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Abstract— Performance of perceptive systems depends on the
quality of the input data. In this contribution, an approach
to evaluate perception performance as a function of quality
of the sensor data is presented. Standardized quality metrics
support the imaging sensors performance measurement. Several
imaging setups are analyzed with real world experiments.
The output of each setup is processed offline to track down
performance differences with respect to the quality of sensor
data. An adapted measurement is calculated to measure the
sensor performance with respect to the data quality for the
involved perceptive components. The measured performance
is assessed by processing the data of different simultaneously
recorded imaging setups for the task of feature extraction of
road lanes.

Index Terms— image quality, performance evaluation, per-
ceptive components, sensor evaluation

I. INTRODUCTION

Perceptive components of recognition systems including

sensors and processing units are the components responsible

for acquiring and processing data, as well as extracting

features of the environment. In combination with correspond-

ing computational environment models, object generation

and situation analysis is performed to generate the final

perception result.

The evaluation and assessment of the performance of

recognition systems is a permanent challenge for develop-

ers. With a constantly increasing number of variables, the

required system complexity impedes the identification and

measurement of performance parameters.

In this correspondence, an approach is presented to de-

scribe the sensor performance as a function of its data quality

and relate it to the performance of dependent perception

results. With higher performance of the data acquisition

component, the data quality is improved and the probability

of a successful feature extraction is raised. A better feature

extraction improves the perception performance, which ulti-

mately increases the overall performance of the recognition

system. The problem is to identify and measure the impact of

the sensor performance on the data quality and the perception

result. The task is performed for cameras with different com-

binations of imaging sensors and lenses. With standardized

tests their performance difference is measured and used as

reference to relate the results of a data quality measurement

for the perception task of a road lane recognition system.

Different institutions have proposed concepts for standard-

ized tests and measurements for the performance evaluation

of imaging sensors based on periodic signals, random noise

and other inputs [1], [2]. From these proposed measurement

methods the edge-gradient analysis provides the advantage

of simple experimental setups, test charts and is still able to

produce comparable results from different test scenarios [3].

The analysis results in an estimate of the modulation transfer

function (MTF) of the measured imaging sensor, which

is widely used to assess and compare performance. An

overview of the state of the art in image quality assessment

is given by Angelis [4]. Measures that take the wide range

of influences of automotive video footage into account have

been proposed, which is useful to check whether selected

sensors meet minimal quality criteria for the target appli-

cations [5]. For the specific task of lane recognition, the

determination of a suitable sensor configuration has been

investigated in [6]. Providing a concept and measures for

the detailed performance dependent analysis of perceptive

components is the target of this work.

II. SENSOR PERFORMANCE MEASUREMENT

The focus of this paper is in the field of camera based

systems. The quality of an imaging component can be

described as the accuracy to represent scene detail in the

resulting image data. Intensity and contrast in a digital

image decrease, as the distance between two contrast edges

decreases, or the spatial frequency increases. The capability

of an imaging device to capture the information content of

an object as a function of spatial frequencies is given by the

modulation transfer function (MTF).

High spatial frequencies correspond to fine image detail.

Therefore, the more detailed an object and the lower the

MTF of a system at high frequencies, the lower the ability

to resolve these details in the image. From the MTF the limit

of resolution can be determined. This limit depends on the

characteristics of all the involved optoelectronic components.

The system MTF is a combination of the modulations

occurring in all the involved components affecting the digital

image. From the prominent role of lenses and imagers to

small interference factors of cables for example, which can

be summarized in a noise term:

MTFsys = MTFlens ·MTFimager ·MTFnoise (1)

The ISO12233 methodology [1] has been established in

order to provide a fast MTF measurement method based on

only one image. In such a standardized way, the MTF data

from various digital input devices may be easily reproduced

and compared. The MTF, in general, is a graph of the
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intensity measure in gray level percentage versus spatial

frequency, resulting in a map of image intensities for various

frequencies.

Spatial frequency is typically measured in lp/mm, de-

scribing the ability to discern the number of contrast pairs

of lines appearing within a millimeter. For digital cameras the

normalized unit cycles per pixel (c/p) is more appropriate

to account for the variety of sensor sizes. Fine image detail

is represented in high spatial frequencies. The more distinct

the response, the finer the detail and in the end, the sharper

the image. The results of the MTF measurement gives an

insight on how well an imaging component performs the task

of resolving contrast and detail of a scene. Especially fine

details and features with small intervals gain from higher

MTF performance. This higher resolving capacity directly

affects the performance of perceptive algorithms. The MTF

measurement provides a reference to compare and assess

the quality measurements of real data for specific perception

tasks.

III. PERCEPTION PERFORMANCE MEASUREMENT

To relate imaging system performance to the performance

of the targeted perception task, a measure is needed that

represents the changes in quality of the input data for the

perceptive component that performs the task. Road lanes

represent vertically oriented contrast edges in images and can

be filtered with classical edge detection algorithms, like sobel

filtering or enhanced variants, with respect to orientation and

magnitude [7]. In one line of an image a road marking

is described as a contrast step. This information can be

transformed into a deterministic signal

x(t) = x0 · rect(t/T ) (2)

with signal length T defined by the width of the marking

that should be extracted. Each imaging system has a dif-

ferent response to the carrier signal, based on the different

MTF. The quality of the transmitted signal is described by

the signal-to-noise ratio (SNR). A matched filter with the

impulse response

h(t) = c · x(T − t) (3)

is able to produce the maximum SNR for a given input signal

at time t = T . The output of a filter with response function

h(t) excited by x(t) is

y(t) =

∫

∞

−∞

h(t− τ)x(τ)dτ (4)

The signal is assumed to be superimposed by a white noise

process N(t) with the sample function n(t) and the auto

covariance function cNN (τ) = Nw · δ0(τ). The SNR at the

output of the filter at time t = T is described with the ratio

of the squared source signal and the square mean of the noise

process, which equals its variance.This leads to

SNR =

(

∫

∞

−∞
h(T − τ)x(τ)dτ

)2

Nw

∫

∞

−∞
h2(τ)dτ

=
| (h(t) ∗ x(t))

2
|t=T

Nw ·
∫

∞

−∞
h2(t)dt

(5)

Since the number of pixels describing the marking varies

with the viewing distance, the matched filter is adapted to

the correct signal length for each image line to compute the

maximum SNR. The information about position and width

of the marking is provided by the recognition system that is

used to process the data.

The SNR provides the needed measurability of the impact

of an imaging component on the quality of input data similar

to the MTF measurement and is an indicator for the detection

probability of a given signal. The higher the SNR at the

receiver input, the higher the detection probability of the

signal and eventually the performance of the perception

algorithm.

IV. EXPERIMENTAL RESULTS

This section details the results of the conducted experi-

ments and tests. First, the results of the sensor performance

measurement described in section II for several lens and

imaging sensor combinations are presented. Thereafter the

SNR measurement and perception results on road scenes in

front of a moving truck for the same set of combinations is

given.

The Slant Edge Feature measurement provides a fast and

robust MTF estimation based on gradient edge evaluation

of a fine print ISO12233 test target [1]. The process itself

is robust with respect to small alignment variations and

different contrast ratios, as long as the camera’s exposure

limit is not reached [8]. To achieve a stable illumination

level for all measurements and to prevent saturation, the

histogram of the scene was used as an input to control the

camera. Image enhancement features of the sensors were

deactivated to provide unbiased results. These would produce

distorted MTF curves. No compression or other conversions

were applied to the data. The capturing requirements for

the measuring target were maintained using standard compo-

nents for lighting and fixation and assured similar conditions

for repeated measurements.

sensor width height pixel size fNyquist

1 640px 480px 7.4µm2
68lp/mm

2 1024px 768px 4.6µm2
108lp/mm

TABLE I

PARAMETERS OF THE USED GRAYSCALE IMAGING DEVICES

Tables I and II show the tested imaging sensors and lenses.

The grayscale CCD sensors have different resolution and

pixel sizes. The lenses vary mainly in focal length. To test

the variance and accuracy of the process, two lenses of the

same model (1 and 3) were tested as well. Each camera was
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lens focal length type

1 8mm normal
2 12.1mm tele
3 8mm normal
4 13mm tele
5 12.6mm tele
6 4mm wide

TABLE II

PARAMETERS OF THE USED LENSES

equipped with different lenses by turn and the MTF of the

imaging system was measured. The result is a measure for

the effects of different lenses on the imaging sensors and a

rating for the overall performance of one combination.

Fig. 1 and Fig. 2 show the normalized MTF for each lens

over the corresponding spatial frequency measured in cycles

per pixel, with respect to FNyquist. A good way to interpret

the performance with the MTF is the frequency where the

contrast has only half its original value. For all investigated

systems, lens 4 poses the best performance. Lens no. 6, a

wide angle lens with short focal length, shows the lowest

performance, with even dropping under a critical 0.1 MTF

before reaching half of the sampling rate (FNyquist) and

thus limiting the sensors performance. This lens degrades the

performance of the imaging system noticeably. Also sensor 2

shows better performance because of its superior resolution

which leads to a Nyquist frequency nearly twice as high as

sensor 1.
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Fig. 1. Normalized MTF for sensor 1 over cycles per pixel (Fn = Nyquist
Frequency). Lens 4 shows the best performance and lens 6 the lowest. The
structurally identical lenses 1 and 3 show the expected equal performance.

A comparison of the two resulting graphs (Fig. 1 and

Fig. 2) shows that the lower resolution of sensor 1 leads

to less specifiable graphs and an overall lower performance.

Lenses 1 and 3 show comparable MTF performance on

both sensors with a visible divergence for sensor 2, which

is related to the doubled Nyquist frequency resulting in a

higher sensitivity for measurement errors. This leads to the
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Fig. 2. Normalized MTF for sensor 2 over cycles per pixel (Fn = Nyquist
Frequency). Lens 4 shows the best performance, while the low performance
of lens 6 even limits the sensors performance.

assumption, that small differences between lenses can not

be resolved sufficiently with this simple measurement setup.

However, the measurement bears a high potential for fast

and easy performance estimation and a first impression of

how the overall system affects contrast and resolution which

directly influences the performance of a given recognition

task. Being able to distinguish the performance of the lenses

together with the different optical characteristics from the

perception results, is the task of the perception evaluation.

For the experimental work on the recognition task the

influence of the different imaging combinations is evaluated

on the scenery in front of a moving truck. The acquired

images of freeway roads are processed offline to extract the

position and specificity of road lanes. The camera and lens

Fig. 3. Scene from real world experimental setup (left: sensor 1, right:
sensor 2)

combinations were placed behind the windshield at the center

of the vehicle. It is important to align the field of view,

to have the effects of different imaging systems pictured

in comparable data and not to introduce more scenery than

needed. Images of two different combinations were recorded

in parallel for offline processing, allowing for a direct frame-

by-frame comparison (Fig. 3).

636



Data of the combinations and the output of an additional

built-in lane recognition system were recorded for about

100km of freeway driving. The built-in system provides

reference data for the final system evaluation. The SNR

measurement is performed offline and can be tuned to match

the focus of the evaluation. Applying the SNR measurement
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Fig. 4. SNR results of the right lane marking for sensor 1 and sensor 2
equipped with the same lens model for a long sequence of one measuring
campaign (ca. 9min at 15 frames per second). Sensor 1 is permanently
below the performance of sensor 2.

to a mid range measurement window for both sensors

equipped with the same lens model produces results that

show a clear separation of the two sensors with sensor 2

being permanently superior (Fig. 4). The high variation at the

beginning is due to very poor quality of the marking itself

resulting in unbalanced signal response. For normal quality,

a stable average is maintained with a visible correlation for

performance drops, while passing dashed markings of exit

lanes. This shows additional use cases for the measurement

in terms of describing the impact of external conditions on

the quality of input data. Weather and lighting conditions

as well as road constitution influence the SNR results and

knowing the threshold for successful feature extraction an

estimate for the performance in these situations should be

given.

For a more detailed evaluation of the different combi-

nations, the SNR was applied to 1m sized measurement

windows up to 60m in front of the vehicle, which covers the

region of interest for the recognition task and computed for

all recorded scenes. Thereby the operating area for each setup

and the performance inside can be determined at once. This

provides information on what impact the sensors have on the

signal quality in different distances and thus a measure where

the probability for successful feature extraction is limited by

the sensor.

The results presented in Fig. 5 and Fig. 6 confirm that

sensor 2 is superior for almost all distances regardless of the

used lens. The performance for operating distances above

0 20 40 60
0

10

20

30

40

50

distance (m)

S
N

R
 (

d
B

)

lens 1
lens 2
lens 4
lens 5
lens 6

Fig. 5. SNR results of sensor 1 for 1m segments up to 60m for different
lenses. Lens 6 and 1 perform well in the near distance and lens 1 is able
to compete with the other lenses above 35m.

40m for the lenses are increased too.

The differences between the lenses for the same sensor

reproduce the performance differences as indicated by the

MTF results. Also, lenses that are not well separated in the

MTF graph, can not be separated well in these measurements

either, which was expected. The variation of environment

parameters for the recorded scenes assumedly has a higher

impact than the variance of the lenses. Lens 6 is inferior to

all other lenses except for its advantage in the near distance

due to the wide angle view but lens 1 is able to cover this

area too and can provide better SNR in the distance. Lens 4

shows a high and stable performance but due to its zoomed

field of view has a small operating area.

The impact of the different sensor performances on the

perception result of the lane recognition component is inves-

tigated by comparing the results of the tested sensor with the

results of the recognition system recorded together with the

images during the experiments. The significant measures that

show a reliable estimation are the curvature and the width of

the road. If the number of extracted features for the far end

of the operating distance is not sufficient, the road estimation

will not correctly follow upcoming curves and the width

estimation produces results for the wrong model parameters.

For lens 1, both sensors can provide sufficient performance

for the perception task and no significant difference between

the sensors is visible (Fig. 7. This changes when the low

performing lens 6 is used. Compared to lens 5 during one

of the recorded road sequences with changing turns, the

curvature estimation is constantly off target (Fig. 8). The

same behavior is true for the setup with switched lenses on

a similar road scene. Whereas sensor 1 does not perform as

good as sensor 2 with lens 5 equipped, sensor 2 is not able

to get better performance out of lens 6 than sensor 1 (Fig. 9).
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Fig. 6. SNR results of sensor 2 for 1m segments up to 60m for different
lenses. All but lens 6 show better performance than on sensor 1 and good
performance even above 40m.
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Fig. 7. Lane curvature estimation on sensor 1 and sensor 2 with evenly
good SNR performance lenses and the result of the reference system.

For both sequences it is also visible that lens 6 introduces

more noise for the perception estimates which complicates

the task for possible controlling components that would use

this as input.

Analyzing the cumulated width estimation results for the

computed road sequences gives an insight on how well the

tested devices could perform for tasks where the distance of

the vehicle to the road lanes has to be computed.

It is again with lens 6, that both sensors show the expected

low performance depicted in Fig. 10 and Fig. 11 with an

absolute deviation δ = |Widthref − Widthest| from the

reference data of up to 0.4m, which is not acceptable if this
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Fig. 8. Lane curvature estimation on sensor 1 and sensor 2 with a poor
and a good SNR performance lens and the result of the reference system.

was an input for critical controlling components. Sensor 1

also shows a higher variance in the data which would most

likely worsen the results if more data was computed and

more complex scenes would be investigated.

V. CONCLUSION

The investigated perception results for the different sensor

setups show that in each performed measuring step, from the

first performance evaluation with standardized image quality

measures to the applied signal to noise ratio, measurements

for significant performance differences could be provided

and matched the final overall performance for the targeted

perception task.

This method provides an insight on how the quality

directly influences the perception performance and that it

is possible to give a relative measure for its impact on

the perception performance. With lower data quality for far

distances, indicated by the lower signal to noise ratio, the

probability and amount of successful detected lane features

decreases. The connected perceptive components that ana-

lyze these features have to cope with the lower detection rate

if the system performance may not drop down, too, which

is shown in our results.

The SNR provides a relative performance measure for the

significance of an explicit feature for captured scenes and

conditions. Influences on the feature quality, lightning and

changing weather conditions, distort the results respectively.

From overcast to rainy or snowy weather a comparably drop

in performance could be observed for all investigated setups.

By computing the SNR for different segments of the data it

is possible to evaluate the performance differences dependent
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Fig. 9. Lane curvature estimation on sensor 1 and sensor 2 with a poor
and a good SNR performance lens and the result of the reference system.
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Fig. 10. Overall lane width absolute estimation error δ on sensor 1 versus
the reference data.

on parameters like viewing distance and further distinguish

the different components. The detection rate of the investi-

gated perception task correlates with the performance of the

applied SNR measurement and makes it possible to link the

sensor performance to the perception performance.

Especially when the decision for sensor components has

to be made with costs in mind the need for a well selected

range of performance is apparent. Extending these measure-

ments with additional parameters of interest like costs and

application specific variables will help developers to find a

balanced operating point.

Image quality measurement using the proposed standards
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Fig. 11. Overall lane width absolute estimation error δ for sensor 2 versus
the reference data.

can be applied to evaluate the performance of imaging

systems with their resulting MTF, without the need of cost

intensive measurement processes and tools. We assessed the

measured performance by processing the data of different

imaging setups for the task of lane recognition. The presented

measurement of the SNR of an optimal feature signal, is able

to rate the performance of different imaging systems when

compared to each other and resolves similar performance

relations to the MTF analysis of the imaging systems.

To get precise and reliable results it is advised to compare

systems that are recording in parallel, or use a large quantity

of data from each imaging component, that covers enough

scenarios to compute a fair average result.
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