.

Zum Ausschäumen werden perforierte Formen vollständig mit vorgeschäumten Partikeln gefüllt und mit Dampf beaufschlagt. Die Partikel expandieren, füllen den restlichen Zwickelraum aus und verschweißen miteinander. Zur Herstellung von Platten verwendet man neben diskontinuierlich arbeitenden Blockform- und Plattenautomaten auch kontinuierlich arbeitende Bandschäumanlagen; der endlose Strang wird hier sofort zu einzelnen Platten aufgeteilt.

Der Temperaturbereich beim Vor- und Ausschäumen liegt zwischen etwa 85 und 125 °C. Das thermoplastische Verhalten des Polystyrols wird dabei durch das Treibmittel Pentan, das auch als Weichmacher wirkt, noch begünstigt. Der überwiegend benutzte Wärmeträger ist Wasserdampf, der bei Kondensation eine große Wärmemenge freisetzt, schneller durch die Zellwände diffundiert als Luft und dadurch als eigentliches Treibmittel wirkt.

Schaumstoffplatten für die Wärmedämmung werden überwiegend aus ausgeschäumten Blöcken mit 4 - 8 m³ Volumen hergestellt. Nach einer mehrstündigen Stabilisierzeit zur vollständigen Abkühlung und Luftaufnahme werden die Blöcke besäumt und auf Schneidanlagen mit elektrisch beheizten oder auch mit oszillierenden Drähten zu Platten aufgeteilt. Die Platten werden wegen des Nachschwundes von ca. 1 % etwa 14 Tage gelagert.

Tabelle 4-3: Kumulierter Energieaufwand zur Produktion von 1 t EPS in GJ (gemittelte europäische Angaben) / APME, 1997/

	Bereitstellung der Energieträger	Energie- verbrauch	Transport	Energie des Rohstoffes	Gesamt
Elektrizität Öl Andere	2,4 1,0 2,4	1,1 15,2 12.4	0,0 0,3 0.1	0,0 31,9 15.4	3,5 48,4 30,3
Energien Gesamt	5,8	28,6	0,4	47,3	82,1

Tabelle 4-4: Kumulierte CO₂-Emissionen bei der Produktion von 1 t EPS in kg (gemittelte europäische Angaben) /APME, 1997/

	Bereitstellung der Energieträger	Energie- verbrauch	Transport	Prozeß	Gesamt
Kohlen- dioxid (CO ₂)	470	1.900	22	14	2.400

4.3 Herstellung von Hartschaumstoffen aus Polyurethan (PUR)

PUR-Hartschaumstoffe werden bevorzugt aus Zweikomponenten-Systemen hergestellt. Komponente A enthält das Polyol einschließlich aller für die Verarbeitung notwendigen Hilfsstoffe (Katalysatoren, Stabilisatoren, Flammschutzmittel, Emulgatoren, ggf. auch Treibmittel); Komponente B ist das Isocyanat.

Als Treibmittel benutzte man bis Ende der 80er Jahre Fluorchlorkohlenwasserstoffe (FCKW, in der Baubranche und im Handel meist mit R... bezeichnet), R11 (Monofluortrichlormethan), beim sog. "Frothing" auch R12 (Difluordichlormethan); heutzutage wird der Treibeffekt durch CO₂ aus der Reaktion von zugesetztem Wasser und durch niedrig siedende Kohlenwasserstoffe, vor allem Pentan, erzielt.

Die Verfahrenstechnik ist durch ein besonders breites Methodenspektrum gekennzeichnet:

- kontinuierliche oder diskontinuierliche Herstellung von Blöcken mit anschließender Weiterverarbeitung zu Platten und verschiedensten Zuschnitten, ähnlich wie bei der Weichschaum-Blockproduktion.
- Kontinuierliche Herstellung von Platten mit flexiblen Deckschichten (z. B. Bitumenpapier, Alu-Folie) auf Doppeltransportband-Anlagen.
- Diskontinuierliche Herstellung von Sandwich-Elementen in Formenpressen; ein Flach-Mischkopf wird in den Hohlkörper eingeführt und nach dem Verspritzen des Komponenten-Gemisches wieder zurückgezogen.
- Kontinuierliche Herstellung von Sandwich-Elementen aus starren Deckschichten (Blechen) und Hartschaumkern auf Doppelband-Anlagen.
- Spritzen hochaktiver Rohstoff-Systeme und Gießen der Rohstoffe "vor Ort" durch Überschichten, d. h. Gießen der Rohstoffe auf bereits abgebundene Schaumstoffschichten.
- Ausschäumung von Hohlräumen aller Art und Formverschäumung, bei der der Form ein konkretes Formteil entnommen werden kann.

Tabelle 4-5: Kumulierter Energieaufwand für die Produktion von 1 t festem Polyurethan-Schaum in GJ (gemittelte europäische Angaben) /ISOPA, 1997/

	Bereitstellung der Energieträger	Energie- verbrauch	Transport	Energie des Rohstoffes	Gesamt
Energie- verbrauch	19,0	47,4	0,8	37,7	104,9

Tabelle 4-6: Kumulierte CO₂-Emissionen bei der Produktion von 1 t festem Polyurethan-Schaum in kg (gemittelte europäische Angaben) /ISOPA, 1997/

	Bereitstellung der Energieträger	Brennstoff- verbrauch	Transport	Biomasse	Prozeß	Gesamt
Kohlen- dioxid (CO ₂)	1.438	1.972	50	-78	353	3.737

Aus den Tabellen 4-1 bis 4-6 lassen sich über die Dichten der Dämmstoffe der Gesamtenergieaufwand und die CO_2 -Emissionen für die Produktion der in Deutschland abgesetzten Dämmstoffe berechnen. Als Dichten werden unterstellt: PUR = 35 kg/m³, EPS = 20 kg/m³, XPS = 30 kg/m³. Die Ergebnisse sind in Tabelle 4-7 dargestellt.

Tabelle 4-7: Kumulierter Energieaufwand und CO₂ - Emissionen bei der Produktion von Dämmstoffen aus Hartschäumen in Deutschland

Jahr	Inlandsabsatz	Energie-	CO ₂ -Emis-
Jani	[1.000 m ³]	aufwand [TJ]	sionen [kt]
1980	6.800	12.900	390
1981	6.600	12.600	390
1982	6.100	11.900	360
1983	6.100	11.900	370
1984	5.900	11.500	350
1985	5.900	11.400	350
1986	6.100	11.900	370
1987	6.100	12.000	370
1988	6.200	12.300	380
1989	6.400	12.700	390
1990	6.600	13.100	410
1991	7.700	15.200	470
1992	8.100	16.000	490
1993	9.300	18.200	560
1994	10.900	21.300	650
1995	11.300	22.100	680

5 Annahmen zur Berechnung der Primärenergie-Einsparung durch Kunststoff-Dämmstoffe

Es liegen nur Angaben zur Produktion der Dämmstoffe in Kubikmetern vor. Zur Berechnung der Energieeinsparung ist es aber notwendig, die Flächen und Dicken der Dämmung für die Außenteile eines Hauses zu kennen. Mit Hilfe statistischer und Literatur-Daten werden im folgenden die Flächenanteile dieser Bauteile (Außenwand, Kellerdecke und Dach) berechnet.

Die Anzahl der zu dämmenden Gebäude wird aus verschiedenen Veröffentlichungen des Statistischen Bundesamtes wie Neubaustatistik, Wohnungsstichprobe und Abbruchstatistik /Stabu, o.J./ berechnet, wobei hier ausschließlich die alten Bundesländer (ABL) betrachtet werden können. Bei den Wohngebäuden werden insgesamt jeweils acht einzelne Gebäudetypen (siehe Tabelle A2-1) wie Einfamilienhaus, Reihenhaus, Doppelhaushälfte, und Mehrfamilienhaus unterschieden, soweit es aufgrund der statistischen Abgrenzung möglich war; die Ergebnisse sind in Tabelle 5-1 zu sehen. Bei den Neubauten wird die Verteilung der Typgebäude direkt aus der amtlichen Statistik übernommen. Die Typgebäude und ihre Zahlenverhältnisse bleiben über die Jahre konstant. Bei den Nicht-Wohngebäuden ist die Datenlage schwieriger, da es vom Statistischen Bundesamt keine detaillierteren Erhebungen gibt. Es werden Zeitreihen auf Basis einer Bestandsschätzung für 21 Typgebäude von Nicht-Wohngebäuden (siehe Tabelle A2-2 nach /Gruson, 1993/) entwickelt.

Diese mußten aufgrund unterschiedlicher statistischer Daten auf 8 Typgebäude verdichtet werden (siehe Tabellen A2-3, A2-7 bis A2-9). Die Gesamtergebnisse sind in Tabelle 5-2 dargestellt.

In der Anzahl der Wohngebäude der Spalte "Bestand" des Jahres 1981 (11.249.000) ist auch der Neubau des Jahres 1980 (218.000) enthalten (Tabelle 5-1). Um den potentiell für eine Dämmung zur Verfügung stehenden Wohnbestand zu berechnen, werden in der Spalte "Altbaubestand" die Neubauten seit 1980 in den folgenden Jahren nicht mit erfaßt, da diese Gebäude wegen Reinvestitionszeiträumen von mehr als 30 Jahren für weitere Dämm-Maßnahmen nicht mehr zur Verfügung stehen. Dies gilt auch für die in der Spalte "Abgang" für 1980 ausgewiesenen abgerissenen Gebäude (6.900) und die 1980 gedämmten Altbauten (123.700). Damit umfassen die in der Spalte "Altbaubestand" z. B. für 1981 eingetragene Anzahl von 10.727.000 nur die tatsächlich für die Dämmung in Frage kommenden Gebäude.

Zur Berechnung der potentiell für Dämm-Maßnahmen zur Verfügung stehenden Flächen werden die Anzahl der jeweiligen Gebäude (z. B. Anstaltsgebäude) des "Altbaubestandes" mit den qm-Werten der jeweiligen Typgebäude (siehe Anhang 2, Tabelle A2-3) multipliziert. Die erhaltenen gesamten Quadratmeterangaben für Dach, Fassaden und Kellerdecke beziehen sich nicht auf den gesamten Bestand an Gebäuden, sondern auf den noch ungedämmten Altbaubestand, siehe Tabellen 5-3 und 5-4.

Die nach den jeweiligen gesetzlichen Bestimmungen (WSVO) anzusetzenden Schichtdicken der Dämmstoffe sind der Literatur /EURIMA, 1996/, /IWU, 1990/ entnommen und in Tabelle 5-5 und 5-6 dargestellt. Für die Sanierung von Altbauten werden die gleichen Werte wie für Neubauten angenommen. Damit wird unterstellt, daß der ungedämmte, nur aus tragenden Wänden bestehende, Neubau etwa einem mittleren, unsaniertem Altbau entspricht.

Potentielle Anzahl der zu dämmenden Wohngebäude in Deutsch-Tabelle 5-1: land (alte Bundesländer)

Jahr	Anzahl					
	Neubau	Abgang	Bestand ¹	Altbaubestand ²	Gedämmte Altbauten	
1980	218.000	6.900	11.068.000	10.858.000	123.700	
1981	188.000	6.900	11.249.000	10.727.000	113.700	
1982	160.000	5.900	11.403.000	10.606.000	109.100	
1983	144.000	5.700	11.541.000	10.491.000	113.300	
1984	155.000	5.300	11.690.000	10.372.000	98.300	
1985	132.000	6.100	11.816.000	10.269.000	108.500	
1986	121.000	6.300	11.930.000	10.154.000	119.100	
1987	112.000	6.200	12.036.000	10.029.000	136.600	
1988	115.000	6.700	12.143.000	9.886.000	139.400	
1989	132.000	6.300	12.269.000	9.740.000	110.300	
1990	123.000	6.000	12.385.000	9.623.000	119.100	
1991	131.000	6.500	12.509.000	9.498.000	143.700	
1992	138.000	7.000	12.640.000	9.348.000	149.800	
1993	153.000	7.500	12.785.000	9.191.000	172.200	
1994	183.000	7.200	12.959.000	9.011.000	201.800	
1995	167.000	6.700	13.119.000	8.802.000	131.200	

^{1 &}quot;Bestand 1981" berechnet sich nach: "Bestand 1980" + "Neubau 1981" - "Abbruch 1981"

Tabelle 5-2: Potentielle Anzahl der zu dämmenden Nicht-Wohngebäude in Deutschland (alte Bundesländer, ohne landwirtschaftliche Betriebsgebäude)

Jahr	Anzahl					
	Neubau	Abgang	Bestand ¹	Altbaubestand ²	Gedämmte Altbauten	
1980	20.700	6.500	1.634.000	1.620.000	15.400	
1981	18.597	7.400	1.645.000	1.598.000	14.000	
1982	18.300	7.200	1.656.000	1.576.000	13.300	
1983	18.800	6.900	1.668.000	1.556.000	13.700	
1984	17.700	6.700	1.679.000	1.535.000	11.800	
1985	15.300	8.300	1.686.000	1.517.000	12.900	
1986	14.300	8.000	1.692.000	1.495.000	14.000	
1987	13.700	8.300	1.698.000	1.473.000	15.900	
1988	13.800	9.300	1.702.000	1.449.000	16.000	
1989	13.700	9.200	1.707.000	1.424.000	13.200	
1990	13.500	11.100	1.709.000	1.402.000	13.300	
1991	13.900	11.800	1.711.000	1.377.000	15.800	
1992	14.100	12.000	1.713.000	1.350.000	16.200	
1993	14.100	12.400	1.715.000	1.321.000	18.300	
1994	13.600	12.100	1.717.000	1.291.000	21.000	
1995	13.800	11.800	1.718.000	1.258.000	13.400	

¹ "Bestand 1981" berechnet sich nach: "Bestand 1980" + "Neubau 1981" - "Abgang 1981"

 $^{^2}$ "Altbaubestand 1980" = "Bestand 1979"; "Altbaubestand 1981" berechnet sich nach: "Altbaubestand 1980" - "Abgang 1980"- "Gedämmte Altbauten 1980"

 $^{^2}$ "Altbaubestand 1980" = "Bestand 1979"; "Altbaubestand 1981" berechnet sich nach: "Altbaubestand 1980" - "Abgang 1980"- "Gedämmte Altbauten 1980"

Tabelle 5-3: Potentiale der zu dämmenden Flächen in Wohngebäuden in Deutschland (ABL)

Jahr	Dach [10 ⁶ m ²]	Fassade	[10 ⁶ m ²]	Keller [10^6m^2]
	Neubau	Altbau	Neubau	Altbau	Neubau	Altbau
1980	30,0	1.660	30,1	1.890	26,9	1.530
1981	26,8	1.640	27,7	1.860	24,0	1.510
1982	23,7	1.620	25,2	1.840	21,3	1.490
1983	22,4	1.600	24,3	1.820	20,3	1.480
1984	24,6	1.580	27,3	1.800	22,3	1.460
1985	20,1	1.570	21,8	1.790	18,2	1.450
1986	17,5	1.550	18,4	1.770	15,7	1.430
1987	15,4	1.530	16,0	1.750	13,9	1.410
1988	15,2	1.510	15,6	1.720	13,8	1.390
1989	17,4	1.490	18,1	1.700	15,8	1.370
1990	16,9	1.470	18,3	1.680	15,4	1.350
1991	19,0	1.450	19,4	1.660	17,5	1.340
1992	21,1	1.430	24,3	1.630	19,5	1.310
1993	23,9	1.410	27,8	1.610	22,2	1.290
1994	28,6	1.380	33,1	1.580	26,5	1.260
1995	26,9	1.350	31,8	1.540	25,0	1.230

Tabelle 5-4: Potentiale der zu dämmenden Flächen in Nicht-Wohngebäuden in Deutschland (ABL)

Jahr	Dach [10 ⁶ m ²]	Fassade	[10 ⁶ m ²]	Keller [10 ⁶ m ²]
	Neubau	Altbau	Neubau	Altbau	Neubau	Altbau
1980	14,7	550	11,4	420	13,8	500
1981	13,8	540	10,7	410	12,9	490
1982	13,3	530	10,4	400	12,5	480
1983	15,1	520	10,7	390	14,1	470
1984	15,2	510	10,6	380	14,2	460
1985	13,4	500	9,4	380	12,5	450
1986	13,5	490	9,4	370	12,6	450
1987	13,4	470	9,4	360	12,6	430
1988	14,3	460	10,1	350	13,4	420
1989	14,9	450	10,4	340	14,0	410
1990	14,8	440	10,2	330	13,9	400
1991	15,2	420	10,4	330	14,2	390
1992	15,4	410	10,7	320	14,4	380
1993	15,0	400	10,6	300	14,0	360
1994	13,9	380	10,0	290	13,0	350
1995	13,7	360	9,9	280	12,8	330

Tabelle 5-5: Dämmschichtdicken für Wohngebäude

Jahre	Wand	Dach	Keller
1980-1988	50	100	60
1989-1994	60	120	60
1995	80	150	100

Tabelle 5-6: Dämmschichtdicken für Nicht-Wohngebäude⁹

Jahre	Wand	Dach	Keller
-1983	10	10	25
1984-1994	20	20	35
ab 1995	50	40	60

Es liegen keine Angaben zum Einsatz der verschiedenen Dämmstoffe in den verschiedenen Bauteilen (Wand, Kellerdecke, Dach) vor. Daher wird mit einem einheitlichen und relativ ungünstigen Wert für die Wärmeleitfähigkeit λ von 0,04 W/(mK) gerechnet, obwohl manche Dämmstoffe durchaus bessere Werte haben.

Tabelle 5-7: Übersicht über die k-Werte (die zur Berechnung verwendeten Werte sind fett markiert)

Dämmdicke	ŀ	k-Wert [W/m²/k	[]
[mm]	Wand	Dach	Keller
ohne Dämmung	1,43	0,81	0,83
10	1,05	0,67	0,68
20	0,83	0,57	0,58
25	0,75	0,53	0,54
35	0,63	0,47	0,48
40	0,59	0,44	0,45
50	0,51	0,40	0,41
60	0,45	0,36	0,37
80	0,37	0,31	0,31
100	0,31	0,27	0,27
120	0,27	0,24	0,24
150	0,22	0,20	0,20

Je nach Dicke der Dämmschicht errechnen sich unterschiedliche k-Werte, vergleiche Tabelle 5-7. Diese sind aber nicht direkt proportional zu den Dämmdicken. Sie errechnen sich jeweils nach der Formel:

⁹ Die Dämmschichtdicke von 10 mm bzw. 20 mm für Nicht-Wohngebäude ist eine Rechengröße, die sich aus der Diskrepanz zwischen gesetzlicher Anforderung und der praktischen Bauweise ergibt: Entweder werden tragende Wände dünner und mit stärkerer Dämmung ausgeführt oder tragende Wände aus Materialien mit besseren Dämmeigenschaften errichtet.

$$\begin{split} \frac{1}{k_{ged\"{a}mmt}} &= \frac{1}{k_{unged\"{a}mmt}} + \frac{d}{\lambda} \\ \text{mit} \quad \lambda &= \text{W\"{a}rmeleitf\"{a}higkeit 0,04 W/(mK)} \\ \quad d &= \text{Dicke der D\"{a}mmschicht} \\ \quad k_{unged\"{a}mmt} &= \text{k-Wert f\"{u}r Bauteile ohne D\"{a}mmung} \end{split}$$

Die $k_{ungedämmt}$ -Werte beschreiben die Referenzsituationen ohne Dämmung. Die dazugehörigen Werte sind in der Tabelle 5-7 in der Zeile "ohne Dämmung" eingetragen. Sie werden als 1/R berechnet (Wärmeleitwiderstand $R = d/\lambda$), mit den folgenden Annahmen zu den Bauteilen, vergl. Tab. 5-8 bis 5-10.

Tabelle 5-8: Annahmen für die Fassade zur Berechnung des k_{ungedämmt}-Wertes als Referenz

Fassade	d [m]		λ [W/(m·K]	$R \text{ [m}^2 \cdot \text{K/W]}$
Luftübergang innen	-		-	0,13
Luftübergang außen	-		-	0,04
Putz innen		0,015	0,87	0,017
Putz außen		0,02	0,87	0,023
Wand aus Hochlochziegel		0,3	0,615	0,488
Summe				0,69

Tabelle 5-9: Annahmen für das Dach zur Berechnung des k_{ungedämmt}-Wertes als Referenz

Dach	d [m]		λ [W/(m·K]	R [m²⋅K/W]
Luftübergang innen	-		-	0,13
Luftübergang außen	-		-	0,04
Beton		0,15	2,1	0,071
Dämmung		0,05	0,05	1
Summe				1,24

Tabelle 5-10: Annahmen für die Kellerdecke zur Berechnung des k_{ungedämmt}-Wertes als Referenz

Keller	d [m]	λ [W/(m⋅K]	$R \text{ [m}^2 \cdot \text{K/W]}$
Luftübergang waagerecht oben	-	-	0,170
Luftübergang waagerecht unten			0,170
Zementestrich	0,045	0,71	0,032
Dämmung	0,03	0,04	0,750
Beton	0,15	2,1	0,07
Deckenputz unten	0,015	0,87	0,02
Summe			1,21

Bei Nicht-Wohngebäuden wurde der k_{ungedämmt}-Wert des Daches gleich dem der Wand gesetzt. Die Berechnung des Daches als Flachdach ist zugegebenermaßen eine starke Vereinfachung. Aufgrund der Datenlage bei den verwendeten Typgebäuden ist aber das Flachdach als bester Kompromiß angenommen worden, da zum Teil nur Daten zur oberen Geschoßdeckenfläche vorlagen. Diese Betrachtungsweise entspricht bei Giebeldächern einem nichtausgebauten Dach.

Ausgehend von den Dämmstärken aus den Tabellen 5-5 und 5-6 lassen sich die potentiell zu dämmenden Bauteilflächen aus den Tabellen 5-3 und 5-4 in potentiell einzubauende Dämmstoffvolumen umrechnen. Die von 1980 bis 1995 produzierten Kunststoffdämmstoffe werden rechnerisch auf die Neu- und die Altbaudämmung verteilt. Hierbei werden zuerst die Neubauten vollständig (nach dem Marktanteil der Kunststoff-Dämmaterialien) bedient, der Rest der Dämmstoffe geht in die Dämmung der Altbauten. Mit Hilfe der in Tabelle 5-7 dargelegten k-Werte läßt sich dann die Transmissionswärmeeinsparung berechnen.

Die Formel

$$\Delta Q_{T} = (k_{ungedämmt} - k_{gedämmt}) \cdot A \cdot (T_{innen} - T_{außen})$$

mit: ΔQ_T = Eingesparte Transmissionswärme [W],

k = Wärmedurchgangskoeffizient mit und ohne Wärmedämmung $[W/(m^2 \cdot K)]$,

T = Temperatur [K]

 $A = \text{gedämmte Fläche } [\text{m}^2]$

beschreibt die pro Zeiteinheit eingesparte Transmissionswärme ΔQ . Zur Berechnung der jährlichen Einsparung Q_T benötigt man die Temperaturdifferenz T_{innen} - $T_{außen}$ und den zeitlichen Verlauf derselben. Üblicherweise wird dies bei Bauteilen, die ihre Wärme an die Außenluft verlieren, durch die Gradtagszahl beschrieben. Die Gradtagszahl liegt in Deutschland bei 3.845 Gradtagen (langjähriges Mittel für 1951-1996 /Ziesing, 1997/). Durch Multiplikation mit dem Faktor 24 können dann die wie in der DIN 4701 berechneten stündlichen Wärmebedarfswerte in den jährlichen Wärmebedarf in kWh umgerechnet werden kann.

Die Innentemperatur des Kellers wird nach DIN 4701 mit 15°C zugrundegelegt und damit die Verluste durch die Kellerdecke mit einem festen ΔT von 5 K gerechnet.

Für Nicht-Wohngebäude wird die Innentemperatur im Mittel über die verschiedenen Nutzungsarten zu 17°C angenommen. Da die Gradtagszahl auf eine Innentemperatur von 20°C bezogen ist, wird zur groben Abschätzung dieser Temperaturabsenkung die Gradtagszahl um 5 % reduziert.

Um die Heizenergieeinsparung zu berechnen, wurden zusätzlich noch die Energien zur Förderung und Bereitstellung von Erdgas und Heizöl (ca. 6 % des Energieinhaltes) sowie der Jahresnutzungsgrad der Heizanlage (bei Neubauten 0,9 und bei Altbauten 0,8) berücksichtigt.

6 Berechnung der Energieeinsparung durch Dämmstoffe und der Minderung energiebedingter CO₂ -Emissionen

Der durchschnittliche spezifische Aufwand für die Herstellung der Kunststoffschäume beträgt energetisch $2,0~\text{GJ/m}^3$ und die resultierenden Emissionen sind $60,0~\text{kg CO}_2$ pro m³; die Einsparung über die betrachteten Jahre beträgt pro Jahr durchschnittlich $3,7~\text{GJ/m}^3$ bzw. eine Emissionsminderung von $243~\text{kg CO}_2/\text{m}^3$ im Jahr. Die 1980~eingebauten Dämmstoffe sparten pro m³ bis 1995~somit ca. 57~GJ bzw. 3,8~t an CO_2 –Emissionen ein10.

In Tabelle 6-1 ist der absolute Energieaufwand zur Herstellung der Dämmstoffe aus Kunststoffen der Energieeinsparung gegenübergestellt. Man erkennt, daß sich die Produktion noch "im gleichen Jahr" energetisch amortisiert, so daß z. B. für das Jahr 1980 eine positive Nettoenergieeinsparung von 12.500 TJ verbleibt. Zur Berechnung des jährlichen Bruttoeffektes im Jahre 1982 werden zu der Nettoenergieeinsparung des Jahres 1982 (ca. 10.100 TJ) noch die Summen der Energieeinsparungen durch die 1980 und 1981 produzierten und sich noch im Gebrauch befindlichen Dämmstoffe addiert (25.400 + 23.500 TJ). So ergibt sich für 1982 eine Bruttoeffekt von ca. 59,1 PJ¹¹, vergleiche auch Abbildung 6-2. Die kumulierte Energieeinsparung im betrachteten Zeitraum von 1980 bis 1995 beträgt ca. 3.000 PJ. Da die Nutzungsdauer der Dämmstoffe bei mehr als 30 Jahren liegt, sind die tatsächlichen Einsparungen noch größer. Im Verhältnis dazu ist der Endenergiebedarf für Raumwärme in Deutschland mit 1.850 PJ (1992) zu sehen /Prognos, 1995/.

¹⁰ In Rohöl-Einheiten (Heizwert 42,6 GJ/t) ausgedrückt: 1 m³ Dämmaterial wird 1980 mit einem Energieaufwand von ca. 0,05 t Erdöl hergestellt und spart bis 1995 1,3 t Rohöl ein.

^{11 1} PJ sind 10¹⁵ Joule

Tabelle 6-1: Übersicht über den Energieaufwand und die Energieeinsparung bei Dämmaterialien Summe aus Kunststoffen in Deutschland (ABL)

	Energieauf- wand [TJ/a]	Energieeinsparung [TJ/a]				
Jahr	Produktion Dämmstoffe	Wohn- gebäude	Nicht-Wohn- gebäude	Summe ¹	Jährlicher Nettoeffekt ²	Jährlicher Bruttoeffekt ³
1980	12.900	20.300	5.200	25.400	12.500	12.500
1981	12.600	18.700	4.800	23.500	10.900	36.300
1982	11.900	17.400	4.600	22.000	10.100	59.100
1983	11.900	17.300	4.700	22.000	10.100	81.100
1984	11.500	16.500	5.600	22.100	10.600	103.500
1985	11.400	16.500	5.400	21.900	10.500	125.500
1986	11.900	17.100	5.900	23.000	11.100	148.000
1987	12.000	18.600	6.400	25.100	13.100	173.000
1988	12.300	18.800	6.600	25.500	13.200	198.100
1989	12.700	16.000	6.100	22.100	9.400	219.800
1990	13.100	17.800	5.800	23.700	10.600	243.100
1991	15.200	21.000	6.400	27.400	12.200	268.400
1992	16.000	22.400	6.500	28.900	12.900	296.500
1993	18.200	25.800	6.900	32.700	14.500	327.000
1994	21.300	30.600	7.500	38.100	16.800	362.000
1995	22.100	23.900	7.000	30.900	8.800	392.200
Kumuliert	e Einsparunge	en von 1980	bis 1995			3.046.200

¹ Summe der Spalten "Wohngebäude" und "Nicht-Wohngebäude"

Obwohl in dem o. g. Haupt-Forschungsvorhaben "C-Ströme" Daten für die Produktion in Deutschland erhoben wurden, wurden die anerkannten und schon zu Beginn dieser Untersuchung verfügbaren APME-Daten (Brennwert, westeuropäische Standorte) verwendet. Trotz unterschiedlicher Abgrenzung (Heizwert, deutsche Standorte u. a.) bei Verwendung der Daten aus den "C-Strömen" beträgt die Differenz im Gesamtergebnis der kumulierten Einsparungen über die Jahre 1980 bis 1995 weniger als 1 %. Der Energieaufwand bei der Produktion der Dämmstoffe liegt im Mittel ca. 10 % niedriger. Dies gilt entsprechend auch für die CO₂ –Emissionen.

 $^{^2}$ "Jährlicher Nettoeffekt" ist gleich "Summe" (der Energieinsparungen) - "Energieaufwand Produktion Dämmstoffe" im gleichem Jahr

³ Die Werte in der Spalte "Jährlicher Bruttoeffekt" berechnen sich **für jedes Jahr** aus dem jeweiligen Wert für "Jährlicher Nettobedarf" + den Werten für "Summe" aller Vorjahre

Abbildung 6-1: Brutto- und Nettoeffekt der Energieeinsparungen von Dämmaterialien aus Kunststoffen

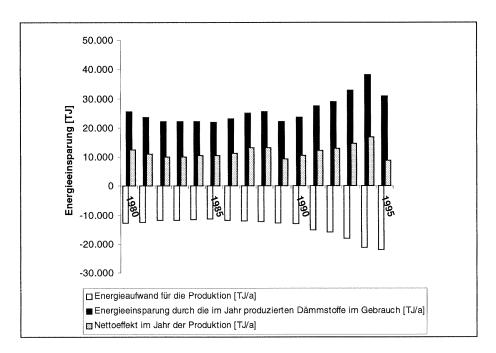
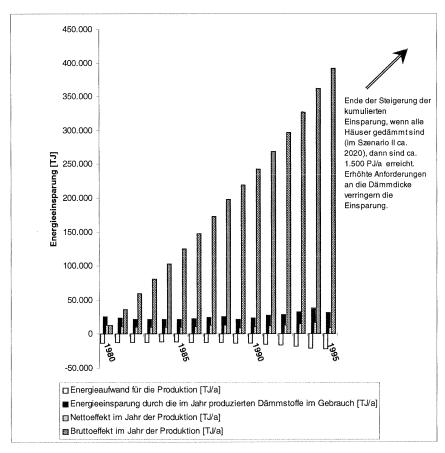



Abbildung. 6-2: Jährliche Bruttoeffekte der Dämmaterialien aus Kunststoffen in den betrachteten 15 Jahren

Zur Berechnung der CO₂-Emissionen wurde ein Heizanlagenbestand von 47 % Gas und 53 % Öl unterstellt. Die verwendeten Emissionsfaktoren sind 56 kg CO₂/GJ für Erdgas und 74 kg CO₂/GJ für Heizöl /Birnbaum u.a., 1991/. Auch bei den absoluten CO₂-Emissionen ist die jährliche CO₂-Einsparung größer als die CO₂-Emission bei der Produktion, vergleiche Tabelle 6-2 und die Abbildungen 6-3 und 6-4. Die kumulierten Nettoeinsparungen über die Jahre 1980 bis 1995 betragen ca. 208 Mio. t CO₂. Zum Vergleich können die CO₂-Emissionen der Haushalte und des Kleinverbrauchs für das Jahr 1995 herangezogen werden, die bei ca. 192 Mio. t lagen /BMWi, 1998/.

Tabelle 6-2: Übersicht über die CO₂-Emissionen und die CO₂ Einsparung bei Dämmaterialien aus Kunststoffen in Deutschland (ABL)

	CO ₂ -Emis- sionen [kt/a]	CO₂-Einsparung [kt/a]				
la bu	Produktion	Wohn-	Nicht-Wohn-	o 1	Jährlicher	Jährlicher
Jahr	Dämmstoffe	gebäude	gebäude	Summe '	Nettoeffekt 2	Bruttoeffekt 3
1980	390	1.330	340	1.670	1.270	1.300
1981	390	1.220	320	1.540	1.150	2.800
1982	360	1.140	300	1.440	1.080	4.300
1983	370	1.130	310	1.440	1.080	5.700
1984	350	1.080	370	1.450	1.090	7.200
1985	350	1.080	350	1.430	1.080	8.600
1986	370	1.120	390	1.510	1.140	10.100
1987	370	1.220	420	1.640	1.270	11.800
1988	380	1.230	440	1.670	1.290	13.400
1989	390	1.050	400	1.450	1.050	14.800
1990	410	1.170	380	1.550	1.150	16.400
1991	470	1.370	420	1.800	1.330	18.100
1992	490	1.470	430	1.890	1.400	20.000
1993	560	1.690	450	2.140	1.580	22.100
1994	650	2.010	490	2.500	1.840	24.500
1995	680	1.570	460	2.030	1.350	26.500
Kumuliert	e Einsparunge	n von 1980	bis 1995			207.500

¹ Der Wert für die Energieeinsparung in der Spalte "Summe" berechnet sich aus den Spalten "Wohngebäude" + "Nicht-Wohngebäude"

² Der Wert in der Spalte "Jährlicher Nettoeffekt" berechnet sich aus der Spalte "Summe" (der CO₂-Einsparung) - "CO₂-Emission Produktion Dämmstoff" **im gleichem Jahr**

³ Die Werte in der Spalte "Jährlicher Bruttoeffekt" berechnen sich für jedes Jahr aus dem jeweiligen Wert für "Jährlicher Nettoeffekt" + den Werten für "Summe" der Vorjahre

Abbildung 6-3: Brutto- und Nettoeffekt der Einsparungen an energiebedingten CO₂ –Emissionen

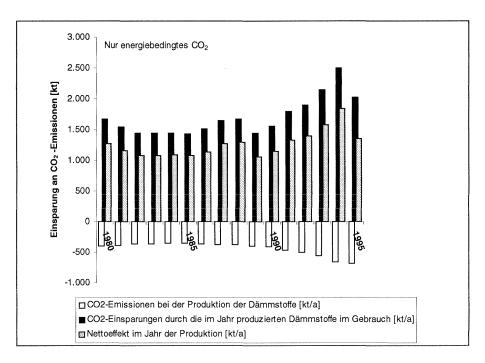
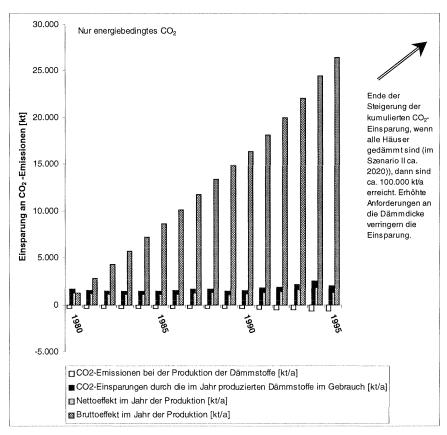



Abbildung 6-4: Jährliche Reduktion der CO₂ - Emissionen durch Dämmaterialien aus Kunststoffen

Zu berücksichtigen ist allerdings, daß sich die berechneten CO₂ -Effekte für Dämmaterialien aus Kunststoffen ausschließlich auf **energiebedingte** CO₂ - **Emissionen** beziehen. Die Einbeziehung des Treibhauspotentials der FCKW/HFCKW-Schäummittel erfolgt im folgenden Kapitel.

7 Einsatz von FCKW/HFCKW als Schäummittel

Bis Anfang der neunziger Jahre wurden XPS und PUR mit FCKW geschäumt (siehe Kap. 4.2 und 4.3). Da diese einen viel höheren Klimaeffekt (Global Warming Potential, GWP)¹² haben als CO₂, wird ihr Einsatz bei der Produktion von Kunststoff-Dämmstoffen näher betrachtet. Hierbei wird die Historie des Austiegs aus der Verwendung von FCKW nur summarisch in einzelnen Etappen nachvollzogen, vergleiche Tabellen 7-1 und 7-2.

Bis 1991 wurden zur Herstellung von 1 m³ Isoliermaterial aus PUR etwa 4 kg R11 eingesetzt. Diese Menge wurde 1992/93 um ca. 50 % reduziert und ab 1994 mit Pentan¹³ als Ersatzstoff der Ausstieg aus der Verwendung von FCKW vollzogen. Dadurch ist aber die Dämmleistung deutlich schlechter geworden, der λ -Wert von 0,02 ist mit Ersatzstoffen nicht mehr zu erreichen. Der Klimaeffekt von R11 ist 4.000 mal größer als der von Kohlendioxid.

Tabelle 7-1: Treibmitteleinsatz für die Herstellung von PUR

	Treibmittel	Menge pro m ³ [kg]
-1991	FCKW 11	4,2
1992-1993	FCKW 11	2,1
ab 1994	Pentan	4

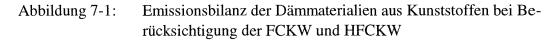
Bei der Produktion von Wärmedämmplatten aus XPS wurden früher ca. 4 kg R12 pro Kubikmeter eingesetzt. Seit 1994 wird auch mit CO₂ geschäumt, so daß ab 1995 mit einem 1:1 Verhältnis von CO₂ zu HFCKW (R142b) gerechnet werden kann. Bis zum Jahr 2000 soll die gesamte XPS-Menge des deutschen Marktes mit CO₂ hergestellt werden (Boy, 1997). Das GWP von R12 beträgt 8.500, das von R22 1500 und das von R142b beträgt 1600 (Ems et al., 1989).

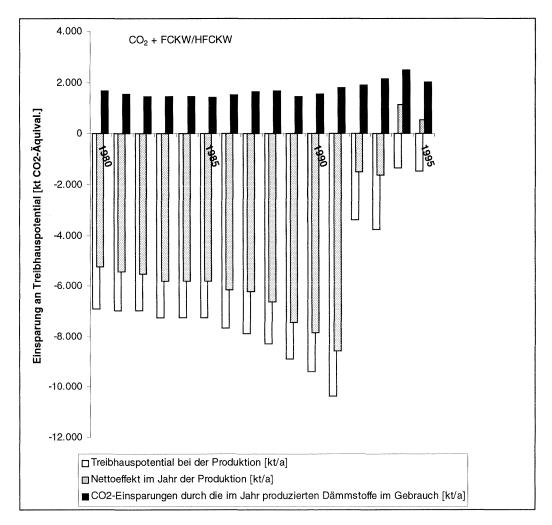
¹² Der Klimaeffekt oder das Klimagaspotential, englisch Global Warming Potential (GWP) genannt, beschreibt die Stärke der Klimawirksamkeit eines Gases. Ein GWP von 100 bedeutet z. B., daß 1 t eines Gases die 100-fache Klimawirksamkeit von einer Tonne CO₂ hat. Das GWP wird in CO₂ –Äquivalenten angegeben.

¹³ Der Einfluß von Pentan bzgl. Klimagasrelevanz (GWP=3) wird nicht berücksichtigt; die Energie und die CO₂ –Emissionen bei der Produktion sind in den Daten für PUR enthalten.

Tabelle 7-2: Treibmitteleinsatz für die Herstellung von XPS

	Treibmittel	Menge pro m ³ [kg]
-1990	FCKW 12	4
ab 1991	CO ₂ / HFCKW ¹	4

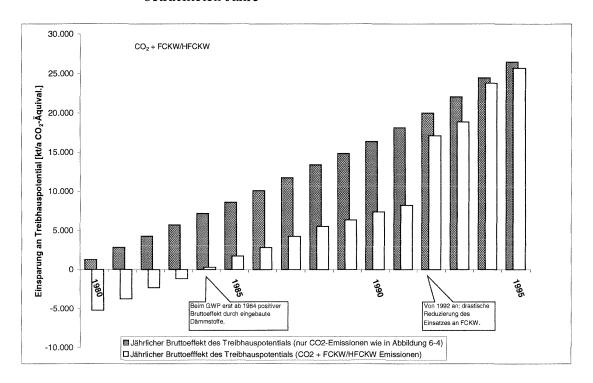

¹ 50 % CO2 und je 25 % HFCKW 142b bzw. 22


Nicht die gesamte Menge an Treibmittel gelangt in die Atmosphäre und wird damit klimawirksam, sondern nur ein Teil:

- Von den eingesetzten Stoffen werden bei der Produktion bis zu 10 % emittiert.
- Während der Gebrauchsphase diffundieren 50 % der Treibmittel in die Matrix, die andere Hälfte gelangt mit Halbwertszeiten von bis zu 400 Jahren in die Atmosphäre, wenn keine diffusionsdichten Deckschichten vorhanden sind. Für die vorliegende Studie wird angenommen, daß 10 % der Treibmittel während der Nutzung ausdiffundieren.
- Für die Entsorgung wird empfohlen, Dämmaterialien zu verbrennen, um die Restenergie zu gewinnen und die FCKW zu zerstören. Es wird angenommen, daß 10 % unsachgemäß entsorgt werden und somit als klimawirksam zu berechnen sind.

Tabelle 7-3: Berechnetes Klimagaspotential durch als Treibmittel eingesetzte FCKW und HFCKW (in kt CO₂ –Äquivalente pro Jahr)

Jahr	Klimagaspotential durch FCKW und HFCKW [kt/a]					
1980	6.500					
1981	6.600					
1982	6.600					
1983	6.900					
1984	6.900					
1985	6.900					
1986	7.300					
1987	7.500					
1988	7.900					
1989	8.500					
1990	9.000					
1991	9.900					
1992	2.900					
1993	3.200					
1994	700					
1995	800					
Summe	98.100					

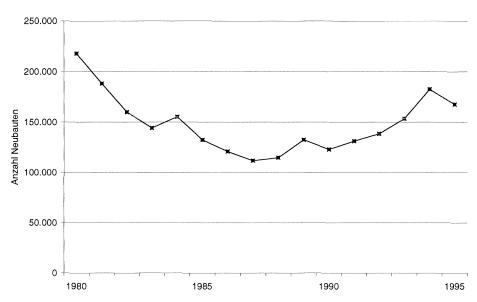


Diese Abschätzungen führen zu den in Tabelle 7-3 und in den Abbildungen 7-1 und 7-2 dargestellten Ergebnissen. Im betrachteten Zeitraum wird der Nettoeffekt des jeweiligen Jahres erst bei Umstellung auf Pentan im Jahr 1994 positiv, vergl. Abbildung 7-1. In Abbildung 7-2 ist dargestellt, daß das GWP zu Beginn durch den Einsatz von FCKW so groß ist, daß Nettoeinsparungen im jährlichen Bruttoeffekt der kumulierte Treibhauspotential der $CO_2 + FCKW/HFCKW$ Emissionen erst nach fünf Jahren erreicht werden. Bei Betrachtung des kumulierten GWP von 1980-1995 reduziert sich der in Tabelle 6-2 genannte Wert für die kumulierte CO_2 Einsparung von 207.500 kt um den GWP der insgesamt eingesetzten FCKW/HFCKW Treibmittel (Summe der Tabelle 7-3: 98.100 kt). Damit beträgt die kumulierte GWP Einsparung 109.400 kt. Die in den Tabellen 7-1 und 7-2 dargestellten Substitutionen von FCKW in den Jahren 1991/1992 und 1993/1994 sind in der Grafik deutlich ablesbar

FCKWs werden in Deutschland seit 1994 nicht mehr eingesetzt. Für importierte, im Ausland noch weiter mit FCKW geschäumte Waren gelten entsprechend die in Abbildung 7-1 dargestellten negativen Nettoeffekte im Jahr der Produktion.

Abbildung 7-2: Einfluß der Dämmaterialien aus Kunststoffen auf die jährlichen Bruttoeffekte der Treibhausgase FCKW/HFCKW und CO₂ der betrachteten Jahre

8 Aussicht auf die Entwicklung bis zu den Jahren 2005 und 2020


Für die Betrachtung der Energieeinsparung für die beiden Jahre 2005 und 2020 wurden, in Anlehnung an veröffentlichte Studien (Gertis, 1991), zwei Szenarien entwickelt:

Im ersten Szenario bleibt die Neubautätigkeit auf dem Stand von 1995, und es wird jährlich eine Anzahl von Gebäuden gedämmt, die 2 % der 1995 noch ungedämmten Altbauten, d. h. Gebäuden aus den Jahren vor 1980 entspricht.

Im zweiten Szenario wird diese Zahl auf 4 % gesetzt, was dazu führt, daß nach 25 Jahren im Jahre 2020 der gesamte Gebäudebestand einmal gedämmt ist. Eventuell fällige Sanierungen von in den 80er Jahren erstmals gedämmten Gebäuden wurden nicht berücksichtigt.

Der Energieeinsatz bei der Produktion basiert auf spezifischen APME Zahlen für die neunziger Jahre, diese sind statisch und können Verbesserungen in der Produktion bis zum Jahre 2020 nicht wiedergeben. Da die Dämmung von den politischen Rahmenbedingungen, bauphysikalischen Fortschritten und sozialen Randbedingungen abhängt, ist eine genaue Vorausschau schwierig. Auch in der Vergangenheit schwankte z. B. die Neubautätigkeit sehr stark, vergleiche Abbildung 8-1. Daher wurden die Dämmstandards des Jahres 1995 zu Grunde gelegt.

Abbildung 8-1: Diagramm zur Entwicklung der Neubauten bei den Wohngebäuden

Die Ergebnisdarstellung erfolgt analog zu den Tabellen 6-1 und 6-2. Bei der Hochrechnung der Dämmstoffproduktion wurde ein gleichbleibender Anteil der Kunststoffdämmung am Markt unterstellt. Tabelle 8-1 zeigt die Energieeinsparungen für 2005 und 2020, die sich auf Grund der eingesparten Heizenergie ergeben. Es sind sowohl die jährlichen Effekte als auch die Summen der kumulierten Einsparungen angegeben. Der Unterschied in den Summen bei den Szenarien liegt etwa bei 7 %. Dies spiegelt sich auch in den Ergebnissen bei den CO₂-Emissionen wieder, vergleiche Tabelle 8-2.

Tabelle 8-1: Übersicht über die Energieeinsparungen für 2005 und 2020

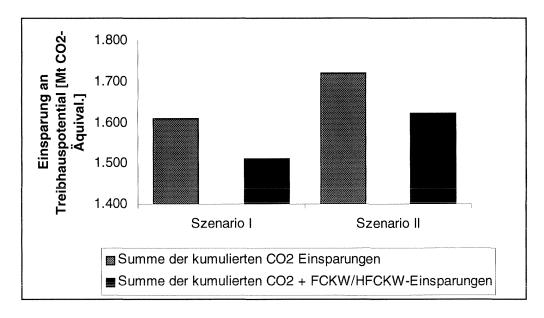

	Energieauf- wand [TJ/a]	Energieeinsparung [TJ/a]					
Jahr	Produktion Dämmstoffe	Wohn- gebäude	Nicht-Wohn- gebäude	Summe	Jährlicher Nettoeffekt	Jährlicher Bruttoeffekt	
1980	12.900	20.300	5.200	25.400	12.500	12.500	
1995	22.100	23.900	7.000	30.900	8.800	392.200	
Szenario I							
2005	26.900	27.500	7.800	35.300	8.400	719.900	
2020	36.300	34.300	9.400	43.700	7.500	1.348.200	
Kumulierte Einsparungen von 1980 bis 2020						24.020.200	
Szenario II							
2005	27.500	31.700	8.800	40.500	13.100	745.700	
2020	37.000	50.900	13.300	64.300	27.300	1.516.800	
Kumulierte Einsparungen von 1980 bis 2020						25.739.400	

Tabelle 8-2: Übersicht über die CO₂ Emissionen für die Jahre 2005 und 2020

	CO ₂ -Emis- sionen [kt/a]	CO ₂ -Einsparung [kt/a]					
Jahr	Produktion Dämmstoffe	Wohn- gebäude	Nicht-Wohn- gebäude	Summe	Jährlicher Nettoeffekt	Jährlicher Bruttoeffekt	
1980	400	1.300	300	1.700	1.300	1.300	
1995	700	1.600	500	2.000	1.300	26.500	
Szenario I							
2005	800	1.800	500	2.300	1.500	48.100	
2020	1.100	2.200	600	2.900	1.800	86.800	
Kumulierte Einsparungen von 1980 bis 2020						1.608.500	
Szenario II							
2005	800	2.100	600	2.700	1.800	49.800	
2020	1.100	3.300	900	4.200	3.100	100.700	
Kumulierte Einsparungen von 1980 bis 2020						1.719.900	

Bei Betrachtung der FCKW-Emissionen über die Jahre 1980 bis 2020 zusätzlich zu den CO₂ -Emissionen ergibt sich das in Abbildung 8-2 dargestellte Bild. Die Einsparungen an Treibhausgas-Emissionen fallen wegen des FCKW-Einsatzes in der Vergangenheit um ca. 100 Mt geringer aus, als wenn nur CO₂ betrachtet wird. Dieser Effekt ließe sich aber wettmachen, wenn wie im Szenario II gerechnet, alle Altbauten innerhalb von 25 Jahren gedämmt würden.

Abbildung 8-2: Vergleich der eingesparten Treibhauspotentiale an CO_2 – bzw. CO_2 + FCKW/HFCKW Emissionen für die Jahre 1980 bis 2020

Diese Studie ist unter dem Hintergrund der Annahmen des Kapitel 2 zu sehen, in welchem die Abschneidekriterien der Untersuchung dargelegt werden. Eine vollständige Modellierung des Wärmeschutzes aller Gebäude in Deutschland und detailliertere Betrachtungen der Teilaspekte des Bauens erfordert und hätte damit wesentlich mehr personelle und finanzielle Ressourcen benötigt.

Unter den genannten Randbedingungen fällt das Ergebnis der energetischen Amortisation noch im Jahre der Herstellung aber so eindeutig aus, daß selbst Fehler in zweistelligen Prozentbereichen diese Aussage kaum berühren.

9 Literatur

APME, Association of Plastics Manufacturers in Europe: Polystyrene. Brüssel, April 1997

Birnbaum, K.U.; Pauls, R.; Wagner, H.-J.; Walbeck, M.: Berechnung sektoraler Kohlendioxidemissionen für die Bundesrepublik Deutschland. KfA Jülich, Jülich 1991

BMWi; Bundesministerium für Wirtschaft: Energiedaten 97/98. Bonn, 1998

Boy, E.: Umweltfreundlich schäumen. Kunststoffe 87, 6, S. 718, 1997

- Ems, F.; Frischknecht, R.; Graf, R.; Hartmann, M.; Kaufmann, U.; Kuonen, M.; Scherrer, B.; Schmid, H.; Strickler, B.: Wärmedämmstoffe Der Versuch einer ganzheitlichen Bilanzierung. Herausgegeben von der Studentenarbeitsgruppe Wärmedämmstoffe, Muttenz, Schweiz 1989
- EURIMA, European Insulation Manufacturers Association: Thermal Insulation Thicknesses in Housing in Europe- MDC Project 55. Brüssel, 1996
- GDI, Gesamtverband Dämmstoffindustrie: Baumarktstatistik. Hamburg, verschiedene Jahre
- Gertis, K.: Verstärkter baulicher Wärmeschutz- ein Weg zur Vermeidung der bevorstehenden Klimaveränderung? Bauphysik 13, 5, S. 132, 1991
- GRE, Gesellschaft für rationelle Energieverwendung e.V.: Heizenergieeinsparung im Gebäudebestand.Berlin, 1996
- Gruson, C.: Kostenermittlung für wärmetechnische Maßnahmen an der Gebäudehülle bei Nichtwohngebäuden. IKARUS Teilprojekt 5, Band 5-18. Hrsg.: Forschungszentrum Jülich. Jülich 1993
- ISOPA, European Isocyanate Producers Association; APME, Association of Plastic Manufacturers in Europe: Polyurethane Precursors. 2. Auflage, Brüssel, Sept. 1997
- IWU, Institut für Wohnen und Umwelt. Ebel, W.; Eicke, W.; Feist, W.; Hildebrandt, O.; Hilpert, H.-P.; Klien, J.; Kröning, W.; Schmidt, H.; Siepe, B.; Wullkopf, U.: Energieeinsparpotentiale im Gebäudebestand. Darmstadt 1990
- Patel, M.; Jochem, E.; Marscheider-Weidemann, F.; Radgen, P.: Daten zur Behandlung des nichtenergetischen Verbrauchs unter Aspekten der Treibhausgasproblematik. Fh-ISI, Karlsruhe 1996
- Prognos AG: Die Energiemärkte Deutschlands im zusammenwachsenden Europa Perspektiven bis zum Jahre 2020. Basel, 1995
- Reiß, J.; Erhorn, H.: Stand und Tendenzen der Neubautätigkeit in Deutschland. IKARUS Teilprojekt 5, Band 5-13. Hrsg.: Forschungszentrum Jülich. Jülich 1992
- Schiffer, H.-W.: Energiemarkt Bundesrepublik Deutschland. 5. Aufl., Köln: TÜV Rheinland 1995
- Stabu, Statistisches Bundesamt: Bautätigkeit und Wohnungen, 1 % Stichprobe 1993. Fachserie 5, Heft 2. Wiesbaden 1995
- Stabu, Statistisches Bundesamt: Bautätigkeit und Wohnungen, Bautätigkeit. Fachserie 5, Reihe 1. Wiesbaden v. Jahre

- VDI 4600, Kumulierter Energieaufwand Begriffe, Definitionen, Berechnungsmethoden. VDI-Gesellschaft Energietechnik, Düsseldorf 1997
- Ziesing, H.-J.: Primärenergie und CO₂-Emissionen in Deutschland von 1990 bis 1996: Effektive und temperaturbereinigte Entwicklung (Corrigendum). Berlin: DIW, 15.8.1997

10 Critical Review

ENERGIEWIRTSCHAFT UND KRAFTWERKSTECHNIK

LEHRSTUHL IM INSTITUT FÜR ENERGIETECHNIK, TU MÜNCHEN : LEHRSTUHLINHABER: UNIV. PROF. DR.-ING. U.WAGNER, ORDINARIUS

Stellungnahme zu:

Einfluß des Einsatzes von Kunststoffen auf den Energiebedarf und die energiebedingten CO₂-Emissionen im Bereich der Wärmedämmung

(Fraunhofer-Institut für Systemtechnik und Innovationsforschung ISI, Mai 1999)

Ziel der Untersuchung:

In der vorliegenden Studie wird der Kunststoffeinsatz zur Wärmedämmung von Gebäuden untersucht, mit dem Ziel, mögliche Energieeinsparungen beziehungsweise Emissionsreduzierungen zu analysieren. Hierzu werden der Energieverbrauch bei der Produktion und die Energieeinsparung beim Einsatz der Dämmstoffe sowie die bei Herstellung und Nutzung entstehenden CO₂-Emissionen gegenübergestellt.

Die interessante Arbeit vermittelt ein Gefühl für die Größenordnung der Nettoeinsparung. Da angesichts der schwierigen Datenlage vereinfachende Annahmen erforderlich waren, sollte eine auf diese Studie aufbauende Untersuchung der dokumentierten Zusammenhänge daher folgende Punkte berücksichtigen:

Daten zur Herstellung

Die Daten zur Herstellung der Kunststoffe stammen aus Studien der Association of Plastics Manufacturers in Europe APME. Es ist zu überprüfen, ob diese Daten konsistent mit den im weiteren Fortlauf gewählten Angaben zu Bewertungsfragen und Bilanzgrenzen sind. Im Falle der APME-Daten wird die im Material gespeicherte Energie über den Brennwert des Kunststoffs ermittelt; der Primärenergieaufwand nach der VDI-Richtlinie 4600 zum Kumulierten Energieaufwand KEA wird mit dem Heizwert des Stoffs bestimmt. Darüberhinaus ist anzumerken, daß die APME-Daten einen europäischen Mix und nicht die deutschen Verhältnisse wiedergeben, die nachfolgenden Berechnungen beziehen sich auf Deutschland als Bilanzraum.

Aus Mangel an Daten wurde die Aufbereitung des Granulats zur fertigen Dämmstoffplatte (Schäumung des Polystyrols) nicht berücksichtigt; der geschätzte Energieverbrauch beträgt etwa 5 % bis 10 % des gesamten Herstellungsaufwands. Für eine detailliertere Analyse der FCKW-Bilanz (evtl. in einer Folgeuntersuchung) wäre die Erhebung genauerer Verbrauchsdaten zu empfehlen.

Bestimmung des Dämmstoffeinsatzes an Gebäuden

Die Hochrechnung der eingesetzten Dämmstoffe erfolgt über den Inlandsabsatz, Importe werden nicht erfaßt. Eine Differenzierung der zu dämmenden Gebäude nach Baualtersklassen ist nicht erkennbar. Die Betrachtungen beschränken sich auf Kunststoff-Dämmstoffe. Die Annahmen zu mittleren Dämmschichtdicken sind korrekt, die sich dadurch ergebenden Änderungen des k-Werts sind unter den gewählten Rahmenbedingungen richtig bestimmt.

Die "potentielle Anzahl der zu dämmenden Wohngebäude(...)" ist aus dem Bericht schwer nachvollziehbar. Die Anzahl der von tatsächlich durchgeführten Maßnahmen betroffenen Wohngebäude wird mit rund 1,4 Millionen (in 1983 bis 1993) angegeben. Gemäß der 1 %-Gebäude- und Wohnungsstichprobe aus 1993 wurden innerhalb 1983 und 1993 an ca. 3,3 Millionen Wohngebäuden aller Baualtersklassen Maßnahmen an Fassade, Dach und Keller vorgenommen. Mögliche Gründe hierfür wie zum Beispiel die lediglich teilweise Dämmung eines Gebäudes werden nicht angegeben.

Berechnung der Energieeinsparung durch den Einsatz von Dämmstoffen

Im weiteren Vorgehen wird die Einsparung an Transmissionswärme aus der potentiellen Anzahl der zu dämmenden Flächen, den Dämmstoffstärken und den tatsächlich abgesetzten Dämmstoffen abgeleitet. Über gemittelte Daten zum Heizanlagenmix und zur Bereitstellungsenergie für die verwendeten Energieträger wird eine Heizenergieeinsparung und damit verbundene Emissionsreduzierung quantifiziert. Wie bereits in der Vergangenheit erwähnt, sind zwei Aspekte besonders hervorzuheben:

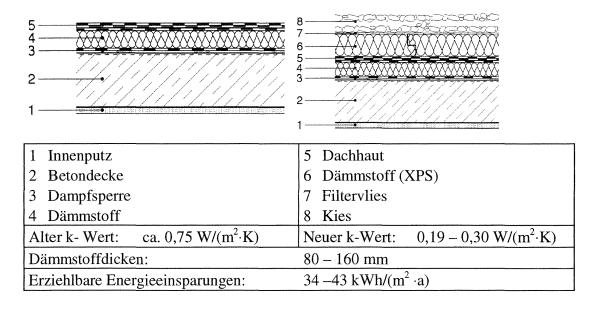
- Wichtig ist der Hinweis, daß über die Verbesserung des k-Wertes nur die Änderung des Transmissionswärmebedarfs ΔQ_T näherungsweise bestimmt werden kann.
- Laut Auskunft des Fraunhofer-Instituts für Systemtechnik und Innovationsforschung ISI erfolgte die Abschätzung der Energieeinsparung auf der Grundlage von Jahresstundenwerten nicht über den Jahresmittelwert der Temperatur, sondern differenziert und unter Berücksichtigung der Heizperiode.

Eine Sensitivitätsanalyse wesentlicher Einflußparameter wäre hilfreich und wünschenswert.

München, Juni 1999

1.01161/316

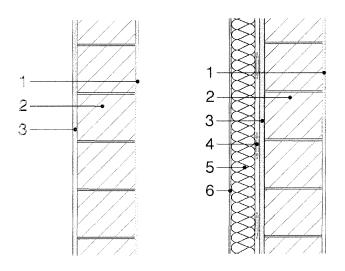
T. Fleißner


Anhang 1

Exkurs: Beispiele zur Wärmedämmung

Nachdem die vorliegende Studie über Gesamtproduktionszahlen und die gesamte Gebäudestruktur Deutschlands mit durchschnittlichen Annahmen rechnet, sollen diese anhand von zwei Beispielen für konkrete Bauteile überprüft werden.

Das erste Beispiel ist eine **Flachdachdämmung**, eine gebräuchliche Art der Wärmedämmung von Dächern. In Abbildung A1-1 ist das in der Literatur veröffentlichte Fallbeispiel dargestellt (GRE, 1996). Da die Dachhaut noch intakt ist, wird eine zweite Dämmschicht aus extrudiertem Hartschaum aufgebracht (Umkehrdach). Zur mechanischen Befestigung und als UV-Schutz erfolgt eine Abdeckung mit einer Kiesschicht. Man erkennt, daß die Dämmstoffdicken und k-Werte in ähnlichen Größenordnungen wie die im Bericht gewählten liegen, vergleiche die Tabellen 5-6 und 5-7.


Abbildung A1-1: Flachdachdämmung, links ohne und rechts mit Zusatzdämmung

In einem zweiten Beispiel wird eine **Wanddämmung** dargestellt (GRE, 1996). Bei dieser Wärmedämm-Maßnahme werden Dämmstoffplatten (in der Regel Hartschaum- oder Mineralfaserplatten) direkt auf den vorhandenen Außenputz geklebt oder gedübelt. Auf die Wärmedämmschicht wird eine Spachtelmasse aufgebracht, in die ein Armierungsgewebe eingearbeitet wird. Danach wird der Außenputz aufgetragen.

Auch bei dem gewählten Praxisbeispiel liegen k-Werte und Dämmdicken innerhalb der gewählten Größenordnungen, vergleiche Abbildung A1-2 und die Tabellen 5-6 und 5-7.

Abbildung A1-2: Monolithische Außenwand, links ungedämmt und rechts mit Wärmeverbundsystem

1 Innenputz	4 Klebemasse
2 Mauerwerk	5 Wärmedämmung
3 Außenputz	6 Außenputz
Alter k- Wert: ca. 1,3 W/($m^2 \cdot K$)	Neuer k-Wert: $0.21 - 0.31 \text{ W/(m}^2 \cdot \text{K)}$
Dämmstoffdicken:	100 – 160 mm
Erziehlbare Energieeinsparungen:	$94 - 103 \text{ kWh/(m}^2 \cdot \text{a)}$

Anhang 2

Tabelle A2-1: Typgebäude für Wohngebäude

Gebäudekennwerte		mi	t einer Wohnu	ng	mit einer	mit zwei	mit 3 bis 6	mit 7 bis 12	mit 13 und >
		freistehend	Doppel- haushälfte	Reihenhaus			Wohnung(en)		
Bruttogrundfläche (qm)		170	147	143	161	270	492	907	2045
Nettogrundfläche (qm)		141	122	119	134	224	408	753	1697
Wohnfläche (qm)		134	116	112	127	193	351	648	1461
Bruttoraumvolumen (cbm)		441	405	379	424	736	1333	2542	5889
Dach- ,oberste Geschoß- deckenfläche (qm)		135	72	66	112	181	207	289	667
Außenwandfläche (qm)		121	102	44	104	170	306	572	1000
	Süd	11	9	9	10	17	30	63	122
Fensterfläche (qm)	Ost/West	11	3	0	8	18	18	39	128
	Nord	5	7	8	6	8	24	41	71
Kellerdeckenfläche (qm)		125	61	56	102	147	221	292	644
Hüllflächenfaktor (m ⁻¹)		0,92	0,62	0,48	0,79	0,68	0,61	0,51	0,45

Tabelle A2-2: Typgebäude für Nicht-Wohngebäude /Gruson, 1993/

	Anzahl	Außenwand	Fenster	Dachfläche	Erdberühren	de Bauteile
Beschreibung			[m ²]		Kellerdecke [m ²]	Wände [m²]
Stadthaus mit Läden im EG und Büros/Wohnungen	500.000	50	37	60	50	
Stadthaus mit Büros mit Publikumsverkehr im EG und OG	290.000	145	82	150	120	
Öffentliches Gebäude mit Publikumsverkehr	39.000	330	100	310	280	
Ladenlokal in freier Lage mit verarbeitendem Gewerbe	127.000	300	160	630	625	
Ladenlokal in Stadtlage	59.000	360	350	870	750	
Ladenlokal in Randlage	270.000	300	60	730	730	
Stadthaus mit Läden im EG und Gewerbe im UG, Büros und Wohnungen im OG	222.000	410	160	280	175	150
Geschäftshaus mit Bank- und Ladenlokalen im EG und Arztpraxen im OG	14.000	340	130	420	380	
Verwaltungsgebäude	72.000	490	260	400	370	
Gewerbegebäude	17.000	360	300	520	520	250
Kaufhaus	44.000	900	145	690	690	
Bank- und Verwaltungsgebäude mit Läden im EG	1.500	935	900	840	825	80
Gewerbe- / Industriebau	24.000	966	54	1900	1750	
Beherbergungsstätte	4.500	1700	510	1290	1170	
Stadthalle mit Versammlungsräumen und Restaurant	4.000	1335	400	920	900	400
Altenwohn- und Pflegeheim	1.000	2770	920	2560	2560	
Verwaltungsgebäude	6.500	2600	1100	2765	2445	
Verkaufs- und Ausstellungsgebäude	5.000	2800	700	3200	3200	
Schule	2.000	2870	835	3050	2770	280
Produktionsgebäude	3.000	1775	1775	3900	3770	560
Krankenhaus	9.500	2000	3220	2600	3230	

Tabelle A2-3: Verwendete 8 Typgebäude für Nicht-Wohngebäude (berechnet nach /Gruson, 1993/)

Typgebäude	Anzahl	Außenwand	Fenster	Dachflächen	Erdberührei	nde Bauteile
		$[m^2]$	$[m^2]$	$[m^2]$		
					Kellerdecke	Wände
					$[m^2]$	$[m^2]$
Anstaltsgebäude	12,500	2,201	885	890	1,034	15
Büro- und Verwaltungsgebäude	870,000	139	80	140	119	0
Landwirtschaftliche Betriebsgebäude						
Nichtlandwirtschaftliche Betriebsgebäude	789,500	421	150	652	606	50
Fabrik- und Werkstattgebäude	44,000	787	266	1,503	1,413	135
Handels- einschl. Lagergeb.	741,000	391	141	598	555	45
Hotels und Gaststätten	4,500	1,700	510	1,290	1,170	0
Sonstige	43,000	423	128	367	338	37

Tabelle A2-4: Übersicht über den Bestand der Wohngebäude

	mit 1		mit 2 Wohnunge		mit 3 - 6		mit 7 - 12		mit 13 und n		gesamt	
	Wohnung		Wohnunge	n	Wohnunge	n	Wohnunge	n	Wohnunge	n	errechnet	
Jahr	Anzahl	%	Anzahl	%	Anzahl	%	Anzahl	%	Anzahl	%	Anzahl	%
1978	6.468.973	61	2.219.993	21	1.387.071	13	454.971	4	108.714	1	10.639.722	100
1979	6.622.447	61	2.257.808	21	1.393.702	13	457.524	4	110.247	1	10.841.728	100
1980	6.779.111	61	2.300.734	21	1.401.129	13	460.789	4	112.183	1	11.053.946	100
1981	6.905.210	61	2.344.456	21	1.408.442	13	464.288	4	114.165	1	11.236.562	100
1982	7.003.620	61	2.386.899	21	1.416.354	12	468.397	4	116.334	1	11.391.605	100
1983	7.088.601	61	2.425.115	21	1.425.225	12	473.264	4	118.575	1	11.530.780	100
1984	7.179.163	61	2.465.191	21	1.435.764	12	479.401	4	121.823	1	11.681.343	100
1985	7.258.988	61	2.498.106	21	1.443.581	12	483.557	4	124.042	1	11.808.275	100
1986	7.334.572	62	2.527.854	21	1.449.421	12	486.296	4	125.352	1	11.923.495	100
1987	7.412.415	62	2.548.396	21	1.454.111	12	488.379	4	126.379	1	12.029.680	100
1988	7.499.005	62	2.563.421	21	1.458.520	12	490.157	4	127.271	1	12.138.373	100
1989	7.600.400	62	2.579.911	21	1.464.077	12	492.332	4	128.363	1	12.265.083	100
1990	7.690.118	62	2.595.658	21	1.471.738	12	495.347	4	129.651	1	12.382.512	100
1991	7.780.006	62	2.614.245	21	1.482.280	12	499.726	4	131.361	1	12.507.619	100
1992	7.869.987	62	2.634.285	21	1.495.297	12	505.834	4	133.946	1	12.639.349	100
1993	7.966.700	62	2.657.600	21	1.510.400	12	513.000	4	137.100	1	12.784.800	100
1994	8.081.100	62	2.687.411	21	1.529.268	12	521.463	4	140.696	1	12.959.938	100
1995	8.181.192	62	2.715.864	21	1.548.881	12	530.002	4	144.460	1	13.120.399	100

Tabelle A2-5: Abgang von Wohngebäuden

				41	L.	Wohng	ebäude	-				
	mit	1	mi	t 2	mit 3 ur	nd mehr	Wohn	heime	gesa	amt	gesa	ımt
	Wohr		Wohn	ungen	Wohn	ungen			егтес	hnet		
Jahr	Anzahl	%	Anzahl %		Anzahl	%	Anzahl	%	Anzahl	%	Anzahl	%
1979 ¹⁾	3.917	53	1.535	21	1.953	26	55	1	7.460	100	7.460	100
1980 1)	3.683	53	1.434	21	1.731	25	76	1	6.924	100	6.924	100
1981 ¹⁾	3.630	52	1.437	21	1.790	26	75	1	6.932	100	6.932	100
1982 ¹⁾	3.148	54	1.257	21	1.402	24	54	1	5.861	100	5.861	100
1983 ¹⁾	3.169	55	1.246	22	1.251	22	63	1	5.729	100	5.729	100
1984 ¹⁾	2.915	55	1.179	22	1.149	22	51	1	5.294	100	5.294	100
1985	3.843	63	1.119	18	1.099	18	67	1	6.128	100	6.128	100
1986	4.043	64	1.151	18	1.019	16	81	1	6.294	100	6.294	100
1987	3.966	64	1.108	18	1.085	17	81	1	6.240	100	6.240	100
1988	4.363	65	1.188	18	1.058	16	70	1	6.679	100	6.679	100
1989	4.127	65	1.169	18	981	16	52	1	6.329	100	6.329	100
1990	3.967	66	1.085	18	891	15	55	1	5.998	100	5.998	100
1991	4.262	66	1.238	19	921	14	73	1	6.494	100	6.494	100
1992	4.759	68	1.266	18	874	13	55	1	6.954	100	6.954	100
1993	5.154	69	1.321	18	943	13	63	1	7.481	100	7.481	100
1994	4.977	69	1.317	18	850	12	73	1	7.217	100	7.217	100
1995	4.533	67	1.285	19	868	13	62	1	6.748	100	6.748	100

¹⁾ ohne Bayern

Tabelle A2-6: Neubau von Wohngebäuden

		***************************************	mit 1 Woh	nung	Ţ		mit 1		mit 2		mit 3		mit 4 -	6	mit 7 -	12	mit 13 -	19	mit 20 o.	mehr	Wohnhe	ime	gesamt
	Einzelh	aus	Doppelh	aus	gereihtes	Haus	Wohnu	ng	Wohnun	gen	Wohnun	gen	Wohnun	gen	Wohnun	gen	Wohnun	gen	Wohnun	gen			
Jahr	Anzahl	%	Anzahl	%	Anzahl	%	Anzahl	%	Anzahl	%	Anzahl	%	Anzahl	%	Anzahl	%	Anzahl	%	Anzahl	%	Anzahl	%	Anzahl
1979							157.391	76	39.350	19	2.632	1	3.999	2	3.017	1	891	0	766	0		0	208.046
1980							160.347	74	44.360	20	2.862	1	4.565	2	3.676	2	1.111	1	935	0		0	217.856
1981							129.729	69	45.159	24	2.680	1	4.633	2	3.924	2	1.172	1	924	0		0	188.221
1982							101.558	64	43.700	27	2.806	2	5.106	3	4.442	3	1.322	1	936	1		0	159.870
1983	63.317	44	9.802	7	15.031	10	88.150	61	39.462	27	2.880	2	5.991	4	5.164	4	1.366	1	954	1	258	0	144.225
1984	64.630	42	11.949	8	16.898	11	93.477	60	41.255	27	3.332	2	7.207	5	6.410	4	1.888	1	1.433	1	275	0	155.277
1985	55.260	42	11.139	8	17.270	13	83.668	63	34.034	26	2.657	2	5.160	4	4.417	3	1.257	1	1.032	1	178	0	132.403
1986	51.190	42	11.631	10	16.806	14	79.627	66	30.899	26	2.191	2	3.649	3	2.981	2	773	1	601	0	140	0	120.861
1987	51.167	46	12.744	11	17.898	16	81.809	73	21.650	19	1.768	2	2.922	3	2.340	2	619	1	477	0	142	0	111.727
1988	56.886	50	14.168	12	19.899	17	90.953	79	16.213	14	1.640	1	2.769	2	2.029	2	551	0	408	0	166	0	114.729
1989	64.144	48	19.274	15	22.104	17	105.522	80	17.659	13	1.969	1	3.588	3	2.408	2	683	1	472	0	173	0	132.474
1990	57.286	47	18.224	15	18.174	15	93.685	76	16.832	14	2.510	2	5.151	4	3.227	3	765	1	579	0	277	0	123.026
1991	60.157	46	17.715	13	16.278	12	94.150	72	19.825	15	3.304	3	7.238	6	4.598	4	1.039	1	730	1	387	0	131.271
1992	62.167	45	17.365	13	15.209	11	94.740	68	21.306	15	3.941	3	9.076	7	6.315	5	1.511	1	1.129	1	448	0	138.466
1993	68.400	45	19.081	12	14.386	9	101.867	66	24.636	16	4.779	3	10.983	7	7.390	5	1.744	1	1.470	1	527	0	153.396
1994	82.441	45	22.559	12	14.376	8	119.377	65	31.128	17	5.927	3	13.535	7	8.665	5	2.044	1	1.606	1	378	0	182.660
1995	72.569	43	20.503	12	11.552	7	104.625	62	29.738	18	6.104	4	14.116	8	8.745	5	2.092	1	1.727	1	324	0	167.471

Tabelle A2-7: Übersicht über den Bestand der Nicht-Wohngebäude

Jahr	Anstaltsgo	ebäude	Büro- un	ıd	Nichtlandw	irt-	Fabrik- ı	ınd	Handels- ei	nschl.	Hotels	und	Sonsti	ge	Nichtwohnge	ebäude
			Verwaltun	ıgs-	schaftliche Be	triebs-	Werksta	ıtt-	Lagerge	eb.	Gaststä	itten			zusammen	(ohne
			gebäude	e	gebäude		gebäud	le							landwirtscha	ftliche
					_										Gebäud	e)
	Anzahl	%	Anzahl	%	Anzahl	Anzahl	%	Anzahl %		Anzahl %		Anzahl	%	Anzahl	%	
1979	8,353	1	845,080	52	609,178	38	7,014	0	686,577	42	1,240	0	4,906	0	1,619,521	91
1980	8,827	1	846,959	52	625,058	38	5,899	0	685,528	42	1,031		9,739	1	1,633,690	91
1981	9,322	1	848,769	52	639,291	39	4,583	0	684,178	42	771	0	13,690	1	1,644,870	
1982	9,857	1	850,490	51	653,150	39	3,312	0	682,857	41	519	0	17,323	1	1,655,932	
1983	3 10,159	1	852,174	51	666,235	40	7,294	0	688,859 41		1,089 0		20,117	1	1,667,796	
1984	10,400	1	854,003	51	679,675	40	11,378	11,378 1		695,096 41		0	22,571	1	1,678,833	93
1985	10,646	1	855,299	51	690,700	41	14,677	14,677 1		42	1,954	0	24,705	1	1,685,871	94
1980	10,907	1	856,580	51	701,584	41	18,355	1	705,056	42	2,278	0	26,806	2	1,692,167	94
1987	11,120	1	858,013	51	712,656	42	21,969	1	709,711	42	2,632		28,951	2	1,697,528	95
1988	3 11,383	1	859,674	51	724,817	43	25,355	1	714,894	42	3,021	0	31,311	2	1,701,998	96
1989	11,618	1	861,431	50	738,073	43	29,162	2	720,499	42	3,439 0		33,594	2	1,706,523	96
1990	11,845	1	863,252	51	750,660	44	32,950	2	725,562	42	3,727	0	35,769	2	1,709,014	97
199	12,060	1	865,266	51	763,322	45	36,778	2	730,627	43	43 3,932		37,882	2	1,711,156	98
1992	2 12,266	1	867,509	51	 		40,575	2	735,985	43	4,191	0	40,253	2	1,713,274	99
1993	12,500	1	870,000	51	789,500 46				3 741,000 43		43 4,500		43,000	3	1,715,000	100
1994	12,687	1	872,232	51			7 47,026 3		3 746,086 43		3 4,804 (45,692	3	1,716,521	101
1995	12,908	1	874,204	51	814,323	47	49,834	3	751,292	44	5,113	0	48,132	3	1,718,494	102

Tabelle A2-8: Abbruch von Nicht-Wohngebäuden

Jahr	Anstal gebäu	de	Büro- Verwalt gebät	ungs- ide	Landwirt- Nichtlandwirt- schaftliche schaftliche Betriebs- Betriebs- gebäude gebäude		Fabrik- Werkst gebäu	tatt- de	Hande einsc Lagers	hl. geb.	Hotels Gaststä	itten	Sonst	_	Nichtw gebät zusam	ide men		
	Anzahl	%	Anzahl	%	Anzahl	%	Anzahl	%	Anzahl	%	Anzahl	%	Anzahl	%	Anzahl	%	Anzahl	%
1980	53	1	297	5	3.210	49	2.637	41	1.115	17	1.049	16	209	3	310	5	6.507	100
1981	68	1	313	4	3.459	47	3.252	44	1.316	18	1.350	18	260	4	325	4	7.417	100
1982	79	1	348	5	3.399	47	3.099	43	1.271	18	1.321	18	252	3	314	4	7.239	100
1983	55	1	373	5	3.007	44	3.189	46	1.322	19	1.411	20		3	269	4	6.893	100
1984	78	1	364	5	2.804	42	3.164	47	1.334	20	1.336	20	195	3	264	4	6.674	100
1985	100	1	416	5	3.738	45	3.645	44	1.477	18	1.559	19	241	3	367	4	8.266	100
1986	75	1	416	5	3.682	46	3.451	43	1.317	17	1.544	19	233	3	356	4	7.980	100
1987	86	1	373	4	3.859	46	3.563	43	1.366	16	1.618	19	228	3	419	5	8.300	100
1988	93	1	423	5	4.068	44	4.262	46	1.706	18	1.862	20	250	3	449	5	9.295	100
1989	108	1	400	4	4.197	46	4.013	44	1.521	17	1.874	20	233	3	443	5	9.161	100
1990	52	0	461	4	5.356	48	4.716	43	1.626	15	2.189	20	338	3	467	4	11.052	100
1991	74	1	513	4	5.559	47	5.083	43	1.778	15	2.276	19	380	3	564	5	11.793	100
1992	70	1	516	4	5.645	47	5.081	42	1.693	14	2.392	20	356	3	691	6	12.003	100
1993	77	1	512	4	6.030	49	5.065	41	1.753	14	2.330	19	342	3	679	5	12.363	100
1994	96	1	461	4	6.134	51	4.812	40	1.575	13	2.158	18	351	3	603	5	12.106	100
1995	114	1	614	5	5.444	46	4.940	42	1.581	13	2.238	19	327	3	718	6	11.830	100

Tabelle A2-9: Neubau von Nicht-Wohngebäuden

Jahr	Ansta gebäu	ide	Büro- Verwalt gebäu	ungs- ide	Landw schaftl Betrie gebäu	iche bs- ıde	Nichtland schaftl Betrie gebäu	iche bs- ide	Fabrik- Werks gebäu	tatt- ide	Hande einsc Lager	hl. geb.	Hotels Gaststä	itten	Sonst		Nichtw gebät zusam	ide men
	Anzahl	%	Anzahl	%		%	Anzahl	%	Anzahl	%	Anzahl	%	Anzahl	%	Anzahl	%	Anzahl	%
1980	527	1	2.176	6	12.830	33	18.517	47							5.143	13	39.193	100
1981	563	2	2.123	6	11.635	32	17.485	48							4.276	12	36.082	100
1982	614	2	2.069	6	11.661	33	16.958	48							3.947	11	35.259	100
1983	357	1	2.057	6	13.280	38	16.274	46	5.304	15	7.413	21	751	2	3.063	9	35.031	100
1984	319	1	2.193	6	12.481	36	16.604	48	5.418	16	7.573	22	730	2	2.718	8	34.315	100
1985	346	1	1.712	6	10.745	36	14.670	49	4.776	16	6.711	22	571	2	2.501	8	29.974	100
1986	336	1	1.697	6	9.786	34	14.335	50	4.995	17	6.352	22	557	2	2.457	9	28.611	100
1987	299	1	1.806	6	8.992	32	14.635	52	4.980	18	6.273	22	582	2	2.564	9	28.296	100
1988	356	1	2.084	7	8.516	28	16.423	54	5.092	17	7.045	23	639	2	2.809	9	30.188	100
1989	343	1	2.157	7	8.460	27	17.269	56	5.328	17	7.479	24	651	2	2.726	9	30.955	100
1990	279	1	2.282	7	8.340	27	17.303	56	5.414	18	7.252	24	626	2	2.642	9	30.846	100
1991	289	1	2.527	8	8.442	27	17.745	56	5.606	18	7.341	23	585	2	2.677	8	31.680	100
1992	276	1	2.759	8	8.024	25	18.427	57	5.490	17	7.750	24	615	2	3.062	9	32.548	100
1993	311	1	3.003	9	7.349	23	17.897	56	5.178	16	7.345	23	651	2	3.426	11	31.986	100
1994	283	1	2.693	9	7.356	24	17.285	56	4.601	15	7.244	23	655	2	3.295	11	30.912	100
1995	335	1	2.586	8	7.724	25	17.290	56	4.389	14	7.444	24	636	2	3.158	10	31.093	100