VORGEHENSWEISE UND ERKENNTNISSE AUS DER ANALYSE VON PRODUKTEN BEZÜGLICH SCHADSTOFFEN – SCREENING UND SPUREN-ELEMENTANALYSE

Dr. Hans-Jochen Fetzer und Stephan Hummel

Vorgehensweise und Erkenntnisse aus der Analyse von Produkten bezüglich Schadstoffen

- Screening und Spurenelementanalyse -

Dr. Hans-Jochen Fetzer, Stephan Hummel

Fraunhofer Institut IPA, Stuttgart

Dr. Hans-Jochen Fetzer Stephan Hummel Fraunhofer IPA hummel@ipa.fhg.de fetzer@ipa.fhg.de

Vorgehensweise und Erkenntnisse aus der Analyse von Produkten bezüglich Schadstoffen – Screening und Spurenelementanalyse –

Überblick

- Klärung der Begriffe und der Schadstoffe
- Grundlagen der Röntgenfluoreszenzanalyse
- Ablauf der Untersuchungen
- Untersuchungsablauf mit den Aufschlussverfahren
- Ergebnisbeispiele der Verfahren
- Vergleich RFA Werte mit der chemischen Analyse
- Fehlermöglichkeiten

Klärung der Begriffe und der Schadstoffe

Dr. Hans-Jochen Fetzer Stephan Hummel Fraunhofer IPA hummel@ipa.fhg.de fetzer@ipa.fhg.de

Vorgehensweise und Erkenntnisse aus der Analyse von Produkten bezüglich Schadstoffen
– Screening und Spurenelementanalyse –

Klärung der Begriffe und der RoHS-Stoffe

- **Quecksilber** (Hg; Mercury) (max. 0,1 Gew.-%)
- Cadmium (Cd; Cadmium) (max. 0,01 Gew.-%)
- **Blei** (Pb; lead) (max. 0,1 Gew.-%)
- **Chrom (VI)** (Cr (VI), Chromium (VI)) (max. 0,1 Gew.-%)
- **PBB** (Polybromierte Biphenyle, polybrominated biphenyls)

• **PBDE** (Polybromierte Diphenylether; Polybrominated Diphenyl Ethers)

$$\operatorname{Br}_{y}$$
 $O = \left(\begin{array}{c} \operatorname{Br}_{X} \\ \operatorname{Fr}_{X} \end{array}\right)$

Klärung der Begriffe und der REACh-Stoffe

- aktuell 53 SVHC-Stoffe
 bestehend aus anorganischen und organischen Verbindungen
- ab einem Wert von 0,1 Gew.-% sind Informationen über den im Produkt enthaltenen SVHC-Stoff innerhalb der Lieferkette weiterzugeben

Dr. Hans-Jochen Fetzer Stephan Hummel Fraunhofer IPA hummel@ipa.fhg.de fetzer@ipa.fhg.de

Vorgehensweise und Erkenntnisse aus der Analyse von Produkten bezüglich Schadstoffen
– Screening und Spurenelementanalyse –

Klärung der Begriffe und der REACh-Stoffe

Beispiel

CAS-Number		101-77-9	84-74-2	7646-79-9	1303-28-2	1327-53-3	7789-12-0	81-15-2	117-81-7	25637-99-4	85535-84-8
Chemische Analyse	GC-MS	GC-MS	GC-MS	ICP	ICP	ICP	ICP	GC-MS	GC-MS	GC-MS	GC-MS
Elementeanalyse (XRF)	-	_	-	Co, CI	As	As	Cr	-	-	Br	CI
RoHS-Screening (XRF)							Cr			Br	
Verwendung, Einsatzzweck, Funktion	Herstellung von Farben, Pigmenten, Insektizide polyzkl, aromat. Kohlenwasser	Herstellung von Farben, Pigmenten, Pflanzenschut zm.	Weichmacher für Kabel (PVC), Gummi (NBR, EPDM)	Silikat-Gel- Trocknungs- mittel	Herstellung von Farben, Pigmenten, Metalle Biozid, (Pestizide.	Herstellung von Farben, Pigmenten, Metalle Biozid, (Pestizide.	Oxidations- mittel für Färbeprozess	Kunst- moschus	Weichmacher für Kabel (PVC), Gummi (NBR, EPDM)	Verwendung in Polyester, PP, Acryl, E-PU, E-PS; HIPS	Weichmacher (PVC) und Flammschutz- mittel
Stoffgruppe	(PAH, PAK)	Amine	Phtalate	Feuchtigkeits- Indikator	Herbizide)	Herbizide)	verbindung	Duftstoff	Phtalate	mittel	Clorparafine
Nr. SVHC	1	2	3	4	5	6	7	8	9	10	11
Stoffbezeichnung	Anthracene	4,4'- Diaminodiphen ylmethane	Dibutyl phthalate (DBP)	Cobalt dichloride	Diarsenic pentaoxide	Diarsenic trioxide	Sodium dichromate, dihydrate	5-tert-butyl-2,4,6. trinitro-m- xylene (musk xylene)	Bis (2- ethyl(hexyl)pht halate) (DEHP)	Hexabromocycl ododecane (HBCDD)	Alkanes, C10- 13, chloro (Short Chain Chlorinated Paraffins)

Flammschutzmittel

Unterteilung in <u>4 Typen</u> der Flammschutzmittel Additive Reaktive Inhärenter Coating Flammschutzmittel Flammschutzmittel Flammschutz

- Diese setzen sich zusammen aus:
 - 50% Anorganische Flammschutzmittel
 - 25% Halogenierte (bromierte und chlorierte) Flammschutzmittel
 - 20% Organophosphor Flammschutzmittel (Chlor oder Brom kann enthalten sein)
 - 5% Stickstoffbasierende Flammschutzmittel

- Wichtigsten Vertreter: TBBPA, HBCD, PentaBDE, OctaBDE, DecaBDE

- Hauptsächlich eingesetzt in Kunststoff, Textilien, elektronische Geräte, Automobilindustrie
- zumeist additives Flammschutzmittel; Ausnahme: TBBPA → reaktives Flammschutzmittel
 Hauptsächlich eingesetzt in Kunststoff, Textilien, elektronische Geräte, Automobilindustrie
 Beim Brand werden polychlorierte und polybromierte Dibenzodioxinen bzw. Dibenzofuran
 (hohe Toxizität) → Verbot einiger Flammschutzmittel
 Antimontrioxid wirkt als Synergist in Kombination mit halogenierten Flammschutzmitteln
 pachteilig ist die katalytische Wirkung bei der Dioxin-Entstehung im Brandfall - Beim Brand werden polychlorierte und polybromierte Dibenzodioxinen bzw. Dibenzofuranen
 - nachteilig ist die katalytische Wirkung bei der Dioxin-Entstehung im Brandfall

Fraunhofer IPA hummel@ina.fhg.de fetzer@ipa.fhg.de

Folie 7 Fraunhofer

Vorgehensweise und Erkenntnisse aus der Analyse von Produkten bezüglich Schadstoffen - Screening und Spurenelementanalyse -

Halogenierte Flammschutzmittel

Gehalt an Flammschutzmitteln in verschiedenen Kunststoffen

Polymer	Gehalt [%]	Flammschutzmittel
Polystyrolschaum	0,8 – 4	HBCD (SVHS)
HIPS	11 – 15	DecaBDE,
ПГЗ	11 – 13	bromiertes Polystyrol
Epoxidharz	19 – 33	TBBPA
Polyamide	13 – 16	DecaBDE,
Folyaffilde	13 - 10	bromiertes Polystyrol
Polyolefine	5 – 8	DecaBDE,
1 diyolefine	3 - 0	Propylendibromstyrol
Polyurethan	10 – 18	TBBPA
Polyethylenterephthalat	8 – 11	Bromiertes Polystyrol, TBBPA
Ungesättigte Polyester	13 – 28	TBBPA
Polycarbonate	4 – 6	Bromiertes Polystyrol, TBBPA
Styrol-Copolymere	12 – 15	bromiertes Polystyrol

RoHS-Screening - Risikomaterial

Blei - Pb

- Lote
- Bauelement-Anschlüsse
- Endoberflächen auf Leiterplatten (HAL SnPb)
- Stabilisator in PVC (Kabel, Schrumpfschläuche, Isolierbänder)
- Farbpigmente, Trocknungsmittel (auch Folien, Aufkleber,..)

Cadmium - Cd

- galvanische Beschichtungen (Cadmierung), Speziallote
- Kontakte von Relais, Schaltern (Ausnahmeregelung)
- Stabilisator in PVC, Pigment in Kunststoffen, Glas, Keramik

Quecksilber - Hg

• Lampen, Sensoren, Relais (prellfreie Kontakte)

PBB / PBDE:

• Flammhemmer in Kunststoffen (u.a. TBBA erlaubt)

Cr(VI):

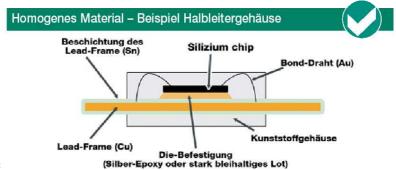
- Passivierung auf Metallen
- korrosionsbeständige Farben, Leder (Gerbprozess)

Dr. Hans-Jochen Fetzer Stephan Hummel Fraunhofer IPA hummel@ipa.fhg.de fetzer@ipa.fhg.de

Vorgehensweise und Erkenntnisse aus der Analyse von Produkten bezüglich Schadstoffen
– Screening und Spurenelementanalyse –

Welche Bauteile sollten einem Screening unterzogen werden:

- Kritische Bauteile / Baugruppen
- Bauteile / Baugruppen kritischer Lieferanten
- Bauteile / Baugruppen aus kritischen Herkunftsländern
- Bauteile und Baugruppen wo Unregelmäßigkeiten bzgl. Supplier-Deklaration festgestellt wurden



RoHS-Screening - homogenes Material

- →...kann nicht durch mechanische Verfahren in verschiedene Materialien zerlegt werden
- → ...ist von einer vollständig einheitlichen Zusammensetzung
- →...Herausschrauben, Schneiden, Brechen, Grobschleifen, Schmirgeln,....
- →...China-RoHS (homogen, nicht demontieren, wenn < 4 mm³ / SMD 0508)

Das gezeigte Bauelement enthält deshalb mindesten sechs verschiedene Materialien

Quelle: www.farnellinone

Dr. Hans-Jochen Fetzer Stephan Hummel Fraunhofer IPA hummel@ipa.fhg.de fetzer@ipa.fhg.de

Folie 11
Fraunhofer

Vorgehensweise und Erkenntnisse aus der Analyse von Produkten bezüglich Schadstoffen
– Screening und Spurenelementanalyse –

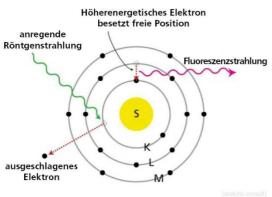
Prüflabor: Ziel: → Prüfbericht/ Zertifikat

- Prüfung an <u>ausgewählten Messpunkten</u> komplexer Geräte
- Informationen Technologie und Materialien liegen zum Teil nicht vor
- RFA-Screening zur Vorauswahl: BL (BelowLimit) / OL (OverLimit) / X (inconclusive, unschlüssig)
- RFA-Tischgerät (Proben im Labor, "wenige" Messpunkte), oder Handgerät
- kein Zeitdruck für RFA (chemische Analysen dauern ohnehin viel länger)
- unschlüssige Ergebnisse strikt durch chemische Analysen verifizieren
- Prüfung am homogenen Material
- <u>keine</u> Risikobewertung → PBB/PBDE & Cr(VI)
 - wenn X (inconclusive, unschlüssig) => immer Prüfung PBB/PBDE
 - wenn X (inconclusive, unschlüssig) => immer Prüfung Cr (VI)
- Ergebnis: BL / OL , wenn gewünscht: Analysenergebnisse (in ppm)

Grundlagen der Röntgenfluoreszenzanalyse

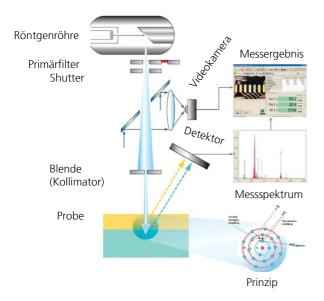
Dr. Hans-Jochen Fetzer Stephan Hummel Fraunhofer IPA hummel@ipa.fhg.de fetzer@ipa.fhg.de

Vorgehensweise und Erkenntnisse aus der Analyse von Produkten bezüglich Schadstoffen – Screening und Spurenelementanalyse –

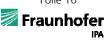

RFA-Tischgerät

Grundlagen der Röntgenfluoreszenzanalyse (RFA)

- Wechselwirkung energiereicher Strahlen mit Atomen der Materie
- Ausreichende Energie auf ein Atom
 - → Lösung eines Elektron aus Atomverband
- Neubesetzung der Elektronposition durch Elektron aus höherem Energieniveau
- Übergang: Energiedifferenz in Form einer charakteristischen Röntgenstrahlung (Sekundärröntgenstrahlung) freigesetzt
- Effekt wird als Röntgenfluoreszenz bezeichnet


Dr. Hans-Jochen Fetzer Stephan Hummel Fraunhofer IPA hummel@ipa.fhg.de fetzer@ipa.fhg.de

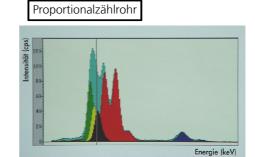
Folie 15
Fraunhofer


Vorgehensweise und Erkenntnisse aus der Analyse von Produkten bezüglich Schadstoffen
– Screening und Spurenelementanalyse –

Grundlagen der Röntgenfluoreszenzanalyse (RFA)

- Materialprobe wird angeregt durch:
 - Röntgenstrahlung
 - Gamma- / Ionenstrahlung (EDX)
- Fluoreszenzstrahlung wird durch Detektor ausgewertet
- Ermöglicht Konzentrationsbestimmung und Identifizierung ab Ordnungszahl Z= 9 (unser Gerät ab Ordnungszahl Z=13 (Aluminium))
- Leistungsfähig ist der Nachweis von geringen Verunreinigungen, wie beispielsweise Schwermetalle mit hoher Ordnungszahl

Energie (keV)


Detektoren

Pin-Halbleiterdetektor

Detektoren

- Photonen der Fluoreszenzstrahlung erzeugen freie Ladungsträger im Halbleiter (Elektronen und Löcher)
- Anzahl Ladungsträger ~ Energie Photonen
- Exzellente Energieeffizienz
- → Geeignet für unbekannte Proben, da dicht nebeneinanderliegende Peaks genau

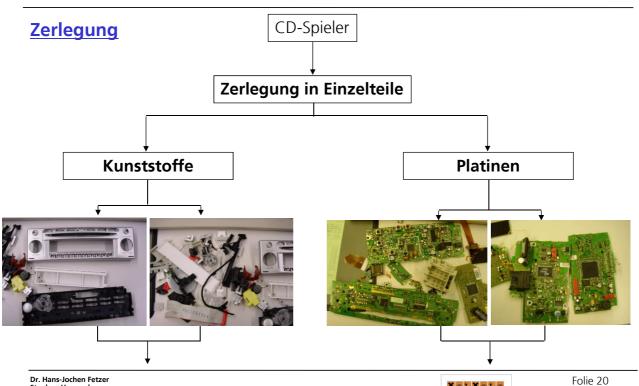
ausgewertet werden können Dr. Hans-Jochen Fetzer Stephan Hummel Fraunhofer IPA hummel@ipa.fhg.de fetzer@ipa.fhg.de

- Photonen der Fluoreszenzstrahlung erzeugt durch Ionisierung im Zählrohrgas elektronische Ladungsträger
- Anzahl Ladungsträger ~ Anzahl Photonen
- Energieauflösung nicht so hoch
- → Geeignet für Routinemessungen bekannter Schichtsysteme, da die Messung schneller vollzogen wird

Folie 17 Fraunhofer

Vorgehensweise und Erkenntnisse aus der Analyse von Produkten bezüglich Schadstoffen - Screening und Spurenelementanalyse -

RFA-Handgerät zur Materialprüfung (z.B.: Wareneingang, Marktüberwachung)


Ablauf der Untersuchung

Dr. Hans-Jochen Fetzer Stephan Hummel Fraunhofer IPA hummel@ipa.fhg.de fetzer@ipa.fhg.de

Folie 19
Fraunhofer

Vorgehensweise und Erkenntnisse aus der Analyse von Produkten bezüglich Schadstoffen
– Screening und Spurenelementanalyse –

Dr. Hans-Jochen Fetzer Stephan Hummel Fraunhofer IPA hummel@ipa.fhg.de fetzer@ipa.fhg.de

Analysenprotokoll

Sample: 6450236 Kunststoff Spule

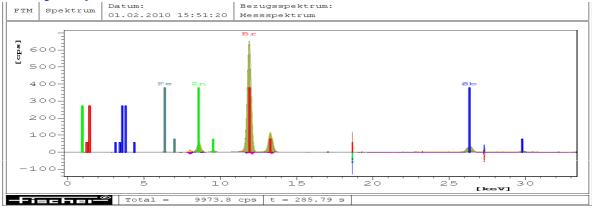
Material: Polymer

	Pb ppm	Hg ppm	Cd ppm	Cr ppm	Br ppm
Concentrations	135.3	N.d.	N.d.	N.d.	103191
3*σ	14.60	19.14	25.41	48.95	947.1
RoHS Status	BL	BL	BL	BL	X

Below Limit¹
Over Limit¹
Inconclusive¹ -> further investigations

¹Accordig to IEC 62321

Measuring Conditions: 300sec
Product: 610602 / Non PVC + Br Dir: Polymer
Hochspannung = 50 kV (875) Prim. Filter = Ti
Kollimator 3 = 1.00 Dm. Anodenstrom 1000 uA
Messdistanz = 0.11 mm
Operator: Dr. Hans-Jochen Fetzer Date: 01.02.2010 Time: 14:57:14
Fischerscope® XRAY XDV-SD


Dr. Hans-Jochen Fetzer Stephan Hummel Fraunhofer IPA hummel@ipa.fhg.de fetzer@ipa.fhg.de

Folie 21 Fraunhofer

Vorgehensweise und Erkenntnisse aus der Analyse von Produkten bezüglich Schadstoffen - Screening und Spurenelementanalyse -

Analysenprotokoll

Bezug: Messspektrum
Streuspektrum
Summenspektrum
Residuum
Messparameter Bezugsspektrum:
Hochspannung = 50 kV (875) Prim. Filter = Ti
Kollimator 3 = 1.00 Dm. Anodenstrom 1000 uA
Messdistanz = 0.10 mm

Dr. Hans-Jochen Fetzer Stephan Hummel Fraunhofer IPA hummel@ipa.fhg.de fetzer@ipa.fhg.de

Untersuchungsablauf mit dem Aufschlussverfahren

Dr. Hans-Jochen Fetzer Stephan Hummel Fraunhofer IPA hummel@ipa.fhg.de fetzer@ipa.fhg.de

Folie 23
Fraunhofer

Vorgehensweise und Erkenntnisse aus der Analyse von Produkten bezüglich Schadstoffen
– Screening und Spurenelementanalyse –

Zerlegung

Aufschlussverfahren

Schreddern bis 2 mm Teilchengröße

Druckaufschluss mit Salpetersäure od. Königswasser Extraktion mit Heptan/Aceton (Analyse: bromierte Verbindungen)

Hochdruckbehandlung (Analyse: Halogennachweis)

Untersuchungsverfahren

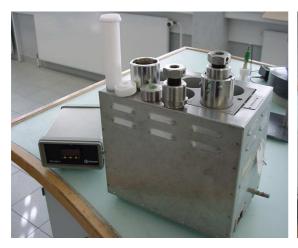
Pb, Cd, Cr: DIN EN ISO 11885

Hg: DIN EN 1483 (E 12) Restmetallgehalt: ICP-Analyse Untersuchungsverfahren:

GC-MS/MS

Untersuchungsverfahren

IC


Dr. Hans-Jochen Fetzer Stephan Hummel Fraunhofer IPA hummel@ipa.fhg.de fetzer@ipa.fhg.de

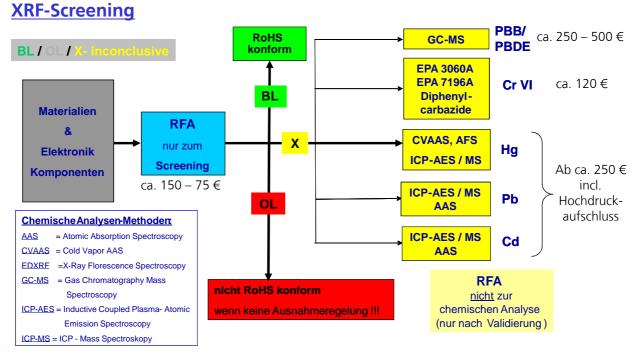
Folie 25
Fraunhofer

Vorgehensweise und Erkenntnisse aus der Analyse von Produkten bezüglich Schadstoffen – Screening und Spurenelementanalyse –

Hochdruckaufschlussgerät

Analytik

Soxleth-Extraktor 1. Kolben 2. seitliches Steigrohr 3. Extraktionshülse 4. Rückflusskühler 5. Siphon Quelle: Agilent


Beispiel eines Hochdruckextraktors

Dr. Hans-Jochen Fetzer Stephan Hummel Fraunhofer IPA hummel@ipa.fhg.de fetzer@ipa.fhg.de

Folie 27
Fraunhofer

Vorgehensweise und Erkenntnisse aus der Analyse von Produkten bezüglich Schadstoffen
– Screening und Spurenelementanalyse –

Dr. Hans-Jochen Fetzer
Stephan Hummel
Fraunhofer IPA
hummel@ipa.fhg.de
fetzer@ipa.fhg.de

Ergebnisbeispiele der Verfahren

Dr. Hans-Jochen Fetzer Stephan Hummel Fraunhofer IPA hummel@ipa.fhg.de fetzer@ipa.fhg.de

Vorgehensweise und Erkenntnisse aus der Analyse von Produkten bezüglich Schadstoffen – Screening und Spurenelementanalyse –

Analysenergebnis: Extraktion und GC-MS-Untersuchung

Brom

Parameter	Einheit	Messwert	Verfahren
Brom gesamt	mg/kg	119638	Kalorim /DIN EN ISO 10304-2

Bromierte Flammschutzmittel

Parameter	Einheit	Messwert	Verfahren
Pentabromtoluol	mg/kg	<10,0	GC-MS nach Extraktion (*)
Hexabrombenzol	mg/kg	<10,0	GC-MS nach Extraktion (*)
Hexabromcyclododekan	mg/kg	<10,0	GC-MS nach Extraktion (*)
Tetrabrombisphenol A	mg/kg	<10,0	GC-MS nach Extraktion (*)
Pentabromierte Diphenylether	mg/kg	<10,0	GC-MS nach Extraktion (*)
Hexabromierte Diphenylether	mg/kg	<10,0	GC-MS nach Extraktion (*)
Octabromierte Diphenylether	mg/kg	<10,0	GC-MS nach Extraktion (*)
Octabrombiphenyl	mg/kg	<10,0	GC-MS nach Extraktion (*)

(*) - nicht akkreditiertes Verfahren

Analysenergebnis: Aufschluss und ICP-Untersuchung

Metalle

Probennummer	Cadmium (Cd) in Gew%	Quecksilber (Hg) in Gew%	Blei (Pb) in Gew%	Chrom(0) in Gew%
Probe 1	<0,0062	0,0025	9,6	0,026
Probe 2	<0,00025	<0,00005	0,00075	0,0065
Probe 3	<0,00025	<0,00005	0,87	0,016
Probe 4	<0,00025	<0,000050	0,0015	0,12
Probe 5	<0,00025	<0,000051	<0,00025	0,025
Probe 6	<0,00025	<0,000050	0,43	0,013
Probe 7	<0,00025	<0,000050	0,00075	0,0043
Probe 8	<0,00025	<0,000051	2,3	0,0038
Probe 9	<0,00025	<0,000051	0,61	0,003
Probe 10	<0,00025	<0,000050	0,35	0,0028
Probe 11	<0,00025	<0,000050	0,7	0,0035
maximaler Grenzwert laut Verordnung in Gew%	0,01	0,1	0,1	0,1

Dr. Hans-Jochen Fetzer Stephan Hummel Fraunhofer IPA hummel@ipa.fhg.de fetzer@ipa.fhg.de

Vorgehensweise und Erkenntnisse aus der Analyse von Produkten bezüglich Schadstoffen
– Screening und Spurenelementanalyse –

Analysenergebnis: Extraktion und GC-MS-Untersuchung

Phthalate

Parameter	Einheit	Messwert	Verfahren
Diisobutylphthalat	%	<0,005	GC/MS nach Extraktion mittels ASE 200 (*)
Benzylbutylphthalat (BBP)	%	<0,005	GC/MS nach Extraktion mittels ASE 200 (*)
Di(2-ethylhexyl)phthalat (DEHP)	%	0,300	GC/MS nach Extraktion mittels ASE 200 (*)
Dioctylphthalat (DNOP)	%	<0,005	GC/MS nach Extraktion mittels ASE 200 (*)
Diisononylphthalat (DINP)	%	<0,005	GC/MS nach Extraktion mittels ASE 200 (*)
Diisodecylphthalat (DIDP)	%	<0,005	GC/MS nach Extraktion mittels ASE 200 (*)

(*) - nicht akkreditiertes Verfahren

Vergleich Chemische Analyse vs. RFA - Analyse

Dr. Hans-Jochen Fetzer Stephan Hummel Fraunhofer IPA hummel@ipa.fhg.de fetzer@ipa.fhg.de

Vorgehensweise und Erkenntnisse aus der Analyse von Produkten bezüglich Schadstoffen
– Screening und Spurenelementanalyse –

Untersuchungsergebnis chemische Analyse

Zahnrad (Messing bleihaltig)

Parameter	Einheit	Messwert	Verfahren
Blei	mg/kg TS	28000 (2,8 %)	DIN EN ISO 11885 (E 22)
Zink	mg/kg TS	390000 (39 %)	DIN EN ISO 11885 (E 22)

ICP-Screening-Ergebnisse:

< Bestimmungsgrenze : Ba, Cr, Tl, Sr;

Spuren (bis 1 mg/kg TS): -

1 - 100 mg/kg TS) : Ag, Al, As, Ca, Cd, Mg, Mn, B, Si;

100 - 500 mg/kg TS) : K; 500 - 1000 mg/kg TS) : -

1000 - 10000 mg/kg TS) : Fe, Ni, P;

> 10.000 mg/kg TS) : Cu

Elementbestimmung mittels RFA			
Zn; Cu; Sn; Pb; Fe; Ni; P; K; As; Ca			
Al: Ma: B: Si: Mn: Aa			

Untersuchungsergebnis chemische Analyse

Lagerscheibe

Parameter	Einheit	Messwert	Verfahren
Eisen	mg/kg TS	500000 (50 %)	DIN EN ISO 11885 (E 22)
Zinn	mg/kg TS	35000 (3,5%)	DIN EN ISO 11885 (E 22)

ICP-Screening-Ergebnisse:

< Bestimmungsgrenze : As, Ba, Cd, Tl, Sr;

Spuren (bis 1 mg/kg TS): -

1 - 100 mg/kg TS) : Ag, Cr, Na;

100 - 500 mg/kg TS) : Mg, Mn, Ni, Pb, Zn, Si, K;

500 - 1000 mg/kg TS) : Al, Ca; **1000 - 10000 mg/kg TS) :** P, B; > **10000 mg/kg TS) :** Cu

Elementbestimmung mittels RFA

Cu; Zn; Ca; Mg; Mn; Ni; K; Cr; Sn

B; P; Pb; Al; Si; Ag; Na

Dr. Hans-Jochen Fetzer Stephan Hummel Fraunhofer IPA hummel@ipa.fhg.de fetzer@ipa.fhg.de

Vorgehensweise und Erkenntnisse aus der Analyse von Produkten bezüglich Schadstoffen
– Screening und Spurenelementanalyse –

Untersuchungsergebnis chemische Analyse

Schwarzer Kunststoff

Parameter	Einheit	Messwert	Verfahren
Blei	mg/kg TS	26	DIN EN ISO 11885 (E 22)
Schwefel	mg/kg TS	56	DIN EN ISO 11885 (E 22)

ICP-Screening-Ergebnisse:

< Bestimmungsgrenze : Ag, As, Ba, Cd, Tl, Sr, Si, Ti;

Spuren (bis 1 mg/kg TS): -

1 - 100 mg/kg TS): Al, Cr, Mg, Mn, Ni, P, Zn, B, Na, Nb;

100 - 500 mg/kg TS) : Cu, Fe, K;

500 - 1000 mg/kg TS): Ca 1000 - 10000 mg/kg TS): -> 10000 mg/kg TS): -

Elementbestimmung mittels RFA

Cu; Fe; K; Cr; Mn; P; Zn; Nb; As; Ba; Tl; Sr; Si; Ti

Pb; Al; Mg; Ni; S; B; Na;

Untersuchungsergebnis chemische Analyse

Gummi eines Reifen (ohne Metallgeflecht)

ICP-Screening-Ergebnisse:

< Bestimmungsgrenze : Ag, As, Cd, Tl;

Spuren (bis 1 mg/kg TS): -

1 - 100 mg/kg TS) : Ba, Cr, Mn, Mo; Ni, Pb, Sb; Sr, B;

100 - 500 mg/kg TS) : Cu, P, Na, K; **500 - 1000 mg/kg TS) :** Al, Fe, Mg, Si;

1000 - 10000 mg/kg TS) : Ca; > **10000 mg/kg TS) :** Zn

Inhaltsstoffe Gummireifen:

geringe Schwefelmengen (Vernetzung) Zusatz von Ruß, Zinkoxid, Autioxidantien

Elementbestimmung mittels RFA

Cu; Zn; Mo; Br; Sb; Fe; Sr; Pb; Ni; Mn; Sn; Ca; Cr; K; Ba;

B; Mg; Si; P; Na; Al;

Dr. Hans-Jochen Fetzer Stephan Hummel Fraunhofer IPA hummel@ipa.fhg.de fetzer@ipa.fhg.de

Vorgehensweise und Erkenntnisse aus der Analyse von Produkten bezüglich Schadstoffen
– Screening und Spurenelementanalyse –

Untersuchungsergebnis chemische Analyse

Leiterplatte (mit bromiertem Flammschutzmittel)

Parameter	Einheit	Messwert	Verfahren
Kupfer	mg/kg TS	216000 (21,6%)	DIN EN ISO 11885 (E 22)

ICP-Screening-Ergebnisse:

< Bestimmungsgrenze : Cd, Tl;

Spuren (bis 1 mg/kg TS):

1 - 100 mg/kg TS): Ag, As, Cr, Mn, Ni, Si, Zr, Nb;

100 - 500 mg/kg TS) : Ba, Pb, Zn, Sr, K;

500 - 1000 mg/kg TS) : Mg;

1000 - 10000 mg/kg TS) : Fe, P, B, Na; > **10000 mg/kg TS) :** Al, Ca.

Elementbestimmung mittels RFA

Cu; Ca; Al; Fe; Pb; Zn; K; Br; Ti; Sr; Al; Mg; P; Ba; As

B; Na; Ag; Cr; Mn; Ni; Si; Zr; Nb

Fehlermöglichkeiten

Dr. Hans-Jochen Fetzer Stephan Hummel Fraunhofer IPA hummel@ipa.fhg.de fetzer@ipa.fhg.de

Vorgehensweise und Erkenntnisse aus der Analyse von Produkten bezüglich Schadstoffen
– Screening und Spurenelementanalyse –

Welche typischen (Mess)-Fehler können auftreten?

- Bauteile nicht geeignet demontiert
- falsches Messprogramm / Kalibration verwendet
- Schichtsysteme nicht beachtet:
 - Sn/Pb-beschichteter Cu-Draht = mit ICP-Messung gesamter Draht gemessen
 - Ergebnis: Fe50/ Zn50/ Cr 0,5 => kein Werkstoff sondern Chromatierung (Cr^{3+} oder Cr^{6+})
 - Chromatierung auf ganze Schraube gerechnet
- "falsch positive" Messwerte nicht im Spektrum verifiziert
 - Pb (Bi, Kr), Au (Cd), Zn (Hg)

Ausnahmeregelungen nicht beachtet

- Blei im Glas elektronischer Bauteile (z.B. SMD-Widerstand)
- Br, Cr gefunden => keine Panik, reales Risiko bewerten
 - Cr im Edelstahl => kein Cr (VI)
 - Br in Leiterplatte => TBBA, konform
- geeignetes Personal mit RoHS-Screening betrauen
 - Unsicherheitsfaktor: Interpretation
- → Kenntnisse Werkstoffe/Technologie, Ausnahmeregelungen = unerlässlich

Quelle: www.analyticon-instruments

Beispiel für einen Fehler

Dr. Hans-Jochen Fetzer Stephan Hummel Fraunhofer IPA hummel@ipa.fhg.de fetzer@ipa.fhg.de

Folie 41
Fraunhofer

Vorgehensweise und Erkenntnisse aus der Analyse von Produkten bezüglich Schadstoffen
– Screening und Spurenelementanalyse –

Fehler bei der chemischen Analyse

- Falsche Probenahme
- Probe nicht homogen (Partikel ungelöst)
- Hohe Verdünnung
- Kalibierfehler
- Falsches Messgerät mit einer zu geringen Nachweisgrenze

<u>RoHS-Screening</u> Verbotsstoff gefunden - sicher reklamieren

Verbotsstoff gefunden, was nun?

- bei RFA-Screening strikt einhalten:
 - Aussage Screening : OL / BL / unschlüssig
 - keine Konzentrationen angeben!
 - Messfehler : < 10% relativ oder < LOD
 - Bei Fragen: Ergebnis verifizieren (wiederholen, längere Messzeit, Spektrum)
- Angabe <u>Konzentration</u> Verbotsstoff
 - nur durch nasschemischer Analyse am homogenen Material
- geeignetes Personal mit RoHS-Screening betrauen
- Empfehlung: Lieferanten oder Kunden
 - in Klärung einbeziehen
 - ggf. weitere Prüfungen festlegen

Dr. Hans-Jochen Fetzer Stephan Hummel Fraunhofer IPA hummel@ipa.fhg.de fetzer@ipa.fhg.de

Quelle:: www.analyticon-instruments

Folie 43
Fraunhofer

Vorgehensweise und Erkenntnisse aus der Analyse von Produkten bezüglich Schadstoffen
– Screening und Spurenelementanalyse –

<u>Ist die RFA-Messung rechtsverbindlich bei Beweisführungen im Härtefall?</u>

- RFA_Messungen sind f
 ür das Screening DIN-konform und zulässig
 - Angabe: OL / BL => eindeutig
 - unschlüssige Resultate, X → chemische Analyse
- exakte Analysen nur mit chemischen Methoden am homogenen Material zulässig
 - Methoden: ICP-AES, ICP-MS, AAS, CVAAS, AFS, GC-MS, Diphenylcarbazide
 - Angabe: OL / BL / auf Anforderung auch Konzentrationen (ppm, wt %)
 - RFA hier nicht zugelassen

Fazit:

- Reklamationen im Wareneingang mittels RFA-Screening: <u>zulässig & belastbar</u>
- auch Zerifikate von Pr

 üfinstituten beruhen (belastbar) auf RFA-Screening-Resultaten
- gerichtliche Klage: chemische Analyse durch zertifiziertes Labor!

Danke für Ihre Aufmerksamkeit!

Für weitere Fragen stehen wir gerne zur Verfügung

Dr. rer. nat. Diplom Chemiker Hans-Jochen Fetzer

Abteilung Schichttechnik

Telefon: +49 (0) 711 / 970 - 1242 Fax: +49 (0) 711 / 970 - 1004 E-Mail: fetzer@ipa.fraunhofer.de

Internet: www.ipa.fhg.de

Dipl.-Betriebswirt (FH), M.Eng. Stephan Hummel

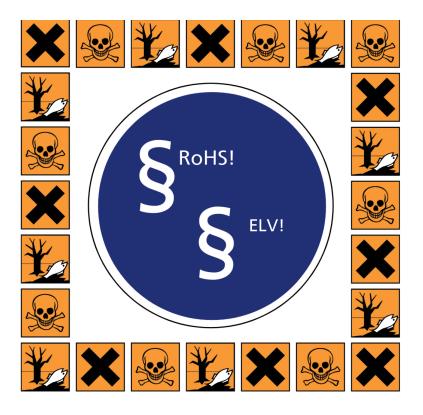
Abteilung Produkt- und Qualitätsmanagement

Telefon: +49 (0) 711 / 970 - 1326 Fax: +49 (0) 711 / 970 - 1002

E-Mail: stephan.hummel@ipa.fraunhofer.de

Internet: www.ipa.fhg.de

Dr. Hans-Jochen Fetzer Stephan Hummel Fraunhofer IPA hummel@ipa.fhg.de fetzer@ipa.fhg.de



UMGANG MIT STOFFVERBOTEN UND SCHADSTOFFLISTEN

Aktuelles zur RoHS-2.0- und WEEE-2.0-Richtlinie sowie zu REACh

Fraunhofer IPA Tagung 6. Oktober 2011 Stuttgart