Virtual Material Design and Air Filtration Simulation Techniques inside GeoDict and FilterDict

Andreas Wiegmann, PhD	wiegmann@itwm.fhg.de
Dipl. Math. Stefan Rief	rief@itwm.fhg.de
Priv. Doz. Dr. Arnulf Latz	latz@itwm.fhg.de

American Filtration & Separation Society Annual Conference, Atlanta, April 13th, 2005.

Fraunhofer _{Institut} Techno- und Wirtschaftsmathematik

Micro Structure Simulation and Virtual Material Design

- Structure generator + property simulator GeoDict / FilterDict
- Virtual three dimensional nonwoven models
- Computation of material properties
 - flow resistivity
 - permeability, capillary pressure
 - particle filtration, filter efficiency
 - filter lifetime
 - acoustic absorption
 - effective elasticity properties
- Sequences of simulations to optimize material geometry

The Virtual Material Design Cycle

- 1. Identify parameters for real, existing material
- 2. Generate 3d geometry for parameters
- Solve Stokes equations in 3d geometry
- 4. Compute filter efficiency in 3d geometry
- 5. Modify material parameters
- 6. Go back to 2.

The Geometric Nonwoven Model

Microscopy

Fiber model

Flow simulation in the model

Possible variations: for example

• Cross sections

• Layers

Anisotropy

Design Parameters for Nonwoven Filter Media

- 1. Layer thicknesses
- 2. Porosity of each layer (via voxel count)
- 3. Fiber diameters in each layer
- 4. Fiber anisotropy in each layer
- 5. Fiber shapes in each layer
- 6. Combination with other types of layers, e.g. porous membranes
- 7. Fibers may or may not overlap
- 8. Fiber crimp can be modeled
- 9. Fibers are "infinitely long"
- 10. Enough voxels in all directions to have representative elementary volume
- 11. Resolution critical for fibers surface roughness, particle sizes and flow

Transverse Isotrope Fiber Orientation Probability and Nonwoven Material Density

• Transverse isotrope fiber orientation probability: compression in thetadirection, isotrope for $\beta=1$, compressed for $\beta>1$.

$$p(\vartheta,\varphi) = \frac{1}{4\pi} \frac{\beta \sin \vartheta}{\left(1 + (\beta^2 - 1)\cos^2 \vartheta\right)^{3/2}} \quad , \qquad \vartheta \in [0,\pi), \varphi \in [0,2\pi)$$

- For two fiber types with probability 0 ≤p ≤ 1 and 1-p, generate random number n between 0 and 1 and select first type if n ≤ p and second type if n>p.
- Generate fibers until the desired solid volume fraction f_v is reached based on comparing the voxels occupied by the generated fibers with the total amount of voxels in the volume.
- Can select overlapping and nonoverlapping fibers, the latter with limits on the desired solid volume fraction.

Real and Generated Three Dimensional Images

- $\mu \Delta \vec{u} + \vec{f} = \nabla p \qquad : \text{ momentum balance}$ $div \, \vec{u} = 0 \qquad : \text{ incompressible conservation}$
 - : incompressible conservation of mass
- $\vec{u} = 0$ on Γ : no-slip on fiber surfaces
- \vec{f} : force in direction of the flow,
- \vec{u} : velocity,
- µ: fluid viscosity,
- p: pressure and
- Γ : fiber or deposited particle surfaces.

The flow can be solved with periodic boundary conditions if the cutout is large enough and empty space is added in front.

Filter Efficiency Model

A) Testdust: **B)** Fluid: C) Nonwoven geometry: Sphere radii Electrostatic charges Viscosity Specific weight No-slip boundary conditions Density Electrostatic charges Temperature Mean flow velocity E) Deposition due to: **D) Interaction:** Flow & pressure drop : B & C Inertial impact + adhesion Electrostatic field: (Diffusion + adhesion Friction: A & B Electrostatic attraction +adhesion Diffusion: A & B Sieving Collision: A & C Adhesion: A & C Electrostatic attraction: A & C Particle Paths: A, B & C

Fraunhofer Institut Techno- und Wirtschaftsmathematik

Filter Efficiency

Particle Diameter [1e-6m]

Deposition Diagram

- Deposition locations are 20 64µm layers.
- Orange: particle numbers
- Lines: mean value and standard deviation of number of collisions
- Example: Layer 15 contains 7% of the filtered particles. Those had on average 13.15 collisions with standard deviation 1.9
- 4 layers of gradient material indicated by thick black lines:

Particle Diameter=0.3µm

Particle Diameter=8.0µm

Deposition of Different Sized Particles in the Different Layers

Influence of Electrostatic Surface Charges

- deposition rate doubles,
- particles also stick to the "back" of the fiber.

Filter Lifetime Simulation: from Clean to End-of-Life

0,1

Filter Efficiency [%]

Sim 16,5g/m²
Sim 27,5g/m²
Sim 38,5g/m²
Sim 55,0g/m²
Sim 66g/m²

Evolution of Filter Efficiencies during Filter Lifetime Simulations

Particle Diameter [1e-6m]

Time Dependent Pressure Drop

Summary

Filtration properties of filter media can be computed and optimized

- 1. 3d geometry from tomography or mathematical model
- 2. Model media, fluid flow and the dirt as well as their interactions
- 3. MPPS: small particles filtered by diffusion, large ones by sieving
- 4. Layered materials give more uniform clogging, can have multiple properties
- 5. Study of electrostatic effects on filtration is on its way
- 6. Study of subvoxel effects is on its way
- 7. Virtual filter material design is possible!

The Elastic Solver Team

Heiko Andrä Dimiter Stoyanov

The ParPac Team

Dirk Kehrwald Peter Klein Dirk Merten Konrad Steiner Irina Ginzburg Doris Reinel-Bitzer

The GeoDict Team

Andreas Wiegmann Heiko Andrä Ashok Kumar Vaikuntam Katja Schladitz Volker Schulz Jianping Shen Petra Baumann Rolf Westerteiger Christian Wagner Joachim Ohser Hans-Karl Hummel

The FilterDict Team

Stefan Rief Arnulf Latz Andreas Wiegmann Stephan Nowatschin Christian Wagner Rolf Westerteiger

The Volume Rendering Team

Carsten Lojewski

Fraunhofer Institut Techno- und Wirtschaftsmathematik